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Abstract

In cancer, predicting critical events, such as death or complications of treatment,
is crucial for personalized medicine. Prediction of such events frequently ignores
dense, longitudinal data such as laboratory tests and vital signs collected as part
of standard of care. We present a foundation model for adverse event prediction,
‘Surveillance of Patient Adverse events using Routine Clinical data’ (SPARC).
SPARC outperforms models based on single-timepoint measurements as well as
previous time series architectures for predicting adverse cancer outcomes, i.e. side
effects of chemotherapy, immunotherapy and death. SPARC generalizes to external
validation datasets, excels with limited training data availability, and incorporates
non-obvious features to improve outcome prediction. Overall, SPARC provides a
generalizable and efficient solution for optimizing cancer treatment decisions.

1 Introduction

Better risk modeling can improve many aspects of cancer care. Mortality prognostication can improve
utilization of hospice services and effectiveness of ICU care [1-4]. Predicting which patients might
have side effects from cytotoxic chemotherapy or other antineoplastics can improve dosing and
supportive medication usage for patients requiring such treatments[5, |6].

Despite progress in modeling clinical outcomes from health data, lab and vital sign measurements
remain underutilized data substrates for these tasks. Prior foundation model studies have focused on
billing codes, overlooking the numerical trends captured by labs and vitals [7]. Emerging works have
trained foundation models on ICU time series [8H11], but ICU data differs from routine cancer care
in time scale and data collection methods, limiting transferability. Moreover, lab and vital tests are
central to diagnosing cancer treatment complications [12]], yet existing cancer-focused models often
ignore temporal aspects of such data, underuse advances in Al, or lack validation in cancer contexts.

We present a foundation model developed on institutional numerical time series data from 57,510
patients and 78,991,523 measurements, validated on extensive internal and external data, to accurately
estimate risks of cancer mortality and treatment complications while identifying relevant biomarkers.

2 Related works

Existing time-series models for health outcome prediction have largely leveraged billing code data or
continuous clinical measurement such as laboratory tests and vital signs.

Most billing code-based models have used diagnosis and procedure codes as features but omit the
numerical components tied to a subset of codes, such as lab measurements [[13-23]], or simplify
such measurements into quantiles or binary in-/out-of-range indicators [24} 25]. Despite empirical
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Figure 1: Overview of SPARC. Deriving clinically actionable prediction tasks from patient lab/vital
time series and treatment and clinical events (a), we build SPARC with an MT-CLM pretraining
objective to generate a finetunable, time-aware physiological state embedding (b,c)ﬂ

success, as reviewed and benchmarked in [13H15]], these models have yet to consistently outperform
supervised baselines or generalize well across hospitals.

Models that leverage continuous clinical time series data, including labs and vitals, have to-date been
focused on ICU-related scenarios and tasks. Enabled by open datasets like MIMIC and PhysioNet
[1OL[11)126], these models with novel architectures have achieved strong performance on ICU-specific
mortality, readmission, and sepsis [27H30]. However, their utility in oncologic settings is unknown.
Cancer time-series data also differs considerably from ICU data in terms of sparsity, completeness,
frequency and consistency of sampling. Cancer lab tests are sampled on frequencies that vary
from days to months, often contain many missing fields, and vary considerably in sampling rate
through the patient’s cancer journey. Recently, cancer-focused works have emerged, predicting
immunotherapy response and mortality using select single-timepoint labs, and cancer-associated
venous thromboembolism and early cancer risks using select lab time series, showing early promise
in clinical prediction [31H34]]. These trends motivate the further development of models that leverage
continuous lab and vital sign time series data for predicting cancer outcomes, particularly treatment
complications and mortality.

3 Methodology

3.1 SPARC model architecture and the MT-CLM pretraining objective

SPARC is a transformer encoder-based model [35] that constructs patient-specific embeddings,
followed by a prediction head (e.g., binary classifier) for outcome prediction (Figure[Ib). Time series
data is fed in reverse order, while SPARC handles missingness via (1) padding to mask nonexistent
time points and (2) a missingness token "-1" for the partially filled time points, prompting MLP_in
to ignore missing data. The encoder is followed by a time aggregation module calculating min, max,
and mean over time for each latent feature, which is flattened, then followed by an MLP to reduce the
3 time dimensions, maintaining numerical stability while reducing the time dimension informatively.

