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ABSTRACT

Graph Neural Networks (GNNs) have achieved outstanding success in a wide
variety of domains and applications. However, they are still vulnerable to unnotice-
able perturbations of graphs specially designed by attackers, causing significant
performance drops. Developing algorithms to defend GNNs with robust graphs
vaccinating from adversarial attacks still remains a challenging issue. Existing
methods treat every edges individually or regularize them by specific robust proper-
ties, which ignores the structural relationships among edges or correlations among
different properties. In this paper, we propose a tensor-based framework for GNNs
to learn robust graphs from adversarial graphs by aggregating predefined robust
graphs to enhance the robustness of GNNs via tensor approximation. All the
predefined robust graphs are linearly compressed into and recovered from a low-
rank space, which aggregates the robust graphs and the structural information in a
balanced manner. Extensive experiments on real-world graph datasets show that
the proposed framework effectively mitigates the adverse effects of adversarial
attacks and outperforms state-of-the-art defense methods.

1 INTRODUCTION

In real-world applications, many complex structures from various domains can be represented by
graph data, such as social networks, chemistry (molecular), biology (protein-protein interaction
networks), knowledge databases, and recommender systems. Graph Neural Networks (GNNs) have
achieved outstanding success for graph data in a wide range of application areas (Kipf & Welling,
2017; Battaglia et al., 2018; Wu et al., 2021; Zhou et al., 2020). GNNs are equipped with a message-
passing scheme (Gilmer et al., 2017), where the node representation is updated by transforming
the aggregated representations propagated from its neighbor nodes via edges, and are optimized for
performance on downstream tasks. In this fashion, GNNs can generate representations capturing both
graph structural information and node feature information.

In this paper, we focus on the semi-supervised task of node classification (Kipf & Welling, 2017)
by GNNs. GNNs have achieved promising performance in recent years, but have also shown to be
vulnerable to adversarial attacks (Bojchevski & Günnemann, 2019; Dai et al., 2018; Jin et al., 2020a;
Liu et al., 2019; Ma et al., 2019; Wu et al., 2019b; Zügner et al., 2018; Zügner & Günnemann, 2019b).
Most of adversarial attack methods for GNNs focus on poisoning attacks, which deliberately rebuild
the graph topology by changing an unnoticeable number of edges before the training process of GNNs.
These unnoticeable perturbations can significantly degrade learned graph representations and confuse
GNNs to catastrophically misclassify nodes. To defend the GNNs from adversarial edges, existing
methods attempt to learn robust graphs, which are extracted from the perturbed graphs and perform
solidly with GNNs. One way is to learn robust graph by reducing the attention weights of potentially
malicious edges (Zhu et al., 2019; Tang et al., 2019; 2020; Zhang & Zitnik, 2020). Preprocessing the
perturbed graphs to obtain robust graphs is another way to defend GNNs from adversarial edges (Wu
et al., 2019b; Entezari et al., 2020). Most of the existing works only pay attention to a specific
property of graph data (e.g., low-rank property (Entezari et al., 2020; Al-Sayouri et al., 2020), feature
similarities (Wu et al., 2019b)). Pro-GNN (Jin et al., 2020b) regularizes the learned graph to fit a
set of the corresponding graph properties and learns the weights for each node instead of the whole
graph. These methods show improvements in defending GNNs from poisoning attacks but ignore the
connection and balance between different graph properties or different nodes. The learned robust
graph has every single edge with a weight close to the original graph and following the specific
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graph properties, however, when looking through the point of view from the whole graph, it is either
ignoring the original structure of the graph or not able to remove most of the perturbed edges.

To learn better robust graph from adversarial graphs, we propose a Tensor-based framework for
Graph Neural Networks (TGNN), which can aggregate common information from the predefined
robust graphs and the adversarial graphs and thus enhance the robustness of GNNs with improved
classification performance. TGNN approximates the graph tensor, which consists of the attacked
graph and several predefined robust graphs focusing on specific graph properties (e.g., low-rank,
feature similarity properties), via low-rank approximation by applying tensor decomposition. By
preserving the low-rank tensor representation, TGNN generates the robust graph and maintains the
common core tensor space between the learned robust graph and predefined robust graphs. The learned
robust graph is no longer calculated individually by each entry but aggregated with the common core
tensors, balancing not only the different graph properties but also varied structural graph information.
The learned robust graph is fed into GNNs and jointly leaned with GNN parameters. Extensive
empirical results show that our proposed TGNN framework consistently improves the robustness
of the learned graph and significantly boosts the performance of node classification task for GNNs
against adversarial graphs.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS AND ADVERSARIAL ATTACKS ON GRAPHS

GNNs have achieved great success in solving machine learning problems on graph data in recent
years. Existing GNNs can be divided into two categories: spectral-based methods where graph
spectral theory (Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017; Wu et al., 2019a;
Chen et al., 2018) was applied to learn node representations; and spatial-based GNNs based on
local-dependence assumption of graph-structured data that graph convolution is defined in the spatial
domain as aggregating and transforming local information (Gilmer et al., 2017; Hamilton et al.,
2017; Velickovic et al., 2018; Atwood & Towsley, 2016).

Extensive studies have demonstrated that deep learning models are vulnerable to adversarial at-
tacks (Goodfellow et al., 2015; Kurakin et al., 2017a;b; Rakhsha et al., 2020). Attackers add
unnoticeable perturbations to the input for altering the output of the deep learning model. GNNs
are also fragile to adversarial attacks (Bojchevski & Günnemann, 2019; Dai et al., 2018; Jin et al.,
2020a; Liu et al., 2019; Ma et al., 2019; Wu et al., 2019b; Zügner et al., 2018; Zügner & Günnemann,
2019b). It is more challenging to investigate adversarial attack on graphs due to the discrete graph
and dependent nodes compared with independent samples or grid data. Nettack (Zügner et al., 2018)
preserves degree distribution and constrains feature co-occurrence to generate unnoticeable pertur-
bations to poison GNNs in training time. Reinforcement learning was employed in RL-S2V (Dai
et al., 2018) to generate adversarial attacks in testing-time. Both of the above two methods can only
degrade the performance of GNN on target nodes. To attack the graph globally, metattack (Zügner &
Günnemann, 2019b) is proposed to generate non-targeted poisoning attacks based on meta-learning.

2.2 DEFENSE ON GRAPHS

The studies for improving the robustness of GNNs have received increasing attention recently (Tang
et al., 2019; Wu et al., 2019b; Zhu et al., 2019; Zügner & Günnemann, 2019a; Bojchevski et al.,
2020; Geisler et al., 2020). In RGCN (Zhu et al., 2019), Gaussian distribution is adopted in hidden
layers to absorb the effects of adversarial attacks into the variances. A meta-optimization way is
proposed in PA-GNN (Tang et al., 2019) to learn attention scores for robust GNNs with the help
of supervision knowledge from clean graphs. Transfer learning (Tang et al., 2020) is leveraged to
improve the robustness of GNNs against poisoning attack with additional graph data from the similar
domain during training. It is observed in Wu et al. (2019b) that attackers tend to connect to nodes with
different features occurrence, GNN-Jaccard is proposed to remove the links between dissimilar nodes
to identify the manipulated edges. GNN-SVD (Entezari et al., 2020) is proposed to preprocess the
graph with its low-rank approximations to remove noisy information through an SVD decomposition.
Pro-GNN (Jin et al., 2020b) proposes three different regularizers which correspondingly regularize
the graph to be sparse, low-rank and smooth the features of connected nodes. In Zhang & Zitnik
(2020), GNNGuard is proposed to quantify the relationship between the graph and node features,
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and assigns less weight to suspicious edges, which mitigates negative effects of the adversarial
perturbations.

Different from the aforementioned defense methods, we aim to aggregates predefined robust adver-
sarial graphs to form a powerful regularization, which can be extended to different GNNs straightfor-
wardly to enhance the robustness of GNNs.

3 METHODOLOGY

Before presenting the proposed method, we first introduce the problem statement for node clas-
sification with GNN, including some basic notations and concepts. Let G = (V, E ,X) be a
graph, where V represents the set of N nodes {v1, v2, · · · , vN}, E represents the set of M edges
{(i1, j1), (i2, j2), · · · , (iM , jM )}, and X ∈ RN×d denotes the node feature matrix composed of the
feature vector xi of the node vi. The edges E describe the graph by the pair-wise relations between
nodes, which can also be represented by an adjacency matrix A ∈ RN×N , one of the most popular
representation for graph, where Aij = 1 ⇐⇒ (i, j) ∈ E (otherwise Aij = 0). In this work, we
alternately use the concept of adjacency matrix and graph. Thus, a graph can also be denoted as
G = (A,X).

