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Abstract

In cancer, predicting critical events, such as death or complications of treatment,1

is crucial for personalized medicine. Prediction of such events frequently ignores2

dense, longitudinal data such as laboratory tests and vital signs collected as part3

of standard of care. We present a foundation model for adverse event prediction,4

‘Surveillance of Patient Adverse events using Routine Clinical data’ (SPARC).5

SPARC outperforms models based on single-timepoint measurements as well as6

previous time series architectures for predicting adverse cancer outcomes, i.e. side7

effects of chemotherapy, immunotherapy and death. SPARC generalizes to external8

validation datasets, excels with limited training data availability, and incorporates9

non-obvious features to improve outcome prediction. Overall, SPARC provides a10

generalizable and efficient solution for optimizing cancer treatment decisions.11

1 Introduction12

Better risk modeling can improve many aspects of cancer care. Mortality prognostication can improve13

utilization of hospice services and effectiveness of ICU care [1–4]. Predicting which patients might14

have side effects from cytotoxic chemotherapy or other antineoplastics can improve dosing and15

supportive medication usage for patients requiring such treatments[5, 6].16

Despite progress in modeling clinical outcomes from health data, lab and vital sign measurements17

remain underutilized data substrates for these tasks. Prior foundation model studies have focused on18

billing codes, overlooking the numerical trends captured by labs and vitals [7]. Emerging works have19

trained foundation models on ICU time series [8–11], but ICU data differs from routine cancer care20

in time scale and data collection methods, limiting transferability. Moreover, lab and vital tests are21

central to diagnosing cancer treatment complications [12], yet existing cancer-focused models often22

ignore temporal aspects of such data, underuse advances in AI, or lack validation in cancer contexts.23

We present a foundation model developed on institutional numerical time series data from 57,51024

patients and 78,991,523 measurements, validated on extensive internal and external data, to accurately25

estimate risks of cancer mortality and treatment complications while identifying relevant biomarkers.26

2 Related works27

Existing time-series models for health outcome prediction have largely leveraged billing code data or28

continuous clinical measurement such as laboratory tests and vital signs.29

Most billing code-based models have used diagnosis and procedure codes as features but omit the30

numerical components tied to a subset of codes, such as lab measurements [13–23], or simplify31

such measurements into quantiles or binary in-/out-of-range indicators [24, 25]. Despite empirical32
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Figure 1: Overview of SPARC. Deriving clinically actionable prediction tasks from patient lab/vital
time series and treatment and clinical events (a), we build SPARC with an MT-CLM pretraining
objective to generate a finetunable, time-aware physiological state embedding (b,c).1

success, as reviewed and benchmarked in [13–15], these models have yet to consistently outperform33

supervised baselines or generalize well across hospitals.34

Models that leverage continuous clinical time series data, including labs and vitals, have to-date been35

focused on ICU-related scenarios and tasks. Enabled by open datasets like MIMIC and PhysioNet36

[10, 11, 26], these models with novel architectures have achieved strong performance on ICU-specific37

mortality, readmission, and sepsis [27–30]. However, their utility in oncologic settings is unknown.38

Cancer time-series data also differs considerably from ICU data in terms of sparsity, completeness,39

frequency and consistency of sampling. Cancer lab tests are sampled on frequencies that vary40

from days to months, often contain many missing fields, and vary considerably in sampling rate41

through the patient’s cancer journey. Recently, cancer-focused works have emerged, predicting42

immunotherapy response and mortality using select single-timepoint labs, and cancer-associated43

venous thromboembolism and early cancer risks using select lab time series, showing early promise44

in clinical prediction [31–34]. These trends motivate the further development of models that leverage45

continuous lab and vital sign time series data for predicting cancer outcomes, particularly treatment46

complications and mortality.47

3 Methodology48

3.1 SPARC model architecture and the MT-CLM pretraining objective49

SPARC is a transformer encoder-based model [35] that constructs patient-specific embeddings,50

followed by a prediction head (e.g., binary classifier) for outcome prediction (Figure 1b). Time series51

data is fed in reverse order, while SPARC handles missingness via (1) padding to mask nonexistent52

time points and (2) a missingness token "-1" for the partially filled time points, prompting MLP_in53

to ignore missing data. The encoder is followed by a time aggregation module calculating min, max,54

and mean over time for each latent feature, which is flattened, then followed by an MLP to reduce the55

3 time dimensions, maintaining numerical stability while reducing the time dimension informatively.56