For each patient, the Missingness and Time-aware Causal Language Model (MT-CLM) objective
samples a random window of size m (2 < m < M), M being the patient’s maximum time series
length. To mitigate the impact of missingness, we predict only the filled portion of the m!" time point
feature values (predicted )Ac%) vs ground truth ngl)) given first m — 1 time points’ normalized feature
values and all m time stamps, minimizing:

l#pts, tps, ftrs, ltnt_ftrs, emb_ftrs: number of patients, timepoints, features, latent-, and embedding features.



62
63
64

65

66
67
68

69

70

71
72
73
74
75
76
77

78

79
80
81
82
83
84
85

86
87
88
89
90
91
92

93
94

Lyr.cm = Eim {H 1gl)ed,m %) - 1gl)ed,m ox\)

2
]
Empirically, only the time-aware CLM objective converges while MLM [36] and time-naive CLM

objectives did not. This necessitates the inclusion of time stamps as a SPARC feature. The pretrained
model is then finetuned with a binary cross entropy loss for each outcome (details: .2} [A.3).

3.2 Preprocessing and featurization

We define the ‘typical’ feature set as the most commonly prescribed tests, selected to train the
models in this work, while the ‘all’ set also includes less common tests (see [A4). Test values are
batch-corrected given available batch information, then z-score normalized before input to the model.

4 Experiments

4.1 Datasets

The model was developed and tested with a pan-cancer dataset collected up to March 15, 2023
(MSK-dev), randomly split into 11 folds, with the 1 1" held out as test set and the rest for 10-fold cross
validation (2719/52281 patients). Additional test data includes measurements from a patient cohort
accrued from March 15, 2023 to Jan. 31, 2025 (MSK-ts) for prospective validation, and the cancer
subsets of MIMIC-1V-hosp and EHRSHOT datasets for external validation [11}137]. Due to limited
cohort sizes and labels, only a subset of tasks are evaluated on external datasets. This aggregated
dataset represents the largest cancer time series dataset for modeling to-date (details in[A.4).

4.2 Baselines, experimental setups, and evaluation

Baselines and experimental setups We evaluated SPARC, SPARC-P (SPARC with MT-CLM
pretraining) against diverse baselines, including statistical and deep learning models, non-temporal
and temporal ones: random forest, XGBoost, and MLP trained on last available time point data, as
well as random forest, XGBoost, RNN, DuETT, RainDrop, SeFT trained on temporal data (equivalent
to SPARC inputs) [38-4 1} 27H29]. To ensure fairness, all benchmarked models are hyperparameter
tuned on the first fold for each task prior to training, while SPARC is hyperparameter tuned only on
the pretraining objective on the same fold (further details in[A.3).

Evaluation We designed prediction tasks tailored to cancer decision-making to optimize disease-
specific utility (Figure E}l), [54 164 [10H12) 261 14246]. Here we focus on the following oncologic tasks:
(1) 6-month mortality risk [47]] after hospital discharge, used for hospice decisions.

(2) 30-day mortality risk after ICU admission, for patient-specific evaluations of ICU effectiveness.
(3-5) Febrile neutropenia (FN), severe anemia (SA), acute kidney injury within 2 weeks, after the
start of high-risk chemotherapies (see details in A[I]).

(6) Liver toxicity (LT) within 2 weeks, after start of high-risk immunocheckpoint inhibitors (A [T).

For all evaluated outcomes (binary classification), AUROC and AUPRC scores were calculated and
compared across models, with p-values computed using a two-sided Mann-Whitney U test. We also
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Figure 2: SPARC and benchmark performances across tasks/datasets (*: p<0.05).
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evaluated whether the feature importance of SPARC models agree with literature expectations and
identified potential novel biomarkers using LIME [48]].

