
GNN2GNN: Graph Neural Networks to Generate Neural Networks

Andrea Agiollo1,2 Andrea Omicini1

1Department of Computer Science and Engineering (DISI), ALMA MATER STUDIORUM—University of Bologna, Italy
2The Research Hub by Electrolux Professional S.p.A., Pordenone, Italy

Abstract

The success of neural networks (NNs) is tightly
linked with their architectural design—a com-
plex problem by itself. We here introduce a novel
framework leveraging Graph Neural Networks to
Generate Neural Networks (GNN2GNN) where
powerful NN architectures can be learned out
of a set of available architecture-performance
pairs. GNN2GNN relies on a three-way adversarial
training of GNN, to optimise a generator model
capable of producing predictions about power-
ful NN architectures. Unlike Neural Architec-
ture Search (NAS) techniques proposing efficient
searching algorithms over a set of NN architec-
tures, GNN2GNN relies on learning NN architec-
tural design criteria. GNN2GNN learns to propose
NN architectures in a single step – i.e., training of
the generator –, overcoming the recursive approach
characterising NAS. Therefore, GNN2GNN avoids
the expensive and inflexible search of efficient
structures typical of NAS approaches. Extens-
ive experiments over two state-of-the-art datasets
prove the strength of our framework, showing that
it can generate powerful architectures with high
probability. Moreover, GNN2GNN outperforms
possible counterparts for generating NN architec-
tures, and shows flexibility against dataset quality
degradation. Finally, GNN2GNN paves the way
towards generalisation between datasets.

1 INTRODUCTION

Deep Learning (DL) techniques have recently seen an un-
stoppable rise in popularity: DL has changed the approach
to most intelligence task, ranging from vision to text and
audio processing. Among those techniques, neural networks
(NNs) have become the most popular solution. NN perform-

ance is tightly linked with the operations they leverage and
how these are connected – their architecture – whose design
has been shown to be as complex as much as it is relevant.

On the other hand, there is no trivial way to find out the best
NN design for a specific task. Neural Architecture Search
(NAS) techniques have recently emerged to tackle NN
design issue [Elsken et al., 2019]: the underlying concept
of NAS approaches is to efficiently search for the best NN
architecture over a set of structures defined as a search space.
Despite its success, NAS exhibits several drawbacks (see
Section 6), as it relies on looking for the best architecture
rather than learning architectural criteria for building the
optimal NN. Moreover, NAS approaches are not flexible
with respect to slight changes of the application scenario,
require huge amount of resources to run, and are limited
by their search space specifications. Also inspired by these
limitations, in this work we present GNN2GNN, a novel
tool leveraging graph neural networks to generate NN archi-
tectures.

GNN2GNN is a meta-learning framework exploiting Graph
Neural Networks (GNNs) to learn generating efficient NN
structures. GNNs are particular models proposed to tackle
graph-processing tasks via convolution-equivalent operation
over graphs [Wu et al., 2021]. A NN structure can be seen
as a Directed Acyclic Graph (DAG) where nodes represent
layers – implementing common operations like convolution,
pooling, etc. – and edges represent how the output of one
layer is fed to the following one. In this context, we propose
a three-way adversarial learning setup to allow GNN to learn
the features of an efficient NN structure and generate novel
architectures. More in details, a generator GNN is trained
to produce plausible architectures, while a discriminator
GNN is optimised to distinguish between generated and real
architectures. Finally, a valuer GNN aims at optimising the
performance of the generated architectures. During training,
the generator loss is defined as a mixture of the discrim-
inator and valuer feedbacks, therefore aiming at enabling
the learning of realistic – i.e., discriminator feedback – and
powerful – i.e., valuer feedback – architectures.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<andrea.agiollo@unibo.it>?Subject=GNN2GNN UAI paper 301

While being embeddable into a broader NAS approach,
GNN2GNN represents a powerful approach to propose NN
architectures by itself. Indeed, differently from NAS tech-
niques, which aim at efficiently searching NN architectures
over a set of available ones, GNN2GNN aims at intrinsic-
ally learning architectural criteria from a set of available
architecture-performance pairs. While NAS consider to re-
cursively propose, evaluate and optimise a set of NN struc-
tures (see Figure 1 left), we here consider learning to pro-
pose architectures from a set of NNs in a single step—i.e.,
training of the generator GNN (see Figure 1 right). Once
trained, GNN2GNN is capable of proposing multiple effi-
cient NN architectures at once, rather than focusing solely
on the local optimum obtained from the deployed search
algorithm. Therefore, GNN2GNN significantly shifts the
paradigm of the approach to the problem of NN architecture
design, from relying on searching architectures to learning
design criteria.

To summarize, the contributions that our work brings are
the following:

• We present GNN2GNN, the first – up to our knowledge
– framework leveraging GNN to generate powerful NN
architectures, without relying on inefficient searching
procedure.

• We show the effectiveness of our framework over two
state-of-the-art datasets, highlighting its flexibility and
generalization capability.

2 PRELIMINARIES ON GRAPH NEURAL
NETWORKS

As the proposed framework relies on graph manipulation
via GNNs, here we briefly introduce Graph Neural Net-
works, presenting their fundamental concepts. Graph Neural
Networks (GNNs) have been proposed as an extension of
traditional NNs to enable processing of non-rigidly struc-
tured data such as graphs. GNNs are mathematical models
operating upon directed graphs, whose vertices (respectively,
arcs) are labelled with vectors (or matrices, or tensors) of
real numbers – xv ∈ Rd for vertex v, and av,w ∈ Rc for
the arc between vertex v and w –, each one carrying further
numeric information about the corresponding vertex (resp.,
arc). GNNs rely on graph convolution, which represents the
generalisation of a 2-dimensional convolution over graph-
structured data. Graph convolution is defined over a single
vertex v and its neighbourhood N(v), and relies on three
successive phases:

propagation — the information xv′ belonging to each ver-
tex v′ ∈ N(v) is weighted by the information av,v′ belong-
ing to the arc among v and v′, then propagated to vertex
v;

aggregation — the information propagated from each ver-

tex v′ ∈ N(v) to v is aggregated via an aggregation func-
tion;

transformation — the aggregated information correspond-
ing to vertex v is transformed into a new embedding vector
and assigned back to vertex v, as its new state x′v .

