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Abstract

Query rewriting (QR) is an increasingly im-001
portant technique for reducing user friction002
in large-scale conversational AI agents. Re-003
cently, the search based query rewriting sys-004
tem has been proven effective and achieved005
promising results. It is a multi-stage system006
that consists of two components orderly: re-007
trieval and ranking. Specifically, given a query,008
a dual-encoder model retrieves top N rewrite009
candidates. Then a Gradient Boosted Decision010
Trees (GBDT) re-ranks the candidates by con-011
sidering semantic and information retrieval (IR)012
features. However, although there is still a de-013
bate for the effectiveness of the neural ranking014
model on traditional Learning-to-Rank (LTR)015
problems, the neural LTR models for the QR016
task have not been explored. To this end, we017
first explore preliminary ranking models, in-018
cluding both tree-based (e.g., LambdaMART)019
and neural-based (e.g., point-wise, list-wise)020
ranking models. Furthermore, we propose a021
context-aware ranking approach by integrating022
the dialog context information into the rank-023
ing models. Experimental results demonstrate024
that the proposed context-aware ranking model025
outperforms the baselines significantly.026

1 Introduction027

Large-scale conversational AI agents such as Alexa,028

Siri, and Google Assistant, are becoming increas-029

ingly popular in real-world applications to assist030

users in daily life. It is unavoidable that the interac-031

tions involve friction. In general, there are mainly032

two types of errors that result in friction. First is the033

system error. Especially, Automatic Speech Recog-034

nition (ASR) might misrecognize the users’ query,035

and Natural Language Understanding (NLU) mis-036

interprets the semantics due to ambiguity or errors037

that come from the other components. For example,038

the ASR can lead to a wrong recognition of "voice039

room light off" instead of the user’s intended "boys040

room light off". The second type is user ambiguity,041

such as a user’s slip of the tongue or using abridged 042

language while speaking the query. 043

Query rewriting (QR) (Grbovic et al., 2015; 044

Chen et al., 2020; Yuan et al., 2021; Wang et al., 045

2021) aims to seamlessly rewrite the user’s utter- 046

ance in order to remove the potential friction. Cur- 047

rently, search-based query rewriting system (Fan 048

et al., 2021; Cho et al., 2021) has been proven effec- 049

tive and widely used in practice to perform query 050

rewriting. In general, there are two phrases in the 051

search-based query rewriting system. First, given a 052

new user query, the system retrieves top N candi- 053

date rewrites from a candidate set (i.e., index) using 054

a siamese style encoder retrieval model. Then, a 055

ranking model based on Gradient Boosted Deci- 056

sion Trees (GBDT) re-ranks the retrievals while 057

considering semantic and information retrieval (IR) 058

features and selects the top 1 in the ranking list as 059

the final rewrite. 060

For the Learning-to-Rank (LTR) problem, pre- 061

vious efforts (Qin et al., 2021; Burges et al., 2005, 062

2006; Burges, 2010) for developing ranking models 063

unusually only applies to numeric features and LTR 064

datasets. The understanding of the effectiveness 065

of these models is limited in the query rewriting 066

scenario. Moreover, there has been a debate on the 067

superiority between the tree-based ranking model 068

and the neural ranking model (Qin et al., 2021; Li 069

et al., 2019; Bruch et al., 2019), making it difficult 070

for practitioners to choose ranking models. Last 071

but not least, context information has been proven 072

effective in boosting the model in many NLP tasks 073

(Wang et al., 2017; Wu et al., 2018). However, 074

few QR works, especially search-based approaches, 075

consider the dialog context information in ranking. 076

Motivated by these threads of thought, we first 077

investigate different types of ranking models in 078

this work. Then, we develop an advanced context- 079

aware ranking model that enhances the semantic 080

features to promote the query rewriting perfor- 081

mance by incorporating the dialog context. Our 082
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contributions are two-fold. First, we propose pre-083