5 Results

SPARC-P outperformed the next-best benchmark on the internal MSK-dev test set at predicting 6-
month post-hospitalization mortality, 30-day ICU mortality, and FN, SA, and AKI following cytotoxic
chemotherapy, and performed as well as previous methods at predicting LT post-ICI treatment (Figure

Mh). To assess model generalizability, we performed zero-shot inference on prospective MSK-ts

where SPARC-P again outperformed prior methods (Figure @p, c-left). In the EHRSHOT and MIMIC-
IV-hosp, SPARC-P again outperformed prior methods, though performance declined, likely due to
differences in feature space and data distribution. In MIMIC-1V-hosp, the large cohort size enabled
partial recovery through finetuning from the pretrained SPARC model (Figure 2c, right).

5.1 Ablation studies

Model
== SPARC (titrated)
== SPARC-P (titrated)

©
o

Benefits of pretraining Pretraining may improve pre-
diction especially in data-scarce regimes. We investigated
this by training "titrated" models with a portion of the train-
ing data (Figure[3] details in[A:4). SPARC-P consistently
outperforms the directly supervised SPARC in MSK-dev
test set, demonstrating the benefits of pretraining.

o]
o

(o2}
o

Feature importance analyses Historical trajectories of
tests used to diagnose specific treatment complications,
such as low blood hemoglobin (HgB) levels for anemia, QQ & o
were important and in consistent directions according to Prediction tasks

LIME (Figure 4,[A%6). For longer-term prediction tasks Figure 3: "Titrated" SPARC model per-
(e.g. post hospital 180 day mortality), the model attends to  5rmances with or without MT-CLM pre-

more time points (A.6). We evaluated feature importance  yaining (*: p<0.05, n: train set size after
on the mortality prediction tasks which lack a priori hy-  titration. in random fold 1.

pothesized important features: across longer-term hospital
discharge and shorter-term ICU admission mortality, high BUN (Blood Urea Nitrogen) consistently
signified worse outcomes, identifying an important yet potentially overlooked outcome marker.
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Figure 4: Averaged absolute feature importance in MSK-dev test set. Darker is more important.

6 Conclusion

Motivated by the divergence between ICU and cancer time series data, we introduce SPARC,
a cancer outcome predictor that excels across clinically actionable prediction tasks and diverse
validation scenarios. SPARC pretraining enables improved performance even in circumstances with
scarce training data. SPARC predicts treatment complications using features that agree with prior
expectations, and identifies putative novel mortality markers, pending further clinical validations.

Future works include validation on more external datasets of diverse patient populations, performance
comparisons on clinically meaningful subcohorts, including cancer types and treatment groups, and
performance analyses over more fine-grained titrations and across diverse prediction time horizons.
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Table A.1 Description of prediction tasks. For treatment complication tasks, only patients taking
medications known to elevate risks of each complication (listed) are included. Note that additionally,
for treatment complication tasks, in addition to these task-specific inclusion criteria, a patient has to
have at least 3 historical and 3 future (post-cutoff) corresponding labs to be included to reduce the
risk of erroneous labeling of positive/negative patients. For each of these tasks, data is included up to
a two-week prediction horizon prior to positive symptom onset, up to treatment stop.

Prediction task

Included medications

Positive criteria

Inclusion criterion

Mortality within
180 days of hos-
pital discharge

Mortality within
30 days of ICU
admission (30D
ICU mort.)
severe anemia
(SA)

febrile neutrope-
nia (FN)

Acute kidney in-
jury (AKI)

Liver
(LT)

toxicity

pan-medication (180D hosp.
mort.)

pan-medication

carboplatin, etoposide, do-
cetaxel, doxorubicin, cis-
platin, gemcitabine
carboplatin, etoposide, do-
cetaxel, doxorubicin, cis-
platin, gemcitabine
cisplatin, ifosfamide,
methotrexate, pemetrexed,
cyclophosphamide

ipilimumab, atezolizumab,
nivolumab, pembrolizumab

Death within 180 days

Death within 30 days

HgB<=8

Neutrophil nount<1000 AND temper-
ature>=38°C

An at least 0.3mg/dl increase in Cre-
atinine within 2 days OR an at least
1.5X elevation from baseline (the pa-
tient’s average of first two Creatinine

values)
Grade 3 and above sinusoidal
obstruction syndrome (Bilirubin

>5mg/dL) OR grade 3 and above
increase in liver enzymes AST, ALT,
and ALP (>5 folds from baseline,
calculated from the patient’s average
of historical lab measurements)

