
Hidden Poison: Machine Unlearning Enables
Camouflaged Poisoning Attacks

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce camouflaged data poisoning attacks, a new attack vector that arises1

in the context of machine unlearning and other settings when model retraining may2

be induced. An adversary first adds a few carefully crafted points to the training3

dataset such that the impact on the model’s predictions is minimal. The adversary4

subsequently triggers a request to remove a subset of the introduced points at which5

point the attack is unleashed and the model’s predictions are negatively affected. In6

particular, we consider clean-label targeted attacks (in which the goal is to cause7

the model to misclassify a specific test point) on datasets including CIFAR-10,8

Imagenette, and Imagewoof. This attack is realized by constructing camouflage9

datapoints that mask the effect of a poisoned dataset.10

1 Introduction11

Machine Learning (ML) research traditionally assumes a static pipeline: data is gathered, a model is12

trained once and subsequently deployed. This paradigm has been challenged by practical deployments,13

which are more dynamic in nature. After initial deployment more data may be collected, necessitating14

additional training. Or, as in the machine unlearning setting [Cao and Yang, 2015], we may need to15

produce a model as if certain points were never in the training set to begin with.116

While such dynamic settings clearly increase the applicability of ML models, they also make them17

more vulnerable. Specifically, they open models up to new methods of attack by malicious actors18

aiming to sabotage the model. In this work, we introduce a new type of data poisoning attack on19

models that unlearn training datapoints. We call these camouflaged data poisoning attacks.20

The attack takes place in two phases. In the first stage, before the model is trained, the attacker adds21

a set of carefully designed points to the training data, consisting of a poison set and a camouflage22

set. The model’s behaviour should be similar whether it is trained on either the training data, or its23

augmentation with both the poison and camouflage sets. In the second phase, after the model is24

trained, the attacker triggers an unlearning request to delete the camouflage set. That is, the model25

must be updated to behave as though it were only trained on the training set plus the poison set. At26

this point, the attack is fully realized, and the model’s performance suffers in some way.27

While such an attack could harm the model by several metrics, in this paper, we focus on targeted28

poisoning attacks – that is, poisoning attacks where the goal is to misclassify one particular point in29

the training set. Our contributions are the following:30

1. We introduce camouflaged data poisoning attacks, demonstrating a new attack vector in dynamic31

settings including machine unlearning.32

1A naive solution is to remove said points from the training set and re-train the model from scratch.

Submitted to 2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022). Do not distribute.



2. We realize these attacks in the targeted poisoning setting, giving an algorithm based on the33

gradient-matching approach of Geiping et al. [2021]. In order to make the model behavior34

comparable to as if the poison set were absent, we construct the camouflage set by generating35

a new set of points that undoes the impact of the poison set, an idea which may be of broader36

interest to the data poisoning community.37

3. We demonstrate the efficacy of these attacks on a variety of models (SVMs and neural net-38

works) and datasets (CIFAR-10 [Krizhevsky, 2009], Imagenette [Howard, 2019], and Image-39

woof [Howard, 2019]).40

1.1 Preliminaries41

Machine Unlearning. A significant amount of legislation concerning the “right to be forgotten”42

has recently been introduced by governments around the world, including the European Union’s43

General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and44

Canada’s proposed Consumer Privacy Protection Act (CPPA). Such legislation requires organizations45

to delete information they have collected about a user upon request. A natural question is whether that46

further obligates the organizations to remove that information from downstream machine learning47

models trained on the data – current guidances [Information Commissioner’s Office, 2020] and48

precedents [Federal Trade Commission, 2021] indicate that this may be the case. This goal has49

sparked a recent line of work on machine unlearning [Cao and Yang, 2015].50

The simplest way to remove a user’s data from a trained model is to remove the data from the training51

set, and then retrain the model on the remainder (also called “retraining from scratch”). This is the52

ideal way to perform data deletion, as it ensures that the model was never trained on the datapoint of53

concern. The downside is that retraining may take a significant amount of time in modern machine54

learning settings. Hence, most work within machine unlearning has studied fast methods for data55

deletion, sometimes relaxing to approximately removing the datapoint. A related line of work has56

focused more on other implications of machine unlearning, particularly the consequences of an57

adaptive and dynamic data pipeline [Gupta et al., 2021, Marchant et al., 2022]. Our work fits into the58

latter line: we show that the potential to remove points from a trained model can expose a new attack59

vector. Since retraining from scratch is the ideal result that other methods try to emulate, we focus on60

unlearning by retraining from scratch, but the same phenomena should still occur when any effective61

machine unlearning algorithm is applied.62

Data Poisoning. In a data poisoning attack, an adversary in some way modifies the training data63

provided to a machine learning model, such that the model’s behaviour at test time is negatively64

impacted. Our focus is on targeted data poisoning attacks, where the attacker’s goal is to cause the65

model to misclassify some specific datapoint in the test set. Other common types of data poisoning66

attacks include indiscriminate (in which the goal is to increase the test error) and backdoor (where67

the goal is to misclassify test points which have been adversarially modified in some small way).68

The adversary is typically limited in a couple ways. First, it is common to say that they can only add a69

small number of points to the training set. This mimics the setting where the training data is gathered70

from some large public crowdsourced dataset, and an adversary can contribute a few judiciously71

selected points of their own. Other choices may include allowing them to modify or delete points72

from the training set, but these are less easily motivated. Additionally, the adversary is generally73

constrained to clean-label attacks: if the introduced points were inspected by a human, they should74

not appear suspicious or incorrectly labeled. We comment that this criteria is subjective and thus not75

a precise notion, but is nonetheless common in the data poisoning literature, and we use the term as76

well.77

A detailed discussion of the related works is deferred to Appendix A.78

2 Camouflaged poisoning attacks via unlearning79

In this section, we describe various components of the camouflaged poisoning attack, and how it can80

be realized using machine unlearning.81

2



Figure 1: An illustration of a successful camouflaged targeted data poisoning attack. In Step 1, the
adversary adds poison and camouflage sets of points to the (clean) training data. In Step 2, the model
is trained on the augmented training dataset. It should behave similarly to if trained on only the clean
data; in particular, it should correctly classify the targeted point. In Step 3, the adversary triggers an
unlearning request to delete the camouflage set from the trained model. In Step 4, the resulting model
misclassifies the targeted point.

Figure 2: Some representative images from Imagewoof. In each pair, the left figure is from the
training dataset, while the right image has been adversarially manipulated. The top and bottom rows
are images from the poison and camouflage set, respectively. In all cases, the manipulated images are
clean label and nearly indistinguishable from the original image.