In this work, we focus on the common semi-supervised node classification setting for graph represen-
tation. Given a single (attributed) graph G = (A,X), the part of nodes VP = {v1, v2, · · · , vP } ⊆ V
are associated with the corresponding labels YP = {y1, y2, · · · , yP }, where yi is the class label (e.g.,
the topic of a paper in a citation graph) of vi, the goal of node classification in GNN is to learn a
neural network representing a function fθ : VP → YP which maps the nodes to the corresponding
labels so that fθ can be generalized to predict the labels of unlabeled nodes (i.e., nodes not in VP ),
where θ is the parameters of fθ. With LCE(·, ·) denoting the cross entropy loss, the objective function
of node classification task in GNN can be formulated as:

min
θ
Lcls(θ,A,X,YP ) =

1

P

P∑
i=1

LCE (yi, fθ(X,A)i) , (1)

where fθ(X,A)i is the prediction of node vi. Note that our proposed method can be extended to
different GNNs straightforwardly, in this work, we focus on Graph Convolution Network (GCN)
proposed in Kipf & Welling (2017) among numbers of different GNNs. Specifically, we adopt a
two-layer GCN with layers (fθ1 , fθ2) and the corresponding parameters (θ1, θ2) = (W1,W2) can
be denoted as:

fθ(X,A) = softmax(fθ2(fθ1(X,A),A)) = softmax(Âσ(ÂXW1)W2), (2)

where σ is the activation function and Â = D̂−
1
2 (A + I)D̂−

1
2 represents diagonal normalized

A + I. Here, self-loop I is added to A and D̂ is the diagonal degree matrix of A + I such that
D̂ii = 1 +

∑
jAij .

3.1 THE PROPOSED FRAMEWORK

Although existing GNNs achieve the state of the art performance in node classification task, they are
still vulnerable to edge perturbations generated by adversarial attacks. We refer to the attacked graph
with carefully designed edge perturbations degrading GNNs performance as adversarial graphs
and the graphs which are robust for GNNs to perform accurate node classification as robust graphs.
Learning robust graphs from adversarial graphs can vaccinate the GNNs from the poisoned graph
data for stable performance in node classification task. With the statements at the beginning of this
section, the goal of learning robust graphs can be formally stated as:

Given G poisoned by adversarial graph Ã, the unperturbed feature X and partial node labels YP ,
we aim to learn GNN parameters θ and robust graph Ā replacing Ã to enhance robustness of GNNs
and improve node classification performance for unlabeled nodes.

To generate robust graph, we propose a Tensor-based robust graph aggregation framework for Graph
Neural Networks (TGNN) shown in Figure 1. TGNN aggregates K predefined robust adversarial
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Figure 1: Illustration of our proposed TGNN framework. We first form the graph tensor T by
combining the adversarial graph Ã (adjacency matrix is visualized that the blue points are edges in
the original graph, while the red ones are perturbed edges) andK predefined robust graphs {Ar

k|Kk=1},
then learn robust graph by tensor-based robust graph aggregation. Finally, the learned robust graph Ā
will be fed into the GNN model and jointly learned with GNN model parameters.

graphs Ar = {Ar
k|Kk=1} to learn the robust graph Ā from adversarial graph Ã. In particular, TGNN

first calculates K predefined robust graphs Ar and combines them with the adversarial graph Ã to
form a tensor structure, then decomposes the graph tensor into several core tensors C and reconstructs
the tensor via low-rank approximation. By preserving the low-rank tensor representation for the
graphs, TGNN generates the robust graph Ā and maintains the multi-linear relation between the
learned robust graph Ā and predefined robust graphs Ar. Then the learned robust graph Ā will be
fed into the GNN. TGNN simultaneously updates both the GNN parameters θ and Ā by updating
learnable core tensors C during the training process. In this way, TGNN can achieve a more robust
graph and better node classification performance. In the following sections, we will discuss how to
aggregate robust graphs with TGNN, the predefined graphs, and the results of the generated robust
graph of TGNN.

3.2 TENSOR-BASED AGGREGATION FOR ROBUST GRAPHS

A tensor, also called multi-dimensional array, is denoted by Euler script letter, e.g., T , where
each dimension of the tensor is called a mode. In TGNN, we formulate a batch of adjacency
matrices as a three-mode tensor. Specifically, given perturbed adjacency matrix Ã and K robust
adjacency matrices Ar

1, · · · ,Ar
K , we stack these adjacency matrices as a graph aggregation tensor

T ∈ R(K+1)×N×N , where T (1, :, :) = Ã and T (k + 1, :, :) = Ar
k for 1 ≤ k ≤ K. To achieve a

low-rank approximation of the graph aggregation tensor T , we perform tensor approximation by
decomposing T into several smaller core tensors following specific formulations (Harshman et al.,
1970; Tucker, 1966; Oseledets, 2011; Zhao et al., 2016), and then apply multilinear contraction
operations on these core tensors to reconstruct approximated tensor T̄ . Low-rank approximation
can discard high-rank noises in the graph to improve the performance of GNNs against adversarial
graphs (Jin et al., 2020b; Entezari et al., 2020). Also, graphs in the real-world are often naturally low-
rank because nodes within a community or the same class are apt to have similar neighbors or similar
node features. Hence, low-rank approximation is a potential way to extract the robust graph from
the adversarial graphs. Tensor decomposition is a powerful tool to compress the high-dimensional
data into low-rank representation (Cichocki et al., 2015; Sidiropoulos et al., 2017). In this paper,
we attempt to decompose the graph aggregation tensor T with Canonical Polyadic (CP) (Harshman
et al., 1970), Tucker Tucker (1966) and Tensor-Train (Oseledets, 2011) formulations, respectively,
the comparison results with three different decomposition methods are reported in Supplementary.
To describe the process of learning robust graph, we use CP decomposition method as an example
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which decomposes a three mode tensor T ∈ R(K+1)×N×N into:

T ≈ T̄ = ΣRt=1C0(t)C1(t, :) ◦C2(t, :) ◦C3(t, :), (3)

where C1 ∈ RR×(K+1), C2 ∈ RR×N , C3 ∈ RR×N and C0 ∈ RR are trainable core
tensors (matrix/vectors, C0 is used as normalization vector). R represents the value of rank
which is relatively small as compared to the node number N and ‘◦’ denotes outer product (i.e.,
T̄ (i, j, k) =

∑R
t=1 C0(t)C1(t, i)C2(t, j)C3(t, k)). After the tensor graph approximation, TGNN

takes the first slice of the first-mode in the approximated graph aggregation tensor, i.e., T̄ (1, :, :) as
the learned robust graph Ā to be the input for GNNs. With C representing the sets of all core tensors,
the objective function for TGNN can be defined as:

min
θ,C
L = Lcls(θ, Ā,X,YP ) + λ||T̄ − T ||2F , (4)

where Lcls is the classification loss from Eqn. (1) and λ is a hyper-parameter to balance the tensor
approximation loss and the classification loss.

The decomposed representation of T in Eqn. (3) maps the graphs to a shared core tensor space
in which different robust graphs are linearly connected to form common structure patterns by
compressing and fusing the structure representations of each graphs. The learned common structure
patterns are beneficial to TGNN to learn a more robust graph and we will show this in the next
section.

3.3 PREDEFINED ROBUST GRAPHS

Here we briefly introduce three simple methods to generate robust graphs from adversarial graphs
which will be adopted as predefined robust graphs by our proposed robust graph aggregation method:

• PRUNE: Adversarial graphs tend to add edges to unconnected nodes with dissimilar features (Wu
et al., 2019b; Jin et al., 2020b). It is natural to prune the graph to get robust graph by eliminating
edges that connect nodes with less similarity of features. Specifically, the pruned adjacency matrix
can be represented by:

Ar
PRUNE(i, j) =

{
1 if Ã(i, j) = 1 and s(xi,xj) > τ,
0 otherwise.

(5)

Here s(·, ·) denotes similarity function that calculates the feature similarity of two nodes (can
be Jaccard similarity for binary features or cosine similarity for real-valued features), and τ is a
threshold parameter.

• KNN: Since the edges are perturbed and we are not able fully determine which edge is perturbed,
we can completely ignore the edge information and construct the graph only based on the node
features. Similar to PRUNE, we can build robust graph by calculating the k-nearest neighbors
based on feature similarities between nodes:

Ar
KNN (i, j) =

{
1 if j ∈ top(i, k),
0 otherwise.