Death within or last con-
tact date post 180 days
of hospital discharge (cen-
sored patients excluded)
Death within or last con-
tact date post 30 days of
ICU admission (censored
patients excluded)

No historical anemia

No historical febrile neu-
tropenia

No historical AKI

No historical liver toxicity,
with baseline of AST, ALT,
ALP tests calculated from
the maximum of 33U/L,
36U/L, 147IU/L and the
patient’s average of their
first two respective test
measurements.
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7.2 Appendix A.2

Table A.2 Features and descriptions. “Typical” features are highly prevalent as they are typically
prescribed together and performed at nearly every check-up. Others are prescribed less frequently
and at discretion, such as concerns about inflammation (immune cells), specific cancer types (cancer
antigen tests), or during intensive care (invasive blood pressure). Gender and anchoring age (see[A.4]
are also included.

Test Unit Lab panel/vitals Feature set
Gender NA Static typical, all
Anchoring age NA Static typical, all
RBC Million/mcL Complete Blood Count typical, all
MCV fL Complete Blood Count typical, all
MCH pg Complete Blood Count typical, all
MCHC g/dL Complete Blood Count typical, all
RDW % Complete Blood Count typical, all
HgB g/dL Complete Blood Count typical, all
HCT % Complete Blood Count typical, all
WBC K/mcL Complete Blood Count typical, all
Platelets K/mcL Complete Blood Count typical, all
Glucose mg/dL Comprehensive Metabolic Panel typical, all
Calcium mg/dL Comprehensive Metabolic Panel typical, all
Sodium mEq/L Comprehensive Metabolic Panel typical, all
Potassium mEqg/L Comprehensive Metabolic Panel typical, all
CO2 mEq/L Comprehensive Metabolic Panel typical, all
Creatinine mg/dL Comprehensive Metabolic Panel typical, all
Chloride mEq/L Comprehensive Metabolic Panel typical, all
BUN mg/dL Comprehensive Metabolic Panel typical, all
Albumin g/dL Comprehensive Metabolic Panel typical, all
Protein, Total g/dL Comprehensive Metabolic Panel typical, all
ALP U/L Comprehensive Metabolic Panel typical, all
ALT U/L Comprehensive Metabolic Panel typical, all
AST U/L Comprehensive Metabolic Panel typical, all
Bilirubin, Total mg/dL Comprehensive Metabolic Panel typical, all
Conj. Bilirubin mg/dL Comp. Metabolic Panel & Conj Bilirubin all
Eosinophils % Complete Blood Count (CBC), With Differential ~ all
Immature Granulocyte mg/dL Complete Blood Count (CBC), with Differential all
Leucocytes % Complete Blood Count (CBC), with Differential all
Lymphocytes % Complete Blood Count (CBC), with Differential all

Variant lymphocytes % Complete Blood Count (CBC), with Differential all
Megakaryocyte Fragment /100 WBC Complete Blood Count (CBC), with Differential all
Metamyelocytes % Complete Blood Count (CBC), with Differential all
Monocytes % Complete Blood Count (CBC), with Differential all
Myelocytes % Complete Blood Count (CBC), with Differential all
Neutrophils % Complete Blood Count (CBC), with Differential all
Nucleated RBC /100 WBC Complete Blood Count (CBC), with Differential all
Promyelocytes % Complete Blood Count (CBC), with Differential all
Basophils % Complete Blood Count (CBC), with Differential all

Blasts % Complete Blood Count (CBC), with Differential all

PSA ng/mL Cancer Antigen Test all

TSH mlIU/L Cancer Antigen Test all
Alphafetoprotein ng/mL Cancer Antigen Test all

B2M mg/L Cancer Antigen Test all

CEA ng/mL Cancer Antigen Test all

Cancer Antigen 125 U/mL Cancer Antigen Test all

Cancer Antigen 15-3 U/mL Cancer Antigen Test all

Cancer Antigen 19-9 U/mL Cancer Antigen Test all

BMI kg/m? Vitals typical, all
Systolic Blood Pressure mmHg Vitals typical, all
(BP)

Diastolic Blood Pressure  mmHg Vitals typical, all
(BP)

Invasive systolic blood mmHg Vitals all
pressure

Invasive diastolic blood mmHg Vitals all
pressure

02 % Vitals typical, all
Pulse Heart Rate bpm Vitals typical, all
Resp. rate breaths pm Vitals typical, all
Temperature °C Vitals 11 typical, all
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A.3 Appendix A.3

Further details on SPARC and benchmark implementation and training details.

