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ABSTRACT

In many machine learning systems that jointly learn from multiple modalities,
a core research question is to understand the nature of multimodal interactions:
how modalities combine to provide new task-relevant information that was not
present in either alone. We study this challenge of interaction quantification in a
semi-supervised setting with only labeled unimodal data and naturally co-occurring
multimodal data (e.g., unlabeled images and captions, video and corresponding
audio) but when labeling them is time-consuming. Using a precise information-
theoretic definition of interactions, our key contribution is the derivation of lower
and upper bounds to quantify the amount of multimodal interactions in this semi-
supervised setting. We propose two lower bounds: one based on the shared
information between modalities and the other based on disagreement between sepa-
rately trained unimodal classifiers, and derive an upper bound through connections
to approximate algorithms for min-entropy couplings. We validate these estimated
bounds and show how they accurately track true interactions. Finally, we show how
these theoretical results can be used to estimate multimodal model performance,
guide data collection, and select appropriate multimodal models for various tasks.

1 INTRODUCTION

A core research question in multimodal learning is to understand the nature of interactions between
modalities for a task: how much information is shared between both modalities, lies in each modality
alone, and the emergence of new task-relevant information during learning from both modalities
that was not present in either modality alone (Liang et al., 2022b). In settings where labeled
multimodal data is abundant, the study of multimodal interactions in the supervised setting has
inspired fundamental advances in theoretical analysis (Hessel & Lee, 2020; Liang et al., 2023a;
Sridharan & Kakade, 2008), representation learning (Jayakumar et al., 2020; Radford et al., 2021), and
the selection of suitable multimodal models for various real-world tasks (Liang et al., 2023a).

In this paper, we study the problem of interaction quantification in a setting where there is only
unlabeled multimodal data DM = {(x1, x2)} and some labeled unimodal data Di = {(xi, y)}
collected separately for each modality. This multimodal semi-supervised paradigm is reminiscent of
many real-world settings with separate unimodal datasets like visual recognition (Deng et al., 2009)
and text classification (Wang et al., 2018), as well as naturally co-occurring multimodal data (e.g.,
news images and captions or video and audio), but when labeling them is time-consuming (Hsu et al.,
2018; Hu et al., 2019) or impossible due to partially observed modalities (Liang et al., 2022a) or
privacy concerns (Che et al., 2023). Despite these data constraints, we still want to understand how
the modalities can share, exchange, and create information in order to inform our decisions on data
collection and modeling (Jayakumar et al., 2020; Liang et al., 2023a; Zadeh et al., 2017).

Using a precise information-theoretic definition of interactions (Bertschinger et al., 2014), our key
contributions are the derivations of lower and upper bounds to quantify multimodal interactions
in this semi-supervised setting with only Di and DM . We propose two lower bounds: the first
relates interactions with the amount of shared information between modalities, and the second is
based on the disagreement of classifiers trained separately on each modality. Finally, we propose an
upper bound through connections to approximate algorithms for min-entropy couplings (Cicalese
& Vaccaro, 2002). To validate our bounds, we experiment on both synthetic and large real-world
datasets with varying amounts of interactions. In addition, these theoretical results naturally yield new
guarantees regarding the performance of multimodal models. By analyzing the relationship between
interaction estimates and downstream task performance assuming optimal multimodal classifiers are
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trained on labeled multimodal data, we can closely predict multimodal model performance, before
even training the model itself. These performance estimates also help develop new guidelines for
deciding when to collect additional modality data and select the appropriate multimodal fusion
models. We believe these results shed light on the intriguing connections between multimodal
interactions, modality disagreement, and model performance, and release our code and models at
https://github.com/pliang279/PID.

2 RELATED WORK AND TECHNICAL BACKGROUND

2.1 SEMI-SUPERVISED MULTIMODAL LEARNING

Let Xi and Y be finite sample spaces for features and labels. Define ∆ to be the set of joint
distributions over (X1,X2,Y). We are concerned with features X1,X2 (with support Xi) and labels
Y (with support Y) drawn from some distribution p ∈∆. We denote the probability mass function by
p(x1, x2, y), where omitted parameters imply marginalization. Many real-world applications such
as multimedia and healthcare naturally exhibit multimodal data (e.g., images and captions, video
and audio, multimodal medical readings) which are difficult to label (Liang et al., 2022a; Radford
et al., 2021; Singh et al., 2022; Yu & Liu, 2004; Zellers et al., 2022). As such, rather than the full
distribution from p, we only have partial datasets:

• Labeled unimodal data D1 = {(x1, y) ∶ X1 ×Y}, D2 = {(x2, y) ∶ X2 ×Y}.
• Unlabeled multimodal data DM = {(x1, x2) ∶ X1 ×X2}.
D1, D2 and DM follow the pairwise marginals p(x1, y), p(x2, y) and p(x1, x2). We define ∆p1,2 =
{q ∈ ∆ ∶ q(xi, y) = p(xi, y) ∀y ∈ Y, xi ∈ Xi, i ∈ [2]} as the set of joint distributions which agree
with the labeled unimodal data D1 and D2, and ∆p1,2,12 = {r ∈∆ ∶ r(x1, x2) = p(x1, x2), r(xi, y) =
p(xi, y)} as the set of joint distributions which agree with all D1,D2 and DM .

2.2 MULTIMODAL INTERACTIONS AND INFORMATION THEORY

The study of multimodal interactions aims to quantify the information shared between both modali-
ties, in each modality alone, and how modalities can combine to form new information not present in
either modality, eventually using these insights to design machine learning models to capture interac-
tions from large-scale multimodal datasets (Liang et al., 2022b). Existing literature has primarily
studied the interactions captured by trained models, such as using Shapley values (Ittner et al., 2021)
and Integrated gradients (Sundararajan et al., 2017; Tsang et al., 2018; Liang et al., 2023b) to measure
the importance a model assigns to each modality, or approximating trained models with additive or
non-additive functions to determine what functions are best suited to capture interactions (Friedman
& Popescu, 2008; Sorokina et al., 2008; Hessel & Lee, 2020). However, these measure interactions
captured by a trained model - our work is fundamentally different in that interactions are properties
of data. Quantifying the interactions in data, independent of trained models, allows us to characterize
datasets, predict model performance, and perform model selection, prior to choosing and training a
model altogether. Prior work in understanding data interactions to design multimodal models is often
driven by intuition, such as using contrastive learning (Poklukar et al., 2022; Radford et al., 2021;
Tosh et al., 2021), correlation analysis (Andrew et al., 2013), and agreement (Ding et al., 2022) for
shared information (e.g., images and descriptive captions), or using tensors and multiplicative interac-
tions (Zadeh et al., 2017; Jayakumar et al., 2020) for higher-order interactions (e.g., in expressions of
sarcasm from speech and gestures).

To fill the gap in data quantification, information theory has emerged as a theoretical foundation
since it naturally formalizes information and its sharing as statistical properties of data distributions.
Information theory studies the information that one random variable (X1) provides about another
(X2), as quantified by Shannon’s mutual information (MI) and conditional MI:

I(X1;X2) = ∫ p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
dx, I(X1;X2∣Y ) = ∫ p(x1, x2, y) log

p(x1, x2∣y)

p(x1∣y)p(x2∣y)
dxdy.

I(X1;X2) measures the amount of information (in bits) obtained about X1 by observing X2, and by
extension, I(X1;X2∣Y ) is the expected value of MI given the value of a third (e.g., task Y ).

To generalize information theory for multimodal interactions, Partial information decomposition
(PID) (Williams & Beer, 2010) decomposes the total information that two modalities X1,X2 provide
about a task Y into 4 quantities: Ip({X1,X2};Y ) = R+U1 +U2 +S, where Ip({X1,X2};Y ) is the
MI between the joint random variable (X1,X2) and Y . These 4 quantities are: redundancy R for
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the task-relevant information shared between X1 and X2, uniqueness U1 and U2 for the information
present in only X1 or X2 respectively, and synergy S for the emergence of new information only
when both X1 and X2 are present (Bertschinger et al., 2014; Griffith & Koch, 2014):

Definition 1. (Multimodal interactions) Given X1, X2, and a target Y , we define their redundant
(R), unique (U1 and U2), and synergistic (S) interactions as:

R = max
q∈∆p1,2

Iq(X1;X2;Y ), U1 = min
q∈∆p1,2

Iq(X1;Y ∣X2), U2 = min
q∈∆p1,2

Iq(X2;Y ∣X1), (1)

S = Ip({X1,X2};Y ) − min
q∈∆p1,2

Iq({X1,X2};Y ), (2)

where the notation Ip(⋅) and Iq(⋅) disambiguates mutual information (MI) under p and q respectively.

I(X1;X2;Y ) = I(X1;X2) − I(X1;X2∣Y ) is a multivariate extension of information theory (Bell,
2003; McGill, 1954). Most importantly, R, U1, and U2 can be computed exactly using con-
vex programming over distributions q ∈ ∆p1,2 with access only to the marginals p(x1, y) and
p(x2, y) by solving a convex optimization problem with linear marginal-matching constraints
q∗ = argmaxq∈∆p1,2

Hq(Y ∣X1,X2) (Bertschinger et al., 2014; Liang et al., 2023a), see Ap-
pendix B.2 for more details. This gives us an elegant interpretation that we need only labeled
unimodal data in each feature from D1 and D2 to estimate redundant and unique interactions. Unfor-
tunately, S is impossible to compute via equation (2) when we do not have access to the full joint
distribution p, since the first term Ip({X1,X2};Y ) is unknown.

It is worth noting that other valid information-theoretic definitions of multimodal interactions also
exist, but are known to suffer from issues regarding over- and under-estimation, and may even be neg-
ative; these are critical problems with the application of information theory for shared I(X1;X2;Y )
and unique information I(X1;Y ∣X2), I(X2;Y ∣X1) often quoted in the co-training (Blum & Mitchell,
1998; Balcan et al., 2004) and multi-view learning (Tosh et al., 2021; Tsai et al., 2020; Tian et al.,
2020; Sridharan & Kakade, 2008) literature. We refer the reader to Griffith & Koch (2014) for a full
discussion. We choose the one in Definition 1 above since it fulfills several desirable properties, but
our results can be extended to other definitions as well.

3 ESTIMATING SEMI-SUPERVISED MULTIMODAL INTERACTIONS

Our goal is to estimate multimodal interactions R, U1, U2, and S assuming access to only semi-
supervised multimodal data D1, D2, and DM . Our first insight is that while S cannot be computed
exactly, R, U1, and U2 can be computed from equation 1 with access to only semi-supervised data.
Therefore, studying the relationships between S and other multimodal interactions is key to its
estimation. Using these relationships, we will then derive lower and upper bounds for synergy in the
form S ≤ S ≤ S. Crucially, S and S depend only on D1, D2, and DM .

3.1 UNDERSTANDING RELATIONSHIPS BETWEEN INTERACTIONS

We start by identifying two important relationships, between S and R, and between S and U .

Synergy and redundancy Our first relationship stems from the case when two modalities contain
shared information about the task. In studying these situations, a driving force for estimating S
is the amount of shared information I(X1;X2) between modalities, with the intuition that more
shared information naturally leads to redundancy which gives less opportunity for new synergistic
interactions. Mathematically, we formalize this by relating S to R,

S = R − Ip(X1;X2;Y ) = R − Ip(X1;X2) + Ip(X1;X2∣Y ). (3)

implying that synergy exists when there is high redundancy and low (or even negative) three-way MI
Ip(X1;X2;Y ). By comparing the difference in X1,X2 dependence with and without the task (i.e.,
Ip(X1;X2) vs Ip(X1;X2∣Y )), 2 cases naturally emerge (see left side of Figure 1):

1. S >R: When both modalities do not share a lot of information as measured by low I(X1;X2),
but conditioning on Y increases their dependence: I(X1;X2∣Y ) > I(X1;X2), then there is
synergy between modalities when combining them for task Y . This setting is reminiscent of
common cause structures. Examples of these distributions in the real world are multimodal
question answering, where the image and question are less dependent (some questions like ‘what
is the color of the car’ or ‘how many people are there’ can be asked for many images), but the
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Theorem 1
Lower bound

Theorem 2
Lower bound

Figure 1: We study the relationships between (left) synergy and redundancy as a result of the task Y either
increasing or decreasing the shared information between X1 and X2 (i.e., common cause structures as opposed
to redundancy in common effect), as well as (right) synergy and uniqueness due to the disagreement between
unimodal predictors resulting in a new prediction y ≠ y1 ≠ y2 (rather than uniqueness where y = y2 ≠ y1).

answer (e.g., ‘blue car’) connects the two modalities, resulting in dependence given the label. As
expected, S = 4.92,R = 0.79 for the VQA 2.0 dataset (Goyal et al., 2017).

2. R > S: Both modalities share a lot of information but conditioning on Y reduces their dependence:
I(X1;X2) > I(X1;X2∣Y ), which results in more redundant than synergistic information. This
setting is reminiscent of common effect structures. A real-world example is in detecting sentiment
from multimodal videos, where text and video are highly dependent since they are emitted by
the same speaker, but the sentiment label explains away some of the dependencies between both
modalities. Indeed, for multimodal sentiment analysis from text, video, and audio of monologue
videos on MOSEI (Zadeh et al., 2018), R = 0.26 and S = 0.04.

