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Abstract

Query rewriting (QR) is an increasingly im-
portant technique for reducing user friction
in large-scale conversational Al agents. Re-
cently, the search based query rewriting sys-
tem has been proven effective and achieved
promising results. It is a multi-stage system
that consists of two components orderly: re-
trieval and ranking. Specifically, given a query,
a dual-encoder model retrieves top N rewrite
candidates. Then a Gradient Boosted Decision
Trees (GBDT) re-ranks the candidates by con-
sidering semantic and information retrieval (IR)
features. However, although there is still a de-
bate for the effectiveness of the neural ranking
model on traditional Learning-to-Rank (LTR)
problems, the neural LTR models for the QR
task have not been explored. To this end, we
first explore preliminary ranking models, in-
cluding both tree-based (e.g., LambdaMART)
and neural-based (e.g., point-wise, list-wise)
ranking models. Furthermore, we propose a
context-aware ranking approach by integrating
the dialog context information into the rank-
ing models. Experimental results demonstrate
that the proposed context-aware ranking model
outperforms the baselines significantly.

1 Introduction

Large-scale conversational Al agents such as Alexa,
Siri, and Google Assistant, are becoming increas-
ingly popular in real-world applications to assist
users in daily life. It is unavoidable that the interac-
tions involve friction. In general, there are mainly
two types of errors that result in friction. First is the
system error. Especially, Automatic Speech Recog-
nition (ASR) might misrecognize the users’ query,
and Natural Language Understanding (NLU) mis-
interprets the semantics due to ambiguity or errors
that come from the other components. For example,
the ASR can lead to a wrong recognition of "voice
room light off" instead of the user’s intended "boys
room light off". The second type is user ambiguity,

such as a user’s slip of the tongue or using abridged
language while speaking the query.

Query rewriting (QR) (Grbovic et al., 2015;
Chen et al., 2020; Yuan et al., 2021; Wang et al.,
2021) aims to seamlessly rewrite the user’s utter-
ance in order to remove the potential friction. Cur-
rently, search-based query rewriting system (Fan
et al., 2021; Cho et al., 2021) has been proven effec-
tive and widely used in practice to perform query
rewriting. In general, there are two phrases in the
search-based query rewriting system. First, given a
new user query, the system retrieves top N candi-
date rewrites from a candidate set (i.e., index) using
a siamese style encoder retrieval model. Then, a
ranking model based on Gradient Boosted Deci-
sion Trees (GBDT) re-ranks the retrievals while
considering semantic and information retrieval (IR)
features and selects the top 1 in the ranking list as
the final rewrite.

For the Learning-to-Rank (LTR) problem, pre-
vious efforts (Qin et al., 2021; Burges et al., 2005,
2006; Burges, 2010) for developing ranking models
unusually only applies to numeric features and LTR
datasets. The understanding of the effectiveness
of these models is limited in the query rewriting
scenario. Moreover, there has been a debate on the
superiority between the tree-based ranking model
and the neural ranking model (Qin et al., 2021; Li
et al., 2019; Bruch et al., 2019), making it difficult
for practitioners to choose ranking models. Last
but not least, context information has been proven
effective in boosting the model in many NLP tasks
(Wang et al., 2017; Wu et al., 2018). However,
few QR works, especially search-based approaches,
consider the dialog context information in ranking.

Motivated by these threads of thought, we first
investigate different types of ranking models in
this work. Then, we develop an advanced context-
aware ranking model that enhances the semantic
features to promote the query rewriting perfor-
mance by incorporating the dialog context. Our



contributions are two-fold. First, we propose pre-
liminary ranking model structures for QR tasks, in-
cluding tree-based and neural ranking models. The
preliminary model structures can serve as founda-
tions for building complex models for query rewrit-
ing. The proposed tree-based ranking integrates
LambdaMART (Ke et al., 2017) which is the state-
of-the-art gradient boosted decision tree model for
ranking that uses pair-wise loss. For the neural
ranking model, we explore both the list-wise rank-
ing approach and the point-wise ranking approach.
Second, we propose a context-aware neural rank-
ing model that incorporates the context informa-
tion. Experimental results demonstrate that the pro-
posed context-aware ranking model significantly
improves the performance.