Grid-search hyperparameter tuning For each of the benchmarked (non-SPARC) models for each
task, hyperparameter tuning was done using the first fold out of 10 non-heldout fold to achieve the
highest validation AUPRC. For deep learning models, a diverse range of parameters were tested to
identify the best performing combination, including learning rate, weight decay, dropout (specific
to DuETT), number of transformer encoder layers (specific to DuETT), maximum number of
time series included (specific to seFT). For SPARC, a non-task specific hyperparameter tuning is
conducted based on minimizing the first-fold validation loss calculated with the MT-CLM pretraining
reconstruction loss, where all the above-mentioned hyperparameters are tuned. For statistical
learning models (random forest and xgBoost), a grid search over hyperparameters ‘n_estimaters’ and
‘max_depth’ (and for random forest additionally ‘min_samples_split’ and ‘min_samples_leaf” is
done every time such a model is trained - no prior hyperparameter necessary.

Model implementation details For all the deep learning models, an AdamW optimizer [49]] specify-
ing the learning rate and weight decay from hyperparameter tuning experiments is used for gradient
descent, with a learning rate scheduler ReduceLROnPlateau to further smooth changes in learning
rate. Codes (unanonymized) will be provided upon request.

12
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A4 Appendix A.4

Table A.4 Datasets and descriptions. To support the sustained monitoring of treatment complication
risks and to predict the mortality risks post ICU admission, data prior to ICU admission, especially
those from long-term care (at least multiple dates) is required. Data from solely ICU stays are not
suitable for these tasks. We cleaned the following datasets to acquire the features as described in A

. Importantly, the first measurement for each lab test per unique date is included to avoid duplicates.
Dataset Institution Feature extracted # cancer patients (25, 50, 75)% # dates  # unique extracted entries

Labs: 70,666,915

MSK-dev MSKCC typical, all 57,510 (20, 41,77) vitals: 8,324,608
. Labs: 7,825,570
MSK-ts MSKCC typical, all 15,092 9, 18, 32) vitals: 924216
EHRSHOT . . Labs: 442,326
(cancer subset) Stanford Health  typical 544 (28, 58.5, 108) vitals: 204.083
MIMIC-1V-hosp Beth Israel typical 26.969 (10,24, 52) Labs: 16,035,591

(cancer subset) Deaconess MC vitals: 0 (not included)

Further details regarding the above cleaned datasets:

1. To ensure the quality of training data, each patient included in MSK-dev has to have one of each of
the 23 laboratory tests in the ‘typical’ set.

2. For the MIMIC-1V-hosp dataset, vitals are not included per official documentations [11]]. Although
occasional vitals data does exist in the data, they exist at way lower abundance compared to labs and
are not inducive to constructing the febrile neutropenia prediction task.

3. Anchoring age is the age at which each patient in the cohort is at their cohort-specific anchoring
time. For MSK-dev, MSK-ts, the patients are all subsets of the MSK-IMPACTI[50] targeted-sequencing
cohort, and thus the anchoring age is the age at the first sequencing report. For MIMIC-IV-hosp,
EHRSHOT, we used the age at the first collected lab/vital test as the anchoring age.

4. For titration experiments, %5 of the training set is used for all tasks except for the 30-day post
ICU admission mortality risk prediction task due to the limited number of training samples. For the
ICU task (2384 training samples from MSK-dev), we use % of the training set for titration.