Synergy and uniqueness The second relationship arises when two modalities contain disagreeing
information about the task, and synergy arises due to this disagreement in information. To illustrate
this, suppose y1 = argmaxy p(y∣x1) is the most likely prediction from the first modality, y2 =
argmaxy p(y∣x2) for the second modality, and y = argmaxy p(y∣x1, x2) is the true multimodal
prediction. There are again 2 cases (see right side of Figure 1):

1. U > S: Multimodal prediction y = argmaxy p(y∣x1, x2) is the same as one of the unimodal
predictions (e.g., y = y2), in which case unique information in modality 2 leads to the outcome and
there is no synergy. A real-world dataset is MIMIC involving mortality and disease prediction
from tabular patient data and time-series medical sensors (Johnson et al., 2016) which primarily
shows unique information in the tabular modality. The disagreement on MIMIC is high at 0.13,
but since disagreement is due to a lot of unique information, there is less synergy S = 0.01.

2. S >U: Multimodal prediction y is different from both y1 and y2, then both modalities interact
synergistically to give rise to a final outcome different from both disagreeing unimodal predictions.
This type of joint distribution is indicative of real-world expressions of sarcasm from language
and speech - the presence of sarcasm is typically detected due to a contradiction between what is
expressed in language and speech, as we observe from the experiments on MUSTARD (Castro
et al., 2019) where S = 0.44 and disagreement = 0.12 are both large.

3.2 LOWER AND UPPER BOUNDS ON SYNERGY

Given these relationships between synergy and other interactions, we now derive bounds on S. We
present two lower bounds SR and SU, which are based on redundancy and uniqueness, as well as an
upper bound S. We also describe the computational complexity for computing each bound.

Remark on high dimensional, continuous modalities. Our theoretical results are concerned with
finite spaces for features and labels. However, this may be restrictive when working with real-world
datasets (e.g., images, video, text) which are often continuous and/or high-dimensional. In such
situations, we preprocess by performing discretization of each modality via clustering to estimate
p(x1, y), p(x2, y), p(x1, x2), each with a small, finite support. These are subsequently used for the
computation of SR, SU and S. Discretization is a common way to approximate information theoretic
quantities like mutual information (Darbellay & Vajda, 1999; Liang et al., 2023a) and for learning
representations over high-dimensional modalities (Oord et al., 2018).

Lower bound using redundancy Our first lower bound uses the relationship between synergy,
redundancy, and dependence in equation 3. In semi-supervised settings, we can compute R exactly
from p(x1, y), p(x2, y), as well as the shared information I(X1;X2) from p(x1, x2). However,
Ip(X1;X2∣Y ) cannot be computed without access to the full distribution p. In Theorem 1, we obtain
a lower bound on Ip(X1;X2∣Y ), resulting in a lower bound SR for synergy.
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Theorem 1. (Lower-bound on synergy via redundancy) We relate S to modality dependence

SR = R − Ip(X1;X2) + min
r∈∆p1,2,12

Ir(X1;X2∣Y ) ≤ S (4)

We include the full proof in Appendix B.3. This bound compares S to R via the difference of
their dependence Ip(X1;X2) and their dependence given the task Ip(X1;X2∣Y ). Since the full
distribution p is not available to compute Ip(X1;X2∣Y ), we prove a lower bound using conditional MI
computed with respect to a set of auxiliary distributions r ∈∆p1,2,12 that are close to p, as measured by
matching both unimodal marginals r(xi, y) = p(xi, y) and modality marginals r(x1, x2) = p(x1, x2).
If conditioning on the task increases the dependence and Ir(X1;X2∣Y ) is large relative to Ip(X1;X2)
then we obtain a larger value of SR, otherwise if conditioning on the task decreases the dependence
and Ir(X1;X2∣Y ) is small relative to Ip(X1;X2) then we obtain a smaller value of SR.

Computational complexity. R and minr∈∆p1,2,12
Ir(X1;X2∣Y ) are convex optimization problems

solvable in polynomial time with off-the-shelf solvers. Ip(X1;X2) can be computed directly.

Lower bound using uniqueness Our second bound formalizes the relationship between disagree-
ment, uniqueness, and synergy. The key insight is that while labeled multimodal data is unavailable,
the output of unimodal classifiers may be compared against each other. Consider unimodal classifiers
fi ∶ Xi → Y and multimodal classifiers fM ∶ X1 ×X2 → Y . Define modality disagreement as:

Definition 2. (Modality disagreement) Given X1, X2, and a target Y , as well as unimodal classifiers
f1 and f2, we define modality disagreement as α(f1, f2) = Ep(x1,x2)[d(f1, f2)] where d ∶ Y ×Y →
R≥0 is a distance function in label space scoring the disagreement of f1 and f2’s predictions.

Connecting modality disagreement and synergy via Theorem 2 yields a lower bound SU:

Theorem 2. (Lower-bound on synergy via uniqueness, informal) We can relate synergy S and
uniqueness U to modality disagreement α(f1, f2) of optimal unimodal classifiers f1, f2 as follows:

SU = α(f1, f2) ⋅ c −max(U1, U2) ≤ S (5)

for some constant c depending on the label dimension ∣Y ∣ and choice of label distance function d.

Theorem 2 implies that if there is substantial disagreement α(f1, f2) between unimodal classifiers,
it must be due to the presence of unique or synergistic information. If uniqueness is small, then
disagreement must be accounted for by synergy, thereby yielding a lower bound SU. Note that the
optimality of unimodal classifiers is important: poorly trained unimodal classifiers could show high
disagreement but would be uninformative about true interactions. We include the formal version of
the theorem based on Bayes’ optimality and a full proof in Appendix B.4.

Computational complexity. Lower bound SU can also be computed efficiently by estimating p(y∣x1)
and p(y∣x2) over modality clusters or training unimodal classifiers fθ(y∣x1) and fθ(y∣x2). U1 and
U2 can be computed using a convex solver in polynomial time.

Hence, the relationships between S, R, and U yield two lower bounds SR and SU. Note that these
bounds always hold, so we could take S =max{SR, SU}.

Upper bound on synergy By definition, S = Ip({X1,X2};Y ) − R − U1 − U2. However,
Ip({X1,X2};Y ) cannot be computed exactly without the full distribution p. Using the same idea as
lower bound 1, we upper bound synergy by considering the worst-case maximum Ir({X1,X2};Y )
computed over a set of auxiliary distributions r ∈ ∆p1,2,12 that match both unimodal marginals
r(xi, y) = p(xi, y) and modality marginals r(x1, x2) = p(x1, x2):

max
r∈∆p1,2,12

Ir({X1,X2};Y ) = max
r∈∆p1,2,12

{Hr(X1,X2) +Hr(Y ) −Hr(X1,X2, Y )} (6)

=Hp(X1,X2) +Hp(Y ) − min
r∈∆p1,2,12

Hr(X1,X2, Y ), (7)

where the second line follows from the definition of ∆p1,2,12 . While the first two terms are easy to
compute, the third may be difficult, as shown in the following theorem:

Theorem 3. Solving r∗ = argminr∈∆p1,2,12
Hr(X1,X2, Y ) is NP-hard, even for a fixed ∣Y ∣ ≥ 4.
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Theorem 3 suggests we cannot tractably find a joint distribution which tightly upper bounds synergy
when the feature spaces are large. Fortunately, a relaxation of r ∈ ∆p1,2,12 to r ∈ ∆p12,y , where
r(x1, x2) = p(x1, x2) and r(y) = p(y), recovers the classic min-entropy coupling problem over
(X1,X2) and Y , which is still NP-hard but admits good approximations (Cicalese & Vaccaro, 2002;
Cicalese et al., 2017; Kocaoglu et al., 2017; Compton et al., 2023). Our final upper bound S is:

Theorem 4. (Upper-bound on synergy)

S ≤Hp(X1,X2) +Hp(Y ) − min
r∈∆p12,y

Hr(X1,X2, Y ) −R −U1 −U2 = S (8)

Proofs of Theorem 3, 4, and detailed approximation algorithms for min-entropy couplings are
included in Appendix B.5 and B.6.

Computational complexity. The upper bound S can be computed efficiently since solving the variant
of the min-entropy problem in Theorem 4 admits approximations that can be computed in time
O(k log k) where k = max(∣X1∣, ∣X2∣). All other entropy and R,U1, U2 terms are easy to compute
(or have been computed via convex optimization from the lower bounds).

Practically, calculating all three bounds is extremely simple, with just a few lines of code. The
computation takes < 1 minute and < 180 MB memory space on average for our large datasets (1,000-
20,000 datapoints), more efficient than training even the smallest multimodal prediction model which
takes at least 3x time and 15x memory. As a result, these bounds scale to large and high-dimensional
multimodal datasets found in the real world, which we verify in the following experiments.

4 EXPERIMENTS

We design comprehensive experiments to validate these estimated bounds and relationships between
different multimodal interactions. Using these results, we describe applications in estimating optimal
multimodal performance before training the model itself, which can be used to guide data collection
and select appropriate multimodal models for various tasks.

4.1 VERIFYING INTERACTION ESTIMATION IN SEMI-SUPERVISED LEARNING

Synthetic bitwise datasets Let X1 = X2 = Y = {0,1}. We generate joint distributions ∆ by sam-
pling 100,000 vectors from the 8-dim probability simplex and assigning them to p(x1, x2, y).

Figure 2: Our two lower bounds
SR and SU track actual synergy S
from below, and the upper bound
S tracks S from above. We find
that SR, SU tend to approximate
S better than S.

Large real-world multimodal datasets We use a collection of 10
real-world datasets from MultiBench (Liang et al., 2021) which add
up to a size of more than 700,000 datapoints.

1. MOSI: 2,199 videos for sentiment analysis (Zadeh et al., 2016),
2. MOSEI: 23,000 videos for sentiment and emotion analy-

sis (Zadeh et al., 2018),
3. MUSTARD: 690 videos for sarcasm detection (Castro et al.,

2019),
4. UR-FUNNY: a dataset of humor detection from 16,000 TED

talk videos (Hasan et al., 2019),
5. MIMIC: 36,212 examples predicting patient mortality and dis-

eases from tabular patient data and medical sensors (Johnson
et al., 2016),

6. ENRICO: 1,460 examples classifying mobile user interfaces
and screenshots (Leiva et al., 2020).

7. IRFL: 6,697 images and figurative captions (e.g, ‘the car is as
fast as a cheetah’ describing an image with a fast car in it) (Yosef
et al., 2023).

8. NYCaps: 1,820 New York Yimes cartoon images and humorous
captions describing these images (Hessel et al., 2022).

9. VQA: 614,000 questions and answers about natural images (An-
tol et al., 2015).

10. ScienceQA: 21,000 questions and answers about science prob-
lems with scientific diagrams (Lu et al., 2022).
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Table 1: We compute lower bounds SR, SU, and upper bound S in semi-supervised multimodal settings and
compare them to S assuming knowledge of the full joint distribution p. The bounds always hold and track S
well on MOSEI, UR-FUNNY, MOSI, and MUSTARD: true S increases as estimated SR and SU increases.

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO NYCAPS IRFL VQA SCIENCEQA
S 0.97 0.97 0.92 0.79 0.41 2.09 0.68 0.01 0.97 1.67
S 0.03 0.18 0.24 0.44 0.02 1.02 0.09 0 0.05 0.16
SR 0 0 0.01 0.04 0 0.01 0 0 0 0.01
SU 0.01 0.01 0.03 0.11 −0.12 −0.55 −0.03 −0.01 0 0

x1 x2 y p
0 0 0 0
0 0 1 0.05
0 1 0 0.03
0 1 1 0.28
1 0 0 0.53
1 0 1 0.03
1 1 0 0.01
1 1 1 0.06

(a) Disagreement XOR

x1 x2 y p
0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25

(b) Agreement XOR

x1 x2 y p
0 0 0 0.25
0 1 0 0.25
1 0 1 0.25
1 1 1 0.25

(c) y = x1

x1 x2 y p
0 0 0 0.5
1 1 1 0.5

(d) y = x1 = x2

Table 2: Four representative examples: (a) disagreement XOR has high disagreement and high synergy, (b)
agreement XOR has no disagreement and high synergy, (c) y = x1 has high disagreement and uniqueness but no
synergy, and (d) y = x1 = x2 has high agreement and redundancy but no synergy.

These high-dimensional and continuous modalities require approximating disagreement and mutual
information: we train unimodal classifiers f̂θ(y∣x1) and f̂θ(y∣x2) to estimate disagreement, and we
cluster modality features to approximate continuous modalities by discrete distributions with finite
support to compute the lower and upper bounds. We summarize the following regarding the validity
of each bound (see details in Appendix C):

1. Overall trends For the 100,000 bitwise distributions, we compute S, the true value of synergy
assuming oracle knowledge of the full multimodal distribution, and compute SR − S, SU − S, and
S − S for each point. Plotting these points as a histogram in Figure 2, we find that the two lower
bounds track synergy from below (SR − S and SU − S approaching 0 from below), and the upper
bound tracks synergy from above (S −S approaching 0 from above). The two lower bounds are quite
tight, as we see that for many points SR − S and SU − S are approaching close to 0, with an average
gap of 0.18. SU seems to be tighter empirically than SR: for half the points, SU is within 0.14 and
SR is within 0.2 of S. For the upper bound, there is an average gap of 0.62. However, it performs
especially well on high synergy data: when S > 0.6, the average gap is 0.24, with more than half of
the points within 0.25 of S.