For each patient, the Missingness and Time-aware Causal Language Model (MT-CLM) objective57

samples a random window of size m (2 ≤ m ≤ M ), M being the patient’s maximum time series58

length. To mitigate the impact of missingness, we predict only the filled portion of the mth time point59

feature values (predicted x̂
(i)
m vs ground truth x

(i)
m ) given first m− 1 time points’ normalized feature60

values and all m time stamps, minimizing:61

1#pts, tps, ftrs, ltnt_ftrs, emb_ftrs: number of patients, timepoints, features, latent-, and embedding features.
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LMT-CLM = Ei,m

[∥∥∥1(i)
filled,m ⊙ x̂(i)

m − 1
(i)
filled,m ⊙ x(i)

m

∥∥∥2
2

]
Empirically, only the time-aware CLM objective converges while MLM [36] and time-naive CLM62

objectives did not. This necessitates the inclusion of time stamps as a SPARC feature. The pretrained63

model is then finetuned with a binary cross entropy loss for each outcome (details: 4.2, A.3).64

3.2 Preprocessing and featurization65

We define the ‘typical’ feature set as the most commonly prescribed tests, selected to train the66

models in this work, while the ‘all’ set also includes less common tests (see A.4). Test values are67

batch-corrected given available batch information, then z-score normalized before input to the model.68

4 Experiments69

4.1 Datasets70

The model was developed and tested with a pan-cancer dataset collected up to March 15, 202371

(MSK-dev), randomly split into 11 folds, with the 11th held out as test set and the rest for 10-fold cross72

validation (2719/52281 patients). Additional test data includes measurements from a patient cohort73

accrued from March 15, 2023 to Jan. 31, 2025 (MSK-ts) for prospective validation, and the cancer74

subsets of MIMIC-IV-hosp and EHRSHOT datasets for external validation [11, 37]. Due to limited75

cohort sizes and labels, only a subset of tasks are evaluated on external datasets. This aggregated76

dataset represents the largest cancer time series dataset for modeling to-date (details in A.4).77

4.2 Baselines, experimental setups, and evaluation78

Baselines and experimental setups We evaluated SPARC, SPARC-P (SPARC with MT-CLM79

pretraining) against diverse baselines, including statistical and deep learning models, non-temporal80

and temporal ones: random forest, XGBoost, and MLP trained on last available time point data, as81

well as random forest, XGBoost, RNN, DuETT, RainDrop, SeFT trained on temporal data (equivalent82

to SPARC inputs) [38–41, 27–29]. To ensure fairness, all benchmarked models are hyperparameter83

tuned on the first fold for each task prior to training, while SPARC is hyperparameter tuned only on84

the pretraining objective on the same fold (further details in A.3).85

Evaluation We designed prediction tasks tailored to cancer decision-making to optimize disease-86

specific utility (Figure 1a), [5, 6, 10–12, 26, 42–46]. Here we focus on the following oncologic tasks:87

(1) 6-month mortality risk [47] after hospital discharge, used for hospice decisions.88

(2) 30-day mortality risk after ICU admission, for patient-specific evaluations of ICU effectiveness.89

(3-5) Febrile neutropenia (FN), severe anemia (SA), acute kidney injury within 2 weeks, after the90

start of high-risk chemotherapies (see details in A.1).91

(6) Liver toxicity (LT) within 2 weeks, after start of high-risk immunocheckpoint inhibitors (A.1).92

For all evaluated outcomes (binary classification), AUROC and AUPRC scores were calculated and93

compared across models, with p-values computed using a two-sided Mann-Whitney U test. We also94
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Figure 2: SPARC and benchmark performances across tasks/datasets (*: p<0.05).
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evaluated whether the feature importance of SPARC models agree with literature expectations and95

identified potential novel biomarkers using LIME [48].96

5 Results97

SPARC-P outperformed the next-best benchmark on the internal MSK-dev test set at predicting 6-98

month post-hospitalization mortality, 30-day ICU mortality, and FN, SA, and AKI following cytotoxic99

chemotherapy, and performed as well as previous methods at predicting LT post-ICI treatment (Figure100

4a). To assess model generalizability, we performed zero-shot inference on prospective MSK-ts101

where SPARC-P again outperformed prior methods (Figure 4b, c-left). In the EHRSHOT and MIMIC-102

IV-hosp, SPARC-P again outperformed prior methods, though performance declined, likely due to103

differences in feature space and data distribution. In MIMIC-IV-hosp, the large cohort size enabled104

partial recovery through finetuning from the pretrained SPARC model (Figure 2c, right).105

5.1 Ablation studies106
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Figure 3: "Titrated" SPARC model per-
formances with or without MT-CLM pre-
training (*: p<0.05, n: train set size after
titration, in random fold 1).