liminary ranking model structures for QR tasks, in-084

cluding tree-based and neural ranking models. The085

preliminary model structures can serve as founda-086

tions for building complex models for query rewrit-087

ing. The proposed tree-based ranking integrates088

LambdaMART (Ke et al., 2017) which is the state-089

of-the-art gradient boosted decision tree model for090

ranking that uses pair-wise loss. For the neural091

ranking model, we explore both the list-wise rank-092

ing approach and the point-wise ranking approach.093

Second, we propose a context-aware neural rank-094

ing model that incorporates the context informa-095

tion. Experimental results demonstrate that the pro-096

posed context-aware ranking model significantly097

improves the performance.098

2 Related Work099

Query Rewriting In order to reduce users’ fric-100

tion and satisfy their daily demands, seamlessly101

replacing the user’s request (i.e., query rewriting)102

for conversational agents has been paid more and103

more attention by researchers. Fan et al. (2021)104

and Cho et al. (2021) propose to leverage the105

search-based model, which consists of a DSSM106

based retrieval layer and a tree ranking layer, to107

handle global and personalized query rewriting.108

Su et al. (2019) use generation-based approaches109

to tackle the coreference and omission-specific sce-110

narios. Besides them, Absorbing Markov Chain111

(AMC) (Ponnusamy et al., 2020) as a collabora-112

tive filtering mechanism is another attempt to mine113

the rephrase patterns and perform query rewriting.114

Search-based QR approaches have been successful,115

but past work is still stuck at using a tree-based116

model without considering dialog context informa-117

tion and other neural-based rankers at the ranking118

layer. Our work is to explore the various powerful119

ranking models and thus close this gap.120

Learning to Rank Traditional Learning to rank121

(LTR) approaches focus on the problem where122

there are only numeric features and human ratings123

available (Qin et al., 2021). Some works (Nogueira124

and Cho, 2019; Cheng et al., 2016; Qin et al., 2020)125

on document matching and recommendation have126

leveraged neural components such as word2vec127

and BERT to generate numeric representations.128

Such a neural component provides advantages such129

as semantic modeling of highly sparse input. In130

this case, tree-based methods become less relevant131

due to their limitation in handling sparse features.132

The pioneering neural LTR models are RankNet 133

(Burges et al., 2005) and LambdaRank (Burges 134

et al., 2006). They apply feed-forward networks 135

to the dense features to calculate the scoring func- 136

tions and use implicit cost functions to handle the 137

undefined derivatives issues in the neural LTR mod- 138

els. Later, tree-based LTR model such as Lamb- 139

daMART (Burges, 2010) has proven to be more 140

successful for solving real-world ranking problems. 141

Recently, there are works exploring new model ar- 142

chitectures (Pang et al., 2020; Qin et al., 2020), 143

differentiable losses (Bruch et al., 2019), and lever- 144

aging more auxiliary information (Ai et al., 2018). 145

3 Approach 146

In this section, we first define the notations and 147

formulate the problem. Next, we propose the var- 148

ious ranking models for QR, including the tree- 149

based ranking model and neural-based ranking 150

model. We then describe our advanced models, 151

i.e., context-aware neural ranker that incorporates 152

the context information associated with each query. 153

3.1 Notations and Problem Definition 154

Let q denote a specific query and p ∈ Pm, i.e., 155

p = {pj}mj=1, denotes the m candidates associated 156

with query q. Let y ∈ Ym be the ranking labels 157

corresponding to query q and candidate list p. Let 158

D denote the an unknown but fixed joint probability 159

distribution of q, p and y. The ultimate goal of 160

the learning problem is to learn a ranking function 161

f : Pm → Ym that can minimize the population 162

risk, i.e., 163

R(f) = E(q,p,y)∼D [ℓ(f(q,p),y)] , (1) 164

where ℓ is a certain loss function associated to the 165

learning problem. Since the underlying distribution 166

of the query and the list of candidates and labels is 167

unknown, one cannot directly minimize the popu- 168

lation risk defined in (1). In practice, we are given 169

a set of i.i.d samples S = {qi,pi,yi}Ni=1 ∼ DN . 170

Thus, we can minimize the empirical risk, i.e., 171

RS(f) =
1

N

N∑
i=1

[ℓ(f(qi,pi),yi)] , (2) 172

to find an approximate minimizer. 173

In this work, we specifically consider the ranking 174

function f as a function/model that scores and sorts 175

the items in a list, i.e., given a query q and a list 176

of m candidates p = {pj}mj=1, the goal is to find a 177
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Figure 1: A brief description of the ranking layer frame-
work.