The single convolution operation is applied in parallel to
each vertex in G, updating the whole graph representation.

GNNs have proven to be successful in many tasks involving
graph structured data. Most common applications concerns
computational chemistry [Fung et al., 2021], social recom-
mendations [Fan et al., 2019], computer vision [Wang et al.,
2019], and many others [Hamilton et al., 2017, Yu et al.,
2018]. However, a comprehensive review of GNNs and the
underlying techniques is clearly out the scope of this paper:
therefore, we refer interested readers to Wu et al. [2021],
Zhou et al. [2020].

3 GNN2GNN

In this section we present our framework, namely
GNN2GNN. GNN2GNN leverages Graph Neural Networks
to Generate Neural Networks. We first present briefly how
NN architectures can be mapped into graph structures (Sec-
tion 3.1). We then introduce the general pipeline for generat-
ing and processing NN architectures (Section 3.2), focusing
specifically on its components.

3.1 NEURAL NETWORKS AS GRAPHS

NN architectures are uniquely defined by a set of layers
L, a set of operations O applied on layers, and a set I of
interconnections between layers. Each layer lv ∈ L, with
v ∈ [0, |L|], identifies a specific component of the NN archi-
tecture and is characterised by a specific operation ov ∈ O.
Interconnections between layers, on the other hand, define
how layers are linked to each other. An interconnection
iv,w ∈ I identifies that layers lv and lw are connected, and
more specifically, it identifies that the output of the operation
ov applied at layer lv is used as an input for the operation
ow applied at layer lw. It is important to notice that, thanks
to the feedforwarding nature of standard NNs, there exists
total ordering among the layers in L and interconnections
can only exist between successive layers. Mathematically
speaking, ∃iv,w ∈ I ⇐⇒ w > v.

Following the above notations, NN architectures can be
mapped easily into graph structures, specifically to Direc-
ted Acyclic Graphs (DAGs). Layers in L are mapped into
a set of vertices V characterised by a set of features X
representing layers operations (O), while interconnections
(I) are mapped into a set of directed edges E . Vertices –
i.e., layers –, along with their features – i.e., operations –,
are defined as vectors xv ∈ Rd, where v enumerates the

Policy
Sample

Update

GNN2GNN
Train

Generate

Generate

NAS Approach GNN2GNN Approach

Search

Space

Train &

Evaluate

Figure 1: Left: NAS approaches rely on a recursive sampling, evaluation and optimisation procedure. A NAS policy is used
to sample architectures from the search space. The sampled architectures are then trained and evaluated to optimise the NAS
policy depending on their performance. Once a convergence criterion is met, NAS identifies the sub-optimal NN architecture.
Right: The GNN2GNN approach rely on a single training procedure where GNN2GNN learns to propose effective NN
architectures. The trained generator is able to produce multiple powerful NN architectures, rather than identifying solely the
local sub-optimal NN architecture.

graph vertices, and d represents operations cardinality. On
the other hand, the set of edges – i.e., interconnections –,
is denoted by the adjacency matrix E ∈ R|V|×|V|, where
ev,w = 1 ⇐⇒ ∃iv,w. Therefore, a NN architecture can
be mapped into a DAG defined by X ∈ R|V|×d, where
rowk(X) = xv – i.e. a matrix of vertices characterised
by the operations they apply – and E—i.e., the adjacency
matrix defining how operations are connected.

3.2 ADVERSARIALLY GENERATE
ARCHITECTURES

The proposed framework relies on a generative adversarial
approach (GAN) [Goodfellow et al., 2014], applied over
graph structured data leveraging Graph Neural Networks.
The proposed framework is presented in Figure 2 and relies
on three components:

• A generator GNN G is in charge of proposing graph
structures representing NN architectures.

• A discriminator modelD is responsible for distinguish-
ing between NN structures proposed by G and real
architectures.

• A valuer network V is responsible for predicting the
architecture performance, therefore optimising the gen-
eration towards powerful structures.

GNN2GNN relies on such triplets of GNNs to allow G to
intrinsically learn optimal architectural criteria. Indeed, the
discriminator and valuer models are used during training to
optimise the generator status. More in details, the generator
loss is defined as a mixture of the discriminator and valuer
feedbacks:

LG = λ · FD︸︷︷︸
D feedback

+(1− λ) · FV︸︷︷︸
V feedback

(1)

Here, λ represents the balancing factor between the two feed-
backs. Leveraging such mixture loss,G is capable of propos-
ing realistic – i.e., D feedback – and powerful – i.e., V feed-
back – architectures. Finally, once trained, the GNN2GNN
framework exploits solely the generator component to pro-
pose significant NN architectures.

3.2.1 Generator

Generating graph structures that satisfy specific properties
is complex and represents an open research issue [You et al.,
2018, Li et al., 2018]. This task complexity is three-folded:

Q1 Generate realistic structures. For a generated structure
to result realistic, the generative framework should
learn which nodes should be linked and which not.

Q2 Generate realistic nodes. The generated graph should
be characterised by nodes having realistic features.

Q3 Stopping criteria. In the generating process, it is im-
portant to identify when the generated graph structure
has reached its final structure, which is non-trivial.