2.1 Threat model and approach82

The camouflaged poisoning attack takes place through interaction between an attacker and a victim.83

We assume that the attacker has access to the victim’s model architecture,2 the ability to query84

gradients on a trained model (which could be achieved, e.g., by having access to the training dataset),85

and a target sample that it wants to attack. The attacker first sets the stage for the attack by introducing86

poison points and camouflage points to the training dataset, which are designed so as to have minimal87

impact when a model is trained with this modified dataset. At a later time, the attacker triggers the88

attack by submitting an unlearning request to remove the camouflage points. The victim first trains89

2In Appendix D.5.1, we examine the transferability of our proposed attack to unknown victim model, thus
relaxing the requirement of knowing the victim’s model architecture a priori.

3



a machine learning model (e.g., a deep neural network) on the modified training dataset, and then90

executes the unlearning request by retraining the model from scratch on the left over dataset. The goal91

of the attacker is to change the prediction of the model on a particular target sample (xtarget, ytarget)92

previously unseen by the model during training from ytarget to a desired label yadversarial, while still93

ensuring good performance over other validation samples. Formally, the interaction between the94

attacker and the victim is as follows (see Figure 1) :95

1. The attacker introduces a small number of poisons samples Spo and camouflage samples Sca to96

a clean training dataset Scl. Define Scpc = Scl + Spo + Sca.97

2. Victim trains an ML model (e.g., a neural network) on Scpc, and returns the model θcpc.98

3. The attacker submits a request to unlearn the camouflage samples Sca.99

4. The victim performs the request, and computes a new model θcp by retraining from scratch on100

the left over data samples Scp = Scl + Spo.101

Note that the attack is only realized in Step 4 when the victim executes the unlearning request and102

retrains the model from scratch on the left over training samples. In fact, in Steps 1-3, the victim’s103

model should behave similarly to as if it were trained on the clean samples Scl only. In particular, the104

model θcpc will predict ytarget on xtarget, whereas the updated model θcp will predict yadversarial on105

xtarget. Both models should have comparable validation accuracy. Such an attack is implemented by106

designing a camouflage set that cancels the effects of the poison set while training, but retraining107

without the camouflage set exposes the poison set, thus negatively affecting the model.108

We highlight that camouflaged attacks may be more dangerous than traditional data poisoning attacks,109

since camouflaged attacks can be triggered by the adversary. That is, the adversary can reveal the110

attack whenever the submit an unlearning request, whereas for a traditional poisoning attack, the111

adversary simply plants the attack and must wait for the victim to train the model.112

In order to be undetectable, and represent the realistic scenario in which the adversary has limited113

influence on the model’s training data, the attacker is only allowed to introduce a set of points that114

is much smaller than the size of the clean training dataset (i.e., ∣Spo∣ ≪ ∣Scl∣ and ∣Sca∣ ≪ ∣Scl∣).115

Throughout the paper and experiments, we denote the relative size of the poison set and camouflage116

set by bp ∶= ∣Spo∣

∣Scl∣
× 100 and bc ∶= ∣Sca∣

∣Scl∣
× 100, respectively. Additionally, the attacker is only allowed117

to generate poison and camouflage points by altering the base images by less than ε distance in the118

ℓ∞ norm (in our experiments ε ≤ 16, where the images are represented as an array of pixels in 0 to119

255). Thus, the attacker executes a so-called clean-label attack, where the corrupted images would120

be visually indistinguishable from original base images and thus would be given the same label as121

before by a human data validator. We parameterize a threat model by the tuple (ε, bc, bp).122

The attacker implements the attack by first generating poison samples, and then generating camouflage123

samples to cancel their effects. The poison and camouflage points are generated with the following124

goal in mind:125

Poison points. Poison points are designed so that a network trained on Scp = Scl + Spo predicts126

the label yadversarial (instead of ytarget) on a target image xtarget. While there are numerous data127

poisoning attacks in the literature, we adopt the state-of-the-art procedure of Geiping et al. [2021] for128

generating poisons due to its high success rate, efficiency of implementation, and applicability across129

various models. However, our framework is flexible: in principle, other attacks for the same setting130

could serve as a drop-in replacement, e.g., the methods of Aghakhani et al. [2021] or Huang et al.131

[2020], or any method introduced in the future. Suppose that Scp consist of N1 samples (xi, yi)i≤N1132

out of which the first P samples with index i = 1 to P belong to the poison set Spo.3 The poison133

samples are generated by adding small perturbations ∆i to the base image xi so as to minimize the134

loss on the target with respect to the adversarial label, which can be formalized as the following135

bilevel optimization problem4
136

min
∆∈Γ

ℓ(f(xtarget, θ(∆)), yadversarial) where θ(∆) ∈ argmin
θ

1

N
∑
i≤N

ℓ(f(xi +∆i, θ), yi), (1)

3This ordering is for notational convenience; naturally, the datapoints are shuffled to preclude the victim
simply removing a prefix of the training data.

4While (1) focuses on misclassifying a single target point, it is straightforward to extend this to multiple
targets by changing the objective to a sum over losses on the target points.

4



where we define the constraint set Γ ∶= {∆ ∶ ∥∆∥∞ ≤ ε and ∆i = 0 for all i > P}. The main optimiza-137

tion objective in (1) is called the adversarial loss [Geiping et al., 2021].138

Camouflage points. Camouflage samples are designed to cancel the effect of the poisons, such139

that a model trained on Scpc = Scl + Spo + Sca behaves identical to the model trained on Scl, and140

makes the correct prediction on xtarget. We formulate this task via a bilevel optimization problem141

similar to what we did in (1) for generating poisons. Let Scpc consist of N2 samples (xj , yj)j≤N2142

out of which the last C samples with index j = N2 −C + 1 to N2 belong to the camouflage set Sca.143

The camouflage points are generated by adding small perturbations ∆j to the base image xj so as144

to minimize the loss on the target with respect to the adversarial label. In particular, we find the145

appropriate ∆ by solving:146

min
∆∈Γ

ℓ(f(xtarget, θ(∆)), ytarget) where θ(∆) ∈ argmin
θ

1

N2
∑

j≤N2

ℓ(f(xj +∆j , θ), yj), (2)

where we define the constraint set Γ ∶= {∆ ∶ ∥∆∥∞ ≤ ε and ∆j = 0 for all j ≤ N2 −C}.147

The exact procedure to generate camouflages and poisons is given in Appendix B. We build on the148

gradient matching procedure in [Geiping et al., 2021] for implementing (1) and (2) efficiently in order149

to generate clean-label camouflages and poisons for large-scale machine learning settings.150

Figure 3: Efficacy of the proposed camouflaged poisoning attack on CIFAR-10 dataset. The left plot
gives the success for the threat model ε = 16, bp = 0.6%, bc = 0.6% across different neural network
architectures. The right plot gives the success for ResNet-18 architecture across different threat
models. See Appendix D.3 for more details about this experiment.