parameterized ranking model f that returns a list of178

m ranking scores, i.e., f(q,p) ∈ Rm. Note that the179

list of ranking scores f(q,p) can be also obtained180

in a candidate-independent way, i.e., given query181

q and candidate pj for any j ∈ [m], the model182

outputs a relevance score f(q, pj) ∈ R.183

3.2 Preliminary ranking models184

The ranking model f takes query q, top m candi-185

dates {pj}mj=1 from the retrieval layer and output186

m ranking scores corresponding to the m candi-187

dates, i.e., f(q,p) ∈ Rm. In this work, the input188

data corresponding to query q, candidate pj is com-189

posed of query utterance and candidate utterance.190

For example, a query utterance is "play kids you191

by coldplay" and the candidate utterance is "play192

fix you by coldplay".193

Figure 1 provides the framework of our ranking194

model that mainly has three components: an en-195

coder that maps utterance to neural embedding, an196

information retrieval layer that generates informa-197

tion retrieval (IR) features, and a ranking model198

that takes neural embedding and IR features and199

output ranking score. Below we introduce the de-200

tails of each component, followed by the tree-based201

ranking models and neural-based ranking models.202

Encoder Given the input data, i.e., query utter-203

ance and candidate utterance, we use the state-of-204

the-art encoder, i.e., BERT (Devlin et al., 2018)205

to generate neural embedding. Figure 2 (right) il-206

lustrates the BERT model applied to our encoding207

task. The input of the BERT encoder is a pair of208

query utterance and candidate utterance. Then the209

query utterance and candidate utterance is mapped210

to tokens with special token [SEP] indicating the211

split of query and candidate. We train the BERT212

model by simply modeling the ranking as a bi-213

nary classification task and minimizing a cross en-214

tropy loss function which defined as follows. To215

be specific, among m candidates {pji}mj=1 for a216

given query qi, let p⋆i be the positive candidate, let217

s(qi, p
j
i ) ∈ (0, 1] denote the relevance score, we 218

minimize the binary cross-entropy loss 219

N∑
i=1

log(s(qi, p
⋆
i ))−

∑
pji ̸=p⋆i

log(s(qi, p
j
i ))

 .

(3)

220

Note that the ultimate goal of the BERT model 221

is to provide a neural embedding e ∈ R768 (as 222

shown in Figure 2) that represents the query and 223

candidate pair. In the binary classification task, 224

the relevance score s(qi, p
j
i ) can be viewed as a 225

single layer neural network with sigmoid activation 226

function that takes the embedding eji ∈ R768 as 227

input, where the index i, j correspond to the query 228

and candidate pair (qi, p
j
i ). 229

IR Feature Besides the embedding generated 230

from the BERT model, we also extract a group of 231

conventional IR features following Fan et al. (2021). 232

The features can be categorized into mainly three 233

types. Text features capture the text level difference 234

between the query and rewrite, e.g., edit distance, 235

BLEU score (Papineni et al., 2002). Document 236

features provide information at a document level 237

e.g., number of queries within a document, histori- 238

cal friction rate of the document (both rule-based 239

and machine-learning-based). Query-document 240

features carry information of the relevance of the 241

query for the given document. Overall, we generate 242

a 243-dimensional IR feature vector, i.e., rji ∈ R243 243

for each query and candidate pair (qi, p
j
i ). Later 244

we concatenate the neural embedding eji and IR 245

feature rji and input them into the ranking model. 246

Specifically, we have explored the tree-based rank- 247

ing model, i.e., LambdaMART and neural ranking 248

model. 249

Tree-based ranking model We consider Gradi- 250

ent Boosted Decision Tree (GBDT) as the rank- 251

ing model. In contrast to the GBDT trained 252

with point-wise binary logistic loss in Fan et al. 253

(2021), we consider LambdaMATR (Wu et al., 254

2010; Burges, 2010) in this work. Different from 255

general GBDT, during each boosting step, the loss 256

of LambdaMATR is dynamically adjusted based 257

on the ranking metric in consideration, i.e., the ab- 258

solute difference between the NDCG values when 259

two candidates s and j swap their positions in the 260

ranked list. LambdaMART uses a pairwise logis- 261

tic loss and adapts the loss by re-weighting each 262

item pair using such absolute difference between 263

3



Figure 2: Structures of the tree-based ranking model (left), neural ranking model (mid), and encoder (right). For the
neural ranking model, we can jointly train and fine-tune fully connected (FC) layers with the encoder. But for the
tree-based ranking model, we can only first use a pre-trained encoder to generate neural embedding, then train the
LambdaMART separately. We specifically consider BERT encoder, where [CLS] is a special symbol added in front
of every input example, and [SEP] is a special separator token for separating query and candidate.