To tackle the aforementioned problems and generate real-
istic NN architectures, we here propose a novel generative
GNN. Indeed, GNNs are particularly suited for handling
interconnections and node features, while they exhibit limit-
ations on stopping criteria identification. However, given the
nature of available NAS techniques and datasets, this GNNs
limitation is not an issue. Indeed, available NAS techniques
restrict their searching space, limiting the number of layers –
vertices – that compose the NN architecture. Therefore, pub-
licly available NAS datasets build on top of this rationale,
fixing the number of NN layers.

Building on top of the same rationale, we here propose a
generator model that receives as input a fully-connected
DAG – i.e., where every node is connected with every other

GENERATOR

Strong

Weak
VALUER

Real

Fake
DISCRIMINATOR

DATASET

Figure 2: The GNN2GNN framework. The generator GNN produces NN architectures, starting from randomly initialised
fully connected DAGs. The discriminator GNN aims at distinguishing artificial NN architectures from the real ones. The
valuer network aims at predicting architectures performance, distinguishing between strong and weak structures or regressing
their accuracy. Different colors of graph nodes represent different operations—embeddings. Red nodes identify input/output
nodes, while green and yellow nodes may represent 3× 3 convolution and max-pooling respectively. Gray nodes represent
randomly initialised node embeddings.

node – having N nodes. N represents an hyperparameter
of the framework, and can be arbitrarily set depending on
the features of the NAS dataset at hand, or, on the complex-
ity of the architecture to generate. Fixing N immediately
satisfies property Q3, implicitly setting a stopping criteria
for the graph generation process. It is also important to
notice that value N only provides an upper limit on the
number of layers composing the generated architectures.
Indeed, architectures having n ≤ N can be generated by the
proposed approach, thanks to edge removal and node isola-
tion. Finally, node features of the input graph are randomly
initialised, mirroring the usual GAN approach.

The proposed generator framework relies on four successive
steps, presented in Figure 3 along with an example of input
graph and generated architecture, and explained in details
below.

Graph convolution. The generator applies µ layers
of graph convolution to the randomly generated fully-
connected graph received in input. Graph convolution lay-
ers allow elaboration of the random information received,
building the backbone of the generated NN architecture.
Depending on the number µ of convolutional layers selec-
ted, we should expect more or less fine-grained embeddings
as output of this step. However, given the fully-connected
nature of the input graph, a small value of µ is enough to
obtain a meaningful graph embedding.

Edge scoring & sampling. Once a proposal of fully-
connected architecture is obtained from the graph convolu-
tion layers, the generator applies a learnable scoring function
to each edge of the graph at hand. This procedure allows
different scores to be assigned to each edge of the archi-
tecture, depending on their relevance. To score edges we
first build edge features vectors, through the concatenation
of adjacent vertices features. Mathematically speaking, the
feature vector of edge connecting vertex v to vertex w is
ev,w = xw ‖ xw, where ‖ denotes concatenation. Once the
edge feature is obtained, the edge relevance is scored using a

standard densely-connected layer followed by normalisation
in [0, 1], obtaining e

′

v,w which represents the score given to
the edge between v and w. To avoid non-differentiability
issues that may arise from scores thresholding, edges are
then sampled depending on their scores using a gumbel soft-
max layer. This procedure ensures the survival of relevant –
from the generator perspective – edges only, aiming at satis-
fying Q1. Edge scoring and sampling are here presented as
a unique step, given their logical bond. However, it is also
possible to conceive these two as separate steps, as done in
Figure 3 to ease reader understanding of the framework.

Layers operations generation. The aim of this step is
to assign one operation to each vertex – i.e., layer – of the
graph corresponding to the NN architecture. To do so, the
graph embedding obtained from the graph convolution step
is combined with the sampled edge scores and used as input
for a new layer of graph convolution. A softmax operation
is then applied to the output of the convolutional layer to
produce the one-hot encoding of the operations correspond-
ing to each node. This specific step, aiming at identifying
realistic nodes features – i.e., operations –, is meant to sat-
isfy Q2. Here, the layer generation step focus solely on
the layer type – i.e., operation to deploy –, ignoring layers
dimensioning issues. Indeed, we consider layers size to be
automatically inferrable from the overall NN architecture,
as stated in Ying et al. [2019].

Graph refinement. Finally, the generator removes un-
sampled edges from the graph as well as isolated nodes,
obtaining the final NN architecture. Possible cycles and
pending nodes are also removed during this step, ensur-
ing therefore to produce a DAG architecture. The graph-
refinement operation is left as the last operation to avoid
possible non-differentiability issues which may arise from
removal of nodes or edges. However, this does not influence
the generation of layer operations, since zero-scored edges
do not propagate information in the previous convolution
step.

1. Graph

Convolution

2.b. Edge
Sampling

3. Operations

Generation

4. Graph

Refinement

2.a. Edge
Scoring

Figure 3: The generator receives in input randomly initialised – gray nodes – fully connected DAGs, and process them
via graph convolution (1.). The new graph embedding, obtained from (1.) is used to score edges (2.a.). Light gray (dark
gray) edges represent links having small (high) score. Edges are sampled (2.b.) and the scores are propagated to the next
graph convolution step to obtain operations embedding (3.). Different colors of graph nodes represent different operations—
embeddings. Red nodes identify input/output nodes, while green and yellow nodes may represent 3× 3 convolution and
max-pooling respectively. Finally, the graph is refined removing unsampled edges and nodes (4.).

3.2.2 Discriminator

The discriminator model aims at distinguishing between syn-
thetically generated architectures and architectures available
in the dataset at hand. In the proposed framework we build
the discriminator model stacking ν layers of graph convolu-
tion, followed by a single densely-connected classification
layer. Graph convolutional layers extract graph-structured
features from the input graph, while the classification layer
outputs a binary prediction. The complexity of the discrim-
inator model – i.e., the number of graph convolutions ν –
depends on the complexity of the architectures under inspec-
tion. Available NAS datasets consider fairly small architec-
tures, as they deal with identical block structures, therefore
in our experiments we set ν = 2.