(6)

Here top(i, k) denotes set of the top k-th nodes that have large feature similarity to node i.
• SVD: Existing works (Jin et al., 2020b; Entezari et al., 2020) found that adversarial perturbations

tend to add edges that connect nodes of different communities to fool GNNs, which enlarge
the singular values of the adjacency matrix. Hence, with ui, σi, and vi to be the i-th singular
value/vectors of Ã, we can generate robust graph by calculating low-rank approximations of the
adjacency matrix:

Ar
SV D = Σri=1uiσivi. (7)

All the aforementioned methods are preprocessing methods that cost little time to run but still efficient
to generate robust graphs to defend against adversarial edges. However, these methods are designed
for single graph property so that they may fail to counteract complex global attacks. In Figure 2, we
visualize the adjacency matrix of different predefined robust graphs and those learned by TGNN.
As we can see from the figure, Ar

SV D preserve the graph with more graph spectral information that
some of the perturbed edges are reduced, but a large number of original edges are also weakened.
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Figure 2: Visualization of the adversarial graph Ã under metattack (Zügner & Günnemann, 2019b) for
Cora (McCallum et al., 2000) dataset, three predefined robust graphs Ar

KNN , Ar
SV D and Ar

PRUNE
and robust graph Ā learned from TGNN after different epochs of training. Nodes are sorted by class
labels. Blue dots represent edges that are in the original graph A, red dots represent edges that are
added by the adversarial graph (i.e., Ã−A), and green dots are the edges not included in both Ã
and A. Class communities are boxed in orange. Core tensor C1 is visualized and the correlations
between the learned robust graph Ā and predefined robust graph Ar are shown.

Ar
KNN link the nodes with similar features, which contains many additional edges (green dots), and

almost removes all the perturbed edges but also drops most of the original edges. For Ar
PRUNE ,

it eliminates some perturbed edges with low feature similarity but also a small number of original
edges. For the robust graph Ā learned from TGNN, at the beginning of the training process, similar
to Ar

SV D, the low-rank presentation makes the learned graph Ā pay more attention to spectral
information, while gradually, it considers more about the feature similarities and reconstructs the
input graph. Then during the training, the learned graph Ā is fuzzier and more edges that are not in
the original input graph are added. Then at the rest of the training process, Ā is sparser and closer to
the original graph. Compared with Ar

PRUNE , Ā drops more perturbed edges. In Figure 2, we also
visualize the core tensor C1 defined in Eqn. (3) which reveals the relationship between the learned
graph and the predefined graphs. Here we choose the rank as 32 so that C1 ∈ R32×4 and show the
heatmap of values in C1. From the top to the bottom rows, the vectors are representing the weights
for the learned graph Ā, Ar

KNN , Ar
SV D and Ar

PRUNE . Correlations are calculated by the cosine
similarity between different weights, e.g., the correlation between Ā and Ar

KNN is calculated by
the cosine similarity between C1(:, 1) and C1(:, 2). From the results, we can see that the correlation
between Ā and Ar

SV D is initially high in the training process, degrades in the middle stage and grows
back slightly at the end of the training. For Ar

KNN and Ar
PRUNE , the correlations are low at the

beginning, then grow quickly during the training, and finally at a high level. These results also reveal
how TGNN aggregates the predefined robust graphs and learn Ā.

Also, these predefined methods may suffer from the simple two-stage preprocessing without end-to-
end training. Combined with our proposed tensor-based robust graph aggregation method, we can
aggregate the properties of these robust graphs and jointly learn the robust graph and the GNN. In
Section 4.3, we will discuss the performance of our proposed TGNN compared with these predefined
robust graphs for node classification performance. In Appendix A.6, we visualize the graph for
nettack and random attack. In Appendix A.5, we compare the graph visualization between TGNN
and a state-of-the-art method Pro-GNN.
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Table 1: Defense performance against non-target (metattack) attacks.
Datasets Rate (%) GCN GAT RGCN GCN-Jaccard GCN-SVD Pro-GNN GNNGuard TGNN

Cora

0 83.50±0.44 83.97±0.65 83.09±0.44 82.05±0.51 80.63±0.45 83.42±0.52 82.38±1.23 84.11±0.59
5 76.55±0.79 80.44±0.74 77.42±0.39 79.13±0.59 78.39±0.54 82.78±0.39 78.96±0.55 82.84±0.35

10 70.39±1.28 75.61±0.59 72.22±0.38 75.16±0.76 71.47±0.83 79.03±0.59 72.17±2.01 81.12±0.86
15 65.10±0.71 69.78±1.28 66.82±0.39 71.03±0.64 66.69±1.18 76.40±1.27 68.71±1.87 80.28±0.74
20 59.56±2.72 59.94±0.92 59.27±0.37 65.71±0.89 58.94±1.13 73.32±1.56 58.48±1.59 78.12±1.50
25 47.53±1.96 54.78±0.74 50.51±0.78 60.82±1.08 52.06±1.19 69.72±1.69 53.19±0.79 74.14±2.00

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 72.10±0.63 70.65±0.32 73.28±0.69 71.15±0.84 74.01±0.60
5 70.88±0.62 72.89±0.83 70.50±0.43 70.51±0.97 68.84±0.72 73.09±0.34 70.78±0.68 73.92±0.64

10 67.55±0.89 70.63±0.48 67.71±0.30 69.54±0.56 68.87±0.62 72.51±0.75 66.04±0.81 73.75±0.79
15 64.52±1.11 69.02±1.09 65.69±0.37 65.95±0.94 63.26±0.96 72.03±1.11 64.29±1.29 73.52±1.00
20 62.03±3.49 61.04±1.52 62.49±1.22 59.30±1.40 58.55±1.09 70.02±2.28 58.80±2.18 73.38±1.25
25 56.94±2.09 61.85±1.12 55.35±0.66 59.89±1.47 57.18±1.87 68.95±2.78 56.07±2.65 73.00±2.01

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 95.40±0.15 95.31±0.18 93.20±0.64 95.56±0.21 95.20±0.47
5 73.07±0.80 83.69±1.45 74.34±0.19 82.70±2.26 89.09±0.22 93.29±0.18 85.84±0.92 93.71±0.53

10 70.72±1.13 76.32±0.85 71.04±0.34 77.26±2.02 81.24±0.49 89.42±1.09 80.65±0.86 91.14±2.55
15 64.96±1.91 68.80±1.14 67.28±0.38 73.53±2.68 68.10±3.73 86.04±2.21 75.71±0.69 86.80±1.69
20 51.27±1.23 51.50±1.63 59.89±0.34 70.14±2.81 57.33±3.15 79.56±5.68 70.32±1.95 82.25±2.13
25 49.23±1.36 51.19±1.49 56.02±0.56 65.70±2.70 48.66±9.93 63.18±4.40 65.07±3.16 73.72±2.70

Pubmed

0 87.19±0.09 83.73±0.40 86.16±0.18 87.06±0.06 83.44±0.21 87.33±0.18 85.03±0.10 87.80±0.11
5 83.09±0.13 78.00±0.44 81.08±0.20 86.39±0.06 83.41±0.15 87.25±0.09 82.19±0.23 87.78±0.13

10 81.21±0.09 74.93±0.38 77.51±0.27 85.70±0.07 83.27±0.21 87.25±0.09 78.28±0.36 87.62±0.12
15 78.66±0.12 71.13±0.51 73.91±0.25 84.76±0.08 83.10±0.18 87.20±0.09 74.63±0.24 87.40±0.11
20 77.35±0.19 68.21±0.96 71.18±0.31 83.88±0.05 83.01±0.22 87.15±0.15 72.13±0.34 87.34±0.17
25 75.50±0.17 65.41±0.77 67.95±0.15 83.66±0.06 82.72±0.18 86.71±0.09 69.45±0.40 86.93±0.21

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets Following Zügner et al. (2018); Zügner & Günnemann (2019b); Jin et al. (2020b), we
conduct experiment on four benchmark datasets,including three citation graphs, i.e., Cora (McCallum
et al., 2000), Citeseer (Giles et al., 1998; Sen et al., 2008) and Pubmed (Sen et al., 2008), and
one blog graph Polblogs (Adamic & Glance, 2005). We summarize the statistics of the datasets in
Appendix A.2.