On real-world MultiBench datasets, we show the estimated bounds and actual S computed assuming
knowledge of full p in Table 1. The lower and upper bounds track true S: as estimated SR and SU
increases from MOSEI to UR-FUNNY to MOSI to MUSTARD, true S also increases. For datasets
like MIMIC with disagreement but high uniqueness, SU can be negative, but we can rely on SR to give
a tight estimate on low synergy. Unfortunately, our bounds do not track synergy well on ENRICO. We
believe this is because ENRICO displays all interactions: R = 0.73, U1 = 0.38, U2 = 0.53, S = 0.34,
which makes it difficult to distinguish between R and S using SR or U and S using SU since no
interaction dominates over others, and S is also quite loose. Given these general observations, we
now carefully analyze the relationships between redundancy, uniqueness, and synergy.

2. Guidelines We provide a guideline to decide whether a lower or upper bound on synergy can
be considered ‘close enough’. It is close enough if the maximum interaction can be consistently
estimated - often the exact value of synergy is not the most important (e.g, whether S is 0.5 or 0.6) but
rather synergy relative to other interactions (e.g., if we estimate S ∈ [0.2,0.5], and exactly compute
R = U1 = U2 = 0.1, then we know for sure that S is the most important interaction and can collect
data or design models based on that). We find that our bounds accurately identify the same highest
interaction on all 10 real-world datasets as the true synergy does. Furthermore, we observed that the
estimated synergy correlates very well with true synergy: as high as 1.05 on ENRICO (true S = 1.02)
and as low as 0.21 on MIMIC (true S = 0.02).
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Table 3: Estimated lower, upper, and average bounds on optimal multimodal performance in comparison with the
actual best unimodal model, the best simple fusion model, and the best complex fusion model. Our performance
estimates closely predict actual model performance, despite being computed only on semi-supervised data and
never training the model itself.

MOSEI UR-FUNNY MOSI MUSTARD MIMIC ENRICO
Estimated upper bound 1.07 1.21 1.29 1.63 1.27 0.88
Best complex multimodal 0.88 0.77 0.86 0.79 0.92 0.51
Best simple multimodal 0.85 0.76 0.84 0.74 0.92 0.49
Best unimodal 0.82 0.74 0.83 0.74 0.92 0.47
Estimated lower bound 0.52 0.58 0.62 0.78 0.76 0.48
Estimated average 0.80 0.90 0.96 1.21 1.02 0.68

3. The relationship between S and R In Table 2b we show the classic AGREEMENT XOR
distribution where X1 and X2 are independent, but Y = 1 sets X1 ≠X2 to increase their dependence.
I(X1;X2;Y ) is negative, and SR = 1 ≤ 1 = S is tight. On the other hand, Table 2d is an extreme
example where the probability mass is distributed uniformly only when y = x1 = x2 and 0 elsewhere.
As a result, X1 is always equal to X2 (perfect dependence), and yet Y perfectly explains away the
dependence between X1 and X2 so I(X1;X2∣Y ) = 0: SR = 0 ≤ 0 = S. A real-world example is
multimodal sentiment analysis from text, video, and audio on MOSEI, R = 0.26 and S = 0.03, and
as expected the lower bound is small SR = 0 ≤ 0.03 = S (Table 1).

4. The relationship between S and U In Table 2a we show an example called DISAGREEMENT
XOR. There is maximum disagreement between p(y∣x1) and p(y∣x2): the likelihood for y is high
when y is the opposite bit as x1, but reversed for x2. Given both x1 and x2: y takes a ‘disagreement’
XOR of the individual marginals, i.e. p(y∣x1, x2) = argmaxy p(y∣x1) XOR argmaxy p(y∣x2),
which indicates synergy (note that an exact XOR would imply perfect agreement and high synergy).
The actual disagreement is 0.15, S is 0.16, and U is 0.02, indicating a very strong lower bound
SU = 0.14 ≤ 0.16 = S. A real-world equivalent dataset is MUSTARD, where the presence of sarcasm
is often due to a contradiction between what is expressed in language and speech, so disagreement α =
0.12 is the highest out of all the video datasets, giving a lower bound SU = 0.11 ≤ 0.44 = S.

The lower bound is low when all disagreement is explained by uniqueness (e.g., y = x1, Table 2c),
which results in SU = 0 ≤ 0 = S (α and U cancel each other out). A real-world equivalent is MIMIC:
from Table 1, disagreement is high α = 0.13 due to unique information U1 = 0.25, so the lower
bound informs us about the lack of synergy SU = −0.12 ≤ 0.02 = S. Finally, the lower bound is loose
when there is synergy without disagreement, such as AGREEMENT XOR (y = x1 XOR x2, Table 2b)
where the marginals p(y∣xi) are both uniform, but there is full synergy: SU = 0 ≤ 1 = S. Real-world
datasets include UR-FUNNY where there is low disagreement in predicting humor α = 0.03, and
relatively high synergy S = 0.18, which results in a loose lower bound SU = 0.01 ≤ 0.18 = S.

5. On upper bounds for synergy The upper bound for MUSTARD is close to real synergy,
S = 0.79 ≥ 0.44 = S. On MIMIC, the upper bound is the lowest S = 0.41, matching the lowest
S = 0.02. Some of the other examples in Table 1 show weaker bounds. This could be because (i) there
exists high synergy distributions that match Di and DM , but these are rare in the real world, or (ii)
our approximation used in Theorem 4 is loose. We leave these as directions for future work.

Additional results In Appendix C and E, we also study the effect of imperfect unimodal predictors
and disagreement measurements on our derived bounds, by perturbing the label by various noise
levels (from no noise to very noisy) and examining the changes in estimated upper and lower bounds.
We found these bounds are quite robust to label noise, still giving close trends of S. We also include
more discussions studying the relationships between various interactions, and how the relationship
between disagreement and synergy can inspire new self-supervised learning methods.

4.2 IMPLICATIONS TOWARDS PERFORMANCE, DATA COLLECTION, MODEL SELECTION

Now that we have validated the accuracy of these bounds, we apply them to estimate multimodal
performance in semi-supervised settings. This serves as a strong signal for deciding (1) whether
to collect paired and labeled data from a second modality, and (2) what type of multimodal fusion
method should be used. To estimate performance given D1, D2, and DM , we first compute our
lower and upper bounds S and S. Combined with the exact computation of R and U , we obtain the
total information Ip({X1,X2};Y ), and combine a result from Feder & Merhav (1994) with Fano’s
inequality (Fano, 1968) to yield tight bounds of performance as a function of total information.
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Theorem 5. Let Pacc(f∗M) = Ep [1 [f∗M(x1, x2) = y]] denote the accuracy of the Bayes’ optimal
multimodal model f∗M (i.e., Pacc(f∗M) ≥ Pacc(f ′M) for all f ′M ∈ FM ). We have that

2Ip({X1,X2};Y )−H(Y ) ≤ Pacc(f∗M) ≤
Ip({X1,X2};Y ) + 1

log ∣Y ∣ , (9)

and we can plug in R +U1, U2 + S ≤ Ip({X1,X2};Y ) ≤ R +U1, U2 + S to obtain lower P acc(f∗M)
and upper P acc(f∗M) bounds on optimal multimodal performance.

We show the proof in Appendix D. Finally, we summarize estimated multimodal performance as
the average P̂M = (P acc(f∗M) + P acc(f∗M))/2. A high P̂M suggests the presence of important joint
information from both modalities (not present in each) which could boost accuracy, so it is worthwhile
to collect the full distribution p and explore multimodal fusion.

Setup For each MultiBench dataset, we implement a suite of unimodal and multimodel models
spanning simple and complex fusion. Unimodal models are trained and evaluated separately on each
modality. Simple fusion includes ensembling by taking an additive or majority vote between unimodal
models (Hastie & Tibshirani, 1987). Complex fusion is designed to learn higher-order interactions
as exemplified by bilinear pooling (Fukui et al., 2016), multiplicative interactions (Jayakumar et al.,
2020), tensor fusion (Zadeh et al., 2017), and cross-modal self-attention (Tsai et al., 2019). See
Appendix D for models and training details. We include unimodal, simple and complex multimodal
performance, as well as estimated lower and upper bounds on performance in Table 3.

RQ1: Estimating multimodal fusion performance How well could my multimodal model per-
form? We find that estimating interactions enables us to closely predict multimodal model perfor-
mance, before even training a model. For example, on MOSEI, we estimate the performance to be
52% based on the lower bound and 107% based on the upper bound, for an average of 80% which is
very close to true model performance ranging from 82% for the best unimodal model, and 85%−88%
for various multimodal model. Estimated performances for ENRICO, UR-FUNNY, and MOSI are
68%, 90%, 96%, which track true performances 51%, 77%, 86%.

Estimated performance P̂M
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Figure 3: Datasets with higher estimated multimodal performance
P̂M tend to show improvements from unimodal to multimodal (left)
and from simple to complex multimodal fusion (right).

RQ2: Data collection Should I col-
lect multimodal data? We compare
estimated performance P̂M with the
actual difference between unimodal
and best multimodal performance in
Figure 3 (left). Higher estimated P̂M

correlates with a larger gain from uni-
modal to multimodal (correlation ρ =
0.21 and rises to 0.53 if ignoring the
outlier in MIMIC). MUSTARD and
ENRICO show the most opportunity
for multimodal modeling. Therefore,
a rough guideline is that if the esti-
mated multimodal performance based
on semi-supervised data is higher, then collecting the full labeled multimodal data is worth it.

RQ3: Model selection What model should I choose for multimodal fusion? We note strong
relationships between estimated performance and the performance of different fusion methods. From
Table 3, synergistic datasets like MUSTARD and ENRICO show best multimodal performance only
slightly above our estimated lower bound, indicating that there is a lot of room for improvement
in better fusion methods. Indeed, more complex fusion methods such as multimodal transformer
designed to capture synergy is the best on MUSTARD which matches its high synergy (72%
accuracy). For datasets with less synergy like MOSEI and MIMIC, the best multimodal performance
is much higher than the estimated lower bound, indicating that existing fusion methods may already
be quite optimal. Indeed, simpler fusion methods such as feature alignment, designed to capture
redudnancy, are the best on MOSEI which matches its high redundancy (80% accuracy).

Figure 3 (right) shows a visual comparison, where plotting the performance gap between complex
and simple fusion methods against estimated performance P̂M shows a correlation coefficient of 0.77.
We again observe positive trends between higher estimated performance and improvements with
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complex fusion, with large gains on MUSTARD and ENRICO. We expect new methods to further
improve the state-of-the-art on these datasets due to their generally high interaction values and low
multimodal performance relative to estimated lower bound P acc(f∗M). Therefore, a rough guideline
is that if the estimated multimodal performance based on semi-supervised data is higher, then there is
more potential for improvement by trying more complex multimodal fusion strategies.

5 CONCLUSION AND BROADER IMPACTS

We proposed estimators of multimodal interactions when observing only labeled unimodal data
and some unlabeled multimodal data, a general semi-supervised setting that encompasses many
real-world constraints involving partially observable modalities, limited labels, and privacy concerns.
Our key results draw new connections between multimodal interactions, the disagreement of unimodal
classifiers, and min-entropy couplings, which yield new insights for estimating multimodal model
performance, data analysis, and model selection. We are aware of some potential limitations:

1. These estimators only approximate real interactions due to cluster preprocessing or unimodal
models, which naturally introduce optimization and generalization errors. We expect progress in
density estimators, generative models, and unimodal classifiers to address these problems.

2. It is harder to quantify interactions for certain datasets, such as ENRICO which displays all
interactions which makes it difficult to distinguish between R and S or U and S.

3. Finally, there exist challenges in quantifying interactions since the data generation process is never
known for real-world datasets, so we have to resort to human judgment, other automatic measures,
and downstream tasks such as estimating model performance and model selection.

Future work should investigate more applications of multivariate information theory in designing self-
supervised models, predicting multimodal performance, and other tasks involving feature interactions
such as privacy-preserving and fair representation learning from high-dimensional data (Dutta et al.,
2020; Hamman & Dutta, 2023). Being able to provide guarantees for fairness and privacy-preserving
learning, especially for semi-supervised pretraining datasets, can be particularly impactful.
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APPENDIX

A BROADER IMPACT

Multimodal semi-supervised models are ubiquitous in a range of real-world applications with only
labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and
captions, video and corresponding audio) but when labeling them is time-consuming. This paper
is our attempt at formalizing the learning setting of multimodal semi-supervised learning, allowing
us to derive bounds on the information existing in multimodal semi-supervised datasets and what
can be learned by models trained on these datasets. We do not foresee any negative broad impacts
of our theoretical results, but we do note the following concerns regarding the potential empirical
applications of these theoretical results in real-world multimodal datasets:

Biases: We acknowledge risks of potential biases surrounding gender, race, and ethnicity in large-
scale multimodal datasets (Bolukbasi et al., 2016), especially those collected in a semi-supervised
setting with unlabeled and unfiltered images and captions (Birhane et al., 2021). Formalizing the types
of bias in multimodal datasets and mitigating them is an important direction for future work.