2 Related Work

Query Rewriting In order to reduce users’ fric-
tion and satisfy their daily demands, seamlessly
replacing the user’s request (i.e., query rewriting)
for conversational agents has been paid more and
more attention by researchers. Fan et al. (2021)
and Cho et al. (2021) propose to leverage the
search-based model, which consists of a DSSM
based retrieval layer and a tree ranking layer, to
handle global and personalized query rewriting.
Su et al. (2019) use generation-based approaches
to tackle the coreference and omission-specific sce-
narios. Besides them, Absorbing Markov Chain
(AMC) (Ponnusamy et al., 2020) as a collabora-
tive filtering mechanism is another attempt to mine
the rephrase patterns and perform query rewriting.
Search-based QR approaches have been successful,
but past work is still stuck at using a tree-based
model without considering dialog context informa-
tion and other neural-based rankers at the ranking
layer. Our work is to explore the various powerful
ranking models and thus close this gap.

Learning to Rank Traditional Learning to rank
(LTR) approaches focus on the problem where
there are only numeric features and human ratings
available (Qin et al., 2021). Some works (Nogueira
and Cho, 2019; Cheng et al., 2016; Qin et al., 2020)
on document matching and recommendation have
leveraged neural components such as word2vec
and BERT to generate numeric representations.
Such a neural component provides advantages such
as semantic modeling of highly sparse input. In
this case, tree-based methods become less relevant
due to their limitation in handling sparse features.

The pioneering neural LTR models are RankNet
(Burges et al., 2005) and LambdaRank (Burges
et al., 2006). They apply feed-forward networks
to the dense features to calculate the scoring func-
tions and use implicit cost functions to handle the
undefined derivatives issues in the neural LTR mod-
els. Later, tree-based LTR model such as Lamb-
daMART (Burges, 2010) has proven to be more
successful for solving real-world ranking problems.
Recently, there are works exploring new model ar-
chitectures (Pang et al., 2020; Qin et al., 2020),
differentiable losses (Bruch et al., 2019), and lever-
aging more auxiliary information (Ai et al., 2018).

3 Approach

In this section, we first define the notations and
formulate the problem. Next, we propose the var-
ious ranking models for QR, including the tree-
based ranking model and neural-based ranking
model. We then describe our advanced models,
i.e., context-aware neural ranker that incorporates
the context information associated with each query.

3.1 Notations and Problem Definition

Let ¢ denote a specific query and p € P™, i.e.,
p={p }7L.1, denotes the m candidates associated
with query q. Let y € V™ be the ranking labels
corresponding to query ¢ and candidate list p. Let
D denote the an unknown but fixed joint probability
distribution of ¢, p and y. The ultimate goal of
the learning problem is to learn a ranking function
f:P™ — Y™ that can minimize the population
risk, i.e.,

R(f) = IE(q,p,y)er [ﬁ(f(q, p)’ Y)] ) (D

where / is a certain loss function associated to the
learning problem. Since the underlying distribution
of the query and the list of candidates and labels is
unknown, one cannot directly minimize the popu-
lation risk defined in (1). In practice, we are given
a set of i.i.d samples S = {q;, pi,y:} Y, ~ DV.
Thus, we can minimize the empirical risk, i.e.,

N
Rs(N) =3 Wfap)ydl, @
=1

to find an approximate minimizer.

In this work, we specifically consider the ranking
function f as a function/model that scores and sorts
the items in a list, i.e., given a query ¢ and a list
of m candidates p = {p’ }7L,, the goal is to find a
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Figure 1: A brief description of the ranking layer frame-
work.

parameterized ranking model f that returns a list of
m ranking scores, i.e., f(q, p) € R™. Note that the
list of ranking scores f(q, p) can be also obtained
in a candidate-independent way, i.e., given query
q and candidate p’ for any j € [m], the model
outputs a relevance score f(q,p’) € R.

3.2 Preliminary ranking models

The ranking model f takes query ¢, top m candi-
dates {p’ }7L, from the retrieval layer and output
m ranking scores corresponding to the m candi-
dates, i.e., f(q,p) € R™. In this work, the input
data corresponding to query ¢, candidate p’ is com-
posed of query utterance and candidate utterance.
For example, a query utterance is "play kids you
by coldplay" and the candidate utterance is "play
fix you by coldplay".

Figure 1 provides the framework of our ranking
model that mainly has three components: an en-
coder that maps utterance to neural embedding, an
information retrieval layer that generates informa-
tion retrieval (IR) features, and a ranking model
that takes neural embedding and IR features and
output ranking score. Below we introduce the de-
tails of each component, followed by the tree-based
ranking models and neural-based ranking models.