Baselines Following the adversarial attack repository DeepRobust (Li et al., 2020), we report the
results of the state-of-the-art GNN and defense models for comparison. GCN (Kipf & Welling, 2017)
and GAT (Velickovic et al., 2018) are adopted as baselines of GNNs, while RGCN (Zhu et al., 2019),
GCN-Jaccard (Wu et al., 2019b), GCN-SVD (Entezari et al., 2020), Pro-GNN (Jin et al., 2020b),
and GNNGuard (Zhang & Zitnik, 2020) are chosen as baselines of defense models. Please note that
GCN-Jaccard and GCN-SVD are using the same approaches as PRUNE and SVD in Section 3.3.
Specific description to these baselines can be found in Appendix A.3.

Parameter Settings For each graph, all nodes are randomly split into 10% of training nodes, 10% of
validation nodes, and 80% of testing nodes. We report the average performance of ten runs for each
experiment. The hyper-parameters of all the models are tuned by observing the loss and accuracy on
validation set. We use Adam (Kingma & Ba, 2015) optimizer with learning rate as 0.01. λ is 100
in Eqn. (4). We use PyTorch (Paszke et al., 2019) (TensorLy (Kossaifi et al., 2019) for the tensor
decomposition parts) to implement TGNN. We choose to use CP decomposition and the rank is
selected based on cross validation. In Appendix A.7, we will discuss how different formats of tensor
decomposition affect TGNN. All the results from the state-of-the-art methods are reported with the
best parameter settings.

4.2 DEFENSE PERFORMANCE

To evaluate the effectiveness of TGNN, we conduct node classification experiments under three types
of adversarial attacks, i.e., non-targeted attack, targeted attack and random attack. Targeted attack
aims to fool GNNs with generated attacks on specific nodes, and we adopt the state-of-the-art targeted
attack nettack (Zügner et al., 2018) in this paper. Different from targeted attack, non-targeted attack
can degrade the overall performance of GNNs on the whole graph and we choose metattack (Zügner
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(a) Cora-Nettack (b) Citeseer-Nettack (c) Polblogs-Nettack (d) Pubmed-Nettack

(e) Cora-Random (f) Citeseer-Random (g) Polblogs-Random (h) Pubmed-Random

Figure 3: Results of different models under nettack and random attack.

& Günnemann, 2019b) for the non-targeted attack evaluation. Random attack randomly adds noise to
the original graph by injecting fake edges into the graph.

Against Non-Targeted Adversarial Attacks: Firstly, we evaluate the node classification perfor-
mance of different methods against non-targeted adversarial attack. We adopt metattack Zügner
& Günnemann (2019b) and implement it with its default parameter settings in original paper. We
apply the most destructive attack variant of metattack, Meta-Self, to Cora, Citeseer and Polblogs. For
Pubmed, A-Meta-Self as the approximate version of Meta-Self is applied to save memory and time.
We vary the perturbation rate, i.e., the ratio of changed edges, from 0 to 25% with a step of 5%. The
average accuracy with standard deviation is reported in Table 1, in which the best performance is
highlighted in bold. From the table, we can see that TGNN achieves the highest node classification
accuracy under different perturbation rates, which demonstrates that TGNN can generate robust
graph against non-targeted adversarial attack. For instance, TGNN improves GCN over 20.7% at 5%
perturbation rate on Polblogs. Under the 25% perturbation rate, vanilla GCN performs very poorly
and TGNN improves GCN by 27% (resp., 16%, 23% and 11%) on the dataset Cora (resp., Citeseer,
Polblogs, and Pubmed), which indicates TGNN outperforms other baselines by a larger margin
even under large perturbation. In addition, TGNN may also perform better when the graph is not
attacked (i.e., perturbation rate is 0). That is because there may be a small amount of noise edges in
the original graph which are mitigated by TGNN. For the other defense methods, although GCN-SVD
also employs SVD to get low-rank approximation of the graph, the performance of GCN-SVD drops
rapidly. Similarly, GCN-Jaccard does not perform as well as Pro-GNN under different perturbation
rates. This is because simply pruning the perturbed graph by feature similarities once cannot extract
the robust graph from the carefully-crafted adversarial noises. TGNN also outperforms Pro-GNN
that applies regularization based on low-rank, sparse and feature similarity properties to learn robust
graph, which shows the regularization is not able to perfectly balance different graph properties to
enhance robustness. On the contrary, TGNN adopts tensor-based aggregation method to update the
graph and GNNs simultaneously to learn better graph and more robust GNNs.

Against Targeted Adversarial Attack: For the targeted-attack method nettack (Zügner et al., 2018),
we use the default parameter settings in the original implementation. Following Zhu et al. (2019),
the number of perturbations added on every targeted node is varied from 1 to 5 with a step size of
1. Nodes with degree larger than 10 as target nodes are selected as the test set. 10% of target nodes
are sampled on Pubmed dataset to save running time, while all the target nodes are used on other
datasets. The node classification accuracy on target nodes is shown in Figure 3 (a)-(d), in which
we can observe that TGNN achieves better performance than other baselines with the increase of
the number of perturbation in most cases. For instance, at 5 perturbation per targeted node, TGNN
improves vanilla GCN by 16% (resp., 29%, 6%, 6%) on Cora (resp., Citeseer, Polblogs, Pubmed)
dataset. It demonstrates that TGNN can also resist the targeted adversarial attack.

8
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Table 2: Classification performance for different settings of baselines and our proposed TGNN under
metattack attack on Cora dataset. Note that there are two settings, “No A”= 62.12 ± 1.55 and
“KNN”= 71.94± 1.08, of which the results do not change with the perturbation rates.

Rate (%) GCN PRUNE SVD TGNN-P TGNN-K TGNN-S TGNN-N Ensemble Two-Stage TGNN-ALL

0 83.50±0.44 82.05±0.51 80.63±0.45 83.57±0.46 74.91±1.15 81.64±0.67 79.95±0.52 82.42±0.41 81.09±0.36 84.11±0.59
5 76.55±0.79 79.13±0.59 78.39±0.54 81.51±0.55 73.80±1.07 80.22±0.54 78.37±0.91 80.78±0.42 80.87±0.29 82.84±0.35

10 70.39±1.28 75.16±0.76 71.47±0.83 78.15±1.01 73.52±1.38 75.38±1.96 75.37±1.12 78.60±0.63 78.92±0.38 81.12±0.86
15 65.10±0.71 71.03±0.64 66.69±1.18 76.01±1.36 73.77±1.17 74.14±1.49 74.04±2.00 75.23±1.02 77.04±0.70 80.28±0.74
20 59.56±2.72 65.71±0.89 58.94±1.13 72.23±2.02 73.43±1.34 65.86±3.41 69.81±2.89 72.11±2.06 75.03±0.77 78.12±1.50
25 47.53±1.96 60.82±1.08 52.06±1.19 64.43±2.90 73.03±1.63 57.77±2.87 62.33±4.76 71.68±1.01 72.11±0.54 74.14±2.00

Against Random Attack: By varying the ratios of random noises from 0% to 100% with a step size
of 20%, we compare the performance of TGNN with baselines and state-of-the-art methods. Node
classification accuracy results are reported in Figure 3 (e)-(h). It can be observed that TGNN is able
to resist random attack and outperforms all other baselines under random attack.

4.3 ABLATION STUDIES

We design different ablated methods to demonstrate the effectiveness of TGNN defending against
metattack attack and report classification performance on Cora (McCallum et al., 2000) dataset in
Table 2, in which our full method is named as “TGNN-ALL”. Please note that the setting “No A”
means running GCN without graph information, i.e., remove Â in Eqn. (2). We list it here as a
reference. Both “No A” and “KNN” are not using the graph, which means their results are unchanged
with the perturbation rate, so we omit the results and put them in the caption of Table 2. We also put
the baseline results of “GCN” for the sake of comparison.

Variations of Predefined Robust Graphs: Firstly we report the results of three predefined adversar-
ial graphs in Section 3.3, which are referred to as “PRUNE”, “KNN”, and “SVD” in Table 2. Then, we
use TGNN to aggregate a predefined adversarial graph “PRUNE” (resp., “KNN”, “SVD”), which is
referred to as “TGNN-P” (resp., TGNN-K, TGNN-S). From the comparison result between “PRUNE”
(resp., “SVD”) and “TGNN-P” (resp., “TGNN-S”), we can see that each predefined adversarial graph
with the help of our TGNN can consistently improve classification performance. We also remove all
predefined adversarial graphs from our method, which is named as “TGNN-N” in Table 2. We find
that the performance is comparable with predefined adversarial graphs “PRUNE” and “SVD”, which
demonstrates the rationality of TGNN.