3 Experimental evaluation151

We extensive evaluate the efficacy of camouflaged poisoning attack on various large scale ML datasets152

including CIFAR-10, and Imagenette and Imagewoof (subsets of 10 classes from Imagenet). We153

perform evaluations on VGG-11, VGG-16, Resnet-18, Resnet-24, Resnet-50 and MobileNetV2 for154

CIFAR10, and VGG-16 and ResNet-18 for Imagenette and Imagewoof respectively. All experimental155

details, obtained results, and visualizations of the generated poisons and camouflages can be found in156

Appendix D.157

In Appendix D.5, we also provide additional experiments on CIFAR-10 showing that our attack is158

robust to data augmentation, and successfully transfers when the victim model is different from the159

model on which poison and camouflage samples were generated.160

Attack type Attack success Validation Accuracy
(ε, bp, bc) Poisoning Camouflaging Clean Poisoned Camouflaged

LF (8,0.2%,0.2%) 70% 71.5% 81.63 81.73 (± 0.14) 81.74 (± 0.20)
LF (16,0.2%,0.2%) 100% 40% 81.63 81.64 (±0.03) 81.6 (±0.02)
GM (8,0.2%,0.4%) 70% 100% 81.63 81.65 (±0.01) 81.62 (±0.02)

GM (16,0.2%,0.4%) 100% 70% 81.63 81.65 (±0.03) 81.63 (± 0.02)

Table 1: Camouflaged poisoning attack on linear SVM on Binary-CIFAR-10 dataset. The first column
lists the threat model (ε, bp, bc) and the camouflaging type “LF" for label flipping and “GM" for
gradient matching. See Appendix D.1.1 for more details on these procedures.

5



4 Conclusion and discussion.161

We demonstrated a new attack vector, camouflaged poisoning attacks, against machine learning162

pipelines where training points can be unlearned. This shows that as we introduce new functionality to163

machine learning systems, we must be aware of novel threats that emerge. We outline a few interesting164

directions for further research: It is important to understand how to defend against camouflaged165

attacks. As observed by Geiping et al. [2021], it is unlikely that differential privacy [Dwork et al.,166

2006] would be an effective defense, as preventing attacks in the non-camouflaged setting incurs too167

significant a loss in accuracy. Another direction is to reduce the knowledge needed by the adversary,168

thereby creating stronger attacks. E.g., while our setting requires grey-box knowledge, one could169

instead consider a black-box model to attack ML APIs. Finally, it is interesting to determine what170

other types of threats can be camouflaged, e.g., indiscriminate or backdoor poisoning attacks. Beyond171

exploring this new attack vector, it is also independently interesting to understand how one can172

neutralize the effect of an attack by adding points.173

Figure 4: Some representative poison and camouflage images for attack on Imagewoof dataset. In
each pair, the left figure is the original picture from the training dataset and the right figure has
been adversarially manipulated by adding ∆. The shown images were generated for a camouflaged
poisoning attack on Resnet-18, with Seed = 10000005, bp = bc = 6.6% and ε = 16.

Figure 5: Visualization of poisons and camouflages on CIFAR-10 dataset. The top row shows the
original images and the bottom row shows the corresponding poisoned / camouflaged images (with
the added ∆). The shown images were generated for a camouflaged poisoning attack on ResNet-18,
with Seed = 2000000000, ε = 8, bp = 0.2, bc = 0.4, poison class bird, target class deer, and the target
ID 9621.

6



References174

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In175

Proceedings of the 36th IEEE Symposium on Security and Privacy, SP ’15, pages 463–480,176

Washington, DC, USA, 2015. IEEE Computer Society.177

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller,178

and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. In179

Proceedings of the 9th International Conference on Learning Representations, ICLR ’21, 2021.180

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.181

Jeremy Howard. Imagenette, 2019. URL https://github.com/fastai/imagenette/.182

General Data Protection Regulation. Regulation (EU) 2016/679 of the European parliament and of183

the council of 27 April 2016, 2016.184

Information Commissioner’s Office. Guidance on the ai auditing framework, February 2020.185

Federal Trade Commission. California company settles ftc allegations it deceived consumers about186

use of facial recognition in photo storage app, January 2021.187

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.188

Adaptive machine unlearning. In Advances in Neural Information Processing Systems 34, NeurIPS189

’21, pages 16319–16330. Curran Associates, Inc., 2021.190

Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on191

certified machine unlearning. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial192

Intelligence, volume 36 of AAAI ’22, pages 7691–7700, 2022.193

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.194

Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In 2021195

IEEE European Symposium on Security and Privacy (EuroS&P), pages 159–178. IEEE, 2021.196

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical197

general-purpose clean-label data poisoning. In Advances in Neural Information Processing Systems198

33, NeurIPS ’20, pages 12080–12091. Curran Associates, Inc., 2020.199

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in200

private data analysis. In Proceedings of the 3rd Conference on Theory of Cryptography, TCC ’06,201

pages 265–284, Berlin, Heidelberg, 2006. Springer.202

Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of machine203

learning. Machine Learning, 81(2):121–148, 2010.204

Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack on support vector machines.205

In ECAI 2012, pages 870–875. IOS Press, 2012.206

Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label sanitization against label flipping207

poisoning attacks. In Joint European conference on machine learning and knowledge discovery in208

databases, pages 5–15. Springer, 2018.209

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. When does210

machine learning {FAIL}? generalized transferability for evasion and poisoning attacks. In 27th211

USENIX Security Symposium (USENIX Security 18), pages 1299–1316, 2018.212

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,213

and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.214

Advances in neural information processing systems, 31, 2018.215

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.216

In Proceedings of the 29th International Conference on Machine Learning, ICML ’12, pages217

1467–1474. JMLR, Inc., 2012.218

7

https://github.com/fastai/imagenette/


Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and Fabio Roli. Support219

vector machines under adversarial label contamination. Neurocomputing, 160:53–62, 2015.220

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,221

Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient222

optimization. In Proceedings of the 10th ACM workshop on artificial intelligence and security,223

pages 27–38, 2017.224

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.225

In Advances in Neural Information Processing Systems 30, NeurIPS ’17, pages 3520–3532. Curran226

Associates, Inc., 2017.227

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, and Alistair228

Stewart. Sever: A robust meta-algorithm for stochastic optimization. In Proceedings of the 36th229

International Conference on Machine Learning, ICML ’19, pages 1596–1606. JMLR, Inc., 2019.230

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data231

sanitization defenses. Machine Learning, 111(1):1–47, 2022.232

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the233

machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.234

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In Advances235

in Neural Information Processing Systems 31, NeurIPS ’18, pages 8011–8021. Curran Associates,236

Inc., 2018.237

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really238

backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.239

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,240

Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data241

poisoning, backdoor attacks, and defenses. arXiv preprint arXiv:2012.10544, 2020.242

Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger,243

Bernhard A Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio Roli. Wild patterns244

reloaded: A survey of machine learning security against training data poisoning. arXiv preprint245

arXiv:2205.01992, 2022.246

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making AI forget you: Data247

deletion in machine learning. In Advances in Neural Information Processing Systems 32, NeurIPS248

’19, pages 3518–3531. Curran Associates, Inc., 2019.249

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal250

from machine learning models. In Proceedings of the 37th International Conference on Machine251

Learning, ICML ’20, pages 3832–3842. JMLR, Inc., 2020.252

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion253

from machine learning models: Algorithms and evaluation. In Proceedings of the 24th International254

Conference on Artificial Intelligence and Statistics, AISTATS ’21, pages 2008–2016. JMLR, Inc.,255

2021.256

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods257

for machine unlearning. In Proceedings of the 32nd International Conference on Algorithmic258

Learning Theory, ALT ’21. JMLR, Inc., 2021.259

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via260

algorithmic stability. In Conference on Learning Theory, pages 4126–4142. PMLR, 2021.261

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what262

you want to forget: Algorithms for machine unlearning. In Advances in Neural Information263

Processing Systems 34, NeurIPS ’21, pages 18075–18086. Curran Associates, Inc., 2021.264

8



Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,265

Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In proceedings of the 42nd266

IEEE Symposium on Security and Privacy, SP ’21, Washington, DC, USA, 2021. IEEE Computer267

Society.268

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selec-269

tive forgetting in deep networks. In Proceedings of the 2020 IEEE Computer Society Conference270

on Computer Vision and Pattern Recognition, CVPR ’20, pages 9304–9312, Washington, DC,271

USA, 2020. IEEE Computer Society.272

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.273

Mixed-privacy forgetting in deep networks. In Proceedings of the 2021 IEEE Computer Society274

Conference on Computer Vision and Pattern Recognition, CVPR ’21, pages 792–801. IEEE275

Computer Society, 2021.276

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning.277

Advances in Neural Information Processing Systems, 33:16025–16036, 2020.278

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of the279

38th International Conference on Machine Learning, ICML ’21, pages 1092–1104. JMLR, Inc.,280

2021.281

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga282

Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to283

natural language models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and284

Communications Security, pages 363–375, 2020.285

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When286

machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC Conference on287

Computer and Communications Security, pages 896–911, 2021.288

Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. Lifelong anomaly detection289

through unlearning. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and290

Communications Security, pages 1283–1297, 2019.291

David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Towards probabilistic292

verification of machine unlearning. arXiv preprint arXiv:2003.04247, 2020.293

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of294

the 3rd International Conference on Learning Representations, ICLR ’15, 2015.295

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier296

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,297

Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.298

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85):2825–299

2830, 2011.300

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale visual301

recognition. In Proceedings of the 3rd International Conference on Learning Representations,302

ICLR ’15, 2015.303

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image304

recognition. In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision305

and Pattern Recognition, CVPR ’16, pages 770–778, Washington, DC, USA, 2016. IEEE Computer306

Society.307

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-308

bileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the 2018 IEEE Computer309

Society Conference on Computer Vision and Pattern Recognition, CVPR ’18, pages 4510–4520,310

Washington, DC, USA, 2018. IEEE Computer Society.311

9



Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor312

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward313

Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,314

Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning315

library. In Advances in Neural Information Processing Systems 32, NeurIPS ’19, pages 8026–8037.316

Curran Associates, Inc., 2019.317

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,318

Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition319

challenge. International journal of computer vision, 115(3):211–252, 2015.320

10



A Related work321

The motivation for our work comes from Marchant et al. [2022], who propose a novel poisoning322

attack on unlearning systems. As mentioned before, the primary goal of many machine unlearning323

systems is to “unlearn” datapoints quickly, i.e., faster than retraining from scratch. Marchant et al.324

[2022] craft poisoning schemes via careful noise addition, in order to trigger the unlearning algorithm325

to retrain from scratch on far more deletion requests than typically required. While both our work326

and theirs are focused on data poisoning attacks against machine unlearning systems, the adversaries327

have very different objectives. In our work, the adversary is trying to misclassify a target test point,328

whereas in theirs, they try to increase the time required to unlearn a point.329

In targeted data poisoning, there are a few different types of attacks. The simplest form of attack is330

label flipping, in which the adversary is allowed to flip the labels of the examples [Barreno et al.,331

2010, Xiao et al., 2012, Paudice et al., 2018]. Another type of attack is watermarking, in which332

the feature vectors are perturbed to obtain the desired poisoning effect [Suciu et al., 2018, Shafahi333

et al., 2018]. In both these cases, noticeable changes are made to the label and feature vector,334

respectively, which would be noticeable by a human labeler. In contrast, clean label attacks attempt335

to make unnoticeable changes to both the feature vector and the label, and are the gold standard for336

data poisoning attacks [Huang et al., 2020, Geiping et al., 2021]. Our focus is on both clean-label337

poisoning and camouflage sets. While there are also works on indiscriminate [Biggio et al., 2012,338

Xiao et al., 2015, Muñoz-González et al., 2017, Steinhardt et al., 2017, Diakonikolas et al., 2019,339

Koh et al., 2022] and backdoor [Gu et al., 2017, Tran et al., 2018, Sun et al., 2019] poisoning attacks,340

these are beyond the scope of our work, see Goldblum et al. [2020], Cinà et al. [2022] for additional341

background on data poisoning attacks.342

Cao and Yang [2015] initiated the study of machine unlearning through exact unlearning, wherein343

the new model obtained after deleting an example is statistically identical to the model obtained by344

training on a dataset without the example. A probabilistic notion of unlearning was defined by Ginart345

et al. [2019], which in turn is inspired from notions in differential privacy [Dwork et al., 2006].346

Several works studied algorithms for empirical risk minimization (i.e., training loss) [Guo et al.,347

2020, Izzo et al., 2021, Neel et al., 2021, Ullah et al., 2021], while later works study the effect of348

machine unlearning on the generalization loss [Gupta et al., 2021, Sekhari et al., 2021]. In particular,349

these works realize that unlearning data points quickly can lead to a drop in test loss, which is the350

theme of our current work. Several works have considered implementations of machine unlearning351

in several contexts starting with the work of Bourtoule et al. [2021]. These include unlearning in352

deep neural networks [Golatkar et al., 2020, 2021, Nguyen et al., 2020], random forests [Brophy353

and Lowd, 2021], large scale language models [Zanella-Béguelin et al., 2020], the tension between354

unlearning and privacy [Chen et al., 2021], anomaly detection [Du et al., 2019], and even auditing of355

machine unlearning systems [Sommer et al., 2020].356

B Poison and camouflage generation357

B.1 Gradient matching for efficient poison generation [Geiping et al., 2021]358

In this section, we discuss the key intuition of Geiping et al. [2021] for efficient poison generation.359