Encoder Given the input data, i.e., query utter-
ance and candidate utterance, we use the state-of-
the-art encoder, i.e., BERT (Devlin et al., 2018)
to generate neural embedding. Figure 2 (right) il-
lustrates the BERT model applied to our encoding
task. The input of the BERT encoder is a pair of
query utterance and candidate utterance. Then the
query utterance and candidate utterance is mapped
to tokens with special token [SEP] indicating the
split of query and candidate. We train the BERT
model by simply modeling the ranking as a bi-
nary classification task and minimizing a cross en-
tropy loss function which defined as follows. To
be specific, among m candidates {p] }iL, for a
given query g;, let p} be the positive candidate, let

s(qi, pg ) € (0,1] denote the relevance score, we
minimize the binary cross-entropy loss

N
> ¢ log(s(ainp!) = Y log(s(ai 7))
i=1 pl#pt

3)

Note that the ultimate goal of the BERT model
is to provide a neural embedding e € R"® (as
shown in Figure 2) that represents the query and
candidate pair. In the binary classification task,
the relevance score s(g;, pz) can be viewed as a
single layer neural network with sigmoid activation
function that takes the embedding e/ € R as
input, where the index i, j correspond to the query

and candidate pair (¢;, p}).

IR Feature Besides the embedding generated
from the BERT model, we also extract a group of
conventional IR features following Fan et al. (2021).
The features can be categorized into mainly three
types. Text features capture the text level difference
between the query and rewrite, e.g., edit distance,
BLEU score (Papineni et al., 2002). Document
features provide information at a document level
e.g., number of queries within a document, histori-
cal friction rate of the document (both rule-based
and machine-learning-based). Query-document
features carry information of the relevance of the
query for the given document. Overall, we generate
a 243-dimensional IR feature vector, i.e., rg € R243
for each query and candidate pair (g;, p{ ). Later
we concatenate the neural embedding eg and IR
feature rg and input them into the ranking model.
Specifically, we have explored the tree-based rank-
ing model, i.e., LambdaMART and neural ranking
model.

Tree-based ranking model We consider Gradi-
ent Boosted Decision Tree (GBDT) as the rank-
ing model. In contrast to the GBDT trained
with point-wise binary logistic loss in Fan et al.
(2021), we consider LambdaMATR (Wu et al.,
2010; Burges, 2010) in this work. Different from
general GBDT, during each boosting step, the loss
of LambdaMATR is dynamically adjusted based
on the ranking metric in consideration, i.e., the ab-
solute difference between the NDCG values when
two candidates s and j swap their positions in the
ranked list. LambdaMART uses a pairwise logis-
tic loss and adapts the loss by re-weighting each
item pair using such absolute difference between
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Figure 2: Structures of the tree-based ranking model (left), neural ranking model (mid), and encoder (right). For the
neural ranking model, we can jointly train and fine-tune fully connected (FC) layers with the encoder. But for the
tree-based ranking model, we can only first use a pre-trained encoder to generate neural embedding, then train the
LambdaMART separately. We specifically consider BERT encoder, where [CLS] is a special symbol added in front
of every input example, and [SEP] is a special separator token for separating query and candidate.

the NDCG when swapping the position of the can-
didate pair. Figure 2 (left) outlines the structure of
the tree-based ranking model.

There are two popular public implementations
of LambdaMART, namely AMARTgpps and
AMART RankLib -  AMART gy is more recent
than AMARTRankLib and has more advanced fea-
tures by leveraging novel data sampling and feature
bundling techniques (Ke et al., 2017). Based on
the finding in Qin et al. (2021) that \MART gpm
substantially outperforms AMARTrankLib , We im-
plement LambdaMART using the AMART g5
library in this paper.

Neural ranking model The neural ranking
model shares the same structure as presented in
Figure 1 where the ranking model is specifically
constructed by a fully connected neural network
with ReLU activation function. Figure 2 (mid)
gives the structure of the neural ranking model.
The input of this model is also the concatenation
of neural embedding e from BERT and IR feature
vector r from the information retrieval layer. We
highlight three major differences in the neural rank-
ing model compared with the tree-based ranking
model.