Compared to Ensembles: To evaluate the effectiveness of the tensor decomposition in TGNN, we
simply ensemble predefined adversarial graphs, which is referred to as “Ensemble”, the result is
better than “PRUNE” and “SVD”, which indicates that assembling predefined adversarial graphs by
learning a GNN for each one and summing them up is one way to improve the robustness of GNNs.
However, the performance is worse than our full method “TGNN-ALL”, which demonstrates the
effectiveness of the designed aggregation strategy of TGNN.

End-to-End Training: Corroborate the superiority of end-to-end training strategy, we design a
two-stage variant of TGNN where the robust graph is firstly obtained, and then using it to train a
GNN, which is recorded as “Two-Stage” in Table 2. It can be seen that the performance is worse than
our full method “TGNN-ALL”, which demonstrates the advantage of the jointly learning strategy.

5 CONCLUSION

In this paper, we introduce TGNN, a framework for defending GNN against poisoning attacks. TGNN
combines predefined robust graph structures and formulates them with the adversarial graph structure
as a graph structure tensor, then applies low-rank tensor approximation to generate a more robust
graph structure. The low-rank representation of the robust graph structures preserve the common
patterns of robust structures, balance different graph properties, and enhance the robustness of the
generated graph structure. Experiments on four datasets show that TGNN outperforms existing GNN
defense algorithms, especially when the perturbation rate is high.
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6 ETHICS STATEMENT

TGNN is a framework for defending GNN against poisoning attacks, combining predefined robust
graphs and the adversarial graph as a graph tensor, then applying low-rank tensor approximation
to generate a more robust graph. We have shown that TGNN outperforms existing GNN defense
methods, especially when the perturbation rate is high. TGNN can be used in a wide range of
applications integrated with GNNs, e.g., recommendation system, drug discovery, and social/financial
networks. Positive impacts of TGNN include helping users avoid potential losses caused by malicious
attacks, predict false diagnoses for knowledge systems, and improve fairness and explainability of
GNNs. One potentially negative impact is to design a more powerful attacking algorithm based on
TGNN. TGNN aggregates predefined robust graph methods, we have shown that TGNN can always
improve the classification accuracy based on the provided predefined methods. Hence, attackers may
develop more powerful attacking algorithms based on TGNN (i.e., adaptive attacks).

In this paper, all the datasets are downloaded from public academic resources (please refer to
Appendix A.2).

7 REPRODUCIBILITY STATEMENT

We provide the source code in the supplementary materials to reproduce the results. We also provide
extensive analyses for the settings and hyperparameters of TGNN, which can be found in Appendix.
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A APPENDIX

In this section, we provide more details of our experiments settings, visualization of TGNN compared
with state-of-the-art methods, visualization of TGNN under other types of attacks, analyses of tensor
decomposition formations and ranks, and hyperparameter effects. We also provide the code and data
in the supplementary materials for reproducing the results we reported.

A.1 FURTHER IMPLEMENTATION DETAILS

We use PyTorch Paszke et al. (2019) (BSD Style License) to implement TGNN and TensorLy Kossaifi
et al. (2019) (BSD 3-Clause License) for the tensor decomposition parts. For each graph, all nodes
are randomly split into 10% of training nodes, 10% of validation nodes, and 80% of testing nodes.
The best learned robust graph and GNN parameters are chosen based on the validation set for each
graph. All the results are averaged based on 10 runs. We are using two different Adam Kingma & Ba
(2015) optimizers for learning GNNs and the tensor cores in Eqn. (3, 4). The learning rate is 0.01.
The weight decay for learning tensor cores and GNNs are 0.3 and 0. ReLU activation is applied after
the first layer of the GCN. We train TGNN with 1000 epochs for each graph.

The goal of TGNN is to learn low-rank aggregation of the robust graphs, and the decomposition of
TGNN is learned end-to-end. The diagnose is objective-oriented, which means to be based on the
validation performance. We are focusing on the semi-supervised task of node classification that for
each graph, so all the models are selected based on the best validation performance (accuracy). We
found that the results for validation sets and the results for test sets show similar trends for different
hyper-parameters.

The experiments are run on NVidia Tesla V100 GPU, Intel(R) Xeon(R) Silver 4116 CPU 2.10GHz,
192G RAM. It takes 83 seconds to train the full-fledged TGNN (GCN takes 39 seconds on the
same device) which is estimated to emit 3.92g CO2 (estimators were conducted in ML CO2 impact
calculator Lacoste et al. (2019)).

We analyze different hyperparameters and settings for TGNN on Cora dataset in Section A.7, A.8
and A.9. For the full implementation details, please refer to the code provided with supplementary
material.

A.2 DATASETS STATISTICS

Following Zügner et al. (2018); Zügner & Günnemann (2019b); Jin et al. (2020b), we conduct
experiments on four public benchmark datasets, including three citation graphs, i.e., Cora McCallum
et al. (2000), Citeseer Giles et al. (1998); Sen et al. (2008) and Pubmed Sen et al. (2008), and one
blog graph Polblogs Adamic & Glance (2005). We were unable to find the license for the datasets we
used. All the data (including perturbed graphs) was downloaded from DeepRobust Li et al. (2020) (an
open library for attack and defense methods on images and graphs, with MIT License) and attached
in the supplementary material. Note that we set the attribute matrix to N ×N identity matrix and use
the adjacency matrix to compute node similarities in the Polblogs graph since node features in this
dataset are not available. Further detailed statistics of the four chosen datasets are summarized In
Table 3. For predefined methods PRUNE and KNN, we use jaccard similarity for Cora, Citeseer and
Polblogs, and cosine similarity for Pubmed.

Table 3: Dataset Statistics. Following Entezari et al. (2020); Zügner et al. (2018); Zügner &
Günnemann (2019b), statistics for the largest connected component are demonstrated.

Nodes Edges Classes Features Feature Type

Cora 2485 5069 7 1433 Binary
Citeseer 2110 3668 6 3703 Binary
Polblogs 1222 16714 2 - -
Pubmed 19717 44338 3 500 Continuous
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A.3 BASELINE SETTINGS

• GCN (Kipf & Welling, 2017): Among a number of different Graph Convolutional Net-
works (GCN) models, we choose the most popular one Kipf & Welling (2017) as a baseline
and the default parameter setting in the official implementation is adopted.

• GAT (Velickovic et al., 2018): Graph Attention Network (GAT) leverages attention layers to learn
different weights for different nodes in the neighborhood. GAT is often used as a baseline Jin et al.
(2020b); Zhang & Zitnik (2020) to defend against adversarial attacks. Similar to GCN, the default
parameter setting in the official implementation is adopted for GAT.

• RGCN (Zhu et al., 2019): For RGCN models, Gaussian distributions are applied to model node
representations for mitigating effects of adversarial attacks. The nodes with high variance are
penalized by the attention mechanism. For RGCN, the number of hidden units are tuned from
{16, 32, 64, 128} and the best choice is selected for each dataset.

• GCN-Jaccard (Wu et al., 2019b): GCN-Jaccard is a preprocessing method that eliminates edges
connecting nodes with feature similarities less than a given threshold. This is the same approach to
PRUNE described in Section 3.3. Jaccard similarity is used for datasets with binary feature type,
while for continuous features cosine similarity is adopted. For Polblogs dataset where adjacency
matrix is used as node feature, we are also using jaccard similarity. The threshold of similarity for
pruning dissimilar edges are chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1}.

• GCN-SVD (Entezari et al., 2020): GCN-SVD preprocesses the network by vaccinating GCN
with the low-rank approximation (implemented by SVD decomposition) of the perturbed graph.
This is the exact approach to SVD described in Section 3.3. The rank of GCN-SVD is selected
from {5, 10, 15, 50, 100, 200}.

• Pro-GNN (Jin et al., 2020b): Pro-GNN is a method that regularizes learned robust graph with
three different graph properties: sparse, low-rank and feature smoothing. There are two settings (one
with feature smoothing and one without) reported in the original paper. In Table 1, the numbers of
these two settings are merged with the best results.

• GNNGuard (Zhang & Zitnik, 2020): GNN-Guard quantifies the relationship between the graph
and node features by assigning less weights to suspicious edges to absorb malicious edges. We
re-run the officially released code of GNN-Guard under ours setting and the results are reported in
Table 1.

A.4 COMPLEXITY ANALYSES

Following the notation in Section 3, we use N /M to represent the number of nodes/edges. We will
report the complexity of all the mentioned attack methods and defend methods. The time and space
complexity are the same for most reported methods.