3.2.3 Valuer

The valuer model aims at identifying the performance of
the architectures given as input. Structurally speaking, we
build the valuer model similarly to the discriminator, stack-
ing few layers of graph convolution, followed by a single
densely-connected layer. The prediction of the valuer model
over the structures generated by G are also used for the gen-
erator optimisation, aiming to push G toward the generation
of more powerful NN architectures. Indeed, the generator
model is trained minimising a combination between the
standard GAN loss and the reward loss obtained from the
valuer NN:

LG = λ · log(1−D(G(z)))︸ ︷︷ ︸
standard GAN loss

+(1−λ) ·LR(V (G(z)))︸ ︷︷ ︸
reward loss

(2)

where z represents the randomly initialised graph used as
input for G, LR represents the reward loss and λ repres-
ents a balancing factor between the two loss terms. The
definition of LR depends on the role of the final densely-
connected layer of V , which can be used either to regress
the performance of the graph at hand or to binary clas-
sify graphs—strong vs. not-strong architecture. In the first
approach, LR is represented via mean-squared error loss
between the predicted performance of generated architec-
ture and the best performing architecture. In the second, the
reward loss is represented via cross-entropy loss between
predicted classification and strong architecture labels. Our

experiments (see Section 4.4) show that the second approach
is more consistent.

4 EXPERIMENTS AND RESULTS

In this section we propose a set of experiments to show
the effectiveness of GNN2GNN for generating strong NNs.
Our source code is available at https://github.com/AndAgio/
GNN-2-GNN.

4.1 DATASETS

To test our framework performance we rely on the
NAS101 [Ying et al., 2019] and NATS [Dong et al., 2021]
benchmark datasets. Both datasets contain a set of NN ar-
chitectures along with their recorded performance over a
specific image classification task. Here, NN architectures
are built from the repetition of identical cells, which are
the target of our GNN2GNN approach. NAS101 contains
423k NN architectures trained multiple times over CIFAR-
10 [Krizhevsky and Hinton, 2009]. On the other hand, NATS
contains a set of 15k NN topologies trained over three dif-
ferent datasets: (i) CIFAR-10; (ii) CIFAR-100; (iii) ImageN-
et-16-120. However, NATS represent operations over graph
edges, while GNN2GNN and NAS101 represent operations
over graph nodes, as introduced in Section 3.1. Therefore,
we translate NATS architectures into Section 3.1 form and
remove possible duplicates, thus obtaining a refined version
of NATS consisting of 7K unique architectures.

NAS101 and NATS datasets rely on similar search spaces
used for the construction of NNs. Indeed, both consider
a small set of operations, containing: (i) 3 × 3 convolu-
tion, (ii) 5× 5 convolution, and (iii) pooling—NAS101 con-
siders max-pooling, while NATS examines average-pooling.
NAS101 contains NN cells with at most 7 nodes and 9 edges,
while NATS examines cells with at most 8 nodes, without
imposing any restriction on the number of edges.

4.2 EXPERIMENTAL SETUP

To test GNN2GNN ability to produce novel architectures
and generate strong cells, we remove part of the architec-

https://github.com/AndAgio/GNN-2-GNN
https://github.com/AndAgio/GNN-2-GNN

tures from the training dataset. We eliminate some ran-
domly picked cells from the dataset, as well as the best
10% of architectures—w.r.t. their classification accuracy.
Under these settings, the generator can not extract inform-
ation from the strongest models during training, rendering
the generation task more complex. Therefore, a generator
capable of producing the best 10% of architectures is to be
considered a strong model. N = 10 was selected since in
NAS101 there exists quite a significant performance delta
between the top-10% architectures and the rest.

Each GNN2GNN instance is trained for 20 epochs over the
training set using standard Stochastic Gradient Descent and
setting the learning rate to 0.001 and the batch size to 32.
Moreover, during the first half of the training procedure we
set λ = 1. This is done to allow V properly learning to
distinguish between strong and weak architectures, before
leveraging it to optimise G with backpropagation. Indeed,
backpropagating information from a partially trained V to
the generator G may increase the noise of its training, slow-
ing down or hindering its optimisation. Therefore, in the first
10 epochs the generator model is optimised only through
the discriminator D. After this setup period λ is set back to
its desired value, enabling the interaction between G and V
as described by Equation (2).

4.3 EVALUATION METRICS

Throughout our experiments, we consider only models
which always output valid NN architectures, since they
output DAGs thanks to some refinement step. Therefore,
the metrics that we define refer solely to the quality of the
generated architectures. Moreover, since our framework is
not directly comparable with NAS approaches, we avoid
considering common NAS metrics—e.g., convergence time,
etc. Novelty measures the percentage of generated archi-
tectures not belonging to the training set used. The Top-N
metrics measure the percentage of generated architectures
that belong to the best N% of architectures in terms of clas-
sification accuracy. Accn measures the ratio between the
number of generated architectures that reach an accuracy
greater than n, and the number of generated models that
belong to the dataset. Finally, |Acc| measures the average
accuracy reached by generated architectures.

4.4 ABLATION STUDY

To identify the best hyper-parameters setup for GNN2GNN,
we propose a thorough ablation study. The ablation study is
performed over the NAS101 dataset, given its higher degree
of expressiveness w.r.t. NATS.