Benefits of pretraining Pretraining may improve pre-107

diction especially in data-scarce regimes. We investigated108

this by training "titrated" models with a portion of the train-109

ing data (Figure 3, details in A.4). SPARC-P consistently110

outperforms the directly supervised SPARC in MSK-dev111

test set, demonstrating the benefits of pretraining.112

Feature importance analyses Historical trajectories of113

tests used to diagnose specific treatment complications,114

such as low blood hemoglobin (HgB) levels for anemia,115

were important and in consistent directions according to116

LIME (Figure 4, A.6). For longer-term prediction tasks117

(e.g. post hospital 180 day mortality), the model attends to118

more time points (A.6). We evaluated feature importance119

on the mortality prediction tasks which lack a priori hy-120

pothesized important features: across longer-term hospital121

discharge and shorter-term ICU admission mortality, high BUN (Blood Urea Nitrogen) consistently122

signified worse outcomes, identifying an important yet potentially overlooked outcome marker.123
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6 Conclusion124

Motivated by the divergence between ICU and cancer time series data, we introduce SPARC,125

a cancer outcome predictor that excels across clinically actionable prediction tasks and diverse126

validation scenarios. SPARC pretraining enables improved performance even in circumstances with127

scarce training data. SPARC predicts treatment complications using features that agree with prior128

expectations, and identifies putative novel mortality markers, pending further clinical validations.129

Future works include validation on more external datasets of diverse patient populations, performance130

comparisons on clinically meaningful subcohorts, including cancer types and treatment groups, and131

performance analyses over more fine-grained titrations and across diverse prediction time horizons.132
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7 Appendix318

7.1 Appendix A.1319

Table A.1 Description of prediction tasks. For treatment complication tasks, only patients taking
medications known to elevate risks of each complication (listed) are included. Note that additionally,
for treatment complication tasks, in addition to these task-specific inclusion criteria, a patient has to
have at least 3 historical and 3 future (post-cutoff) corresponding labs to be included to reduce the
risk of erroneous labeling of positive/negative patients. For each of these tasks, data is included up to
a two-week prediction horizon prior to positive symptom onset, up to treatment stop.

Prediction task Included medications Positive criteria Inclusion criterion

Mortality within
180 days of hos-
pital discharge

pan-medication (180D hosp.
mort.)

Death within 180 days Death within or last con-
tact date post 180 days
of hospital discharge (cen-
sored patients excluded)

Mortality within
30 days of ICU
admission (30D
ICU mort.)

pan-medication Death within 30 days Death within or last con-
tact date post 30 days of
ICU admission (censored
patients excluded)

severe anemia
(SA)

carboplatin, etoposide, do-
cetaxel, doxorubicin, cis-
platin, gemcitabine

HgB<=8 No historical anemia

febrile neutrope-
nia (FN)

carboplatin, etoposide, do-
cetaxel, doxorubicin, cis-
platin, gemcitabine

Neutrophil nount<1000 AND temper-
ature>=38°C

No historical febrile neu-
tropenia

Acute kidney in-
jury (AKI)

cisplatin, ifosfamide,
methotrexate, pemetrexed,
cyclophosphamide

An at least 0.3mg/dl increase in Cre-
atinine within 2 days OR an at least
1.5X elevation from baseline (the pa-
tient’s average of first two Creatinine
values)

No historical AKI

Liver toxicity
(LT)

ipilimumab, atezolizumab,
nivolumab, pembrolizumab

Grade 3 and above sinusoidal
obstruction syndrome (Bilirubin
>5mg/dL) OR grade 3 and above
increase in liver enzymes AST, ALT,
and ALP (>5 folds from baseline,
calculated from the patient’s average
of historical lab measurements)

No historical liver toxicity,
with baseline of AST, ALT,
ALP tests calculated from
the maximum of 33U/L,
36U/L, 147IU/L and the
patient’s average of their
first two respective test
measurements.
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7.2 Appendix A.2320

Table A.2 Features and descriptions. “Typical" features are highly prevalent as they are typically
prescribed together and performed at nearly every check-up. Others are prescribed less frequently
and at discretion, such as concerns about inflammation (immune cells), specific cancer types (cancer
antigen tests), or during intensive care (invasive blood pressure). Gender and anchoring age (see A.4
are also included.