Privacy: When making predictions from multimodal datasets with recorded human behaviors and
medical data, there might be privacy risks of participants. Following best practices in maintaining
the privacy and safety of these datasets, (1) these datasets have only been collected from public data
that are consented for public release (creative commons license and following fair use guidelines of
YouTube) (Castro et al., 2019; Hasan et al., 2019; Zadeh et al., 2018), or collected from hospitals
under strict IRB and restricted access guidelines (Johnson et al., 2016), and (2) have been rigorously
de-identified in accordance with Health Insurance Portability and Accountability Act such that all
possible personal and protected information has been removed from the dataset (Johnson et al., 2016).
Finally, we only use these datasets for research purposes and emphasize that any multimodal models
trained to perform prediction should only be used for scientific study and should not in any way be
used for real-world harm.

B DETAILED PROOFS

B.1 INFORMATION DECOMPOSITION

Partial information decomposition (PID) (Williams & Beer, 2010) decomposes of the total information
2 variables provide about a task I({X1,X2};Y ) into 4 quantities: redundancy R between X1 and
X2, unique information U1 in X1 and U2 in X2, and synergy S. Williams & Beer (2010), who first
proposed PIDs, showed that they should satisfy the following consistency equations:

R +U1 = I(X1;Y ), (10)
R +U2 = I(X2;Y ), (11)
U1 + S = I(X1;Y ∣X2), (12)
U2 + S = I(X2;Y ∣X1), (13)
R − S = I(X1;X2;Y ). (14)

We choose the PID definition by Bertschinger et al. (2014), where redundancy, uniqueness, and
synergy are defined by the solution to the following optimization problems:

R =max
q∈∆p

Iq(X1;X2;Y ) (15)

U1 = min
q∈∆p

Iq(X1;Y ∣X2) (16)

U2 = min
q∈∆p

Iq(X2;Y ∣X1) (17)

S = Ip({X1,X2};Y ) − min
q∈∆p

Iq({X1,X2};Y ) (18)

where ∆p = {q ∈ ∆ ∶ q(xi, y) = p(xi, y) ∀y, xi, i ∈ {1,2}}, ∆ is the set of all joint distributions
over X1,X2, Y , and the notation Ip(⋅) and Iq(⋅) disambiguates MI under joint distributions p and
q respectively. The key difference in this definition of PID lies in optimizing q ∈ ∆p to satisfy the
marginals q(xi, y) = p(xi, y), but relaxing the coupling between x1 and x2: q(x1, x2) need not be
equal to p(x1, x2). The intuition behind this is that one should be able to infer redundancy and
uniqueness given only access to separate marginals p(x1, y) and p(x2, y), and therefore they should
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only depend on q ∈ ∆p which match these marginals. Synergy, however, requires knowing the
coupling p(x1, x2), and this is reflected in equation (18) depending on the full p distribution.

B.2 COMPUTING q∗ , REDUNDANCY, AND UNIQUENESS

According to Bertschinger et al. (2014), it suffices to solve for q using the following max-entropy
optimization problem q∗ = argmaxq∈∆p

Hq(Y ∣X1,X2), the same q∗ equivalently solves any of the
remaining problems defined for redundancy, uniqueness, and synergy. This is a concave maximization
problem with linear constraints. When Xi and Y are small and discrete, we can represent all valid
distributions q(x1, x2, y) as a set of tensors Q of shape ∣X1∣ × ∣X2∣ × ∣Y ∣ with each entry representing
Q[i, j, k] = p(X1 = i,X2 = j, Y = k). The problem then boils down to optimizing over valid
tensors Q ∈ ∆p that match the marginals p(xi, y) for the objective function Hq(Y ∣X1,X2). We
rewrite conditional entropy as a KL-divergence (Globerson & Jaakkola, 2007), Hq(Y ∣X1,X2) =
log ∣Y ∣ −KL(q∣∣q̃), where q̃ is an auxiliary product density of q(x1, x2) ⋅ 1

∣Y ∣ enforced using linear
constraints: q̃(x1, x2, y) = q(x1, x2)/∣Y ∣. The KL-divergence objective is recognized as convex,
allowing the use of conic solvers such as SCS (O’Donoghue et al., 2016), ECOS (Domahidi et al.,
2013), and MOSEK (ApS, 2022).

Finally, optimizing over Q ∈ ∆p that match the marginals can also be enforced through linear
constraints: the 3D-tensor Q summed over the second dimension gives q(x1, y) and summed over
the first dimension gives q(x2, y), yielding the final optimization problem:

argmax
Q,Q̃

KL(Q∣∣Q̃), s.t. Q̃(x1, x2, y) = Q(x1, x2)/∣Y ∣, (19)

∑
x2

Q = p(x1, y),∑
x1

Q = p(x2, y),Q ≥ 0, ∑
x1,x2,y

Q = 1. (20)

After solving this optimization problem, plugging q∗ into (15)-(17) yields the desired estimators for
redundancy and uniqueness: R = Iq∗(X1;X2;Y ), U1 = Iq∗(X1;Y ∣X2), U2 = Iq∗(X2;Y ∣X1), and
more importantly, can be inferred from access to only labeled unimodal data p(x1, y) and p(x2, y).
Unfortunately, S is impossible to compute via equation (18) when we do not have access to the full
joint distribution p, since the first term Ip(X1,X2;Y ) is unknown. Instead, we will aim to provide
lower and upper bounds in the form S ≤ S ≤ S so that we can have a minimum and maximum
estimate on what synergy could be. Crucially, S and S should depend only on D1, D2, and DM in
the multimodal semi-supervised setting.

B.3 LOWER BOUND ON SYNERGY VIA REDUNDANCY (THEOREM 1)
We first restate Theorem 1 from the main text to obtain our first lower bound SR linking synergy to
redundancy:

Theorem 6. (Lower-bound on synergy via redundancy, same as Theorem 1) We can relate S to R as
follows

SR = R − Ip(X1;X2) + min
r∈∆p1,2,12

Ir(X1;X2∣Y ) ≤ S (21)

where ∆p1,2,12 = {r ∈ ∆ ∶ r(x1, x2) = p(x1, x2), r(xi, y) = p(xi, y)}. minr∈∆p1,2,12
Ir(X1;X2∣Y )

is a max-entropy convex optimization problem which can be solved exactly using linear programming.

Proof. By consistency equation (14), S = R − Ip(X1;X2;Y ) = R − Ip(X1;X2) + Ip(X1;X2∣Y ).
Note that R can be computed exactly based on p(x1, y), p(x2, y), and Ip(X1;X2) can be computed
exactly based on p(x1, x2), but Ir(X1;X2∣Y ) requires knowledge of the full distribution p(x1, x2, y)
to compute. We will instead lower bound the conditional mutual information Ip(X1,X2∣Y ) by
computing its minimum with respect to a set of auxiliary distributions r ∈∆p1,2,12 that match both
unimodal marginals r(xi, y) = p(xi, y) and modality marginals r(x1, x2) = p(x1, x2), which yields
a lower bound on synergy. We obtain:

min
r∈∆p1,2,12

Ir(X1;X2∣Y ) = min
r∈∆p1,2,12

Hr(X1) − Ir(X1;Y ) −Hr(X1∣X2, Y ) (22)

=Hp(X1) − Ip(X1;Y ) − max
r∈∆p1,12

Hr(X1∣X2, Y ) (23)
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where in the last line the p2 constraint is removed since Hr(X1∣X2, Y ) is fixed with respect to
p(x2, y). To solve maxr∈∆p1,12

Hr(X1∣X2, Y ), we observe that it is also a concave maximization
problem with linear constraints. When Xi and Y are small and discrete, we can represent all valid
distributions r(x1, x2, y) as a set of tensors R of shape ∣X1∣ × ∣X2∣ × ∣Y ∣ with each entry representing
R[i, j, k] = p(X1 = i,X2 = j, Y = k). The problem then boils down to optimizing over valid
tensors R ∈∆p1,12 that match the marginals p(x1, y) and p(x1, x2). Given a tensor R representing
r, our objective is the concave function Hr(X1∣X2, Y ) which we rewrite as a KL-divergence
log ∣X1∣−KL(r∣∣r̃) using an auxiliary distribution r̃ = r(x2, y) ⋅ 1

∣X1∣ and solve it exactly using convex
programming with linear constraints:

argmax
R,R̃

KL(R∣∣R̃), s.t. R̃(x1, x2, y) = R(x2, y)/∣Y ∣, (24)

∑
x2

R = p(x1, y),∑
y

R = p(x1, x2),R ≥ 0, ∑
x1,x2,y

R = 1. (25)

with marginal constraints R ∈∆p1,12 enforced through linear constraints on tensor R. Plugging the
optimized r∗ into (21) yields the desired lower bound SR = R − Ip(X1;X2) + Ir∗(X1;X2∣Y ).

B.4 LOWER BOUND ON SYNERGY VIA UNIQUENESS (THEOREM 2)
We first restate some notation and definitions from the main text for completeness. The key insight
behind Theorem 2, a relationship between synergy and uniqueness, is that while labeled multimodal
data is unavailable, the output of unimodal classifiers may be compared against each other. Let
δY = {r ∈ R∣Y ∣+ ∣ ∣∣r∣∣1 = 1} be the probability simplex over labels Y . Consider the set of unimodal
classifiers Fi ∋ fi ∶ Xi → δY and multimodal classifiers FM ∋ fM ∶ X1 ×X2 → δY .

Definition 3. (Unimodal and multimodal loss) The loss of a given unimodal classifier fi ∈ Fi is
given by L(fi) = Ep(xi,y) [ℓ(fi(xi), y)] for a loss function over the label space ℓ ∶ Y × Y → R≥0.
We denote the same for multimodal classifier fM ∈ FM , with a slight abuse of notation L(fM) =
Ep(x1,x2,y) [ℓ(fM(x1, x2), y)] for a loss function over the label space ℓ.

Definition 4. (Unimodal and multimodal accuracy) The accuracy of a given unimodal classifier
fi ∈ Fi is given by Pacc(fi) = Ep [1 [fi(xi) = y]]. We denote the same for multimodal classifier
fM ∈ FM , with a slight abuse of notation Pacc(fM) = Ep [1 [fM(x1, x2) = y]].
An unimodal classifier f∗i is Bayes-optimal (or simply optimal) with respect to a loss function L if
L(f∗i ) ≤ L(f ′i) for all f ′i ∈ Fi. Similarly, a multimodal classifier f∗M is optimal with respect to loss
L if L(f∗M) ≤ L(f ′M) for all f ′M ∈ FM .

Bayes optimality can also be defined with respect to accuracy, if Pacc(f∗i ) ≥ Pacc(f ′i) for all f ′i ∈ Fi for
unimodal classifiers, or if Pacc(f∗M) ≥ Pacc(f ′M) for all f ′M ∈ FM for multimodal classifiers.

The crux of our method is to establish a connection between modality disagreement and a lower
bound on synergy.

Definition 5. (Modality disagreement) Given X1, X2, and a target Y , as well as unimodal classifiers
f1 and f2, we define modality disagreement as α(f1, f2) = Ep(x1,x2)[d(f1, f2)] where d ∶ Y ×Y →
R≥0 is a distance function in label space scoring the disagreement of f1 and f2’s predictions,

where the distance function d must satisfy some common distance properties, following Sridharan &
Kakade (2008):

Assumption 1. (Relaxed triangle inequality) For the distance function d ∶ Y × Y → R≥0 in label
space scoring the disagreement of f1 and f2’s predictions, there exists cd ≥ 1 such that

∀ŷ1, ŷ2, ŷ3 ∈ Ŷ, d(ŷ1, ŷ2) ≤ cd (d(ŷ1, ŷ3) + d(ŷ3, ŷ2)) . (26)

Assumption 2. (Inverse Lipschitz condition) For the function d, it holds that for all f ,

E[d(f(x1, x2), f∗(x1, x2))] ≤ ∣L(f) −L(f∗)∣ (27)

where f∗ is the Bayes optimal multimodal classifier with respect to loss L, and

E[d(fi(xi), f∗i (xi))] ≤ ∣L(fi) −L(f∗i )∣ (28)

where f∗i is the Bayes optimal unimodal classifier with respect to loss L.
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Assumption 3. (Classifier optimality) For any unimodal classifiers f1, f2 in comparison to the Bayes’
optimal unimodal classifiers f∗1 , f

∗
2 , there exists constants ϵ1, ϵ2 > 0 such that

∣L(f1) −L(f∗1 )∣2 ≤ ϵ1, ∣L(f2) −L(f∗2 )∣2 ≤ ϵ2 (29)

We now restate Theorem 2 from the main text obtaining SU, our second lower bound on synergy
linking synergy to uniqueness:

Theorem 7. (Lower-bound on synergy via uniqueness, same as Theorem 2) We can relate synergy
S and uniqueness U to modality disagreement α(f1, f2) of optimal unimodal classifiers f1, f2 as
follows:

SU = α(f1, f2) ⋅ c −max(U1, U2) ≤ S (30)

for some constant c depending on the label dimension ∣Y ∣ and choice of label distance function d.

Theorem 7 implies that if there is substantial disagreement between the unimodal classifiers f1 and
f2, it must be due to the presence of unique or synergistic information. If uniqueness is small, then
disagreement must be accounted for by the presence of synergy, which yields a lower bound.