First, we implement the fully connected neural
network with BERT as a unified model, which al-
lows us to jointly train/fine-tune the ranking model
and BERT encoder. The parameters of BERT are
initialized using those of the pre-trained BERT as
described in the tree-based ranking model. How-
ever, it is not feasible to jointly tree the Lamb-

daMART and BERT for the tree-based ranking
model. Second, we consider different loss func-
tions for the neural ranking model, i.e., list-wise
loss and point-wise loss, different from the pair-
wise loss used in LambdaMART. Based on the loss
function, we define two types of neural ranking
models, i.e., list-wise model and point-wise model.
Specifically, the loss function of the list-wise model
is defined as follows: Given request ¢ with m can-
didates {p’ };n:l list-wise model uses loss function

Y — e ) (@ P)
t(a.{r'};) = log s Sy @

where p* is the positive candidate and f (q, P ) is
the ranking score function for request and candidate
pair (g, p’). The point-wise model uses point-wise
loss function:

t(a.{r'};) = —fjlogf (') . ©)

where f (q, P ) is the ranking score function for
request and candidate pair (g, p’). Note that the
difference between point-wise model and list-wise
model is that the point-wise model treats each query
candidate pair as independent sample in the train-
ing process. Whereas, the list-wise model consid-
ers the interplay between the candidates for each
query as the training algorithm will boost f (g, p*)
for positive candidate and penalize f (q,p’) for
negative candidates.
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Figure 3: Example of the context in a dialogue session.
In this example the query is "Play love story by Tay-
lor Sweet". The context is the interaction between the
user and agent before this query, i.e., "Who sings bad
blood?", "Taylor Swift".

4 Context-Aware Ranking Model

This section introduces the context-aware neural
ranking model. Inspired by Wang et al. (2021)
that propose to use BERT to detect the rephrase
within a multi-turn dialog context for query rewrit-
ing, we utilize the contextual information in the
dialogue interaction between the agent and users in
the ranking model. Unlike the Wang et al. (2021)
taking the whole dialog session into the model to
mine the rephrase, when we rewrite a query in
real-time, only the context before the query is avail-
able, as shown in Figure 3. In our context-aware
neural ranking model, we flatten the dialogue con-
text before the query into one sequence and ap-
pend the query to it. Then, we feed them to a
pre-trained BERT to compute the embedding for
context, query, and rewrite candidate. We introduce
two special tokens: “[USER]” and “[AGENT]”,
which are used to prefix the user query and agent
response in the contextual input, respectively. Take
the Figure 3 as an example. After processing, the
context and query are combined in the form of
“[USER] Who sings bad blood [AGENT] Taylor
Swift [USER] Play love story by Taylor Sweet.”
The context-aware neural ranking model shares the
same structure as the neural ranking model as de-
scribed in Section 3.2. In the context-aware ranking
model, we replace the query with contextual input
in the BERT encoder to generate neural embedding
as shown in Figure 2.

5 Experiments

We evaluate the proposed approaches for solving
the ranking problem in the query rewriting sys-

do the monster bash song
play the song monster bash, label: 0

Query

play the monster mash song, label: 1
Candidates | the monster mash song, label: 0

the monster bash, label: 0

play the monster bash | label: 0

Table 1: An example of the data for experiments of
preliminary ranking models.

tem. In particular, we conduct two sets of ex-
periments. First, we compare the performance
of the our preliminary ranking models, i.e., tree-
based neural ranking model, neural ranking model,
with the baseline Data Augmented Self Attentive
Latent Cross (DASALC) proposed in (Qin et al.,
2021), which gives the state-of-the-art ranking per-
formance on LTR tasks. This set of experiment
does not consider the context information. Second,
in order to validate the proposed context-aware
neural ranking model, we compare the proposed
context-aware model with the preliminary models.
We adopt the multi-model architecture and corre-
sponding index for retrieval layer described in Fan
et al. (2021) in our experiments.

5.1 Preliminary ranking models

Datasets We use the weak-labeled data similar
to Fan et al. (2021). For the retrieval phrase, from
de-identified historical interactions of a large-scale
conversational Al agent, we find two consecutive
user utterances, where the first turn was defected
and the second turn was successful by utilizing a
defect detection model Gupta et al. (2021). For
ranking, each query has 5 rewrite candidates re-
trieved from an index with FAISS search (Johnson
et al., 2017). For each query, the 5 candidates are
also labeled as positive (label = 1) and negative
(label = 0), i.e., positive means the candidate is a
correct rewrite and negative means the opposite.
For this dataset, each query has at least one posi-
tive candidate among the 5 candidates, i.e., correct
rewrite. We collect 1-month period data for training
and subsequent 1-week period data for validation
and testing. Moreover, after getting the raw test set,
we have manually identified the true labeled cases
and removed the noise. More details of this dataset
are deferred to the Appendix A.1.