Hyper-parameters We consider the influence of the para-
metric values that may alter the generation of NN archi-
tectures. We take into account the balancing factor λ used

during training, the temperature τ of the gumbel softmax
layer used to perform edge sampling, and the number of
graph convolution layers used by the generator µ. Table 1
shows the results of the ablation study on such parameters.
It is possible to notice that the model is highly affected by
the balancing factor λ, which injects performance-critical
information into the generator. Indeed, leveraging smaller λ
increases the performance of the proposed architectures, as
the generator focuses more on the information received by
V through backpropagation. Smaller λ values also improve
GNN2GNN ability to predict more complex models. Ar-
chitectures generated using λ = 0.1 have on average twice
the number of parameters of their λ = 1 counterparts. This
phenomenon is encouraging, as it shows that GNN2GNN
is capable of mapping the whole space, thanks to V . How-
ever, smaller λ increases the risk of mode collapse issues,
as highlighted by the slight drop in novelty obtained with
λ = 0.01. Finally, µ and τ do not seem to heavily influence
the GNN2GNN performance.

Table 1: Ablation study over hyperparameters of G. Bold
values highlight the best setup for each metric.

Parameters Novelty Top-5 Top-10 Top-50 Acc90 |Acc|
µ τ λ

1

0.01

1 50.13% 10.60% 13.70% 27.20% 45.58% 88.55%
0.5 71.23% 34.66% 40.20% 52.98% 75.18% 90.38%
0.1 82.32% 46.30% 50.50% 57.00% 80.50% 91.53%
0.01 81.63% 45.10% 49.40% 58.10% 80.14% 91.44%

0.1

1 51.79% 12.10% 15.40% 25.20% 40.23% 88.10%
0.5 67.81% 19.01% 22.62% 39.20% 59.23% 89.48%
0.1 82.52% 45.19% 50.53% 58.91% 80.60% 91.48%
0.01 82.47% 46.50% 52.14% 57.30% 79.32% 91.35%

2

0.01

1 51.66% 8.57% 11.40% 26.83% 41.63% 88.53%
0.5 73.84% 40.41% 45.28% 54.61% 75.01% 90.89%
0.1 82.06% 46.09% 51.03% 57.82% 81.55% 91.54%
0.01 82.23% 45.66% 50.20% 57.19% 79.69% 91.42%

0.1

1 53.57% 10.08% 12.63% 25.21% 42.15% 88.49%
0.5 68.76% 25.59% 30.84% 45.54% 69.94% 90.45%
0.1 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
0.01 81.51% 45.90% 51.10% 59.50% 79.98% 91.27%

Valuer mode The mechanism used by the valuer network
V to identify strong and weak architectures may cause vari-
ation in the generation performance of GNN2GNN. We
distinguish between a classification-based valuer C and a
regression-based valuer R. The former identifies strong ar-
chitectures as the cells belonging to the best half of the
dataset. On the other hand, in the regression-based setup, V
aims at predicting precisely the classification accuracy of
a cell from its structure. We pick the three best models in
Table 1, retrain them using a regression-based V , and com-
pare them against their classification-based counterparts.

Table 2 shows the results of the ablation study, highlighting
the superiority of the classification-based setup. Indeed, re-
gressing exactly NN performance from its architecture is
complex, mostly since few small architectural modifications
may lead to relevant performance changes. Such variability
is complex to handle in a regression setup and hinders V
ability to predict correctly cells strength.

Table 2: Ablation study over evaluation mode adopted by V.

Parameters
Vmode Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

µ τ λ

2 0.1 0.1
C 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
R 72.10% 26.59% 32.92% 50.10% 67.11% 89.93%

1 0.1 0.01
C 82.47% 46.50% 52.14% 57.30% 79.32% 91.35%
R 71.06% 25.90% 34.13% 51.07% 65.79% 90.07%

2 0.1 0.01
C 81.51% 45.90% 51.10% 59.50% 79.98% 91.27%
R 70.33% 27.04% 33.54% 50.97% 66.43% 90.01%

In the remainder of the experiments, we build the
GNN2GNN model employing a classification-based V and
the best hyperparameters values—i.e. µ = 2, τ = 0.1,
λ = 0.1, as highlighted in Table 1. Indeed, these values
represent a good starting point for deploying GNN2GNN
over multiple scenarios, given NAS101 generality.

4.5 PERFORMANCE COMPARISON

To show the effectiveness of the proposed approach, we
compare GNN2GNN against other generative mechanisms.
We first consider generating random NN architectures using
the Erdös–Rényi model [Erdös et al., 1960]. We then eval-
uate the strength of our approach against two GAN-based
frameworks, relying on different generation strategies:

MOLGAN-like The model generates nodes and edges
independently and simultaneously, recalling the ap-
proach by De Cao and Kipf [2018]. Two matrices rep-
resenting node types and connections between them
are generated from a random input vector and sampled
using gumbel softmax.

RNN The model generates architectures starting from a
single input node and appending new vertices – with
corresponding edges – until a stopping criteria is met.
This approach resembles the one by Zhang et al. [2019]
and leverages Recurrent NNs to deal with graph con-
struction via recursive node appending.

To make the comparison fair, both the MOLGAN-like and
the RNN model are built using the three-way NNs ad-
versarial approach that characterises GNN2GNN. Therefore,
the three approaches differ solely on the generation criteria
embodied by the generator model G.

Table 3 shows the performance of the different models.
GNN2GNN vastly outperforms the counterparts, as it pro-
duces more accurate predictions for strong NN architectures.
Moreover, more than 80% of the predictions performed by
our model are NNs characterised by an accuracy greater than
90%, while the best counterpart model – i.e., MOLGAN –
fails to reach even 60%. This proves GNN2GNN’s genera-
tion consistency. Indeed, even the simple random generation
approach can sporadically generate powerful architectures,
as shown also in Xie et al. [2019]. However, it suffers in
terms of consistency, as it is uncommon to obtain articulate

architectures starting from a random empty graph.

Table 3: Performance comparison between GNN2GNN and
other GAN based approaches to generate NN architectures.