Test Unit Lab panel/vitals Feature set

Gender NA Static typical, all
Anchoring age NA Static typical, all
RBC Million/mcL Complete Blood Count typical, all
MCV fL Complete Blood Count typical, all
MCH pg Complete Blood Count typical, all
MCHC g/dL Complete Blood Count typical, all
RDW % Complete Blood Count typical, all
HgB g/dL Complete Blood Count typical, all
HCT % Complete Blood Count typical, all
WBC K/mcL Complete Blood Count typical, all
Platelets K/mcL Complete Blood Count typical, all
Glucose mg/dL Comprehensive Metabolic Panel typical, all
Calcium mg/dL Comprehensive Metabolic Panel typical, all
Sodium mEq/L Comprehensive Metabolic Panel typical, all
Potassium mEq/L Comprehensive Metabolic Panel typical, all
CO2 mEq/L Comprehensive Metabolic Panel typical, all
Creatinine mg/dL Comprehensive Metabolic Panel typical, all
Chloride mEq/L Comprehensive Metabolic Panel typical, all
BUN mg/dL Comprehensive Metabolic Panel typical, all
Albumin g/dL Comprehensive Metabolic Panel typical, all
Protein, Total g/dL Comprehensive Metabolic Panel typical, all
ALP U/L Comprehensive Metabolic Panel typical, all
ALT U/L Comprehensive Metabolic Panel typical, all
AST U/L Comprehensive Metabolic Panel typical, all
Bilirubin, Total mg/dL Comprehensive Metabolic Panel typical, all
Conj. Bilirubin mg/dL Comp. Metabolic Panel & Conj Bilirubin all
Eosinophils % Complete Blood Count (CBC), With Differential all
Immature Granulocyte mg/dL Complete Blood Count (CBC), with Differential all
Leucocytes % Complete Blood Count (CBC), with Differential all
Lymphocytes % Complete Blood Count (CBC), with Differential all
Variant lymphocytes % Complete Blood Count (CBC), with Differential all
Megakaryocyte Fragment /100 WBC Complete Blood Count (CBC), with Differential all
Metamyelocytes % Complete Blood Count (CBC), with Differential all
Monocytes % Complete Blood Count (CBC), with Differential all
Myelocytes % Complete Blood Count (CBC), with Differential all
Neutrophils % Complete Blood Count (CBC), with Differential all
Nucleated RBC /100 WBC Complete Blood Count (CBC), with Differential all
Promyelocytes % Complete Blood Count (CBC), with Differential all
Basophils % Complete Blood Count (CBC), with Differential all
Blasts % Complete Blood Count (CBC), with Differential all
PSA ng/mL Cancer Antigen Test all
TSH mIU/L Cancer Antigen Test all
Alphafetoprotein ng/mL Cancer Antigen Test all
B2M mg/L Cancer Antigen Test all
CEA ng/mL Cancer Antigen Test all
Cancer Antigen 125 U/mL Cancer Antigen Test all
Cancer Antigen 15-3 U/mL Cancer Antigen Test all
Cancer Antigen 19-9 U/mL Cancer Antigen Test all
BMI kg/m² Vitals typical, all
Systolic Blood Pressure
(BP)

mmHg Vitals typical, all

Diastolic Blood Pressure
(BP)

mmHg Vitals typical, all

Invasive systolic blood
pressure

mmHg Vitals all

Invasive diastolic blood
pressure

mmHg Vitals all

O2 % Vitals typical, all
Pulse Heart Rate bpm Vitals typical, all
Resp. rate breaths pm Vitals typical, all
Temperature °C Vitals typical, all11



A.3 Appendix A.3321

Further details on SPARC and benchmark implementation and training details.322

323

Grid-search hyperparameter tuning For each of the benchmarked (non-SPARC) models for each324

task, hyperparameter tuning was done using the first fold out of 10 non-heldout fold to achieve the325

highest validation AUPRC. For deep learning models, a diverse range of parameters were tested to326

identify the best performing combination, including learning rate, weight decay, dropout (specific327

to DuETT), number of transformer encoder layers (specific to DuETT), maximum number of328

time series included (specific to seFT). For SPARC, a non-task specific hyperparameter tuning is329

conducted based on minimizing the first-fold validation loss calculated with the MT-CLM pretraining330

reconstruction loss, where all the above-mentioned hyperparameters are tuned. For statistical331

learning models (random forest and xgBoost), a grid search over hyperparameters ‘n_estimaters’ and332