Models and Baseline We evaluate the pro-
posed tree-based and neural-based ranking mod-



els and the baselines: UFS-QR (Fan et al., 2021),
DASALC (Qin et al., 2021). The DASALC model
is a ranking model that combines data augmen-
tation (DA), self-attention (SA) and Latent Cross
(LCO). For the proposed tree-based model, we im-
plement the structure described in Figure 1 (left)
with a pre-trained encoder. Since we specifically
implement LambdaMART, we refer this model as
LambdaMART. For the neural ranking model, we
consider two types of neural ranking model: 1)
Point-Wise Neural Ranking model (PWNR) with
structure outlined in Figure 1 (mid) and point-wise
loss function defined in (5); 2) List-Wise Neural
Ranking model (LWNR) with the same structure in
Figure 1 (mid), but list-wise loss function defined
in (4). Thus, we outline the models below:

* UFS-QR: GBDT-based tree ranker proposed
by Fan et al. (2021).

* DASALC: Data Augmented Self Attentive
Latent Cross ranking model (Qin et al., 2021).

* LambdaMART: Tree-based ranking model
with structure described in Figure 1 (left).

* PWNR: Neural Ranking model with structure
described in Figure 1 (mid) and point-wise
loss defined in (5).

* LWNR: Neural Ranking model with structure
described in Figure 1 (mid) and list-wise loss
defined in (4).

Training and Hyper-parameter Setting For the
fair comparison, we implement the dssm-based
retriever in Fan et al. (2021). Thus, all the rank-
ing candidates are from the same retrieval model.
Recall that we have three parts in our tree-based
model, i.e., BERT encoder, Information Retrieval
(IR) layer, and Ranking layer. Thus, we need to
setup each part to obtain the final model. For the
IR layer, we follow the setting in (Fan et al., 2021)
to generates IR features for each query and can-
didate pair. For the BERT encoder in both tree-
based ranking model (LambdaMART) and neural
ranking model (LWNR and PWNR), we use a pre-
trained BERT which is trained using the machine-
annotated training data with objective loss func-
tion defined in (3). Then, we concatenate the IR
feature from the IR layer and the neural embed-
ding from the pre-trained BERT to form a new fea-
ture vector for each sample (query and candidate
pair). Given the concatenated feature, we train the

Approach ‘ Precision %

USF-QR 94.20
DASALC 97.65
LambdaMART 98.22
PWNR 98.05
LWNR 97.13

Table 2: Precision on test set at 10% trigger rate. The
tree-based ranking model LambdaMART achieves high-
est precision among all models. The PWNR obtains
competitive result comparing with other neural ranking
models.

LambdaMART. Specifically, we implement Lamb-
daMART using the AMART g, library. For
AMART g g, following Qin et al. (2021), we do a
grid search for number of trees € {300, 500, 1000},
number of leaves € {200, 500, 1000}, and learning
rate € {0.01,0.05,0.1,0.5}.

For the PWNR and LWNR, we jointly train
the BERT encoder and the fully connected rank-
ing layer. The BERT encoder is initialized us-
ing the weight of the pre-trained BERT. Using
the pre-trained BERT encoder helps the encoder
adapts to the domain of the machine-annotated data.
We use point-wise loss defined in (5) as our loss
function in the joint training phrase for PWNR,
and list-wise loss defined in (4) for LWNR. We
use ADAM as the optimizer for training all the
models. The other hyperparameters of ADAM
are default. For the learning rate, we follow
the grid search method with linear search space
{1076, 5x 1076, 1072, 5 x 1072, 107*}. We
use a fixed budget on the number of epochs, i.e., 5
to train the model and pick the model that performs
best on the validation set.