Proof. The first part of the proof is due to an intermediate result by Sridharan & Kakade (2008),
which studies how multi-view agreement can help train better multiview classifiers. We restate the
key proof ideas here for completeness. The first step is to relate Ip(X2;Y ∣X1) to ∣L(f∗1 ) −L(f∗)∣2,
the difference in errors between the Bayes’ optimal unimodal classifier f∗1 with the Bayes’ optimal
multimodal classifier f∗ for some appropriate loss function L on the label space:

∣L(f∗1 ) −L(f∗)∣2 = ∣EXEY ∣X1,X2
ℓ(f∗(x1, x2), y) −EXEY ∣X1

ℓ(f∗(x1, x2), y)∣2 (31)

≤ ∣EY ∣X1,X2
ℓ(f∗(x1, x2), y) −EY ∣X1

ℓ(f∗(x1, x2), y)∣2 (32)

≤ KL(p(y∣x1, x2), p(y∣x1)) (33)
≤ EXKL(p(y∣x1, x2), p(y∣x1)) (34)
= Ip(X2;Y ∣X1), (35)

where we used Pinsker’s inequality in (33) and Jensen’s inequality in (34). Symmetrically, ∣L(f∗2 ) −
L(f∗)∣2 ≤ Ip(X1;Y ∣X2), and via the triangle inequality through the Bayes’ optimal multimodal
classifier f∗ and the inverse Lipschitz condition we obtain

Ep(x1,x2)[d(f∗1 , f∗2 )] ≤ Ep(x1,x2)[d(f∗1 , f∗)] +Ep(x1,x2)[d(f∗, f∗2 )] (36)

≤ ∣L(f∗1 ) −L(f∗)∣2 + ∣L(f∗2 ) −L(f∗)∣2 (37)
≤ Ip(X2;Y ∣X1) + Ip(X1;Y ∣X2). (38)

Next, we relate disagreement α(f1, f2) to Ip(X2;Y ∣X1) and Ip(X1;Y ∣X2) via the triangle inequal-
ity through the Bayes’ optimal unimodal classifiers f∗1 and f∗2 :

α(f1, f2) = Ep(x1,x2)[d(f1, f2)] (39)

≤ cd (Ep(x1,x2)[d(f1, f∗1 )] +Ep(x1,x2)[d(f∗1 , f∗2 )] +Ep(x1,x2)[d(f∗2 , f2)]) (40)

≤ cd (ϵ′1 + Ip(X2;Y ∣X1) + Ip(X1;Y ∣X2) + ϵ′2) (41)

≤ 2cd(max(Ip(X1;Y ∣X2), Ip(X2;Y ∣X1)) +max(ϵ′1, ϵ′2)) (42)

where used classifier optimality assumption for unimodal classifiers f1, f2 in (41). Finally, we use
consistency equations of PID relating U and S in (12)-(13): to complete the proof:

α(f1, f2) ≤ 2cd(max(Ip(X1;Y ∣X2), Ip(X2;Y ∣X1)) +max(ϵ′1, ϵ′2)) (43)

= 2cd(max(U1 + S,U2 + S) +max(ϵ′1, ϵ′2)) (44)

= 2cd(S +max(U1, U2) +max(ϵ′1, ϵ′2)), (45)

In practice, setting f1 and f2 as neural network function approximators that can achieve the Bayes’
optimal risk (Hornik et al., 1989) results in max(ϵ′1, ϵ′2) = 0, and rearranging gives us the desired
inequality.
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B.5 PROOF OF NP-HARDNESS (THEOREM 3)

Our proof is based on a reduction from the restricted timetable problem, a well-known scheduling
problem closely related to constrained edge coloring in bipartite graphs. Our proof description
proceeds along 4 steps.

1. Description of our problem.

2. How the minimum entropy objective can engineer “classification” problems using a tech-
nique from Kovačević et al. (2015).

3. Description of the RTT problem of Even et al. (1975), how to visualize RTT as a bipartite
edge coloring problem, and a simple variant we call Q-RTT which RTT reduces to.

4. Polynomial reduction of Q-RTT to our problem.

B.5.1 FORMAL DESCRIPTION OF OUR PROBLEM

Recall that our problem was
min

r∈∆p1,2,12

Hr(X1,X2, Y )

where ∆p1,2,12 = {r ∈ ∆ ∶ r(x1, x2) = p(x1, x2), r(xi, y) = p(xi, y)}. 1 Our goal is to find the
minimum-entropy distribution overX1×X2×Y where the pairwise marginals over (X1,X2), (X1, Y )
and (X2, Y ) are specified as part of the problem. Observe that this description is symmetrical, Xi

and Y could be swapped without loss of generality.

B.5.2 WARM UP: USING THE MIN-ENTROPY OBJECTIVE TO MIMIC MULTICLASS
CLASSIFICATION

We first note the strong similarity of our min-entropy problem to the classic min-entropy coupling
problem in two variables. There where the goal is to find the min-entropy joint distribution over X ×Y
given fixed marginal distributions of p(x) and p(y). This was shown to be an NP-hard problem
which has found many practical applications in recent years. An approximate solution up to 1 bit
can be found in polynomial time (and is in fact the same approximation we give to our problem).
Our NP-hardness proof involves has a similar flavor as Kovačević et al. (2015), which is based on
a reduction from the classic subset sum problem, exploiting the min-entropy objective to enforce
discrete choices.

Subset sum There are d items with value c1 . . . cd ≥ 0, which we assume WLOG to be normalized
such that ∑d

i ci = 1. Our target sum is 0 ≤ T ≤ 1. The goal is to find if some subset S ⊆ [d] exists
such that ∑i∈S ci = T .

Reduction from subset sum to min-entropy coupling (Kovačević et al., 2015) Let X be the
d items and Y be binary, indicating whether the item was chosen. Our joint distribution is of size
∣X ∣ × ∣Y ∣. We set the following constraints on marginals.

(i) p(xi) = ci for all i, (row constraints)

(ii) p(include) = T , p(omit) = 1 − T , (column constraints)

Constraints (i) split the value of each item additively into nonnegative components to be included and
not included from our chosen subset, while (ii) enforces that the items included sum to T . Observe
that the min-entropy objective H(X,Y ) =H(Y ∣X)+H(X), which is solely dependent on H(Y ∣X)
since H(X) is a constant given marginal constraints on X . Thus, H(Y ∣X) is nonnegative and is
only equal to 0 if and only if Y is deterministic given X , i.e., r(xi, include) = 0 or r(xi,omit) = 0.
If our subset sum problem has a solution, then this instantiation of the min-entropy coupling problem
would return a deterministic solution with H(Y ∣X) = 0, which in turn corresponds to a solution
in subset sum. Conversely, if subset sum has no solution, then our min-entropy coupling problem
is either infeasible OR gives solutions where H(Y ∣X) > 0 strictly, i.e., Y ∣X is non-deterministic,
which we can detect and report.

1Strictly speaking, the marginals p(x1, x2) and p(xi, y) ought to be rational. This is not overly restrictive,
since in practice these marginals often correspond to empirical distributions which would naturally be rational.
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Relationship to our problem Observe that our joint entropy objective may be decomposed

Hr(X1,X2, Y ) =Hr(Y ∣X1,X2) +Hr(X1,X2).
Given that p(x1, x2) is fixed under ∆p1,2,12 , our objective is equivalent to minimizing Hr(Y ∣X1,X2).
Similar to before, we know that Hr(Y ∣X1,X2) is nonnegative and equal to zero if and only if Y is
deterministic given (X1,X2).
Intuitively, we can use X1,X2 to represent vertices in a bipartite graph, such that (X1,X2) are edges
(which may or may not exist), and Y as colors for the edges. Then, the marginal constraints for
p(x1, x2) could be used alongside the min-entropy objective to ensure that each edge has exactly one
color. The marginal constraints p(x1, y) and p(x2, y) tell us (roughly speaking) the number of edges
of each color that is adjacent to vertices in X1 and X2.

However, this insight alone is not enough; first, edge coloring problems in bipartite graphs (e.g.,
colorings in regular bipartite graphs) can be solved in polynomial time, so we need a more difficult
problem. Second, we need an appropriate choice of marginals for p(xi, y) that does not immediately
‘reveal’ the solution. Our proof uses a reduction from the restricted timetable problem, one of the most
primitive scheduling problems available (and closely related to edge coloring or multicommodity
network flow).

B.5.3 RESTRICTED TIMETABLE PROBLEM (RTT)
The restricted timetable (RTT) problem was introduced by Even et al. (1975), and has to do with how
to schedule teachers to classes they must teach. It comprises the following

• A collection of {T1, . . . , Tn}, where Ti ⊆ [3]. These represent n teachers, each of which is
available for the hours given in Ti.

• m students, each of which is available at any of the 3 hours
• An binary matrix {0,1}n×m. Rij = 1 if teacher i is required to teach class j, and 0 otherwise.

Since Rij is binary, each class is taught by a teacher at most once.
• Each teacher is tight, i.e., ∣Ti∣ = ∑m

j=1Rij . That is, every teacher must teach whenever they
are available.

Suppose there are exactly 3 hours a day. The problem is to determine if there exists a meeting
function

f ∶ [n] × [m] × [3]→ {0,1},
where our goal is to have f(i, j, h) = 1 if and only if teacher i teaches class j at the h-th hour. We
require the following conditions in our meeting function:

1. f(i, j, h) = 1 Ô⇒ h ∈ Ti. This implies that teachers are only teaching in the hours they
are available.

2. ∑h∈[3] f(i, j, h) = Rij for all i ∈ [n], j ∈ [m]. This ensures that every class gets the teaching
they are required, as specified by R.

3. ∑i∈[n] f(i, j, h) ≤ 1 for all j ∈ [m] and h ∈ [3]. This ensures no class is taught by more
than one teachers at once.

4. ∑j∈[m] f(i, j, h) ≤ 1 for all i ∈ [n] and h ∈ [3]. This ensures no teacher is teaching more
than one class simultaneously.

Even et al. (1975) showed that RTT is NP-hard via a clever reduction from 3-SAT. Our strategy is to
reduce RTT to our problem.

Viewing RTT through the lens of bipartite edge coloring RTT can be visualized as a variant of
constrained edge coloring in bipartite graphs (Figure 4). The teachers and classes are the two different
sets of vertices, while R gives the adjacency structure. There are 3 colors available, corresponding to
hours in a day. The task is to color the edges of the graph with these 3 colors such that

1. No two edges of the same color are adjacent. This ensures students and classes are at most
teaching/taking one session at any given hour (condition 3 and 4)

2. Edges adjacent to teacher i are only allowed colors in Ti. This ensures teachers are only
teaching in available hours (condition 1)

If every edge is colored while obeying the above conditions, then it follows from the tightness of
teachers (in the definition of RTT) that every class is assigned their required lessons (condition 2).
The decision version of the problem is to return if such a coloring is possible.
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Figure 4: Examples of valid and invalid colorings. Left vertices are teachers 1, 2, 3. Right vertices are classes 1,
2. The colors red, green, blue are for hours 1, 2, 3 respectively, color of teacher vertices are the hours where
the teachers are available (by definition of RTT, the number of distinct colors per teacher vertex is equal to
its degree). The color of an edge (red, green or blue) says that a teacher is assigned to that class at that hour.
Figure 4a shows a valid coloring (or timetabling), since (i) all edges are colored, (ii) no edge of the same colors
are adjacent, and (iii) edges adjacent to teachers correspond to the vertex’s color. Figures 4b, 4c, 4d are invalid
colorings because of same-colored edges being adjacent, or teacher vertex colors differing to adjacent edges.

Time Constrained RTT (Q-RTT) A variant of RTT that will be useful is when we impose
restrictions on the number of classes being taught at any each hour. We call this Q-RTT, where
Q = (q1, q2, q3) ∈ Z3. Q-RTT returns true if, in addition to the usual RTT conditions, we require the
meeting function to satisfy

∑
i∈[n],j∈[m]

f(i, j, h) = qh.

That is, the total number of hours taught by teachers in hour h is exactly qh. From the perspective of
edge coloring, Q-RTT simply imposes an additional restriction on the total number of edges of each
color, i.e., there are qk edges of color k for each k ∈ [3].
Obviously, RTT can be Cook reduced to Q-RTT: since there are only 3 hours and a total of g =
∑i∈[n],j∈[m]Rij total lessons to be taught, there are at most O(g2) ways of splitting the required
number of lessons up amongst the 3 hours. Thus, we can solve RTT by making at most O(g2) calls
to Q-RTT. This is polynomial in the size of RTT, and we conclude Q-RTT is NP-hard.

B.5.4 REDUCTION OF Q-RTT TO OUR PROBLEM

We will reduce Q-RTT to our problem. Let α = 1/ (∑i,j Rij + 3m), where 1/α should be seen as a
normalizing constant given by the number of edges in a bipartite graph. One should think of α as an
indicator of the boolean TRUE and 0 as FALSE. We use the following construction

1. Let X1 = [n] ∪ Z , where Z = {Z1, Z2, Z3}. From a bipartite graph interpretation, these
form one set of vertices that we will match to classes. Z1, Z2, Z3 are “holding rooms”, one
for each of the 3 hours. Holding rooms are like teachers whose classes can be assigned in
order to pass the time. They will not fulfill any constraints on R, but they can accommodate
multiple classes at once. We will explain the importance of these holding rooms later.