Let’s first look at the complexity of attack methods.

• Random: O(M × Perturbation Rate)

• Nettack: O(|Target Nodes| ×N)

• Metattack: O(N2)

Metattack (Zügner & Günnemann, 2019b) and Nettack (Zügner et al., 2018) are considering both
deleting existing edges and wiring the node pairs in the graph. Metattack is a global poisoning attack
method and is much more powerful than Nettack or Random attack.

• Defend methods in O(M) complexity: RGCN, Jaccard, GNNGuard
• Defend methods in O(N2) complexity: SVD, KNN, Pro-GNN, TGNN

The exact time/space complexity of TGNN is O((NK +N2)Rd)/O((N +K)R+N2), where R is
the rank, andK is the number of predefined graphs. The number of feature/embedding dimensionality
d, rank R, and the number of predefined graphs K are relatively low-dimensional compared to N or
M . The complexity of TGNN is in the same order as that of Metattack.

Please note we are doing truncated SVD for the SVD method, which only needs the top-k singular
values/vectors for the adjacency matrix. The name SVD is only used to differ from PRUNE and
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KNN. We are doing Truncated SVD via scipy.sparse.linalg.svds. We adopt the default option
from scipy, which uses ARPACK (Lehoucq et al., 1998). Computing SVD of a matrix is done by
eigendecomposition of a square symmetric matrix. ARPACK is an iterative algorithm used to quickly
find a few eigenvalues/eigenvectors of large sparse matrices. The complexity of calculating truncated
SVD by ARPACK is O(kN2). There is another work (Halko et al., 2011) pointing out that with
randomized techniques, finding the k dominant components of the SVD is of O(log(k)N2). Since k
is relatively minor to N , the predefined SVD algorithm has the complexity of the order O(N2).

It also should be noted that the complexity of KNN (All-k-Nearest-Neighbors Problem) is proved to
be of the order O(NlogN) (Ma & Li, 2019). Here we store the dense representation of the KNN
map, so the space complexity of KNN is O(N2).

For the proposed TGNN, we first apply random initialization to the core tensors, then apply the
alternating least squares (ALS) approach for 100 iterations. After that, the core tensors are learned end-
to-end with the whole model. Since how to learn tensor decomposition is not the main contribution of
this submission, and we are using the code from TensorLy (Kossaifi et al., 2019) to produce the core
tensors, we omit the detail of tensor decompositions. For CP decomposition as an example, the ALS
approach chooses one core tensor and fixes the other tensors to solve the chosen core tensor. Since
each core tensor represents a specific mode, the process of solving the chosen core tensor can be
solved by matrix least square approximation. The approach is proposed in Harshman et al. (1970) and
Carroll & Chang (1970), while detailed numerical complexity analyses can be found in Comon et al.
(2009). Overall, each iteration for ALS and end-to-end core tensor training is of the order O(N2)
complexity.

Intuitively, when the graph is severely perturbed, it is necessary to check each node pair from the
global view in the graph to verify whether the edge is removed or added. Methods with O(M)
complexity only consider the edges that appear in the perturbed graph. They are not considering
rewiring the edges deleted by the attack methods, which implies they are not able to defend against
attacks that remove existing edges. As shown in Table 1 and Figure 3, TGNN outperforms all the
methods with O(M) complexity. Hence, we argue that O(N2) is a more reasonable complexity level
than O(M) to effectively defend the poisoning attack methods. When compared to the methods
with the same level of O(N2) computational complexity, Pro-GNN and SVD, TGNN performs
substantially better. TGNN takes 83s to be trained on Cora while GCN takes 39s , GNNGuard takes
94s and Pro-GNN takes 890s on the same machine. TGNN does not consume too much extra time to
run.

A.5 COMPARISON BETWEEN TGNN AND PRO-GNN

Like TGNN, Pro-GNN Jin et al. (2020b) is also a method that defends adversarial attacks combining
different graph properties (sparse, low-rank and feature smoothing). Different from TGNN that
balances different graph properties with tensor-based aggregation, Pro-GNN regularizes learned
robust graph with objective functions directly satisfying these graph properties, which may cause
imbalance among the properties and the original graph information. In Figure 4, we visualize the
learned adjacency matrix from TGNN and Pro-GNN. The input graph is the same as that in Figure 2,
which is from Cora dataset and attacked by metattack with 25% perturbation rate.

As we can see in the figure, when the attack is severe, Pro-GNN is apt to learn robust graph by
overfitting strong sparse and low-rank property with many original edges removed, which is harmful
because the original edges are useful for GNNs to provide robust classification performance. The
learned robust graph from TGNN covers most of the original edges but is also sparse and with
low-rank structure. For the point of view from each edge entry, the edge weight satisfies every graph
properties. But looking from the whole graph, the original graph structure is destroyed. Combined
with the quantitative results in Table 1, TGNN balances different graph properties and the original
graph information better, and outperforms Pro-GNN when the perturbation is severe.

A.6 VISUALIZATION OF TGNN AGAINST NETTACK AND RANDOM ATTACK

In Figure 2, we visualize the learned graph from TGNN and predefined methods to show how TGNN
aggregate and learn robust graphs. Here we also visualize the results for the other two types of
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Figure 4: Visualization comparison between Pro-GNN Jin et al. (2020b) and TGNN on Cora dataset
against metattack with 25% perturbation rate. The setting is the same as in Figure 2

adversarial attacks: nettack Zügner et al. (2018) and random attack in Figure 5 and Figure 6. Similar
to Figure 2, the graphs in Figure 5 and Figure 6 are also perturbed in the most severe situation.

Figure 5: Visualization of TGNN and predefined methods against nettack with 5 perturbations per
node on Cora dataset.

In Figure 5, we can see that nettack perturbs the graph with fewer edges compared with metattack,
which is due to the targeted attacking mechanism. Ar

SV D and Ar
KNN ignore too much information

from the original graph. TGNN generates robust graph similar to the one from Ar
PRUNE while still

pays attention to spectral structures.

Figure 6: Visualization of TGNN and predefined methods against random attack with 100% perturba-
tion rate on Cora dataset.

While for random attack, more adversarial edges are added so that Ar
PRUNE is not able to remove

most of the perturbed edges. In this situation, TGNN generates robust graph which is more likely to
the one from Ar

SV D, while still keeps the low-rank structure of the perturbed graph, but with less
weights for the perturbed edges.
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A.7 ANALYSES FOR TENSOR DECOMPOSITION METHODS AND RANKS

In this section, we compare different tensor decomposition methods for TGNN and discuss how
different choices of tensor decomposition methods and ranks affect TGNN performance. In Figure 7,
we illustrate the formation of different tensor decomposition method.

Figure 7: Illustration of different methods of tensor decomposition.

CP Decomposition (Harshman et al., 1970; Carroll & Chang, 1970): The formation of CP
decomposition can be found in Eqn. (3). Here we rewrite the equation into element-wise formation:

T̄ (i, j, k) =

R∑
r=1

C0(r)C1(r, i)C2(r, j)C3(r, k), (8)

where C1 ∈ RR×(K+1), C2 ∈ RR×N , C3 ∈ RR×N and C0 ∈ RR. There are
R × (2N + K + 2) parameters in total. We select rank R from {8, 16, 32, 64, 128} and plot the
corresponding classification performance in Figure 8. All the results are on Cora dataset with
metattack perturbations, which are under the same setting of Table 2 “TGNN-ALL”.

Figure 8: Node classification performance of TGNN with CP decomposition.

We can see from the figure that when R is too small (i.e., R = 8), the low-rank property is too strong
that the learned graph is not able to obtain enough information for GNNs for accurate classification.
For R ≥ 16, when R goes larger, performance for graphs with low perturbation rates is better, which
means the low-rank property is not strong and the learned robust graph can reconstruct the original
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graph well. But this may degrade the robustness of GNNs when the graph is heavily perturbed.
Among all the choices of rank, we find that R = 32 is the best considering all the perturbation rates.

Tucker Decomposition (Tucker, 1966): Similar to CP decomposition, Tucker decomposition can
be formulated as:

T̄ (i, j, k) =
∑

t1,t2,t3

C0(t1, t2, t3)C1(i, t1)C2(j, t2)C3(k, t3), (9)

where C1 ∈ R(K+1)×(K+1), C2 ∈ RR×N , C3 ∈ RR×N and C0 ∈ R(K+1)×R×R. There are
R× (R× (K + 1) + 2N) + (K + 1)× (K + 1) parameters in total.