13
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A.5 Appendix A.5

Table A.5.1 Model performance on MSK-dev test set

Model Metric 180D hosp. mortality ~ 30D ICU mortality =~ Chemo SA Chemo AKI ICILT Chemo FN
lasttp_MLP AUROC  81.1400.25 73.4600.82 7371721190 50.614+0.84  56.206£5.08  50.0000.00
SeFT AUROC  73.1152.95 61.34722.71 71.028+0.18  62.647+0.22  64.054+0.96  77.670+0.48
Raindrop AUROC  69.31420.31 62.818+4.20 65.857+2.33  56.474+0.26  60.020£1.77  74.601%1.78
RNN AUROC  86.249+0.28 72.765+1.26 882712033  68.325:0.61  74.597+2.89  79.297+1.13
lasttp_tf AUROC  72.545:0.60 66.360£1.11 77.15240.70  51.249+1.18  52.530£0.87  50.348+1.04
lasttp_xgboost AUROC  73.701x0.81 66.8141.82 76.645:0.81  56.382+1.34 55567131  50.5000.57
temporal_rf AUROC  70.727+1.49 68.170+1.13 76.495:0.71  52.440£1.00  50.435:0.69  50.600+0.77
temporal_xgboost ~ AUROC  76.770£0.65 68.6231.52 79.380+0.74  55.522+0.61  55.111x1.48  51.319x1.34
DuETT AUROC  83.693%0.14 73.8741.00 80.583:0.28  65.180:0.96  63.929+2.10  81.063%1.39
SPARC AUROC  86.956+0.20 77.087+1.12 89.85240.19  68.690+1.56  76.259+1.43  82.313+2.58
SPARC-P AUROC  87.013+0.38 77.668+1.66 89.603+0.26 68.596+1.08  75.659+1.14  83.407+1.31
lasttp_MLP AUPRC  87.2210.24 72.7970.52 62.828£14.85  23.797+0.39  18.565+5.72  4.234%0.00
SeFT AUPRC  79.4611.91 58.345+2.24 59.63740.39  34.872£0.59  22.811x1.18  24.325%1.11
Raindrop AUPRC  78.0930.24 57.885+4.28 49.979+226  28.609+0.36  18.964+1.73  17.460+1.57
RNN AUPRC  90.97920.16 71.123+2.09 80.27320.69  42.986+1.06  32.442+4.16  25.170+1.08
lasttp_rf AUPRC  75.214x0.47 61.059:+0.97 61.703£0.75  23.886£1.07  14.664x1.36  4.567+1.00
lasttp_xgboost AUPRC  76.2350.64 60.856£1.66 60.355£0.92  27.515+1.36  17.384x1.94  4.5470.36
temporal_rf AUPRC  73.690+1.07 62.220+1.14 61.108+0.81  25.488+1.00  12.073%1.13  4.7470.65
temporal_xgboost ~ AUPRC  79.845+0.47 62.566+1.43 64.387+1.10  27.404+0.67  17.807+1.87  5.8831.90
DuETT AUPRC  89.04620.12 69.5771.24 69.837+0.70  36.906+1.05  21.007+1.87  26.764+1.86
SPARC AUPRC  91.692:0.15 75.607£0.83 81.693+0.57  43.844:2.24  38.776:2.11  28.24132.42
SPARC-P AUPRC  91.793:0.23 75.5561.84 81.567+0.54  43.412+142  39.362+1.12  29.812+1.65
Table A.5.2 Model performance on MSK-ts dataset (prospective zero-shot validation)