2. Let X2 = [m]. These form the other set of vertices, one for each class.

3. Let Y = [3] ∪ {0}. 1, 2, and 3 are the 3 distinct hours, corresponding to edge colors. 0 is a
special “null” color which will only be used when coloring edges adjacent to the holding
rooms.

4. Let p(i, j, ⋅) = α ⋅Rij and p(i, j) = α for all i ∈ Z , j ∈ [m]. Essentially, there is an edge
between a teacher and class if R dictates it. There are also always edges from every holding
room to each class.

5. For i ∈ [n], set p(i, ⋅, h) = α if h ∈ Ti, 0 otherwise. For Zi ∈ Z , we set

p(Zi, ⋅, h) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α ⋅ qi h = 0
α ⋅ (m − qi) h = i
0 otherwise
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In order words, at hour h, when a class is not assigned to some teacher (which would to
contribute to qh), they must be placed in holding room Zh.

6. Let p(⋅, j, h) = α for h ∈ [3], and p(⋅, j, h) = α ⋅∑i∈[n]Ri,j . The former constraint means
that for each of the 3 hours, the class must be taking some lesson with a teacher OR in the
holding room. The second constraint assigns the special “null” value to the holding rooms
which were not used by that class.
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Figure 5: Examples of valid and invalid colorings when holding rooms are included. For simplicity, we illustrate
all constraints except those on Q. Left vertices are teachers 1, 2, 3 and holding rooms Z1, Z2, Z3. Right vertices
are classes 1, 2. The colors red, green, blue are for hours 1, 2, 3 respectively, color of teacher vertices are the
hours where the teachers are available (by definition of RTT, the number of distinct colors per teacher vertex is
equal to its degree). Border color of holding room vertices are the hour that the holding room is available. The
color of an edge (red, green or blue) says that a teacher (or holding room) is assigned to that class at that hour.
Gray edges are the “null” color, meaning that that waiting room is not used by that class. Figure 5a shows a valid
coloring (or timetabling), since all edges are colored, no edge of the same colors are adjacent (other than the gray
ones), and edges adjacent to teachers correspond to the vertex’s color. Figures 5b, 5c, 5d are invalid colorings
because of non-gray edges being adjacent, or teacher vertices being adjacent to colors different from itself.

A solution to our construction with 0 conditional entropy implies a valid solution to Q-RTT
Suppose that our construction returns a distribution r such that every entry r(x1, x2, y) is either
α or 0. We claim that the meeting function f(i, j, h) = 1 if r(i, j, h) = α and 0 otherwise solves
Q-RTT.

• Teachers are only teaching in the hours they are available, because of our marginal constraint
on p(i, ⋅, h).

• Every class gets the teaching they need. This follows from the fact that teachers are tight
and the marginal constraint p(i, ⋅, h), which forces teachers to be teaching whenever they
can. The students are getting the lessons from the right teachers because of the marginal
constraint on p(i, j, ⋅), since teachers who are not supposed to teach a class have those
marginal values set to 0.

• No class is taught by more than one teacher at once. This follows from marginal constraint
p(⋅, j, h). For each of the hours, a class is with either a single teacher or the holding room.

• No teacher is teaching more than one class simultaneously. This holds again from our
marginal constraint on p(i, ⋅, h).

• Lastly, the total number of lessons (not in holding rooms) held in each hour is qh as required
by Q-RTT. To see why, we consider each color (hour). Each color (excluding the null color)
is used exactly m times by virtue of p(⋅, j, h). Some of these are in holding rooms, other are
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with teachers. The former (over all classes) is given by m − qh because of our constraint on
p(i, ⋅, h), which means that exactly qh lessons in hour h as required.

A valid solution to Q-RTT implies a solution to our construction with 0 conditional entropy
Given a solution to Q-RTT, we recover a candidate solution to our construction in a natural way.
If teacher i is teaching class j in hour h, then color edge ij with color h, i.e., r(i, j, h) = α and
r(i, j, h′) = 0 if h′ ≠ h. Since in RTT each teacher and class can be assigned one lesson per hour at
most, there will be no clashes with this assignment. For all other i ∈ [3], j ∈ [m] where Rij = 0, we
assign r(i, j, ⋅) = 0. Now, we will also need to assign students to holding rooms. For h ∈ [3], we set
r(Zh, j, h) = α if class j was not assigned to any teacher in hour h. If class j was assigned some
teacher in hour h, then r(Zh, j,0) = α, i.e., we give it the special null color. All other entries are
given a value of 0. We can verify

• r is a valid probability distribution. The nonnegativity of r follows from the fact that α > 0
strictly. We need to check that r sums to 1. We break this down into two cases based on
whether the first argument of r is some Zh or i. In Case 1, we have

∑
i∈[n],h∈[3]∪{0},j∈[m]

r(i, j, h) = ∑
i∈[n],h∈[3],j∈[m]

r(i, j, h)

=α ⋅ ∑
i∈[n],j∈[m]

Rij ,

where the first line follows from the fact that we never color a teacher-class edge with the
null color, and the second line is because every class gets its teaching requirements satisfied.
In Case 2, we know that by definition every class is matched to every holding room and
assigned either the null color or that room’s color, hence

∑
i∈{Z1,Z2,Z3},h∈[3]∪{0},j∈[m]

r(i, j, h) =3m

Summing them up, we have α ⋅ (3m +∑i∈[n],j∈[m]Rij) = 1 (by our definition of α.

• This r distribution has only entries in α or 0. This follows by definition.

• This r distribution has minimum conditional entropy. For a fixed i, j, r(i, j, ⋅) is either α or
0. That is, Y is deterministic given X1,X2, hence H(Y ∣X1,X2) = 0.

• All 3 marginal constraints in our construction are obeyed. We check them in turn.

– Marginal constraint r(i, j) = p(i, j). When i ∈ [3]: (i) when Rij = 1 exactly one time
h is assigned to teacher i and class j, hence r(i, j) = α = p(i, j) as required, (ii)when
Rij = 0 as specified. Now when i ∈ {Z1, Z2, Z3}, we have r(i, j, ⋅) = α = p(i, j) since
every holding room is either assigned it’s color to a class, or assigned the special null
color.

– Marginal constraint r(i, h) = p(i, h). When i ∈ [3], this follows directly from tightness.
Similarly, when i ∈ {Z1, Z2, Z3}, we have by definition of Q-RTT the assignments to
holding rooms equal to m − qh for hour h, and consequently, qh null colors adjacent to
Zh as required.

– Marginal constraint r(j, h) = p(j, h). For every h ∈ [3], the class is assigned either
to a teacher or a holding room, so this is equal to α as required. For h = 0, i.e., the
null color, this is used exactly ∑i∈[n]Rij times (since these were the number hours
that were not assigned to teachers), as required, making its marginal ∑i∈[n]Rij and
r(j, h) = α ⋅∑i∈[n]Rij as required.

Thus, if RTT returns TRUE, our construction will also return a solution with entries in {0, α}, and
vice versa.

Corollary The decision problem of whether there exists a distribution in r ∈ ∆p1,2,12 such that
H(Y ∣X1,X2) = 0 is NP-complete. This follows because the problem is in NP since checking if Y is
deterministic (i.e., H(Y ∣X1,X2) = 0) can be done in polynomial time, while NP-hardness follows
from the same argument as above.
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B.6 UPPER BOUND ON SYNERGY (THEOREM 4)
We begin by restating Theorem 4 from the main text:

Theorem 8. (Upper-bound on synergy, same as Theorem 4).

S ≤Hp(X1,X2) +Hp(Y ) − min
r∈∆p12,y

Hr(X1,X2, Y ) − max
q∈∆p1,2

Iq({X1,X2};Y ) = S (46)

where ∆p12,y = {r ∈∆ ∶ r(x1, x2) = p(x1, x2), r(y) = p(y)}.

Proof. Recall that this upper bound boils down to finding maxr∈∆p1,2,12
Ir({X1,X2};Y ). We have

max
r∈∆p1,2,12

Ir({X1,X2};Y ) = max
r∈∆p1,2,12

{Hr(X1,X2) +Hr(Y ) −Hr(X1,X2, Y )} (47)

=Hp(X1,X2) +Hp(Y ) − min
r∈∆p1,2,12

Hr(X1,X2, Y ), (48)

≤Hp(X1,X2) +Hp(Y ) − min
r∈∆p12,y

Hr(X1,X2, Y ) (49)

where the first two lines are by definition. The last line follows since ∆p12,y
is a superset of

r ∈∆p1,2,12 , which implies that minimizing over it would yield a a no larger objective.

In practice, we use the slightly tighter bound which maximizes over all the pairwise marginals,

max
r∈∆p1,2,12

Ir(X1,X2;Y ) ≤Hp(X1,X2) +Hp(Y ) −max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

minr∈∆p12,y
Hr(X1,X2, Y )

minr∈∆p1,x2
Hr(X1,X2, Y )

minr∈∆p2,x1
Hr(X1,X2, Y )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (50)

Estimating S using min-entropy couplings We only show how to compute
minr∈∆p12,y

Hr(X1,X2, Y ), since the other variants can be computed in the same manner
via symmetry. We recognize that by treating (X1,X2) = X as a single variable, we recover the
classic min-entropy coupling over X and Y , which is still NP-hard but admits good approxima-
tions (Cicalese & Vaccaro, 2002; Cicalese et al., 2017; Kocaoglu et al., 2017; Rossi, 2019; Compton,
2022; Compton et al., 2023).

There are many methods to estimate such a coupling, for example Kocaoglu et al. (2017) give a
greedy algorithm running in linear-logarithmic time, which was further proven by Rossi (2019);
Compton (2022) to be a 1-bit approximation of the minimum coupling 2. Another line of work was
by (Cicalese et al., 2017), which constructs an appropriate coupling and shows that it is optimal to
1-bit to a lower bound H(p(x1, x2) ∧ p(y)), where ∧ is the greatest-lower-bound operator, which
they showed in (Cicalese & Vaccaro, 2002) can be computed in linear-logarithmic time. We very
briefly describe this method; more details may be found in (Cicalese et al., 2017; Cicalese & Vaccaro,
2002) directly.

Remark A very recent paper by Compton et al. (2023) show that one can get an approximation
tighter than 1-bit. We leave the incorporation of these more advanced methods as future work.

Without loss of generality, suppose that X and Y are ordered and indexed such that p(x) and p(y)
are sorted in non-increasing order of the marginal constraints, i.e., p(X = xi) ≥ p(X = xj) for all
i ≤ j. We also assume WLOG that the supports of X and Y are of the same size n, if they are not,
then pad the smaller one with dummy values and introduce marginals that constrain these values to
never occur (and set n accordingly if needed). For simplicity, we will just refer to pi and qj for the
distributions of p(X = xi) and p(Y = yj) respectively.

Given 2 distributions p, q we say that p is majorized by q, written as p ⪯ q if and only if

k

∑
i=1

pi ≤
k

∑
i=1

qi for all k ∈ 1 . . . n (51)

2This a special case when there are 2 modalities. For more modalities, the bounds will depend on the sizes
and number of signals.
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Figure 6: Plots of actual synergy against our estimated (a) lower bound on synergy SR, (b) lower bound on
synergy SR, and (c) upper bound S. The bounds closely track true synergy, which we show via three lines of
best fit that almost exactly track true synergy: y = 1.095x, y = 1.098x, and y = x − 0.2.

As Cicalese & Vaccaro (2002) point out, there is a strong link between majorization and Schur-convex
functions; in particular, if p ⪯ q, then we have H(p) ≥H(q). Indeed, if we treat ⪰ as a partial order
and consider the set

Pn = {p = (p1, . . . , pn) ∶ pi ∈ [0,1],
n

∑
i

pi = 1, pi ≥ pi+1}

as the set of finite (ordered) distributions with support size n with non-increasing probabilities, then
we obtain a lattice with a unique greatest lower bound (∧) and least upper bound (∨). Then, Cicalese
& Vaccaro (2002) show that that p ∧ q can be computed recursively as p ∧ q = α(p, q) = (a1, . . . , an)
where

ai =min{
i

∑
j=1

pj ,
i

∑
j=1

qj} +
i−1
∑
j=1

aj−1

It was shown by Cicalese et al. (2017) that any coupling satisfying the marginal constraints given by
p and q, i.e.,

M ∈ C(p, q) =
⎧⎪⎪⎨⎪⎪⎩
M =mij ∶∑

j

mij = pi,∑
i

mij = pj
⎫⎪⎪⎬⎪⎪⎭

has entropy H(M) ≥ H(p ∧ q). In particular, this includes the min-entropy one. Since we
only need the optimal value of such a coupling and not the actual coupling per-se, we can use
plug the value of H(p ∧ q) into the minimization term (49), which yields an upper bound for
maxr∈∆p1,2,12

Ir({X1,X2};Y ), which would form an upper bound on S itself.

C EXPERIMENTAL DETAILS

C.1 VERIFYING LOWER AND UPPER BOUNDS

Synthetically generated datasets: To test our derived bounds on synthetic data, We randomly
sampled 100,000 distributions of {X1,X2, Y } to calculate their bounds and compare with their
actual synergy values. We set X1,X2, and Y as random binary values, so each distribution can be
represented as a size 8 vector of randomly sampled entries that sum up to 1.