‘max_depth’ (and for random forest additionally ‘min_samples_split’ and ‘min_samples_leaf’ is333

done every time such a model is trained - no prior hyperparameter necessary.334

335

Model implementation details For all the deep learning models, an AdamW optimizer [49] specify-336

ing the learning rate and weight decay from hyperparameter tuning experiments is used for gradient337

descent, with a learning rate scheduler ReduceLROnPlateau to further smooth changes in learning338

rate. Codes (unanonymized) will be provided upon request.339
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A.4 Appendix A.4340

Table A.4 Datasets and descriptions. To support the sustained monitoring of treatment complication
risks and to predict the mortality risks post ICU admission, data prior to ICU admission, especially
those from long-term care (at least multiple dates) is required. Data from solely ICU stays are not
suitable for these tasks. We cleaned the following datasets to acquire the features as described in A.1

. Importantly, the first measurement for each lab test per unique date is included to avoid duplicates.
Dataset Institution Feature extracted # cancer patients (25, 50, 75)% # dates # unique extracted entries

MSK-dev MSKCC typical, all 57,510 (20, 41, 77) Labs: 70,666,915
vitals: 8,324,608

MSK-ts MSKCC typical, all 15,092 (9, 18, 32) Labs: 7,825,570
vitals: 924,216

EHRSHOT
(cancer subset) Stanford Health typical 544 (28, 58.5, 108) Labs: 442,326

vitals: 204,083
MIMIC-IV-hosp
(cancer subset)

Beth Israel
Deaconess MC typical 26,969 (10, 24, 52) Labs: 16,035,591

vitals: 0 (not included)

Further details regarding the above cleaned datasets:341

1. To ensure the quality of training data, each patient included in MSK-dev has to have one of each of342

the 23 laboratory tests in the ‘typical’ set.343

2. For the MIMIC-IV-hosp dataset, vitals are not included per official documentations [11]. Although344

occasional vitals data does exist in the data, they exist at way lower abundance compared to labs and345

are not inducive to constructing the febrile neutropenia prediction task.346

3. Anchoring age is the age at which each patient in the cohort is at their cohort-specific anchoring347

time. For MSK-dev, MSK-ts, the patients are all subsets of the MSK-IMPACT[50] targeted-sequencing348

cohort, and thus the anchoring age is the age at the first sequencing report. For MIMIC-IV-hosp,349

EHRSHOT, we used the age at the first collected lab/vital test as the anchoring age.350

4. For titration experiments, 1
125 of the training set is used for all tasks except for the 30-day post351

ICU admission mortality risk prediction task due to the limited number of training samples. For the352

ICU task (2384 training samples from MSK-dev), we use 1
25 of the training set for titration.353

354
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A.5 Appendix A.5355

Table A.5.1 Model performance on MSK-dev test set

Model Metric 180D hosp. mortality 30D ICU mortality Chemo SA Chemo AKI ICI LT Chemo FN

lasttp_MLP AUROC 81.140±0.25 73.460±0.82 73.717±11.90 50.614±0.84 56.206±5.08 50.000±0.00
SeFT AUROC 73.115±2.95 61.347±2.71 71.028±0.18 62.647±0.22 64.054±0.96 77.670±0.48
Raindrop AUROC 69.314±0.31 62.818±4.20 65.857±2.33 56.474±0.26 60.020±1.77 74.601±1.78
RNN AUROC 86.249±0.28 72.765±1.26 88.271±0.33 68.325±0.61 74.597±2.89 79.297±1.13
lasttp_rf AUROC 72.545±0.60 66.360±1.11 77.152±0.70 51.249±1.18 52.530±0.87 50.348±1.04
lasttp_xgboost AUROC 73.701±0.81 66.814±1.82 76.645±0.81 56.382±1.34 55.567±1.31 50.500±0.57
temporal_rf AUROC 70.727±1.49 68.170±1.13 76.495±0.71 52.440±1.00 50.435±0.69 50.600±0.77
temporal_xgboost AUROC 76.770±0.65 68.623±1.52 79.380±0.74 55.522±0.61 55.111±1.48 51.319±1.34
DuETT AUROC 83.693±0.14 73.874±1.00 80.583±0.28 65.180±0.96 63.929±2.10 81.063±1.39
SPARC AUROC 86.956±0.20 77.087±1.12 89.852±0.19 68.690±1.56 76.259±1.43 82.313±2.58
SPARC-P AUROC 87.013±0.38 77.668±1.66 89.603±0.26 68.596±1.08 75.659±1.14 83.407±1.31