Our objective is to find perturbations ∆ such that when the model is trained on the poisoned samples, it360

minimizes the adversarial loss in (1) thus making the victim model predict the wrong label yadversarial361

on the target sample. However, directly solving (1) is computationally intractable due to bilevel362

nature of the optimization objective. Instead, one may implicitly minimize the adversarial loss by363

finding a ∆ such that for any model parameter θ,364

∇θ(ℓ(f(xtarget, θ), yadversarial)) ≈
1

P

P

∑
i=1

∇θℓ(f(xi +∆i, θ), yi). (3)

In essence, (3) implies that gradient based minimization (e.g., using Adam / SGD) of the training365

loss on poisoned samples also minimizes the adversarial loss. Thus, training a model on Scl + Spo366

will automatically ensure that the model predicts yadversarial on the target sample. Unfortunately,367

computing ∆ that satisfies (3) is also intractable as it is required to hold for all values of θ. The key368

idea of Geiping et al. [2021] to make poison generation efficient is to relax (3) to only be satisfied369

11



for a fixed model θcl−the model obtained by training on the clean dataset Scl. To implement this,370

Geiping et al. [2021] minimize the cosine-similarity loss between the two gradients defined as:371

ϕ(∆, θ) = 1 −
⟨∇θℓ(f(xtarget, θ), yadversarial),∑P

i=1∇θℓ(f(xi +∆i, θ), yi)⟩
∥∇θℓ(f(xtarget, θ), yadversarial)∥∥∑P

i=1∇θℓ(f(xi +∆i, θ), yi)∥
, (4)

Geiping et al. [2021] demonstrated that (4) can be efficiently optimized for many popular large-372

scale machine learning models and datasets. For completeness, we provide their pseudocode in373

Algorithm 1.374

B.2 Camouflaging poisoned points375

Camouflage images are designed in order to neutralize the effect of the poison images. In this section,376

we give intuition into what we mean by cancelling the effect of poisons, and provide two procedures377

for generating camouflages efficiently: label flipping, and gradient matching.378

B.2.1 Camouflages via label flipping379

Suppose that the underlying task is a binary classification problem with the labels y ∈ {−1,1}, and380

that the model is trained using linear loss ℓ(f(x, θ), y) = −yf(x, θ). Then, simply flipping the labels381

allows one to generate a camouflage set for any given poison set Spo. In particular, Sca is constructed382

as: for every (xi, yi) ∈ Spo, simply add (xi,−yi) to Sca (i.e., bp = bc). It is easy to see that for such383

camouflage points, we have for any θ,384

∑

(x,y)∈Scpc

ℓ(f(x, θ), y) = − ∑

(x,y)∈Scl

yf(x, θ) −
P

∑

i=1

(yif(xi, θ) + (−yi
)f(xi, θ)) = ∑

(x,y)∈Scl

ℓ(f(x, θ), y).

We can also similarly show that the gradients (as well as higher order derivatives) are equal, i.e.,385

∇θ∑Scpc
ℓ(f(x, θ), y) = ∇θ∑Scl

ℓ(f(x, θ), y) for all θ. Thus, training a model on Scpc is equivalent386

to training it on Scl. In essence, the camouflages have perfectly canceled out the effect of the poisons.387

We validate the efficacy of this approach via experiments on linear SVM trained with hinge loss (which388

resembles linear loss when the domain is bounded) on a binary classification problem constructed389

using CIFAR-10 dataset. We report the results in Table 1 (see Section ?? for details).390

While label flipping is a simple and effective procedure to generate camouflages, it is fairly restrictive.391

Firstly, label flipping only works for binary classification problems trained with linear loss. Secondly,392

the attack is not clean label as the camouflage images are generated as (xi,−yi) by giving them the393

opposite label to the ground truth, which can be easily caught by a validator. Lastly, the attack is394

vulnerable to simple data purification techniques by the victim, e.g., the victim can protect themselves395

by preprocessing the data to remove all the images that have both the labels (y = +1 and y = −1) in396

the training dataset. In the next section, we provide a different procedure to generate clean-label397

camouflages for general losses and multi-class classification problems.398

B.2.2 Gradient matching for generating camouflages399

We next discuss our main procedure to generate camouflages, which is based on the gradient matching400

idea of Geiping et al. [2021]. Note that, our objective in (2) is to find ∆ such that when the model is401

trained with the camouflages, it minimizes the original-target loss in (2) (with respect to the original402

label ytarget) thus making the victim model predict the correct label on this target sample. Since, (1)403

is computationally intractable, one may instead try to implicitly minimize the original-target loss by404

finding a ∆ such that for any model parameter θ,405

∇θ(ℓ(f(xtarget, θ), ytarget)) ≈
1

C

C

∑
i=1

∇θℓ(f(xi +∆i, θ), yi). (5)

(5) suggests that minimizing (e.g., using Adam / SGD) on camouflage samples will also minimize406

the original-target loss, and thus automatically ensure that the model predicts the correct label on407

the target sample. Unfortunately, (5) is also intractable as it requires the condition to hold for all θ.408

Building on the work of Geiping et al. [2021], we relax this condition to satisfied only for a fixed409

12



model θcp-the model trained on the dataset Scp = Scl + Spo. Similar to what we did for generating410

poison points, we achieve this by minimizing the cosine-similarity loss given by411

ψ(∆, θ) = 1 −
⟨∇θℓ(f(xtarget, θ), ytarget),∑C

i=1∇θℓ(f(xi +∆i, θ), yi)⟩
∥∇θℓ(f(xtarget, θ), ytarget)∥∥∑C

i=1∇θℓ(f(xi +∆i, θ), yi)∥
. (6)

Implementation details. We minimize (6) using the Adam optimizer [Kingma and Ba, 2015]412

with a fixed step size of 0.1. In order to increase the robustness of camouflage generation, we do413

R restarts (where R ≤ 10). In each restart, we first initialize ∆ randomly such that ∥∆∥∞ ≤ ε and414

perform M steps of Adam optimization to minimize ψ(∆, θcp). Each optimization step only requires415

a single differentiation of the objective ψ with respect to ∆, and can be implemented efficiently. After416

each step, we project back the updated ∆ into the constraint set Γ so as to maintain the property417

that ∥∆∥∞ ≤ ε. After doing R restarts, we choose the best round by finding ∆∗ with the minimum418

ψ(∆⋆, θcp). We provide the pseudocode in Algorithm 2.419

Algorithm 1 Gradient Matching to generate poisons [Geiping et al., 2021]
Require: Clean network f(⋅; θclean) trained on uncorrupted base images Scl, a target
(xtarget, ytarget) and an adversarial label yadversarial, Poison budget P , perturbation bound
ε, number of restarts R, optimization steps M

1: Collect a dataset Spo = {xi, yi}
P

i=1
of P many images whose true label is yadversarial.