Results: We calculated the lower bound via redundancy, lower bound via disagreement, and upper
bound of all distributions and plotted them with actual synergy value (Figure 6). We define a
distribution to be on the boundary if its lower/upper bound is within 10% difference from its actual
synergy value. We conducted the least mean-square-error fitting on these distributions close to the
boundary. We plot actual synergy against SR in Figure 6 (left), and find that it again tracks a lower
bound of synergy. In fact, we can do better and fit a linear trend y = 1.095x on the distributions along
the margin (RMSE = 0.0013).

We also plot actual synergy against computed SU in Figure 6 (middle). As expected, the lower bound
closely tracks actual synergy. Similarly, we can again fit a linear model on the points along the
boundary, obtaining y = 1.098x with a RMSE of 0.0075 (see this line in Figure 6 (middle)).

Finally, we plot actual synergy against estimated S in Figure 6 (right). Again, we find that the upper
bound consistently tracks the highest attainable synergy - we can fit a single constant y = x − 0.2 to
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obtain an RMSE of 0.0022 (see this line in Figure 6 (right)). This implies that our bound enables both
accurate comparative analysis of relative synergy across different datasets, and precise estimation of
absolute synergy.

Real-world datasets: We also use the large collection of real-world datasets in MultiBench (Liang
et al., 2021): (1) MOSI: video-based sentiment analysis (Zadeh et al., 2016), (2) MOSEI: video-
based sentiment and emotion analysis (Zadeh et al., 2018), (3) MUSTARD: video-based sarcasm
detection (Castro et al., 2019), (5) MIMIC: mortality and disease prediction from tabular patient data
and medical sensors (Johnson et al., 2016), and (6) ENRICO: classification of mobile user interfaces
and screenshots (Leiva et al., 2020). While the previous bitwise datasets with small and discrete
support yield exact lower and upper bounds, this new setting with high-dimensional continuous
modalities requires the approximation of disagreement and information-theoretic quantities: we train
unimodal neural network classifiers f̂θ(y∣x1) and f̂θ(y∣x2) to estimate disagreement, and we cluster
representations of Xi to approximate the continuous modalities by discrete distributions with finite
support to compute lower and upper bounds.

Implementation details: We first apply PCA to reduce the dimension of multimodal data. For the
test split, we use unsupervised clustering to generate 20 clusters. We obtain a clustered version of the
original dataset D = {(x1, x2, y)} as Dcluster = {(c1, c2, y)} where ci ∈ {1, . . . ,20} is the ID of the
cluster that xi belongs to. In our experiments, where Y is typically a classification task, we set the
unimodal classifiers f1 = p̂(y∣x1) and f2 = p̂(y∣x2) as the Bayes optimal classifiers for multiclass
classification tasks.

For classification, Y is the set of k-dimensional 1-hot vectors. Given two logits ŷ1, ŷ2 obtained from
x1, x2 respectively, define d(ŷ1, ŷ2) = (ŷ1 − ŷ2)2. We have that cd = 1, and ϵ1 = ∣L(f1)−L(f∗1 )∣2 = 0
and ϵ2 = ∣L(f2) − L(f∗2 )∣2 = 0 for well-trained neural network unimodal classifiers f1 and f2 for
Theorem 2. For datasets with 3 modalities, we perform the experiments separately for each of the
3 modality pairs, before taking an average over the 3 modality pairs. Extending the definitions
of redundancy, uniqueness, and synergy, as well as our derived bounds on synergy for 3 or more
modalities is an important open question for future work.

C.2 RELATIONSHIPS BETWEEN AGREEMENT, DISAGREEMENT, AND INTERACTIONS

1. The relationship between synergy and redundancy: We give some example distributions to
analyze when the lower bound based on redundancy SR is high or low. The bound is high for
distributions where X1 and X2 are independent, but Y = 1 sets X1 ≠X2 to increase their dependence
(i.e., AGREEMENT XOR distribution in Table 2b). Since X1 and X2 are independent but become
dependent given Y , I(X1;X2;Y ) is negative, and the bound is tight SR = 1 ≤ 1 = S. Visual
Question Answering 2.0 (Goyal et al., 2017) falls under this category, with S = 4.92,R = 0.79,
where the image and question are independent (some questions like ‘what is the color of the object’
or ‘how many people are there’ can be asked for many images), but the answer connects the two
modalities, resulting in dependence given the label. As expected, the estimated lower bound for
synergy: SR = 4.03 ≤ 4.92 = S.

Conversely, the bound is low for Table 2d with the probability mass distributed uniformly only when
y = x1 = x2 and 0 elsewhere. As a result, X1 is always equal to X2 (perfect dependence), and yet Y
perfectly explains away the dependence between X1 and X2 so I(X1;X2∣Y ) = 0: SR = 0 ≤ 0 = S.
Note that this is an example of perfect redundancy and zero synergy - for an example with synergy,
refer back to DISAGREEMENT XOR in Table 2a - due to disagreement there is non-zero I(X1;X2)
but the label explains some of the relationships between X1 and X2 so I(X1;X2∣Y ) < I(X1;X2):
SR = −0.3 ≤ 1 = S. A real-world example is multimodal sentiment analysis from text, video, and
audio of monologue videos on MOSEI, R = 0.26 and S = 0.04, and as expected the lower bound is
small SR = 0.01 ≤ 0.04 = S.

2. The relationship between synergy and uniqueness: To give an intuition of the relationship
between disagreement, uniqueness, and synergy, we use one illustrative example shown in Table 2a,
which we call DISAGREEMENT XOR. We observe that there is maximum disagreement between
marginals p(y∣x1) and p(y∣x2): the likelihood for y is high when y is the same bit as x1, but reversed
for x2. Given both x1 and x2: y seems to take a ‘disagreement’ XOR of the individual marginals,
i.e. p(y∣x1, x2) = p(y∣x1) XOR p(y∣x2), which indicates synergy (note that an exact XOR would
imply perfect agreement and high synergy). The actual disagreement is 0.15, synergy is 0.16, and
uniqueness is 0.02, indicating a very strong lower bound SU = 0.13 ≤ 0.16 = S. A real-world
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Table 4: We show the full list of computed lower and upper bounds on S without labeled multimodal data and
compare them to the true S assuming knowledge of the full joint distribution p: the bounds track S well on
MUSTARD and MIMIC, and also show general trends on the other datasets except ENRICO where estimating
synergy is difficult. V = video, T = text, A = audio modalities.

MOSEIV+T MOSEIV+A MOSEIA+T UR-FUNNYV+T UR-FUNNYV+A UR-FUNNYA+T

S 0.96 0.98 0.97 0.96 0.96 0.99
S 0.04 0.03 0.03 0.21 0.24 0.08
SR 0.01 0.0 0.0 0.0 0.0 0.0
SU 0.01 0.01 0.0 0.0 0.0 0.01

MOSIV,T MOSIV,A MOSIA,T MUSTARDV,T MUSTARDV,A MUSTARDA,T MIMIC ENRICO
S 0.92 0.92 0.93 0.79 0.78 0.79 0.41 2.09
S 0.31 0.28 0.14 0.49 0.31 0.51 0.02 1.02
SR 0.01 0.01 0.0 0.04 0.01 0.06 0.0 0.01
SU 0.03 0.03 0.02 0.07 0.06 0.11 −0.12 −0.55

equivalent dataset is MUSTARD for sarcasm detection from video, audio, and text (Castro et al.,
2019), where the presence of sarcasm is often due to a contradiction between what is expressed in
language and speech, so disagreement α = 0.12 is the highest out of all the video datasets, giving a
lower bound SU = 0.11 ≤ 0.44 = S.

On the contrary, the lower bound is low when all disagreement is explained by uniqueness (e.g., y = x1,
Table 2c), which results in SU = 0 ≤ 0 = S (α and U cancel each other out). A real-world equivalent is
MIMIC involving mortality and disease prediction from tabular patient data and time-series medical
sensors (Johnson et al., 2016). Disagreement is high α = 0.13 due to unique information U1 = 0.25,
so the lower bound informs us about the lack of synergy SU = −0.12 ≤ 0.02 = S.

Finally, the lower bound is loose when there is synergy without disagreement, such as AGREEMENT
XOR (y = x1 XOR x2, Table 2b) where the marginals p(y∣xi) are both uniform, but there is full
synergy: SU = 0 ≤ 1 = S. Real-world datasets that have synergy without disagreement include
UR-FUNNY where there is low disagreement in predicting humor α = 0.03, and relatively high
synergy S = 0.18, which results in a loose lower bound SU = 0.01 ≤ 0.18 = S.

Upper bound

Lower bound

Agreement XOR

Disagreement XOR

Figure 7: Comparing the qualities
of the bounds when there is agree-
ment, disagreement, and synergy.
When there is agreement and syn-
ergy, SR is tight, SU is loose, and
S is tight. When there is disagree-
ment and synergy, SR is loose, SU

is tight, and S is loose with re-
spect to true S.

3. On upper bounds for synergy: We also run experiments to
obtain estimated upper bounds on synthetic and MultiBench datasets.
The quality of the upper bound shows some intriguing relationships
with that of lower bounds. For distributions with perfect agreement
and synergy such as y = x1 XOR x2 (Table 2b), S = 1 ≥ 1 = S
is really close to true synergy, SR = 1 ≤ 1 = S is also tight, but
SU = 0 ≤ 1 = S is loose. For distributions with disagreement
and synergy (Table 2a), S = 0.52 ≥ 0.13 = S far exceeds actual
synergy, SR = −0.3 ≤ 1 = S is much lower than actual synergy, but
SU = 0.13 ≤ 0.16 = S is tight (see relationships in Figure 7).

Finally, while some upper bounds (e.g., MUSTARD, MIMIC) are
close to true S, some of the other examples in Table 1 show bounds
that are quite weak. This could be because (i) there indeed exists
high synergy distributions that match Di and DM , but these are rare
in the real world, or (ii) our approximation used in Theorem 4 is
mathematically loose. We leave these for future work.

C.3 COMPARISONS WITH OTHER INTERACTION MEASURES

We are not aware of other related work in mathematically formalizing multimodal interactions, much
less for semi-supervised data. Most of our results are new theoretical and empirical insights about
different multimodal interactions. Other valid definitions of multimodal interactions do exist, but are
known to suffer from issues regarding over- and under-estimation, and may even be negative (Griffith
& Koch, 2014).

In Table 5, we compare our estimators with other previously used measures for feature interactions
on the synthetic datasets. We implement 6 other definitions: (1) I-min can sometimes overestimate
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Table 5: Estimating multimodal interactions on synthetic generative model datasets. Ground truth total informa-
tion is computed based on an upper bound from the best multimodal test accuracy. Our estimated interactions
are consistent with ground truth interactions. We also implement 3 other definitions: I-min can sometimes
overestimate synergy and uniqueness; WMS is actually synergy minus redundancy, so can be negative and when
R & S are of equal magnitude WMS cancels out to be 0; CI can also be negative and sometimes incorrectly
concludes highest uniqueness for S-only data.

Task R-only data U1-only data U2-only data S-only data
Interaction R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S
I-MIN 0.17 0.08 0.07 0 0 0.23 0 0.06 0 0 0.25 0.08 0.07 0.03 0.04 0.17
WMS 0 0.20 0.20 −0.11 0 0.25 0.02 0.05 0 0.03 0.27 0.05 0 0.14 0.15 0.07
CI 0.34 −0.09 −0.10 0.17 0 0.23 0 0.06 0 0.01 0.25 0.07 −0.02 0.13 0.14 0.08
Ours 0.16 0 0 0.05 0 0.16 0 0.05 0 0 0.17 0.05 0.07 0 0.01 0.14
Truth 0.58 0 0 0 0 0.56 0 0 0 0 0.54 0 0 0 0 0.56

synergy and uniqueness, (2) WMS is actually synergy minus redundancy, so can be negative and when
R & S are of equal magnitude WMS cancels out to be 0, (3) CI can also be negative and sometimes
incorrectly concludes highest uniqueness for S-only data, (4) Shapley values, (5) Integrated
gradients (IG), and (6) CCA, which are based on quantifying interactions captured by a multimodal
model. Our work is fundamentally different in that interactions are properties of data before training
any models. Our estimated interactions are more consistent with ground truth interactions.

C.4 ROBUSTNESS TO IMPERFECT UNIMODAL CLASSIFIERS
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Figure 8: We study the effect of noisy unimodal predictors and disagreement by perturbing the label by various
noise levels (x-axis from noise = 0.0 to 0.8) and examining the change in estimated upper and lower bounds (left:
y-axis is true synergy - lower bound and right: y-axis is upper bound - true synergy). On 2 real-world datasets
(UR-FUNNY and MOSI) we find bounds quite robust to label noise, giving stable trends of real synergy.

We also study the effect of imperfect unimodal predictors and therefore imperfect disagreement
measurements on our derived bounds, by perturbing the label by various noise levels (from no noise
to very noisy) and examining the change in both the estimated upper and lower bounds. In Figure 8,
we find these bounds to be quite robust to imperfect unimodal classifiers, still giving close trends of
real synergy.