Figure 9: Node classification performance of TGNN with Tucker decomposition.

In Figure 9, we also plot the classification performance for different ranks of Tucker decomposition.
Similar to CP decomposition, R = 32 is also the best choice considering all the perturbation rates.

Tensor-Train (TT) (Oseledets, 2011) Decomposition: TT decomposition can be formulated as:

T̄ (i, j, k) =
∑
t1,t2

C1(i, t1)C2(t1, j, t2)C3(t2, k), (10)

where C1 ∈ R(K+1)×(K+1), C2 ∈ R(K+1)×N×R, C3 ∈ RR×N . There are
R× (N × (K + 1) +N) + (K + 1)× (K + 1) parameters in total.

Figure 10: Node classification performance of TGNN with Tensor-Train decomposition.

In Figure 10, we plot the classification performance for different ranks of TT decomposition that
R = 32 is the best choice considering all the perturbation rates. Please note there is another way to
apply TT decomposition by swapping the first two modes of T̄ . We omit this formation in this paper
because it is very similar to the formation of Tucker decomposition.
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Figure 11: Comparison performance of TGNN with different decomposition methods.

Comparing Different Tensor Decomposition Methods: Combining all the tensor decomposition
methods, we find that CP decomposition , which costs the less amount of parameters under the same
rank, is the best one for TGNN. Here we plot the results of CP, Tucker and TT decomposition when
R = 32.

Please note it may be unfair to compare different decomposition methods with the same rank because
the meanings of rank for these decomposition methods are different. We show the results to provide
evidence for why we are using CP decomposition for our implementation.

A.8 ANALYSES FOR HYPERPARAMETERS IN PREDEFINED METHODS

In this section, we analyze how hyperparameters affect the predefined methods and TGNN perfor-
mance.

SVD: To investigate the impact of rank r in Eqn.(7) for SVD, we select rank r from
{5, 10, 15, 50, 100, 200} to conduct experiments with the setting of “SVD” and “TGNN-S” in Table 2.
The results can be found in Figure 12.

(a) SVD (b) TGNN-S (c) Comparison

Figure 12: Node classification performance of predefined method “SVD” and ablated method
“TGNN-S” under different ranks of SVD.

For the predefined method “SVD” shown in Figure 12 (a) , the results are not promising when rank
r is too small, which means the low-rank property is too strong for the method to carry enough
information of the graph. When r grows, performance for the graphs with low perturbation rates
becomes better, while the performance of the graphs with high perturbation rates is poorer. Similarly,
in Figure 12 (b), “TGNN-S” also has this phenomenon but always performs better than “SVD” with
the same ranks. We also plot the comparison results of “SVD” and “TGNN-S” with rank {5, 50, 200}
in Figure 12 (c) in which the gap between these two methods demonstrates the effectiveness of
TGNN.
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PRUNE: We tune the threshold τ in Eqn.(5) from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1} for “PRUNE”
and “TGNN-P” in Table 2, the corresponding results are summarized in Figure 13. Please note the
results for τ = 0.01 and τ = 0.02 are too close due to the node feature similarity distribution (i.e.,
few node similarities are in the range of [0.01, 0.02]), so we omit the results for τ = 0.02 in this
figure.

(a) PRUNE (b) TGNN-P (c) Comparison

Figure 13: Node classification performance of predefined method “PRUNE” and ablated method
“TGNN-P” under different thresholds τ of PRUNE.

For the predefined method “PRUNE” in Figure 13 (a) , when τ grows, more edges (can be both
perturbed edges and the original edges) are pruned, resulting in the poorer performance of the graphs
with low perturbation rates, while the graphs with high perturbation rates achieve better results.
Comparing Figure 13 (a) and Figure 13 (b), it can be seen that “TGNN-P” always performs better
than “PRUNE” under the same perturbation rate. From the comparison results of “PRUNE” and
“TGNN-P” with thresholds {0.01, 0.04, 0.1} in Figure 13 (c), the gap between these two methods
also demonstrates the effectiveness of aggregation strategy in TGNN.

KNN: The k in Eqn.(6) is chosen from {8, 16, 32, 64, 128}. We plot the results for “KNN” and
“TGNN-K” in Table 2 and the results can be found in Figure 14. Since the results for “KNN” are not
changing with perturbation rates, we plot them with horizontal lines in this figure. The results for
“KNN” and “TGNN-K” with the same k are in the same color.

Figure 14: Node classification performance of predefined method “KNN” and ablated method
“TGNN-K” under different top-k of KNN.

From the figure, we can see that “TGNN-K” always outperform predefined method “KNN”.

A.9 ANALYSES FOR OTHER HYPERPARAMETERS

In this section, we analyze the other hyperparameters used in the proposed TGNN method, including
λ in Eqn. (4) and the weight decay for learning tensor cores.

λ in Eqn. (4): The λ in Eqn. (4) is a hyperparameter balancing the classification loss and the
low-rank approximation loss. Here we choose different λ from {1, 10, 100, 1000, 10000} to verify
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the performance of TGNN. The results are still from Cora dataset attacked with metattack and
depicted in Figure 15. Please note the results for λ = 1000 and λ = 10000 are very close hence we
omit the results for λ = 10000.

Figure 15: Node classification performance of TGNN tuned with different λ.

From the figure, we can see that λ = 100 is the best choice for TGNN to perform robustly against
adversarial attacks.

Weight Decay for Learning Tensor Cores: In our TGNN, optimizer with weight decay 0.3 is
adopted to learn the core tensors. To investigate the effects of weight decay, we choose it from
{0, 0.01, 0.03, 0.1, 0.3, 1} to tune TGNN and report the results in Figure 16.

Figure 16: Node classification performance of TGNN optimized with different weight decay.

From the results, we can see that weight decay has minor effects on the performance of TGNN.

A.10 LIMITATIONS

One of the limitations for TGNN is scalability. All the existing methods use the same choice of
datasets or others with similar scales. There are no existing defense methods evaluated on datasets on
a scale of about or above 100000 nodes. It is also tough to evaluate attack methods like Metattack
and Nettack on that scale because attack methods can wire any of the N2 −M edges not included
in the graph, where N denotes the number of nodes and M denotes the number of edges. We
argue that O(N2) is more reasonable than O(M) for defense methods when considering to rewire
the potential N2 −M deleted edges by the attacks. Our method has the same scalability as two
competing methods (GCN-SVD and Pro-GNN), and is reasonable compared to the other three
methods (GNNGuard, GCN-Jaccard and RGCN), while our method can beat all competing methods
in terms of robustness to different attacks.

Here, we provide a potential solution for TGNN to handle large-scale graphs. The core idea is
not to calculate the whole adjacency matrix explicitly. Sampling based algorithms have been used
previously for scalable tensor decomposition (Larsen & Kolda, 2020; Cheng et al., 2016; Bhojanapalli
& Sanghavi, 2015). In Cheng et al. (2016), statistical leverage scores (i.e., sampling weights or
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importance) are adaptively estimated by exploiting the tensor/matrix product structure of the designed
tensors in least square problems. We can utilize this technique to reduce the complexity of the
tensor approximation process of TGNN to O(NR3) for each iteration by reducing the size of least
square problems in ALS. As we have analyzed in Section A.4, ignoring SVD and without explicitly
constructing the whole predefined matrices, the complexity for KNN and PRUNE are O(NlogN)

andO(M) respectively. We can also approximate the normalized graph Â directly to avoid estimating
the diagonal degree matrix. Hence, the complexity of tensor approximation (calculating the core
tensors) can be reduced to the order O(M + NlogN). With the calculated core tensors, we can
replace the calculation of each GCN layer in Eqn 2 by:

fθk(X,C0,C1,C2,C3) =

R∑
r=1

C0(r)C1(r, 1)C2(r, :)T (C3(r, :)XWk) . (11)

Since C1 ∈ RR×(K+1), C2 ∈ RR×N , C3 ∈ RR×N and C0 ∈ RR, the computational complexity of
each GCN layer in the above equation is of the order O(NRD). Overall, ignoring the minor terms R
and D, the complexity for this whole alternative algorithm is O(M +NlogN).

Attack/defense algorithms for GNNs with high scalability would be interesting, and we will consider
designing them and learn how they perform with TGNN as future works.

A.11 TRANSFERABILITY OF THE LEARNED ROBUST GRAPH Ā

In this section, we evaluate the transferability of the learned robust graph Ā from TGNN. A robust
graph is transferable if it can consistently defend different GNN models effectively. Since TGNN is
trained with GCN, we evaluate the performance of Ā transferring to GAT and another state-of-the-art
GNN: APPNP (Klicpera et al., 2019). Evaluation is based on Metattack on Cora dataset and the
results are in Figure 17.