2: for r = 1, . . .R restarts do
3: Randomly initialize perturbations ∆ s.t. ∥∆∥∞ ≤ ε.
4: for k = 1, . . . ,M optimization steps do
5: Compute the loss ϕ(∆, θclean) as in (4) using the base poison images in Spo.
6: Update ∆ using an Adam update to minimize ϕ, and project onto the constraint set Γ.
7: end for
8: Amongst the R restarts, choose the ∆∗ with the smallest value of ϕ(∆∗, θclean).
9: end for

10: Return the poisoned set Spo = {xi +∆i
∗
, yi}P

i=1
.

Algorithm 2 Gradient Matching to generate camouflages
Require: Network f(⋅ ; θcp) trained on Scl + Spo , the target (xtarget, ytarget), Camouflage budget

C, perturbation bound ε, number of restarts R, optimization steps M
1: Collect a dataset Sca = {xj , yj}

C

j=1
of C many images whose true label is ytarget.

2: for r = 1, . . .R restarts do
3: Randomly initialize perturbations ∆ s.t. ∥∆∥∞ ≤ ε.
4: for k = 1, . . . ,M optimization steps do
5: Compute the loss ψ(∆, θcp) as in (4) using the base camouflage images in Sca.
6: Update ∆ using an Adam update to minimize ψ, and project onto the constraint set Γ.
7: end for
8: Amongst the R restarts, choose the ∆∗ with the smallest value of ψ(∆∗, θcp).
9: end for

10: Return the poisoned set Sca = {xj +∆j
∗, y

j}C
j=1

.

C Experiment details420

C.1 Hardware421

All our experiments were executed on Google Colab with a Google Colab Pro+ subscription.422

C.2 Experimental Setup423

For the ease of replication, we report the corresponding poison class, target class, camouflage class424

and Target ID for various seeds in different experiments.425

13



Random Seed Target Class Poison Class Camouflage Class Target ID
2000000000 Deer Bird Deer 9621
2000000001 Cat Horse Cat 1209
2000000011 Frog Bird Frog 6503
2000000111 Bird Cat Bird 124
2000001111 Plane Deer Plane 7649
2000011111 Cat Dog Cat 4423
2000111111 Truck Car Truck 8117
2001111111 Bird Truck Bird 3686
2011111111 Cat Bird Cat 642
2111111111 Frog Ship Frog 97

Table 2: Target, poison and camouflage class corresponding to different initial random seeds used for
CIFAR-10 experiments. The reported Target ID is relative to the CIFAR-10 validation dataset.

Random Seed Target Class Poison Class Camouflage Class Target ID
2000000000 Building Cassette player Building 1559
2000000001 Chain saw Gas pump Chain saw 1266
2000000011 Truck Cassette player Truck 2460
2000000111 Cassette player Chain saw Cassette player 792
2000001111 Tench Building Tench 2500
2000011111 Chain saw French horn Chain saw 1162
2000111111 Parachute English springer Parachute 3826
2001111111 Cassette player Parachute Cassette player 1121
2011111111 Chain saw Cassette player Chain saw 1198
2111111111 Truck Golf ball Truck 2343

Table 3: Target class, poison class and camouflage class corresponding to different random seeds
used for Imagenette experiments. The reported target ID is relative to the Imagenette validation set.

Random Seed Target Class Poison Class Camouflage Class Target ID
2000000000 Border Terrier Beagle Border Terrier 1493
2000000001 English Foxhound Old English Sheep Dog English Foxhound 1362
2000000011 Golden Retriever Beagle Golden Retriever 2399
2000000111 Beagle English Foxhound Beagle 827
2000001111 Shih-Tzu Border Terrier Shih-Tzu 250
2000011111 English Foxhound Austrailian Terrier English Foxhound 1405
2000111111 Dingo Rodesian Ridgeback Dingo 3810
2001111111 Beagle Dingo Beagle 1204
2011111111 English Foxhound Beagle English Foxhound 1294
2111111111 Golden Retriever Samoeyed Golden Retriever 2282

Table 4: Target class, poison class and camouflage class corresponding to different random seeds
used for Imagewoof experiments. The reported target ID is relative to the Imagewoof validation set.

D Main Experiments426

In this section, we give details into our experimental setup. We generate poison points by running427

Algorithm 1, and camouflage points by running Algorithm 2 with R = 1 and M = 250.5 Each428

experiment is repeated K times by setting a different seed each time, which fixes the target image,429

poison class, camouflage class, base poison images and base camouflage images. Due to limited430

computation resources, we typically set K ∈ {3,5,8,10} depending on the dataset and report the431

5We note that we diverge slightly from the threat model described above, in that the adversary modifies rather
than introduces new points. We do this for convenience, but we do not anticipate the results would qualitatively
change.

14



mean and standard deviation across different trials. We say that poisoning was successful if the model432

trained on Scp = Scl + Spo predicts the label yadversarial on the target image. Furthermore, we say433

that camouflaging was successful if the model trained on Scpc = Spo + Scl + Sca predicts back the434

correct label ytarget on the target image, provided that poisoning was successful. A camouflaged435

poisoning attack is successful if both poisoning and camouflaging were successful.436

D.1 Evaluations on Cifar-10437

We extensively evaluate our camouflaged poisoning attack on models trained on the CIFAR-10 dataset438

[Krizhevsky, 2009]. CIFAR-10 is a multiclass classification problem with 10 classes, with 6,000439

color images in each class (5,000 training + 1,000 test) of size 32 × 32. We follow the standard split440

into 50,000 training images and 10,000) validation / test images.441

D.1.1 Support Vector Machines442

In order to perform evaluations on SVM, we first convert the CIFAR-10 dataset into a binary443

classification dataset (which we term as Binary-CIFAR-10) by merging the 10 classes into two444

groups: animal (y = +1) and machine (y = −1). Images (in the training and the test dataset)445

that were originally labeled (bird, cat, deer, dog, frog, horse) are instead labeled animal, and the446

remaining images, with original labels (airplane, cars, ship, truck), are labeled machine.447

We train a linear SVM (no kernel was used) with the hinge loss: ℓ(f(x, θ), y) =max{0,1−yf(x, θ)}.448