Evaluation Metrics We use trigger rate and pre-
cision as the evaluation metrics. In practice, the
query rewriting system will not rewrite/trigger ev-
ery query from the users to consider the cases such
that the query itself may not be defected or the
candidate list does not consider the correct rewrite.
Thus, the ranking model will only trigger the query
with a certain confidence. In detail, the ranking
model obtains a list of ranking scores correspond-
ing to the list of candidates for each query. If the
largest ranking score in the list exceeds a certain
trigger threshold 7, we trigger the query and use
the top 1 candidate as the rewrite. Then the trigger
label for this query is 1. Otherwise, the trigger la-
bel is 0. The trigger rate denotes the ratio between



Approach All Has-Rewrite
TR % \ Precision % | TR % \ Precision %
USF-QR 17.67 74.91 29.26 89.89
LambdaMART | 19.13 84.80 34.38 93.93
PWNR 16.79 73.56 27.75 88.91
CANR 19.12 87.60 35.64 94.80

Table 3: Trigger rate and precision of the proposed models on the Full-Scale test set. With the help of context, the
context-aware neural model CANR obtains highest precision, even though it has a higher trigger rate.

Context

Candidate List and Label

USER: play me on bridges please

AGENT: Did you mean play the song
That Old Forth Bridge and Me?

USER: no play leon bridges

AGENT: I think you are asking for the song
That Old Forth Bridge and Me, is that right?

USER: no leon bridges (Query)

play leon bridges, label: 1

leon bridges, label: 0

play leon bridges radio no, label: 0
leon bridges live, label: 0

beyond leon bridges, label: 0

Table 4: An example of Full-Scale data.

triggered cases and all cases. The precision mea-
sures how often the triggered top 1 rewrite matches
the correct rewrite. Mathematical definition of the
trigger rate and precision is in Appendix A.1.

Experimental Results We present the results in
Table 2. We mainly focus on comparing the pre-
cision of the proposed models with the baseline.
The higher trigger rate means that more queries are
triggered by the model. For a fixed trigger rate, the
higher precision means that, among the triggered
queries the more defected-query receive the cor-
rect rewrite by the model. Note that, naturally one
can control the precision by manually adjusting
the trigger rate. For example, one can increases
the trigger threshold 7 to trigger queries with high
ranking scores, thus the precision can be increased
since the analyst only account the precision for
the queries with high ranking score (high ranking
confidence). To offer a fair comparison, we set
different values of 7 for different models where the
value 7 of each model is decided by ensuring the
model achieves the same trigger rate, i.e., 10% trig-
ger rate on the test set. The result shows that The
tree-based ranking model LambdaMART achieves
highest precision among all models. The PWNR
obtains competitive result comparing with other
neural ranking models.

5.2 Context-aware neural ranking model

In this section, we conduct experiment to eval-
uate the proposed context-aware neural ranking
model. We mainly focus on comparing the context-
aware neural ranking model with LambdaMART
and PWNR in this set of experiment since these
two models achieves the best results among the pre-
limary models and baseline. We refer the Context-
Aware Neural Ranking model to as CANR ! in this
section for simplicity.

Datasets In this set of experiment, we consider
a more realistic dataset that includes all types of
real-word queries. We refer to this dataset as Full-
Scale Data. To be specific, in addition to the type
of queries in preliminary ranking models’ experi-
ments, here we consider 1) queries that have con-
text information and 2) queries that do not have a
positive candidate retrieved by the retrieval model.
Each sample is comprised of a query, its dialogue
context between the user and the conversational
Al agent, and 5 candidates for rewrite. Table 4
provide an example of this full-scale dataset with
labels. In practice, for some queries, there is no cor-
rect rewrite among the 5 candidates provided by the
retrieval model. For those queries without correct

"'We use point-wise loss to train CANR since the point-
wise model achieves better performance than the list-wise
model as shown in Table 2.



All Has-Rewrite
Approach w/ context w/o context w/ context w/o context
TR % [ Precision | TR % [ Precision % | TR % | Precision % | TR % [ Precision %
PWNR 17.63 75.67 16.36 73.00 28.37 89.47 27.38 88.59
CANR 21.95 88.38 17.67 87.12 39.67 95.21 33.42 94.54

Table 5: Trigger rate and precision on Full-Scale test set with two subsets, i.e., w/ context and w/o context. For
both queries with context and queries without context, the context-aware model achieves higher precision even with
higher trigger rate. Thus, the context information can boost the performance of the neural model.

rewrite in the candidate list, it is hard to qualify the
performance of the ranking model due to the inher-
ent data constraint. Thus, we specifically consider a
subset of the original dataset named Has-Rewrite,
i.e., the set of queries that has at least one positive
candidate in the candidate list. For each query, the
5 candidates are also labeled as positive (label =
1) and negative (label = 0), i.e., positive means the
candidate is a correct rewrite and negative means
the opposite. We provide details about this dataset
in the Appendix A.1.