Dataset Model Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

NAS101

GNN2GNN 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
MOLGAN 65.41% 22.63% 27.29% 45.20% 59.71% 89.39%

RNN 96.34% 1.69% 2.32% 4.81% 53.04% 89.32%
Random 51.81% 11.17% 13.74% 28.43% 43.18% 88.54%

4.6 RESISTANCE TO DATASET QUALITY
DEGRADATION

To study the flexibility of our approach against poorly-
constructed datasets, we analyse GNN2GNN performance
when a high number of strong models are removed from the
training dataset. More in details, we first remove the best
N% of models from the NAS101 training set, varying N
between 10 and 90, then retrain GNN2GNN. Table 4 shows
these tests results. The performance loss between different
setups is minimal, highlighting GNN2GNN strength against
dataset quality degradation. Indeed, even when almost all
best models are removed from the training set, GNN2GNN
produces strong predictions, showing just a 3% loss in the
Top-5 metric and a 0.82% decrease of the average accuracy
reached by generated models.

Table 4: Performance comparison when the top N% of best
architectures is removed from the training dataset.

Dataset N Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

NAS101

10% 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
20% 83.01% 45.54% 52.32% 58.48% 82.05% 91.98%
30% 83.67% 46.10% 51.07% 57.04% 80.14% 91.68%
40% 84.89% 45.80% 51.03% 58.71% 81.03% 91.55%
50% 85.00% 44.01% 48.81% 56.30% 79.24% 91.33%
60% 84.58% 44.40% 49.12% 57.72% 80.30% 91.30%
70% 84.20% 44.66% 49.38% 56.71% 79.52% 91.37%
80% 84.33% 43.90% 48.27% 55.51% 78.16% 91.27%
90% 85.71% 42.77% 46.70% 55.72% 78.24% 91.22%

4.7 GENERALISATION BETWEEN DATASETS

We now consider the generalisation ability of our framework.
We start by training GNN2GNN over NATS and showing
its performance. As Table 5 shows, the performance ob-
tained over NATS are poor, probably due to the small size
of NATS—i.e., only 7K NN architectures. We then apply
the generator model trained over NAS101 to NATS, analys-
ing its prediction performance. Table 5 shows the results
of our generalisation study. While still not being satisfact-
ory, we notice that performance strongly increase when
GNN2GNN is transferred from NAS101 to NATS. This is
encouraging, especially if we consider the strong difference
between NAS101 and NATS. Indeed, only 576 NATS archi-

tectures are available also in NAS101, and their performance
vary on average by 16.183% between the two datasets.

Table 5: Performance of GNN2GNN when generalising
between different datasets. Subscript refers to NATS split.
C10 and C100 stand for CIFAR10 and CIFAR100, while I
stands for ImageNet.

Dataset Novelty Top-5 Top-10 Top-50 |Acc|Train Test

NATSC10 NATSC10 76.73% 1.65% 3.39% 15.61% 68.91%
NAS101 NATSC10 73.67% 2.64% 5.08% 16.55% 70.25%

NATSC100 NATSC100 71.71% 1.30% 3.28% 13.10% 33.03%
NAS101 NATSC100 72.03% 2.64% 4.82% 16.90% 35.40%

NATSI NATSI 81.03% 0.91% 2.17% 8.42% 16.75%
NAS101 NATSI 82.30% 1.93% 3.64% 11.49% 18.84%

4.8 PRELIMINARY COMPARISON AGAINST NAS

GNN2GNN does not represent a traditional NAS technique,
as it does not rely on search space exploration and focuses
solely on the architecture generation procedure. However,
we can compare GNN2GNN against state-of-the-art NAS in
terms of the performance obtained by the generated architec-
tures over NAS101. Results shown in Table 6 are extracted
from Yu et al. [2020] and consider 1000 GNN2GNN gener-
ation samples. The average accuracy of GNN2GNN genera-
tion is comparable with other NAS approaches. Meanwhile,
results show that GNN2GNN vastly outperforms NAS tech-
niques in terms of best accuracy. Indeed, the best architec-
ture generated by GNN2GNN achieves 94.32%, while NAO
tops up at 93.33%. Moreover, the architecture generated
by GNN2GNN achieves a lower rank value, meaning that
they are closer to the optimal architecture. Indeed, the best
achievable accuracy in NAS101 is 95.06%, which represents
an increase of only 0.72% compared to what GNN2GNN
achieves.

Table 6: GNN2GNN performance against state-of-the-art
NAS approaches over NAS101. Subscript refers to the per-
centage of samples removed from NAS101.

Model |Acc| Best Acc Best Rank

DARTS Liu et al. [2019] 92.21% 93.02% 57079
NAO Luo et al. [2018] 92.59% 93.33% 19552

ENAS Pham et al. [2018] 91.83% 92.54% 96939
GNN2GNN10 92.04% 94.32% 5372
GNN2GNN30 91.68% 94.18% 7843
GNN2GNN60 91.30% 94.01% 9371
GNN2GNN90 91.22% 93.69% 12570

5 DISCUSSION

GNN2GNN relies on an architecture-performance pairs
dataset to remove part of the complexity burden of extracting
architectures performance. This might represent a possible
drawback, as it requires the training of a set of hand-crafted

NNs. However, results of Section 4.6 show how GNN2GNN
learns to generate effective NNs even when most – i.e., 90%
– of the arch-performance pairs are not available. Moreover,
GNN2GNN does not impose any requirement on the dataset
quality, as it can generate powerful architectures even when
trained on the worst part of the dataset—i.e., worst 10%.
Finally, Section 4.7 hints how GNN2GNN can translate the
generation process to a new setup, without requiring the
extraction of a new dataset.