lasttp_MLP AUPRC 87.221±0.24 72.797±0.52 62.828±14.85 23.797±0.39 18.565±5.72 4.234±0.00
SeFT AUPRC 79.461±1.91 58.345±2.24 59.637±0.39 34.872±0.59 22.811±1.18 24.325±1.11
Raindrop AUPRC 78.093±0.24 57.885±4.28 49.979±2.26 28.609±0.36 18.964±1.73 17.460±1.57
RNN AUPRC 90.979±0.16 71.123±2.09 80.273±0.69 42.986±1.06 32.442±4.16 25.170±1.08
lasttp_rf AUPRC 75.214±0.47 61.059±0.97 61.703±0.75 23.886±1.07 14.664±1.36 4.567±1.00
lasttp_xgboost AUPRC 76.235±0.64 60.856±1.66 60.355±0.92 27.515±1.36 17.384±1.94 4.547±0.36
temporal_rf AUPRC 73.690±1.07 62.220±1.14 61.108±0.81 25.488±1.00 12.073±1.13 4.747±0.65
temporal_xgboost AUPRC 79.845±0.47 62.566±1.43 64.387±1.10 27.404±0.67 17.807±1.87 5.883±1.90
DuETT AUPRC 89.046±0.12 69.577±1.24 69.837±0.70 36.906±1.05 21.007±1.87 26.764±1.86
SPARC AUPRC 91.692±0.15 75.607±0.83 81.693±0.57 43.844±2.24 38.776±2.11 28.241±2.42
SPARC-P AUPRC 91.793±0.23 75.556±1.84 81.567±0.54 43.412±1.42 39.362±1.12 29.812±1.65

Table A.5.2 Model performance on MSK-ts dataset (prospective zero-shot validation)

Model Metric 180D hosp. mortality 30D ICU mortality Chemo SA Chemo AKI ICI LT Chemo FN

lasttp_MLP AUROC 78.780±0.96 67.514±1.51 73.639±11.84 52.299±1.29 53.512±2.34 50.000±0.00
SeFT AUROC 70.997±1.47 57.094±1.00 74.365±0.12 63.979±0.41 58.069±0.78 85.826±0.60
Raindrop AUROC 68.448±0.25 62.905±0.90 66.907±4.43 54.397±0.50 58.184±1.10 84.589±0.18
RNN AUROC 87.369±0.10 72.808±0.77 88.013±0.44 69.049±0.56 66.885±1.63 85.730±0.74
lasttp_rf AUROC 73.384±0.32 64.222±1.33 77.391±0.69 55.173±0.99 50.750±0.48 50.575±1.46
lasttp_xgboost AUROC 71.820±0.59 64.808±1.54 78.141±0.70 57.737±1.22 51.552±0.55 50.920±0.92
temporal_rf AUROC 71.113±1.79 65.926±1.77 76.846±0.67 51.503±1.31 49.917±0.04 51.598±1.67
temporal_xgboost AUROC 77.936±0.47 65.804±1.58 80.525±0.52 57.818±0.79 51.343±0.70 52.179±1.15
DuETT AUROC 83.999±0.08 72.805±1.06 83.059±0.46 60.593±1.84 61.374±1.24 86.513±0.63
SPARC AUROC 87.102±0.23 75.769±1.02 789.413±0.23 772.649±2.08 65.063±1.25 87.336±1.55
SPARC-P AUROC 87.160±0.37 76.870±1.62 89.778±0.24 73.398±0.64 65.784±3.16 87.035±2.01

lasttp_MLP AUPRC 69.971±1.49 73.539±1.87 60.409±15.09 22.106±1.40 11.480±1.89 2.696±0.00
SeFT AUPRC 53.364±1.82 61.394±0.82 59.502±0.30 33.517±0.39 15.753±0.84 28.023±0.58
Raindrop AUPRC 52.758±0.40 68.095±0.63 50.571±3.38 22.396±0.26 14.015±1.02 23.500±1.37
RNN AUPRC 78.709±0.26 77.614±0.82 76.011±0.77 40.614±1.01 17.885±1.15 27.549±1.36
lasttp_rf AUPRC 48.976±0.40 67.650±0.98 56.156±0.60 24.140±0.82 8.647±0.33 3.181±1.03
lasttp_xgboost AUPRC 47.316±0.62 67.597±1.08 57.084±0.75 25.089±1.12 8.948±0.36 3.251±0.72
temporal_rf AUPRC 46.459±1.74 68.444±1.30 56.266±0.72 20.875±1.12 8.207±0.00 3.824±1.35
temporal_xgboost AUPRC 57.334±0.60 68.344±1.17 60.529±0.69 26.001±0.95 9.362±1.00 4.945±1.36
DuETT AUPRC 73.583±0.21 77.744±1.28 67.915±1.03 28.389±1.97 15.378±1.18 31.115±1.19
SPARC AUPRC 77.627±0.41 79.670±1.19 78.250±0.92 41.042±4.29 18.612±1.75 34.789±3.17
SPARC-P AUPRC 78.515±0.65 80.697±0.98 79.671±0.58 41.142±1.85 19.173±1.91 32.295±5.27
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Table A.5.3 MSK-trained model zeroshot generalization performance on EHRSHOT, MIMICIV-hosp