Main Result We present the results in Table 3.
We mainly focus on comparing the CANR with
LamdaMART and PWNR since LamdaMART and
PWNR outperforms the other preliminary models
in Section 5.1. To offer a fair comparison, we also
set different 7 for different models as in Section 5.1,
where the value 7 is decided by ensuring the model
achieves the same trigger rate, i.e., 10% trigger rate
on a validation set.

First, the result in Table 3 shows that the
tree-based ranking model LambdaMART achieves
higher precision compared to the neural ranking
model PWNR, even with a higher trigger rate.
Not surprisingly, the tree-based ranking model out-
performs the neural ranking model as observed
in Qin et al. (2021). However, with the help of
context information, the neural model can obtain
higher precision than the tree-based model, i.e.,
the context-aware neural ranking model achieves
the highest precision, even though it triggers more
queries. Note that the ALL Machine Annotated
data also contains the queries that do not have a cor-
rect rewrite in the candidate list, meaning that for
a fraction of triggered queries, the models always
find false positive candidates. In consequence, the
precision on the Full-Scale data is lower than the
precision in Table 2, i.e., results on a less challeng-
ing dataset. Thus, we also report the trigger rate
and precision on the Has-Rewrite subset, and the
result in 5 shows the same story holds, i.e., the
CANR model outperforms the tree-based ranking

model and neural ranking model. The above re-
sult demonstrates that the context information can
boost the model performance.

Effect of Context To further validate the observa-
tion that the neural model benefits from the context
information, we also report the results for queries
with context and queries without context. In par-
ticular, we split both ALL and Has-Rewrite into
two subsets, i.e., w/ context and w/o context. “w/o
context” denotes the current query is the first turn
of a dialogue session and thus no available dialogue
context. While “w/o context” denotes the current
query is not the first turn in a dialog. The ALL
dataset is composed of 33.78% queries with con-
text and 66.22% queries without context. The Has-
Rewrite subset is composed of 35.53% queries
with context and 64.48% context without contex.
The trigger rate and precision for the neural ranking
model and context-aware neural ranking model are
reported in Table 5. The result shows that for both
queries with context and queries without context,
the context-aware model achieves higher precision
even with a higher trigger rate. Thus, the context
information can boost the performance of the neu-
ral model. We provide case study in Appendix to
further demonstrate the advantage of context.

6 Conclusion

We investigate the ranking approaches for search-
based query rewriting system in this work. we first
propose both tree-based and neural-based ranking
models for QR. Then, we demonstrate the necessity
of incorporating dialog context information into the
Qr task and propose simple but effective context-
aware ranking approach. We evaluate the proposed
models on various data sets and demonstrate that
the proposed context-aware ranking model can sig-
nificantly improve the QR performance. Extensive
analyses reveal that context-aware ranking model
is robust on different scenarios even the query is
the first turn in a dialog and no context available in
testing stage.
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A Appendix

A.1 Additional Experimental Setup

Evaluation Metrics We use trigger rate and pre-
cision as the precision metrics. In practice, the
query rewriting system will not rewrite/trigger ev-
ery query from the users to consider the cases
such that the query itself may not be defected or
the candidate list does not consider the correct
rewrite. Thus, the ranking model will only trig-
ger the query with certain confidence. In detail, the
ranking model obtains a list of ranking scores cor-
responding to the list of candidates for each query.
If the largest ranking score in the list of ranking
scores exceeds a certain threshold, we trigger the
query and use the top 1 candidate as the rewrite.
Then the trigger label for this query is 1. For the
query with largest ranking score below a certain
threshold, the trigger label is 0. Mathematically
speaking, given N queries {¢;} and a list rank-
ing scores {s’ e 2 for each query ¢;, the trigger
. Zf\]:l I{max; s; ;>7} .
rate is N where 7 is the threshold.
For the triggered query, if the top 1 candidate is a
correct rewrite (label = 1), the prediction is correct.
Thus, the precision is ratio of the number of queries
that a model give correct prediction to the number
of triggered queries. Mathematically speaking, let
yij € {0,1} denote the label for candidate p] and
query ¢;, Vi € [N],j € [m]. The precision is
N