D ESTIMATING MULTIMODAL PERFORMANCE

Formally, we estimate performance via a combination of Feder & Merhav (1994) and Fano’s in-
equality (Fano, 1968) together yield tight bounds of performance as a function of total information
Ip({X1,X2};Y ). We restate Theorem 5 from the main text:

Theorem 9. Let Pacc(f∗M) = Ep [1 [f∗M(x1, x2) = y]] denote the accuracy of the Bayes’ optimal
multimodal model f∗M (i.e., Pacc(f∗M) ≥ Pacc(f ′M) for all f ′M ∈ FM ). We have that

2Ip({X1,X2};Y )−H(Y ) ≤ Pacc(f∗M) ≤
Ip({X1,X2};Y ) + 1

log ∣Y ∣ , (52)

where we can plug in R+U1, U2 +S ≤ Ip({X1,X2};Y ) ≤ R+U1, U2 +S to obtain lower P acc(f∗M)
and upper P acc(f∗M) bounds on optimal multimodal performance.

Proof. We use the bound from Feder & Merhav (1994), where we define the Bayes’ optimal classifier
f∗M is the one where given x1, x2 outputs y such that p(Y = y∣x1, x2) is maximized over all y ∈ Y .
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Table 6: Full list of best unimodal performance Pacc(fi), best simple fusion Pacc(fMsimple), and best complex
fusion Pacc(fMcomplex) as obtained from the most recent state-of-the-art models. We also include our estimated
bounds (P acc(f

∗

M), P acc(f
∗

M)) on optimal multimodal performance.

MOSEI UR-FUNNY MOSI
P acc(f

∗

M) 1.07 1.21 1.29
Pacc(fMcomplex) 0.88 (Hu et al., 2022) 0.77 (Hasan et al., 2021) 0.86 (Hu et al., 2022)
Pacc(fMsimple) 0.85 (Rahman et al., 2020) 0.76 (Hasan et al., 2021) 0.84 (Rahman et al., 2020)
Pacc(fi) 0.82 (Delbrouck et al., 2020) 0.74 (Hasan et al., 2021) 0.83 (Yang et al., 2020)
P acc(f

∗

M) 0.52 0.58 0.62

MUSTARD MIMIC ENRICO
P acc(f

∗

M) 1.63 1.27 0.88
Pacc(fMcomplex) 0.79 (Hasan et al., 2021) 0.92 (Liang et al., 2021) 0.51 (Liang et al., 2021)
Pacc(fMsimple) 0.74 (Pramanick et al., 2021) 0.92 (Liang et al., 2021) 0.49 (Liang et al., 2021)
Pacc(fi) 0.74 (Hasan et al., 2021) 0.92 (Liang et al., 2021) 0.47 (Liang et al., 2021)
P acc(f

∗

M) 0.78 0.76 0.48

The probability that this classifier succeeds is maxy p(Y = y∣x1, x2), which is 2−H∞(Y ∣X1=x1,X2=x2))

where −H∞(Y ∣X1,X2) is the min-entropy of the random variable Y conditioned on X1,X2. Over
all inputs (x1, x2), the probability of accuracy is

Pacc(f∗M) = Ex1,x2
[2−H∞(Y ∣X1=x1,X2=x2))] ≥ 2−Ex1,x2

[H∞(Y ∣X1=x1,X2=x2))] (53)

≥ 2−Ex1,x2
[Hp(Y ∣X1=x1,X2=x2))] ≥ 2−Hp(Y ∣X1,X2) = 2Ip({X1,X2};Y )−H(Y ). (54)

The upper bound is based on Fano’s inequality (Fano, 1968). Starting with Hp(Y ∣X1,X2) ≤
H(Perr) + Perr(log ∣Y ∣ − 1) and assuming that Y is uniform over ∣Y ∣, we rearrange the inequality to
obtain

Pacc(f∗M) ≤
H(Y ) −Hp(Y ∣X1,X2) + log 2

log ∣Y ∣ = Ip({X1,X2};Y ) + 1
log ∣Y ∣ . (55)

Finally, we summarize estimated multimodal performance as the average between estimated lower
and upper bounds on performance: P̂M = (P acc(f∗M) + P acc(f∗M))/2.

Unimodal and multimodal performance: Table 6 summarizes all final performance results for each
dataset, spanning unimodal models and simple or complex multimodal fusion paradigms, where each
type of model is represented by the most recent state-of-the-art method found in the literature.

E SELF-SUPERVISED MULTIMODAL LEARNING VIA DISAGREEMENT

Finally, we highlight an application of our analysis towards self-supervised pre-training, which is
generally performed by encouraging agreement as a pre-training signal on large-scale unlabeled
data (Radford et al., 2021; Singh et al., 2022) before supervised fine-tuning (Oord et al., 2018).
However, our results suggest that there are regimes where disagreement can lead to synergy that
may otherwise be ignored when only training for agreement. We therefore design a new family of
self-supervised learning objectives that capture disagreement on unlabeled multimodal data.

E.1 METHOD

We build upon masked prediction that is popular in self-supervised pre-training: given multimodal
data of the form (x1, x2) ∼ p(x1, x2) (e.g., x1 = caption and x2 = image), first mask out some
words (x′1) before using the remaining words (x1/x′1) to predict the masked words via learning
fθ(x′1∣x1/x′1), as well as the image x2 to predict the masked words via learning fθ(x′1∣x2) (Singh
et al., 2022; Zellers et al., 2022). In other words, maximizing agreement between fθ(x′1∣x1/x′1) and
fθ(x′1∣x2) in predicting x′1:

Lagree = d(fθ(x′1∣x1/x′1), x′1) + d(fθ(x′1∣x2), x′1) (56)

for a distance d such as cross-entropy loss for discrete word tokens. To account for disagreement, we
allow predictions on the masked tokens x′1 from two different modalities i, j to disagree by a slack
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variable λij . We modify the objective such that each term only incurs a loss penalty if each distance
d(x, y) is larger than λ as measured by a margin distance dλ(x, y) =max(0, d(x, y) − λ):

Ldisagree = Lagree + ∑
1≤i<j≤2

dλij(fθ(x′1∣xi), fθ(x′1∣xj)) (57)

These λ terms are hyperparameters, quantifying the amount of disagreement we tolerate between
each pair of modalities during cross-modal masked pretraining (λ = 0 recovers full agreement). We
show this visually in Figure 9 by applying it to masked pre-training on text, video, and audio using
MERLOT Reserve (Zellers et al., 2022), and also apply it to FLAVA (Singh et al., 2022) for images
and text experiments (see extensions to 3 modalities and details in Appendix E).

E.2 TRAINING DETAILS
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Figure 9: Masked predictions do not always agree across modalities,
as shown in this example from the Social-IQ dataset. Adding a slack
term enabling pre-training with modality disagreement yields strong
performance improvement over baselines.

We continuously pretrain and then
finetune a pretrained MERLOT Re-
serve Base model on the datasets with
a batch size of 8. The continuous pre-
training procedure is similar to Con-
trastive Span Training, with the dif-
ference that we add extra loss terms
that correspond to modality disagree-
ment. The pretraining procedure of
MERLOT Reserve minimizes a sum
of 3 component losses,

L = Ltext +Laudio +Lframe (58)

where each of the component losses
is a contrastive objective. Each of the
objectives aims to match an indepen-
dent encoding of masked tokens of the
corresponding modality with the out-
put of a Joint Encoder, which takes as input the other modalities and, possibly, unmasked tokens of
the target modality.

We modify the procedure by adding disagreement losses between modalities to the objective. This
is done by replacing the tokens of a modality with padding tokens before passing them to the Joint
Encoder, and then calculating the disagreement between representations obtained when replacing
different modalities. For example, Lframe uses a representation of video frames found by passing
audio and text into the Joint Encoder. Excluding one of the modalities and passing the other one into
the Encoder separately leads to two different representations, f̂t for prediction using only text and f̂a
for prediction using only audio. The distance between the representations is added to the loss. Thus,
the modified component loss is

Ldisagreement, frame = Lframe + dλtext, audio(f̂t, f̂a) (59)

where dλtext, audio(x,y) =max(0, d(x,y) − λtext, audio), and d(x,y) is the cosine difference:

d(x,y) = 1 − x ⋅ y
∣x∣∣y∣ (60)

Similarly, we modify the other component losses by removing one modality at a time, and obtain the
new training objective

Ldisagreement = Ldisagreement, text +Ldisagreement, audio +Ldisagreement, frame (61)

During pretraining, we train the model for 960 steps with a learning rate of 0.0001, and no
warm-up steps, and use the defaults for other hyperparameters. For every dataset, we fix two
of {λtext, audio, λvision, audio, λtext, vision} to be +∞ and change the third one, which characterizes the
most meaningful disagreement. This allows us to reduce the number of masked modalities required
from 3 to 2 and thus reduce the memory overhead of the method. For SOCIAL-IQ, we set λtext, vision
to be 0. For UR-FUNNY, we set λtext, vision to be 0.5. For MUSTARD, we set λvision, audio to be 0.
All training is done on TPU v2-8 accelerators, with continuous pretraining taking 30 minutes and
using up to 9GB of memory.
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Table 7: Allowing for disagreement during self-supervised masked pre-training yields performance improvements
on these datasets. Over 10 runs, improvements that are statistically significant are shown in bold (p < 0.05).

SOCIAL-IQ UR-FUNNY MUSTARD CARTOON TVQA
FLAVA, MERLOT Reserve 70.6 ± 0.6 80.0 ± 0.7 77.4 ± 0.8 38.6 ± 0.6 82.0
+ disagreement 71.1 ± 0.5 80.7 ± 0.5 78.1 ± 1.1 39.3 ± 0.5 83.0

Figure 10: Impact of modality disagreement on model performance. Lower t means we train with higher
disagreement between modalities: we find that disagreement between text and vision, as well as audio and
vision, are more helpful during self-supervised masking with performance improvements, whereas disagreement
between text and audio is less suitable and can even hurt performance.

E.3 SETUP

We choose four settings with natural disagreement: (1) UR-FUNNY: humor detection from 16,000
TED talk videos (Hasan et al., 2019), (2) MUSTARD: 690 videos for sarcasm detection from TV
shows (Castro et al., 2019), (3) SOCIAL IQ: 1,250 multi-party videos testing social intelligence
knowledge (Zadeh et al., 2019), (4) CARTOON: matching 704 cartoon images and captions (Hessel
et al., 2022), and (5) TVQA: a large-scale video QA dataset based on 6 popular TV shows (Friends,
The Big Bang Theory, How I Met Your Mother, House M.D., Grey’s Anatomy, Castle) with 122,000
QA pairs from 21,800 video clips (Lei et al., 2018).

E.4 RESULTS

From Table 7, allowing for disagreement yields improvements on these datasets, with those on
SOCIAL IQ, UR-FUNNY, MUSTARD being statistically significant (p-value < 0.05 over 10 runs).
By analyzing the value of λ resulting in the best validation performance through hyperparameter
search, we can analyze when disagreement helps for which datasets, datapoints, and modalities. On a
dataset level, we find that disagreement helps for video/audio and video/text, improving accuracy
by up to 0.6% but hurts for text/audio, decreasing the accuracy by up to 1%. This is in line with
intuition, where spoken text is transcribed directly from audio for these monologue and dialog videos,
but video can have vastly different information. In addition, we find more disagreement between
text/audio for SOCIAL IQ, which we believe is because it comes from natural videos while the others
are scripted TV shows with more agreement between speakers and transcripts. Finally, we also scaled
to TVQA by incorporating the disagreement objective on top of MERLOT Reserve (Zellers et al.,
2022). Unfortunately, running multiple times was not possible due to the large size of the dataset, but
our preliminary results show that adding disagreement improves performance from 82% to 83% as
compared to the original agreement-based Contrastive Span pretraining (Zellers et al., 2022). We will
continue to investigate disagreement-based SSL in large-scale settings in future work.

E.5 DATASET LEVEL ANALYSIS

We now study the impact of pairwise modality disagreement on the entire dataset on model perfor-
mance by fixing two modalities M1,M2 and a threshold t, and setting the modality pair-specific
disagreement slack terms λ according to the rule

λa,b = {
t, a =M1, b =M2

+∞, else
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Figure 11: Examples of disagreement due to uniqueness (up) and synergy (down)

This allows us to isolate dλM1,M2
while ensuring that the other disagreement loss terms are 0. By

decreasing t, we encourage higher disagreement between the target modalities. In Figure 10, we plot
the relationship between model accuracy and t for the MUStARD dataset to visualize how pairwise
disagreement between modalities impacts model performance.

E.6 DATAPOINT LEVEL ANALYSIS

Finally, we visualize the individual datapoints where modeling disagreement helps in model predic-
tions. After continuously pretraining the model, we fix a pair of modalities (text and video) and find
the disagreement in these modalities for each datapoint. We show examples of disagreement due to
uniqueness and synergy in Figure 11. The first example is from UR-FUNNY dataset: the moments
when the camera jumps from the speaker to their presentation slides are followed by an increase in
agreement since the video aligns better with the speech. In the second example on MUSTARD, we
observe disagreement between vision and text when the speaker’s face expresses the sarcastic nature
of a phrase. This changes the meaning of the phrase, which cannot be inferred from text only, and
leads to synergy.
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