6 RELATED WORK

The propose framework is tightly related to state-of-the-art
techniques for searching NN structures—namely, Neural
Architecture Search. NAS techniques have been recently
proposed to tackle NN design [Elsken et al., 2019, Ren et al.,
2021]. NAS techniques define a search space S , containing
NN architectures. A set of architectural rules identify the list
of operations available at NN layers, as well as a list of rules
defining admissible connections between NN layers. NAS
approaches aims then at efficiently explore S to identify
the strongest NN architecture. While the search space is
explored, architectures are sampled, the corresponding NNs
are built, trained over the task at hand, and evaluated, de-
pending on a performance estimation strategy. Proposed
NAS approaches may vary for the selected search space and
the exploration strategy they deploy [Real et al., 2019, Tan
and Le, 2019, Chu et al., 2020, Agiollo et al., 2021].

NAS approaches have proven to be successful in identify-
ing powerful NN architectures. However, these approaches
present drawbacks, which raise concerns about their applic-
ability, namely:

Learning to search vs. learning to build. Whereas NAS ap-
proaches aim at efficiently searching a sub-optimal NN
among the ones available in S – i.e., learning to search –,
they fail to learn any proper architectural criteria — i.e.,
learning to build. In contrast, GNN2GNN, relying on graph
learning techniques, aims at implicitly learning NN design
criteria, representing a step forward towards learning to
build NNs.

Flexibility. NAS techniques currently lack in flexibility and
generality, as they cannot identify architectural criteria and
focus on a specific task and dataset. Instead, GNN2GNN is
limited only by the dataset at hand, being adaptable to the
most diverse architectures, operations, and interconnections.
Moreover, aiming to learn architectural criteria, GNN2GNN
paves the way towards generalisation between datasets.

Search space restrictions. Most, if not all, NAS techniques
limit the number of available operations or the way in which
they can be connected to ease the searching procedure over
S. GNN2GNN exploits GNN, which are applicable to any
graph structure, avoiding restrictions on architectural rules.

Our work is also related to the application of GNNs to NN ar-
chitectures. Indeed, some works have exploited, with some
success, the graph processing nature of GNNs to extract
relevant information about NNs from their architecture. A
common approach here consists of predicting the perform-
ance of a NN from its design, aiming to avoid expensive
training processes [Lukasik et al., 2020]. Few of them even
integrate GNNs into NAS algorithms [Yan et al., 2020, Wen
et al., 2020]. Such frameworks, however, rely on the GNN
regressive power solely to evaluate rapidly the performance
of the proposed architectures, removing the training pro-
cess from the NAS loop. Therefore, such approaches exploit
GNN mostly as a speed-up component for the NAS proced-
ure, failing to capture the proper expressive power of GNNs,
which is their capability to learn and sub-symbolically ex-
press NN architectural criteria. Other works aim at finding
relevant embeddings for the NN architectures at hand. Such
embeddings identify a continuous embedding space, which
can then be used to optimize the NN structure [Luo et al.,
2018] or propose quick search mechanisms [Li et al., 2020].

7 CONCLUSIONS AND FUTURE WORKS

In this paper we present a novel GNN-based three-way
adversarial framework for learning to generate strong NN
architectures. The experiments completed over two state-of-
the-art datasets highlight the strength of our approach. We
show GNN2GNN ability to predict optimal NN architec-
tures and its superiority against other available generation
approaches. Moreover, given its flexibility against dataset
quality degradation, the proposed framework represents a
step forward towards learning architectural criteria for NNs
design. Indeed, the GNN2GNN generator is capable of pre-
dicting unseen strong architectures even when dealing with
unsound dataset. Finally, some experiments on knowledge
transferability suggest the generalisability of our approach.

While aiming to overcome NAS limitations – via removal
of search algorithms – GNN2GNN can also be integrated
into a NAS approach as a proposal technique. Here, the
adversarial framework characterising GNN2GNN would
require online training, similarly to other NAS approaches.
The implementation of a GNN2GNN-based NAS approach,
along with thoroughly comparison with other NAS, is left
for future works. Finally, we also intend to focus on boosting
GNN2GNN generalisation ability, by introducing dataset
embedding techniques.

Acknowledgements

This paper has been partially supported by the CHIST-ERA
IV project “EXPECTATION” (G.A. CHIST-ERA-19-XAI-
005).

References

Andrea Agiollo, Giovanni Ciatto, and Andrea Omicini. Shal-
low2Deep: Restraining neural networks opacity through
neural architecture search. In Explainable and Trans-
parent AI and Multi-Agent Systems. 3rd International
Workshop, EXTRAAMAS 2021, volume 12688 of Lec-
ture Notes in Computer Science, pages 63–82. Springer
Nature, 2021. doi: 10.1007/978-3-030-82017-6_5.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective
reinforced evolution in mobile neural architecture search.
In Computer Vision – ECCV 2020 Workshops, volume
12538 of Lecture Notes in Computer Science, pages 99–
113. Springer, 2020. doi: 10.1007/978-3-030-66823-5_6.

Nicola De Cao and Thomas Kipf. Molgan: An implicit
generative model for small molecular graphs. CoRR,
abs/1805.11973, 2018. URL http://arxiv.org/abs/1805.
11973.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan
Gabrys. NATS-Bench: Benchmarking NAS algorithms
for architecture topology and size. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI),
2021. doi: 10.1109/TPAMI.2021.3054824.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. Journal of Machine
Learning Research, 20:55:1–55:21, 2019. URL http://
jmlr.org/papers/v20/18-598.html.

Paul Erdös, Alfréd Rényi, et al. On the evolution of random
graphs. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences, 5(1):17–60, 1960.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao,
Jiliang Tang, and Dawei Yin. Graph neural networks
for social recommendation. In The World Wide Web
Conference, WWW 2019, pages 417–426. ACM, 2019.
doi: 10.1145/3308558.3313488.

Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G. Sump-
ter. Benchmarking graph neural networks for materials
chemistry. npj Computational Materials, 7(1):84, 2021.
doi: 10.1038/s41524-021-00554-0.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information
Processing Systems 2014, pages 2672–2680, 2014.
URL https://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive representation learning on large graphs.

http://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1805.11973
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information
Processing Systems 2017, pages 1024–1034, 2017.
URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Technical re-
port, Department of Computer Science – University of
Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph
embedding for neural architecture search. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 4707–4714. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5903.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and
Peter W. Battaglia. Learning deep generative models
of graphs. CoRR, abs/1803.03324, 2018. URL http:
//arxiv.org/abs/1803.03324.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In 7th Interna-
tional Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019. URL https://openreview.net/forum?id=
S1eYHoC5FX.

Jovita Lukasik, David Friede, Heiner Stuckenschmidt, and
Margret Keuper. Neural architecture performance pre-
diction using graph neural networks. In Zeynep Akata,
Andreas Geiger, and Torsten Sattler, editors, Pattern Re-
cognition - 42nd DAGM German Conference, DAGM
GCPR 2020, volume 12544 of Lecture Notes in Com-
puter Science, pages 188–201, Tübingen, Germany, 28
September – 1 October 2020. Springer. doi: 10.1007/
978-3-030-71278-5_14.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and
Tie-Yan Liu. Neural architecture optimization. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 7827–7838, 2018.
URL https://proceedings.neurips.cc/paper/2018/hash/
933670f1ac8ba969f32989c312faba75-Abstract.html.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via para-
meter sharing. In Jennifer G. Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pages 4092–
4101. PMLR, 2018. URL http://proceedings.mlr.press/
v80/pham18a.html.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architec-
ture search. In 33rd AAAI Conference on Artificial In-
telligence, AAAI 2019, 31st Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, 9th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 4780–4789. AAAI Press, 2019.
doi: 10.1609/aaai.v33i01.33014780.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Poyao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehens-
ive survey of neural architecture search: Challenges and
solutions. ACM Computing Surveys, 54(4):76:1–76:34,
2021. doi: 10.1145/3447582.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In 36th
International Conference on Machine Learning, ICML
2019, volume 97 of Proceedings of Machine Learning
Research, pages 6105–6114. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/tan19a.html.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Mi-
chael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Trans-
actions on Graphics, 38(5):146:1–146:12, 2019. doi:
10.1145/3326362.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li, Gabriel
Bender, and Pieter-Jan Kindermans. Neural predictor
for neural architecture search. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, edit-
ors, Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XXIX, volume 12374 of Lecture Notes
in Computer Science, pages 660–676. Springer, 2020.
doi: 10.1007/978-3-030-58526-6_39.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S. Yu. A comprehensive
survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 32(1):4–24,
2021. doi: 10.1109/TNNLS.2020.2978386.

Saining Xie, Alexander Kirillov, Ross B. Girshick, and
Kaiming He. Exploring randomly wired neural networks
for image recognition. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, pages 1284–
1293, Seoul, South Korea, 27 October – 2 November
2019. IEEE. doi: 10.1109/ICCV.2019.00137.

https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/5903
http://arxiv.org/abs/1803.03324
http://arxiv.org/abs/1803.03324
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning
help neural architecture search? In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL https://proceedings.neurips.cc/paper/2020/hash/
937936029af671cf479fa893db91cbdd-Abstract.html.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. NAS-bench-101:
Towards reproducible neural architecture search. In
36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Re-
search, pages 7105–7114. PMLR, 09–15 Jun 2019. URL
http://proceedings.mlr.press/v97/ying19a.html.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton,
and Jure Leskovec. Graphrnn: Generating realistic graphs
with deep auto-regressive models. In 35th International
Conference on Machine Learning, ICML 2018, volume 80
of Proceedings of Machine Learning Research, pages
5694–5703. PMLR, 2018. URL http://proceedings.mlr.
press/v80/you18a.html.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal
graph convolutional networks: A deep learning frame-
work for traffic forecasting. In 27th International Joint
Conference on Artificial Intelligence, IJCAI 2018, pages
3634–3640. ijcai.org, 2018. doi: 10.24963/ijcai.2018/505.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu
Musat, and Mathieu Salzmann. Evaluating the search
phase of neural architecture search. In 8th Interna-
tional Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020. URL https://openreview.net/forum?
id=H1loF2NFwr.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman
Garnett, and Yixin Chen. D-VAE: A variational
autoencoder for directed acyclic graphs. In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 1586–1598, 2019.
URL https://proceedings.neurips.cc/paper/2019/hash/
e205ee2a5de471a70c1fd1b46033a75f-Abstract.html.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.
doi: 10.1016/j.aiopen.2021.01.001.

https://proceedings.neurips.cc/paper/2020/hash/937936029af671cf479fa893db91cbdd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/937936029af671cf479fa893db91cbdd-Abstract.html
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v80/you18a.html
http://proceedings.mlr.press/v80/you18a.html
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=H1loF2NFwr
https://proceedings.neurips.cc/paper/2019/hash/e205ee2a5de471a70c1fd1b46033a75f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e205ee2a5de471a70c1fd1b46033a75f-Abstract.html

	Introduction
	Preliminaries on Graph Neural Networks
	GNN2GNN
	Neural Networks as Graphs
	Adversarially Generate Architectures
	Generator
	Discriminator
	Valuer

	Experiments and Results
	Datasets
	Experimental Setup
	Evaluation Metrics
	Ablation Study
	Performance Comparison
	Resistance to Dataset Quality Degradation
	Generalisation Between Datasets
	Preliminary comparison against NAS

	Discussion
	Related Work
	Conclusions and Future Works