The training was done using the svm.LinearSVC class from Scikit-learn [Pedregosa et al., 2011]449

on a single CPU. In the pre-processing stage, each image in the training dataset was normalized450

to have ℓ2-norm 1. Each training on Binary-CIFAR-10 dataset took 25 - 30 seconds. In order to451

generate the poison points, we first use torch.autograd to compute the cosine-similarity loss (4),452

and then optimize it using Adam optimizer with learning rate 0.001. Each poison and camouflage453

generation took about 40 - 50 seconds (for bp = bc = 0.2%). We evaluate both label flipping and454

gradient matching to generate camouflages, and different threat models (ε, bp, bc); the results are455

reported in Table 1. For each of our experiments we chose K = 10 seeds. Each trained model had456

validation accuracy of around 81.63% on the clean dataset Scl, which did not change significantly457

when we retrained after adding poison samples and / or camouflage samples. Note that the efficacy458

of the camouflaged poisoning attack was more than 70% in most of the experiments. We provide a459

sample of the generated poisons and camouflages in Figure 6.460

D.1.2 Neural Networks461

We perform extensive evaluations on the multiclass CIFAR-10 classification task with various popular462

large scale neural networks architectures including VGG-11, VGG-16 [Simonyan and Zisserman,463

2015], ResNet-18, ResNet-34, ResNet-50 [He et al., 2016], and MobileNetV2 [Sandler et al., 2018].464

Each model is trained with cross-entropy loss ℓ(f(x, θ), y) = − log(Pr(y = f(x, θ))) on a single465

GPU using PyTorch [Paszke et al., 2019], and using mini-batch SGD with weight decay 5e-4,466

momentum 0.9, learning rate 0.01, batch size 100, and 40 epochs over the training dataset. Each467

training run took about 45 minutes. The poison and camouflage sets were generated using gradient468

matching by first defining the cosine-similarity loss using torch.autograd and then minimizing it469

using Adam with a learning rate of 0.1. Each poison/camouflage generation took about 1.5 hours.470

We report the efficacy of our camouflaged poisoning attack across different models and threat models471

(ε, bp, bc) in Figure 3; also see Appendix D.3 for detailed results and performance drops on the472

validation dataset after adding poison and camouflage set. Each model was trained to have validation473

accuracy between 81-87% (depending on the architecture), which changed minimally when the model474

was retrained with poison and camouflage samples. Poisoning was successful at least 80% of the475

time in most of the experiments. Camouflaging was successful at least 70% of the time for VGG-11,476

VGG-16, Resnet-18, and Resnet-34 but was not as successful for MobileNetV2 and Resnet-50.477

Furthermore, camouflaging succeeded at least 75% of times when bc = bp, but did not perform as478

well when we set bp > bc in the thread model (more poison images than camouflage images).479

15



D.2 Evaluations on Imagenette and Imagewoof480

We evaluate the efficacy of our attack vector on the challenging multiclass classification problem481

on the Imagenette and Imagewoof datasets [Howard, 2019]. Imagenette is a subset of 10 classes482

(Tench, English springer, Cassette player, Chain saw, Building/church, French horn, Truck, Gas pump,483

Golf ball, Parachute) from the Imagenet dataset [Russakovsky et al., 2015]. The Imagenette dataset484

consists of around 900 images of various sizes for each class. In total, we have 13394 images which485

are divided into a training dataset of size 9469 and test dataset of size 3925. To perform training, all486

images are resized and centrally cropped down to 224 × 224 pixels.487

Dataset Model Threat Model Attack Success
ε bp bc Poisoning Camouflaging

Imagenette VGG-16 16 6.3% 6.3% 25% 100%
Imagenette Resnet-18 16 6.3% 6.3% 40% 50%
Imagewoof Resnet-18 16 6.6% 6.6% 50% 75%

Table 5: Evaluation of camouflaged poisoning attack on Imagenette and Imagewoof datasets over
5 seeds (with 1 restart per seed). Note that camouflaging succeeded in most of the experiments in
which poisoning succeeded. Prior works (e.g., Geiping et al. [2021]) set a large number of restarts R,
and then choose the most effective attack among them. Due to computational constraints, we ran only
one restart (i.e., R = 1) for each experiment. Given additional computational resources, we could
inflate the success rate of both the poisoning and camouflaging.

Imagewoof [Howard, 2019] is another subset of Imagenet dataset consisting of 10 classes (Shih-Tzu,488

Rodesian Ridgeback, Beagle, English Foxhound, Border Terrier, Austrailian Terrier, Golden Retriever,489

Old English Sheep Dog, Samoyed, Dingo). Imagewoof consists of around 900 images of various490

sizes for each class, and in total 12954 images which are divided into a training dataset of size 9025491

and test dataset of size 3929. Similar to Imagenette, we resize all images and crop to the central492

224 × 224 pixels before training.493

We evaluate our camouflaged poisoning attack on two different neural network architectures-VGG-16494

and ResNet-18, and different threat models (ε, bp, bc) listed in Table D.2. Each model is trained on495

a single GPU with cross-entropy loss, that is minimized using SGD algorithm with weight decay496

5e-4, momentum 0.9 and batch size 20. We start with a learning rate of 0.01, and exponentially decay497

it with γ = 0.9 after every epoch, for a total of 50 epochs over the training dataset. The poisons498

and camouflages were generated using gradient matching by first defining the cosine-similarity loss499

using torch.autograd and then optimizing it using Adam optimizer with learning rate 0.1. In500

our experiments, camouflaging was successful for at least 50% of the time when poisoning was501

successful. However, because we modified about 13% of the training dataset when adding poisons /502

camouflages, we observe that the fluctuation in the model’s validation accuracy can be up to 7% for503

both Imagenette and Imagewoof, as expected on making such a large change in the training set.504

D.3 Additional details on CIFAR-10 Experiments on neural networks505

We elaborate on the results reported in Figure 3. In Table 6, we report the efficacy of the proposed506

camouflaged poisoning attack on different neural network architectures where the threat model is507

given by ε = 16, bp = 0.6%, bc = 0.6%. The reported results are an average over 5 seeds from508

2000000000-2000001111. In the first column under attack success, we report the number of times509

poisoning was successful amongst the run trials, and in the second column, we report the number of510

times camouflaging was successful for the trials for which poisoning was successful.511

In Table 7, we report the success of the proposed attack when we change the threat model, but fix the512

network architecture to be ResNet-18. Each experiment was repeated times 5 times with 8 restarts513

each time, and the mean success rate is reported. These experiments were conducted with 5 seeds514

from 2000011111-2111111111.515

16



Network Architecture
Attack success Validation Accuracy

Poisoning Camouflaging Clean Poisoned Camouflaged

VGG-11 100% 80% 85.01 85.03 (± 0.37) 85.10 (± 0.29)

VGG-16 80% 75% 87.68 87.42 (± 0.17) 87.45 (± 0.26)

ResNet-18 80% 75% 82.13 81.88 (± 0.15) 81.80 (± 0.12)

ResNet-34 80% 50% 82.45 82.61 (± 0.30) 83.12 (± 0.93)

ResNet-50 80% 25% 81.02 81.76 (± 0.13) 84.62 (± 0.71)

MobileNetV2 60% 33% 82.79 83.26 (± 0.25) 85.47 (± 0.27)

Table 6: Evaluating our proposed camouflaged poisoning attack on various model architectures on
the CIFAR-10 dataset with the threat model ε = 16, bp = 0.6%, bc = 0.6%.