Model Metric 180D hosp. mortality ~ 30D ICU mortality =~ Chemo SA Chemo AKI ICILT Chemo FN
lasttp_MLP AUROC  78.7800.96 67.5141.51 73.639+11.84  52.299+1.29 535124234  50.000+0.00
SeFT AUROC  70.997+1.47 57.09421.00 74.365:0.12  63.979:041  58.069x0.78  85.826=0.60
Raindrop AUROC  68.448+0.25 62.905+0.90 66.907+4.43  54397:0.50  58.184x1.10  84.589+0.18
RNN AUROC  87.369+0.10 72.808+0.77 88.01320.44  69.049:0.56  66.885+1.63  85.730+0.74
lasttp_tf AUROC  73.384+0.32 64.222:1.33 77.391£0.69  55.173:0.99  50.750£0.48  50.5751.46
lasttp_xgboost AUROC  71.8200.59 64.8081.54 78.141£0.70  57.737#1.22  51.552#0.55  50.920+0.92
temporal_rf AUROC  71.113%1.79 65.926+1.77 76.846£0.67  51.503:1.31  49.917+0.04  51.598+1.67
temporal_xgboost ~ AUROC  77.936x0.47 65.804+1.58 80.525:0.52  57.818:0.79  51.343x0.70  52.179<1.15
DuETT AUROC  83.999:0.08 72.805+1.06 83.059£0.46  60.593:1.84  61.374x1.24  86.513+0.63
SPARC AUROC  87.102+0.23 75.769+1.02 789.413£023  772.649+2.08  65.063%1.25  87.336x1.55
SPARC-P AUROC  87.1600.37 76.870£1.62 89.778+0.24  73.398:0.64  65.784x3.16  87.035:2.01
lasttp_MLP AUPRC  69.971£1.49 73.5391.87 60.409£15.09  22.106£1.40  11.480+1.89  2.696:0.00
SeFT AUPRC  53.364+1.82 61.39420.82 59.502+0.30  33.517+0.39  15.753+0.84  28.023+0.58
Raindrop AUPRC  52.758+0.40 68.095+0.63 50.571£3.38  22396:0.26  14.015x1.02  23.500£1.37
RNN AUPRC  78.709+0.26 77.6140.82 76.011:0.77  40.614x1.01  17.885£1.15  27.549+1.36
lasttp_tf AUPRC  48.976+0.40 67.650+£0.98 56.1560.60  24.140+0.82  8.647+0.33  3.181x1.03
lasttp_xgboost AUPRC  47.3160.62 67.597£1.08 57.084x0.75  25.089+1.12  8.948+0.36  3.251x0.72
temporal_rf AUPRC  46.459+1.74 68.44421.30 56.266+0.72  20.875:1.12  8.207+0.00  3.824+135
temporal_xgboost ~ AUPRC  57.334x0.60 68.344+1.17 60.529£0.69  26.001x0.95  9.362£1.00  4.945+1.36
DuETT AUPRC  73.5830.21 77.744+1.28 67.915£1.03  28389+1.97  15378+1.18  31.115%1.19
SPARC AUPRC  77.627+0.41 79.670+1.19 78.250£0.92  41.042+4.29  18.612+1.75  34.789:3.17
SPARC-P AUPRC  78.515%0.65 80.697+0.98 79.671£0.58  41.142+1.85  19.173:191  32.295+5.27
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Table A.5.3 MSK-trained model zeroshot generalization performance on EHRSHOT, MIMICIV-hosp

Model Metric 180D hosp. mort 180D hosp. mort Chemo SA Chemo AKI
EHRSHOT MIMICIV_hosp MIMICIV_hosp MIMICIV_hosp
lasttp_ MLP AUROC  65.386+2.55 66.767+1.01 68.795+9.56 50.739+1.03
SeFT AUROC 69.111+6.10 62.175+0.85 55.600+0.36 45.314+0.39
Raindrop AUROC  63.669+0.92 58.716+0.77 54.918+1.89 50.900+0.52
RNN AUROC  48.282+1.53 62.088+1.49 66.013+1.08 40.953+3.10
lasttp_rf AUROC 67.294+1.97 67.675+0.28 64.747+1.67 50.965+0.77
lasttp_xgboost AUROC  67.066+1.90 65.219+0.32 65.253+1.54 52.251+1.56
temporal _rf AUROC  69.509+1.33 67.439+1.02 72.937+0.58 51.175+0.63
temporal_xgboost AUROC  71.339+1.61 63.859+1.14 72.067+1.04 52.632+1.36
DuETT AUROC  72.803«1.10 70.587+0.40 68.776+1.46 51.766+0.84
SPARC AUROC 77.961%1.51 76.967+0.47 70.798+2.60 52.890x+1.57
SPARC-P AUROC  79.815+0.96 76.968+0.40 75.596+2.52 53.857+1.93
lasttp_ MLP AUPRC  68.371x1.99 58.695+1.34 53.615+9.95 40.140+1.14
SeFT AUPRC  67.590+5.86 46.418+0.72 37.676£0.38 36.856+0.63
Raindrop AUPRC  67.243%0.87 45.776x0.53 37.779+1.36 38.471+0.40
RNN AUPRC  51.312+1.65 46.301+1.42 48.439+1.07 33.323+1.27
lasttp_rf AUPRC  62.314+1.39 49.538+0.42 48.634+1.13 40.093+0.89
lasttp_xgboost AUPRC  61.690+1.56 46.728+0.33 48.243+1.74 40.733x1.41
temporal_rf AUPRC  63.400+1.14 48.184+1.18 54.209+0.88 40.262+0.86
temporal_xgboost AUPRC  66.475+1.65 48.704+0.74 52.239+1.27 40.702+0.92
DuETT AUPRC  73.411%1.01 60.164+0.44 52.811+2.09 40.523+1.08
SPARC AUPRC  77.107+£1.67 66.470+0.50 56.265+3.69 43.549+1.60
SPARC-P AUPRC  80.976%1.01 66.942+0.45 62.682+3.42 43.027+1.84