Model Metric 180D hosp. mort
EHRSHOT

180D hosp. mort
MIMICIV_hosp

Chemo SA
MIMICIV_hosp

Chemo AKI
MIMICIV_hosp

lasttp_MLP AUROC 65.386±2.55 66.767±1.01 68.795±9.56 50.739±1.03
SeFT AUROC 69.111±6.10 62.175±0.85 55.600±0.36 45.314±0.39
Raindrop AUROC 63.669±0.92 58.716±0.77 54.918±1.89 50.900±0.52
RNN AUROC 48.282±1.53 62.088±1.49 66.013±1.08 40.953±3.10
lasttp_rf AUROC 67.294±1.97 67.675±0.28 64.747±1.67 50.965±0.77
lasttp_xgboost AUROC 67.066±1.90 65.219±0.32 65.253±1.54 52.251±1.56
temporal_rf AUROC 69.509±1.33 67.439±1.02 72.937±0.58 51.175±0.63
temporal_xgboost AUROC 71.339±1.61 63.859±1.14 72.067±1.04 52.632±1.36
DuETT AUROC 72.803±1.10 70.587±0.40 68.776±1.46 51.766±0.84
SPARC AUROC 77.961±1.51 76.967±0.47 70.798±2.60 52.890±1.57
SPARC-P AUROC 79.815±0.96 76.968±0.40 75.596±2.52 53.857±1.93

lasttp_MLP AUPRC 68.371±1.99 58.695±1.34 53.615±9.95 40.140±1.14
SeFT AUPRC 67.590±5.86 46.418±0.72 37.676±0.38 36.856±0.63
Raindrop AUPRC 67.243±0.87 45.776±0.53 37.779±1.36 38.471±0.40
RNN AUPRC 51.312±1.65 46.301±1.42 48.439±1.07 33.323±1.27
lasttp_rf AUPRC 62.314±1.39 49.538±0.42 48.634±1.13 40.093±0.89
lasttp_xgboost AUPRC 61.690±1.56 46.728±0.33 48.243±1.74 40.733±1.41
temporal_rf AUPRC 63.400±1.14 48.184±1.18 54.209±0.88 40.262±0.86
temporal_xgboost AUPRC 66.475±1.65 48.704±0.74 52.239±1.27 40.702±0.92
DuETT AUPRC 73.411±1.01 60.164±0.44 52.811±2.09 40.523±1.08
SPARC AUPRC 77.107±1.67 66.470±0.50 56.265±3.69 43.549±1.60
SPARC-P AUPRC 80.976±1.01 66.942±0.45 62.682±3.42 43.027±1.84

Table A.5.4 Finetuned model performance on EHRSHOT, MIMICIV-hosp

Model Metric 180D hosp. mort
MIMICIV_hosp

Chemo SA
MIMICIV_hosp

Chemo AKI
MIMICIV_hosp

lasttp_MLP AUROC 68.952±0.50 60.220±12.59 49.632±0.74
SeFT AUROC 70.234±0.15 65.482±0.18 57.577±0.64
Raindrop AUROC 67.169±0.52 59.692±3.73 50.447±10.26
RNN AUROC 78.489±0.38 68.009±5.24 51.146±4.80
lasttp_rf AUROC 65.191±1.29 71.752±1.52 56.133±2.55
lasttp_xgboost AUROC 64.674±0.00 69.172±0.00 53.619±0.00
temporal_rf AUROC 67.060±2.00 72.326±1.92 56.660±3.24
temporal_xgboost AUROC 54.637±0.00 72.179±0.00 55.335±0.00
DuETT AUROC 75.546±0.65 70.790±2.74 51.882±6.48
SPARC AUROC 80.424±0.17 79.140±1.17 53.495±4.14
SPARC-P AUROC 80.960±0.18 81.097±1.38 60.881±2.31