Threat model Attack success Validation Accuracy

ε bp bc Poisoning Camouflaging Clean Poisoned Camouflaged

16 1% 1% 100% 80% 82.13 81.98 (± 0.16) 82.12 (± 0.21)

8 1% 1% 80% 75% 82.13 82.21 (± 0.21) 82.09 (± 0.23)

16 2% 1% 100% 20% 82.13 82.31 (± 0.26) 82.19 (± 0.24)

8 2% 1% 100% 40% 82.13 82.43 (± 0.30) 82.34 (± 0.27)
Table 7: Evaluating our proposed camouflaged poisoning attack on various threat models with
CIFAR-10 dataset trained on ResNet-18.

D.4 Visualizations516

Figure 6: Visualization of poisons and camouflages on Binary-CIFAR-10 dataset (animal vs machine
classification). The top row shows the original images and the bottom row shows the corresponding
poisoned / camouflaged images (with the added ∆). The shown images were generated for a
camouflaged poisoning attack on SVM, with Seed = 555555, ε = 16, bp = 0.2, bc = 0.4 and the target
ID 6646.

17



Figure 7: Visualization of poisons and camouflages on CIFAR-10 dataset (multiclass classification
task). The top row shows the original images and the bottom row shows the corresponding poisoned
/ camouflaged images (with the added ∆). The shown images were generated for a camouflaged
poisoning attack on ResNet-18, with Seed = 2000000000, ε = 8, bp = 0.2, bc = 0.4, poison class bird,
target class deer, and the target ID 9621.

18



Figure 8: Visualization of poisons and camouflages on Imagenette dataset. The first and the third
columns shows the original images, and the second and the fourth columns shows the corrupted
images (with added ∆). The shown images were generated for a camouflaged poisoning attack on
ResNet-18, with Seed = 2000011111 and ε = 8. The target and camouflage class is chain saw, and
the poison class is French horn.

19



Figure 9: Visualization of poisons and camouflages on Imagewoof dataset. The first and the third
columns shows the original images, and the second and the fourth columns shows the corrupted
images (with added ∆). The shown images were generated for a camouflaged poisoning attack on
ResNet-18, with Seed = 2111111110, bp = bc = 4.2%, ε = 16. The target and camouflage class is
Austrailian Terrier, and the poison class is Golden Retriever.

20



D.5 Further Experiments517

In Appendix D.5, we provide additional experiments on CIFAR-10 showing that our attack is robust518

to data augmentation, and successfully transfers when the victim model is different from the model519

on which poison and camouflage samples were generated.520

D.5.1 Transfer experiments521

In this section, we show that the poison and camouflage samples generated by the proposed approach522

transfer across models. Thus, an attacker can successfully execute the camouflaged poisoning attack,523

even if the victim trains a different model than the one on which the poison and camouflage samples524

were generated. We show the transfer success in Figure 10. The brewing network denotes the network525

architecture on which poison and camouflage samples were generated (we adopt the same notation526

as Geiping et al. [2021]). The victim network denotes the model architecture used by the victim for527

training on the manipulated dataset.528

We ran a total of 3 experiments per (brewing model, victim model) pair using the seeds 2000000000-529

2000000011. Each reported number denotes the fraction of times when both poisoning and camou-530

flaging were successful in the transfer experiment, and thus the attack could take place.531

Figure 10: Transfer experiments on CIFAR-10 dataset.

D.5.2 Robustness to Data Augmentation532

Data augmentation is commonly used to avoid overfitting in deep neural networks. In order to be533

applicable in the real life, our poisoning and camouflaging attacks must be successful even when the534

model is trained with data augmentation. In order to validate this, we evaluate our approach on CIFAR-535

10 dataset trained with data augmentation on ResNet-18 in the threat model ε = 16, bp = bc = 1%; the536

results are in Table 8. The considered data augmentations are:537

1. No Augmentation: Exact images from the training dataset are used.538

2. Augmentation Set 1: 50% chance that the image will be horizontally flipped, but no rotations.539

3. Augmentation Set 2: 50% chance that the image will be horizontally flipped, and random540

rotations in Uniform(−10,10) degrees.541

The reported results in Table 8 are an average over 5 random seeds from "kkkkkk" where 1 ≤ k ≤ 5.542

As expected, the validation accuracy for the model trained on clean dataset increased from 82%543

percent when trained without augmentation, to 86% for augmentation Set 1 and 88% for augmentation544

set 2. The addition of data augmentation during training and re-training stages make it harder for545

poisoning to succeed and at the same time makes it easier for camouflaging to succeed.546

21



Data Augmentation
Attack success Validation Accuracy

Poisoning Camouflaging Clean Poisoned Camouflaged

No Augmentation 100% 20% 82% 82% 82%

Augmentation Set 1 86% 33% 86% 85% 86%

Augmentation Set 2 60% 100% 88% 86 86%
Table 8: Effect of data augmentation on our proposed camouflaged poisoning attack.

D.5.3 Similarity of the feature space distance547

A natural approach to defend against dataset manipulation attacks is to try to identify the modified548

images, and then remove them from the training dataset (i.e., data sanitization). For instance, one549

could cluster images based on their distance from their class mean image, or from the target image.550

This type of defense could potentially thwart watermarking poisoning attacks such as Poison Frogs551

[Shafahi et al., 2018]. As we show in Figure 11, such a defense would not be effective against our552

proposed poison and camouflage generation procedures, as the data distribution for the poison set553

and the camouflage set is similar to that of the clean images from the respective classes.554

Figure 11: Feature space distance for our generated poison and camouflage set. The reported data
was collected by a successful camouflaged poisoning attack on Resnet-18 model trailed on CIFAR-10
with seed 2000000000, ε = 16 and bp = bc = 1%.

22


	Introduction
	Preliminaries

	Camouflaged poisoning attacks via unlearning
	Threat model and approach

	Experimental evaluation
	Conclusion and discussion.
	Related work
	Poison and camouflage generation
	Gradient matching for efficient poison generation GeipingFHCTMG21
	Camouflaging poisoned points
	Camouflages via label flipping
	Gradient matching for generating camouflages


	Experiment details
	Hardware
	Experimental Setup

	Main Experiments
	Evaluations on Cifar-10
	Support Vector Machines
	Neural Networks

	Evaluations on Imagenette and Imagewoof
	Additional details on CIFAR-10 Experiments on neural networks
	Visualizations
	Further Experiments
	Transfer experiments
	Robustness to Data Augmentation
	Similarity of the feature space distance