Table A.5.4 Finetuned model performance on EHRSHOT, MIMICIV-hosp

Model Metric 180D hosp. mort Chemo SA Chemo AKI
MIMICIV_hosp MIMICIV_hosp MIMICIV_hosp
lasttp_ MLP AUROC  68.952+0.50 60.220£12.59 49.632+0.74
SeFT AUROC  70.234+0.15 65.482+0.18 57.577+0.64
Raindrop AUROC  67.169+0.52 59.692+3.73 50.447£10.26
RNN AUROC  78.489+0.38 68.009+5.24 51.146+4.80
lasttp_rf AUROC  65.191+1.29 71.752+1.52 56.133+2.55
lasttp_xgboost AUROC  64.674+0.00 69.172+0.00 53.619+0.00
temporal_rf AUROC  67.060+2.00 72.326£1.92 56.660+3.24
temporal_xgboost AUROC  54.637+0.00 72.179+0.00 55.335+0.00
DuETT AUROC  75.546+0.65 70.790+2.74 51.882+6.48
SPARC AUROC  80.424+0.17 79.140+1.17 53.495+4.14
SPARC-P AUROC  80.960+0.18 81.097+1.38 60.881+2.31
lasttp_ MLP AUPRC  60.522+0.56 40.791£10.19 38.784+0.47
SeFT AUPRC  57.229+0.26 47.628+0.45 44.497+0.47
Raindrop AUPRC  54.068+0.51 41.327+4.30 41.742+7.91
RNN AUPRC  70.292+0.51 49.552+4.99 40.957+5.14
lasttp_rf AUPRC  46.643+2.43 51.246+2.06 42.681+1.86
lasttp_xgboost AUPRC  45.802+0.00 48.167+0.00 40.650+0.00
temporal_rf AUPRC  47.830+2.02 53.182+2.00 44.359+3.09
temporal_xgboost AUPRC  39.381+0.00 50.249+0.00 41.561+0.00
DuETT AUPRC  64.734+0.94 49.1414£3.02 42.469+5.52
SPARC AUPRC  71.467+0.28 63.087+2.20 42.895+4.42
SPARC-P AUPRC  72.585+0.35 61.690+£2.94 51.431+1.80

Notes:

1. Highest performing model per metric per task per dataset is labelled in bold and second highest
labelled in underline.

2. MSK-dev and MSK-timeshift share the same, ‘typical’ feature space, and the age feature is anchored
around first sequencing report dates for both dataset. EHRSHOT shares the majority of the “typical”
feature space, but due to its limited size (522 cancer patients with 183 non-censored patients for the
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180D hosp. mort. task), only this task is evaluated on in a zero-shot setting - a direct deployment of
the MSK-trained model.

3. MIMICIV-hosp dataset has an abundant number of patients, but does not contain the vitals data
(temperature in particular) to define Chemo FN task, nor enough patients who were recorded to
take one of the ICIs known to elevate liver toxicity risks (see A[I]for the list), and as a hospital
cohort defined by ED/ICU admission, cautions need to made about collected pre-ICU data - thus
only the 180D hosp. mort., Chemo SA, Chemo AKI tasks were evaluated in both a zeroshot (direct
deployment of MSK models) and a finetuned setting (1/3 of the data heldout for testing, 1/3 for
training and 1/3 for validation, with different initialization seeds for generality).
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71 A.6  Appendix A.6

s72  Feature importance analysis detailed results.
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Figure A.S. Feature importance analyses over time and feature dimension, averaged across 10 folds
(models) and patients in the MSK-dev dataset.
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