Datasets in Section 5.1 For training data, we use
the weak-labeled data similar to Fan et al. (2021).
For the retrieval phrase, from de-identified histori-
cal interactions of a large-scale conversational Al
agent, we find two consecutive user utterances,
where the first turn was defected and the second
turn was successful by utilizing a defect detection
model Gupta et al. (2021). For ranking, each query
has 5 rewrite candidates retrieved from an index
with FAISS search (Johnson et al., 2017). For each
query, the 5 candidates are also labeled as positive
(label = 1) and negative (label = 0), i.e., positive
means the candidate is a correct rewrite and neg-
ative means the opposite. For this dataset, each
query has at least one positive candidate among
the 5 candidates, i.e., correct rewrite. We collect
the training and test set from different time peri-
ods, i.e., 1-month data for training and subsequent

*In our experiment, we specify m = 5, i.e., 5 candidates
for each query.
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Test
3.0x

Validation
1.0x

Training
10.0x

No. queries

Table 6: Summary of the preliminary ranking models
datasets in Section 5.1. We report relative sizes with
respect to the validation set.

1-week data for testing. Moreover, after getting the
raw test set, we have manually identified the true
labeled cases and removed the noise. Number of
queries of the dataset is provided in Table 6.

Datasets in Section 5.2 In this set of experiment,
we consider a more realistic dataset that includes all
types of real-word queries. We refer to this dataset
as Full-Scale Data. To be specific, different from
the data set used in preliminary ranking models’
experiments, here we consider 1) queries that have
context information and 2) queries that do not have
a positive candidate retrieved by the retrieval model.
Each sample is comprised of a query, its dialogue
context between the user and the conversational
Al agent, and 5 candidates for rewrite. In prac-
tice, for some queries, there is no correct rewrite
among the 5 candidates provided by the retrieval
model. For those queries without correct rewrite
in the candidate list, it is hard to qualify the per-
formance of the ranking model due to the inherent
data constraint. Thus, we specifically consider a
subset of the original dataset named Has-Rewrite,
i.e., the set of queries that has correct rewrites in
the candidate list. For each query, the 5 candidates
are also labeled as positive (label = 1) and negative
(label = 0), i.e., positive means the candidate is a
correct rewrite and negative means the opposite.
We use the same way to extract and construct the
training and test sets as we described before. Table
4 provide an example of this full-scale dataset with
labels. Number of queries of the dataset is provided
in Table 7.

A.2 Case Study

To further understand the advantage of context in-
formation for the context-aware ranking model,
we provide examples of queries and the results
of CANR and PWNR in Table 8. The major differ-
ence between CANR and PWNR is that CANR has
utilized context information. In the first example,
the user asked, “do you have reminders today you”
which is defected. Then we can see that the CANR
model can pick the correct rewrite “any reminders
today”. However, the PWNR model fails to pick



Full-Scale Data

Training Validation Test
All Has-Rewrite | All | Has-Rewrite | All | Has-Rewrite
15.0x 10.0x 2.0x 1.0x 2.0x 1.0x

Table 7: Summary of the Full-Scale Data in Section 5.2. We report relative sizes with respect to the “Has-Rewrite”

validation set.

Context Retrieval candidates Model predictions
USER: kitchen lights on any reminders toda
AGENT: ok any TeTneens oty

USER: do you have reminders today

AGENT: George, here is your upcoming reminder.
George, you have one reminder today. Time to take
medications for our baby Tommy., everyday at 8:50
PM

USER: do we have notification today

AGENT: You don’t have any notifications.

USER: do you have reminders today you (query)

do you have do i have any reminders
can you reminders today
no reminders today

do you have reminders

CANR: any reminders today

PWNR: do you have reminders

USER:who sings this

AGENT: This is Fugazi .

USER: play modern music

AGENT:The station: Country Heat Radio.

USER: play america’s got talent music

AGENT: Six Ways to Bomb on America’s

Got Talent by Melinda Hill , on Amazon Music.
USER: play music from america con talent (query)

music from america’s got talent

play music by america
play imagine from america’s got talent
play music from america

play american’s got talent music

CANR: music from america’s got talent

PWNR: play music from America

Table 8: Case study of comparing the context-aware neural ranking model CANR with PWNR. The correct
rewrite (positive candidate) is underlined. The CANR can pick the correct rewrite since it incorporates the context

information in the ranking.

up the correct rewrite. The important information
“today” is missed by PWNR model. Similarly, in
the second example, PWNR model has missed the
information “got talent” in the rewrite. For both
cases, we can see that that important information,
i.e., “today” and “got talent”, has appeared many
times in the queries’ context, which explains the
good performance of the context-aware model.
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