Figure 17: Defense transferability evaluation for the learned robust graph Ā from TGNN.

From Figure 17, we can see that APPNP also suffers from adversarial attacks (accuracy on clean
graph: 84.80%, under 25% perturbation rate: 53.42%). Suppose we replace the perturbed graph Ã
with the robust graph Ā learned from TGNN by GCN for GAT and APPNP. In that case, we can
significantly improve the classification performance for GAT and APPNP (under 25% perturbation
rate, GAT: from 54.78% to 71.23%, APPNP: from 53.42% to 76.16%), which proves that the learned
robust graph from TGNN can be transferred to different GNNs.

A.12 RESULTS AGAINST ATTACKS WITH FEATURES

In this section, we conduct experiments to verify whether TGNN is able to defend GNNs against
adversarial attacks perturbing both structure and feature. We apply Metattack on Cora datasets
changing both adjacency matrix and feature maps and evaluate state-of-the-art methods and the
proposed TGNN. The feature matrix in Cora dataset is binary, so the attacks for feature can be applied
in the same way as for structure. There are two different settings for this combined attacks: the
first one is called Combined, following Zügner & Günnemann (2019b) that the attacks for feature
matrix X and adjacency matrix A share the same budget (a.k.a., maximum number of perturbations)
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∆, i.e., ||A− Ã||0 + ||X− X̃||0 ≤ ∆; the second setting is called Separate that the attacks for X
and A have their own budget that ||A − Ã||0 ≤ ∆A and ||X − X̃||0 ≤ ∆X . For Combined, we
use the same perturbation rates as used for structure-only attacks in Table 1, where ∆ = p× ||A||0
and p ∈ {5%, 10%, 15%, 20%, 25%}. For Separate, the same set of perturbation rates are applied
separately for feature and structure respectively that ∆X = p× ||X||0 and ∆A = p× ||A||0. The
results are shown in Figure 18.

Under Combined setting, TGNN outperforms all the other methods, and it can also be observed
that the impact of features for Metattack is slightly lower than the structures to GNNs (under 25%
perturbation rate comparing TGNN and the best sota method, structure-only attack: TGNN 74.14%
vs Pro-GNN 69.72%, Combined: TGNN 77.73% vs Pro-GNN 70.85%). In Zügner & Günnemann
(2019b), similar observations are shown. We attribute this to two reasons: (1) Unbalanced density
between feature matrix and adjacency matrix: The budgets assigned for feature and structure are
the same for Combined; however, the density of feature and structure might be imbalanced. The aver-
age value of A for Cora is 0.0016, while the average value of the X is 0.0128. The adjacency matrix is
sparser than the feature matrix, so it may cost more perturbations for attacking features to achieve the
same degradation level as the attacks for structures. (2) Structure and feature have different roles
in GCN: Based on the formulation of GCN (Eqn. (2), fθ(X,A) = softmax(fθ2(fθ1(X,A),A))),
the feature matrix X is only used in the first layer, while the adjacency matrix A appears in every
layer. This can make it easier to perturb A than X for degrading the performance of GCN.

(a) Combined (b) Separate

Figure 18: Defense performance against Metattack for both structure and feature on Cora dataset.
Left: Combined where structure and feature attacks share the same budget. Right: Separate where
structure and feature attacks have different budgets.

Under Separate setting, TGNN still outperforms all the other methods (under 25% perturbation rate
comparing TGNN and the best sota method, TGNN 73.30% vs GCN-Jaccard 59.74%). The results
show that TGNN is also robust against attacks with features. It might be a concern that attacks for
features can mislead KNN and fool TGNN easily. However, KNN performs very consistently: only
362 out of 39720 entries (less than 1%) are changed for KNN predefined graph from the clean graph
data to 25% perturbation rate under Separate setting.

We find that features are very robust to adversarial perturbation for GNNs. We think it is because of
the different roles of feature and structure in GCN, as we have mentioned before. But unfortunately,
if we only use features to classify the nodes, the performance is very poor (on clean graph, “No A”
in Table 2: 62.12%, KNN: 71.94%, GCN: 83.50%). How to effectively attack GNNs with features
would be a very interesting topic, and we will address it in future works.

A.13 RESULTS ON AMAZON DATASET

We add an experiment to show the effectiveness of TGNN defending GNNs on product co-purchase
graphs. Amazon (Shchur et al., 2018) dataset is based on the Amazon co-purchase graph, where
nodes represent goods, edges indicate that two goods are frequently bought together, node features are
bag-of-words encoded product reviews, and class labels are given by the product category. It contains
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two sub-datasets: Computers which contains 13752 nodes, 491722 edges, 767 binary features and 10
classes; and Photos which contains 7650 nodes, 238162 edges, 745 binary features and 8 classes.

(a) Amazon Computers (b) Amazon Photos

Figure 19: Defense performance against Metattack on Amazon Computers and Photos datasets.

We evaluate TGNN and the state-of-the-art methods mentioned in Table 1 on Computers/Photos
dataset against Metattack. The results can be found in Figure 19. We can see from the results that
TGNN is the best method defending GNNs on product co-purchase graphs (under 25% perturbation
rate comparing TGNN and the best sota method, Computers: TGNN 75.44% vs GCN-SVD 72.31%,
Photos: TGNN 80.87% vs GAT 76.81%).

A.14 RESULTS AGAINST EVASION ATTACKS

(a) PGD (b) Min-Max

Figure 20: Defense performance against PGD and Min-Max evasion attacks on Cora dataset.

In this section, we evaluate the proposed TGNN on another type of attacks: evasion attacks. Evasion
attacks are also called as test-time attacks. Victim models are trained with clean data and tested with
perturbed data. The goal of defending evasion attacks can be formally stated as:

Given fixed GNN parameters θ trained with the unperturbed adjacency matrix A, feature X and
partial node labels YP , the GNN is evaluated with adversarial graph Ã. We aim to learn robust
graph Ā replacing Ã to improve node classification performance for unlabeled nodes.

We mentioned that we are focusing on poisoning attacks in this work, and we argue that poisoning
attacks for node classification are more reasonable due to the semi-supervised setting. Poisoning
attacks are train-time attacks that perturb the graph data before the training process of the victim
models. For reasons why the poisoning attack is more interesting and realistic in GNN, on the one
hand, in evasion attack settings, GNN models are trained on the clean graph and evaluated on the
perturbed graph generated by evasion attack methods. The graph information can be memorized by
GNN models during the training process and be utilized to test to defend against evasion attacks. On
the other hand, GNN models require the entire graph to classify every node, which means evasion
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attacks provide the entire perturbed graph in the testing phase. Based on the given entire graph, we
are able to retrain GNN models to defend against evasion attacks. Hence, poisoning attacks are more
realistic than evasion attacks. In (Zügner et al., 2018), similar argumentation is made.

We choose two evasion attacks: PGD and Min-Max, proposed in Xu et al. (2019) to evaluate all the
defense methods. The defense performance results of TGNN and state-of-the-art methods can be
found in Figure 20. For GCN-Jaccard, GCN-SVD, Pro-GNN and TGNN, the surrogate GCN is firstly
trained with clean graph. During the test-time, the surrogate GCN is fixed and used to learn the robust
graph. From Figure 20, we can see that TGNN also shows more promising performance against
evasion attacks than all state-of-the-art methods (under 25% perturbation rate comparing TGNN and
the best sota method, PGD: TGNN 75.35% vs GCN-Jaccard 74.33%, Min-Max: TGNN 79.88% vs
Pro-GNN 77.67%).

26


	Introduction
	Related Works
	Graph Neural Networks and Adversarial Attacks on Graphs
	Defense on Graphs

	Methodology
	The Proposed Framework
	Tensor-Based Aggregation for robust graphs
	Predefined robust graphs

	Experiments
	Experimental Setting
	Defense Performance
	Ablation Studies

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Further Implementation Details
	Datasets Statistics
	Baseline Settings
	Complexity Analyses
	Comparison between TGNN and Pro-GNN
	Visualization of TGNN against Nettack and Random Attack
	Analyses for Tensor Decomposition Methods and Ranks
	Analyses for Hyperparameters in Predefined Methods
	Analyses for Other Hyperparameters
	Limitations
	Transferability of the Learned Robust Graph 
	Results against Attacks with Features
	Results on Amazon Dataset
	Results against Evasion Attacks