lasttp_MLP AUPRC 60.522±0.56 40.791±10.19 38.784±0.47
SeFT AUPRC 57.229±0.26 47.628±0.45 44.497±0.47
Raindrop AUPRC 54.068±0.51 41.327±4.30 41.742±7.91
RNN AUPRC 70.292±0.51 49.552±4.99 40.957±5.14
lasttp_rf AUPRC 46.643±2.43 51.246±2.06 42.681±1.86
lasttp_xgboost AUPRC 45.802±0.00 48.167±0.00 40.650±0.00
temporal_rf AUPRC 47.830±2.02 53.182±2.00 44.359±3.09
temporal_xgboost AUPRC 39.381±0.00 50.249±0.00 41.561±0.00
DuETT AUPRC 64.734±0.94 49.141±3.02 42.469±5.52
SPARC AUPRC 71.467±0.28 63.087±2.20 42.895±4.42
SPARC-P AUPRC 72.585±0.35 61.690±2.94 51.431±1.80

Notes:356

1. Highest performing model per metric per task per dataset is labelled in bold and second highest357

labelled in underline.358

2. MSK-dev and MSK-timeshift share the same, ‘typical’ feature space, and the age feature is anchored359

around first sequencing report dates for both dataset. EHRSHOT shares the majority of the “typical"360

feature space, but due to its limited size (522 cancer patients with 183 non-censored patients for the361
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180D hosp. mort. task), only this task is evaluated on in a zero-shot setting - a direct deployment of362

the MSK-trained model.363

3. MIMICIV-hosp dataset has an abundant number of patients, but does not contain the vitals data364

(temperature in particular) to define Chemo FN task, nor enough patients who were recorded to365

take one of the ICIs known to elevate liver toxicity risks (see A.1 for the list), and as a hospital366

cohort defined by ED/ICU admission, cautions need to made about collected pre-ICU data - thus367

only the 180D hosp. mort., Chemo SA, Chemo AKI tasks were evaluated in both a zeroshot (direct368

deployment of MSK models) and a finetuned setting (1/3 of the data heldout for testing, 1/3 for369

training and 1/3 for validation, with different initialization seeds for generality).370
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A.6 Appendix A.6371

Feature importance analysis detailed results.372

-1

-5

-10

-15

-20

Ti
m

e 
Im

po
rta

nc
e

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

-1

-5

-10

-15

-20

-1

-5

-10

-15

-20

Ti
m

e 
Im

po
rta

nc
e

Ti
m

e 
Im

po
rta

nc
e

Ta
sk

: C
he

m
o 

SA
Ta

sk
: C

he
m

o 
A

K
I

Ta
sk

: I
C

I L
T

ge
nd

er

an
ch

or 
ag

e
RBC

MCV
MCH

MCHC
RDW

HgBHCT
W

BC

Plat
ele

ts

Gluc
os

e

Calc
ium

Sod
ium

Pota
ss

iumCO2

Crea
tin

ine

Chlo
rid

e
BUN

Albu
min

Prot
ein

, T
ota

l
ALP ALTAST

Bilir
ub

in,
 To

tal BMI

Sys
tol

ic 
BP

Dias
tol

ic 
BP O2

Puls
e H

rt R
ate

Res
p. 

Rate

Te
mpe

rat
ure

Typical features

17



−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

−0.02

−0.01

0.00

0.01

0.02

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

-1

-5

-10

-15

-20

-1

-5

-10

-15

-20

-1

-5

-10

-15

-20

Ti
m

e 
Im

po
rta

nc
e

Ti
m

e 
Im

po
rta

nc
e

Ti
m

e 
Im

po
rta

nc
e

Ta
sk

: C
he

m
o 

FN
Ta

sk
: 3

0D
 IC

U
 m

or
ta

lit
y

Ta
sk

: 1
80

D
 h

os
p.

 m
or

ta
lit

y

ge
nd

er

an
ch

or 
ag

e
RBC

MCV
MCH

MCHC
RDW

HgBHCT
W

BC

Plat
ele

ts

Gluc
os

e

Calc
ium

Sod
ium

Pota
ss

iumCO2

Crea
tin

ine

Chlo
rid

e
BUN

Albu
min

Prot
ein

, T
ota

l
ALP ALTAST

Bilir
ub

in,
 To

tal BMI

Sys
tol

ic 
BP

Dias
tol

ic 
BP O2

Puls
e H

rt R
ate

Res
p. 

Rate

Te
mpe

rat
ure

Typical features

Figure A.5. Feature importance analyses over time and feature dimension, averaged across 10 folds
(models) and patients in the MSK-dev dataset.
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