the NDCG when swapping the position of the can-264

didate pair. Figure 2 (left) outlines the structure of265

the tree-based ranking model.266

There are two popular public implementations267

of LambdaMART, namely λMARTGBM and268

λMARTRankLib . λMARTGBM is more recent269

than λMARTRankLib and has more advanced fea-270

tures by leveraging novel data sampling and feature271

bundling techniques (Ke et al., 2017). Based on272

the finding in Qin et al. (2021) that λMARTGBM273

substantially outperforms λMARTRankLib , we im-274

plement LambdaMART using the λMARTGBM275

library in this paper.276

Neural ranking model The neural ranking277

model shares the same structure as presented in278

Figure 1 where the ranking model is specifically279

constructed by a fully connected neural network280

with ReLU activation function. Figure 2 (mid)281

gives the structure of the neural ranking model.282

The input of this model is also the concatenation283

of neural embedding e from BERT and IR feature284

vector r from the information retrieval layer. We285

highlight three major differences in the neural rank-286

ing model compared with the tree-based ranking287

model.288

First, we implement the fully connected neural289

network with BERT as a unified model, which al-290

lows us to jointly train/fine-tune the ranking model291

and BERT encoder. The parameters of BERT are292

initialized using those of the pre-trained BERT as293

described in the tree-based ranking model. How-294

ever, it is not feasible to jointly tree the Lamb-295

daMART and BERT for the tree-based ranking 296

model. Second, we consider different loss func- 297

tions for the neural ranking model, i.e., list-wise 298

loss and point-wise loss, different from the pair- 299

wise loss used in LambdaMART. Based on the loss 300

function, we define two types of neural ranking 301

models, i.e., list-wise model and point-wise model. 302

Specifically, the loss function of the list-wise model 303

is defined as follows: Given request q with m can- 304

didates
{
pj
}m

j=1
, list-wise model uses loss function 305

ℓ
(
q,
{
pj
}
j

)
= − log

f (q, p⋆)∑m
j=1 f (q, pj)

, (4) 306

where p⋆ is the positive candidate and f
(
q, pj

)
is 307

the ranking score function for request and candidate 308

pair (q, pj). The point-wise model uses point-wise 309

loss function: 310

ℓ
(
q,
{
pj
}
j

)
= −

m∑
j=1

log f
(
q, pj

)
, (5) 311

where f
(
q, pj

)
is the ranking score function for 312

request and candidate pair (q, pj). Note that the 313

difference between point-wise model and list-wise 314

model is that the point-wise model treats each query 315

candidate pair as independent sample in the train- 316

ing process. Whereas, the list-wise model consid- 317

ers the interplay between the candidates for each 318

query as the training algorithm will boost f (q, p⋆) 319

for positive candidate and penalize f
(
q, pj

)
for 320

negative candidates. 321
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Figure 3: Example of the context in a dialogue session.
In this example the query is "Play love story by Tay-
lor Sweet". The context is the interaction between the
user and agent before this query, i.e., "Who sings bad
blood?", "Taylor Swift".

4 Context-Aware Ranking Model322

This section introduces the context-aware neural323

ranking model. Inspired by Wang et al. (2021)324

that propose to use BERT to detect the rephrase325

within a multi-turn dialog context for query rewrit-326

ing, we utilize the contextual information in the327

dialogue interaction between the agent and users in328

the ranking model. Unlike the Wang et al. (2021)329

taking the whole dialog session into the model to330

mine the rephrase, when we rewrite a query in331

real-time, only the context before the query is avail-332

able, as shown in Figure 3. In our context-aware333

neural ranking model, we flatten the dialogue con-334

text before the query into one sequence and ap-335

pend the query to it. Then, we feed them to a336

pre-trained BERT to compute the embedding for337

context, query, and rewrite candidate. We introduce338

two special tokens: “[USER]” and “[AGENT]”,339

which are used to prefix the user query and agent340

response in the contextual input, respectively. Take341

the Figure 3 as an example. After processing, the342

context and query are combined in the form of343

“[USER] Who sings bad blood [AGENT] Taylor344

Swift [USER] Play love story by Taylor Sweet.”345

The context-aware neural ranking model shares the346

same structure as the neural ranking model as de-347

scribed in Section 3.2. In the context-aware ranking348

model, we replace the query with contextual input349

in the BERT encoder to generate neural embedding350

as shown in Figure 2.351

5 Experiments352

We evaluate the proposed approaches for solving353

the ranking problem in the query rewriting sys-354

Query do the monster bash song

Candidates

play the song monster bash, label: 0

play the monster mash song, label: 1

the monster mash song, label: 0

the monster bash, label: 0

play the monster bash | label: 0

Table 1: An example of the data for experiments of
preliminary ranking models.

tem. In particular, we conduct two sets of ex- 355

periments. First, we compare the performance 356

of the our preliminary ranking models, i.e., tree- 357

based neural ranking model, neural ranking model, 358

with the baseline Data Augmented Self Attentive 359

Latent Cross (DASALC) proposed in (Qin et al., 360

2021), which gives the state-of-the-art ranking per- 361

formance on LTR tasks. This set of experiment 362

does not consider the context information. Second, 363

in order to validate the proposed context-aware 364

neural ranking model, we compare the proposed 365

context-aware model with the preliminary models. 366

We adopt the multi-model architecture and corre- 367

sponding index for retrieval layer described in Fan 368

et al. (2021) in our experiments. 369

5.1 Preliminary ranking models 370

Datasets We use the weak-labeled data similar 371

to Fan et al. (2021). For the retrieval phrase, from 372

de-identified historical interactions of a large-scale 373

conversational AI agent, we find two consecutive 374

user utterances, where the first turn was defected 375

and the second turn was successful by utilizing a 376

defect detection model Gupta et al. (2021). For 377

ranking, each query has 5 rewrite candidates re- 378

trieved from an index with FAISS search (Johnson 379

et al., 2017). For each query, the 5 candidates are 380

also labeled as positive (label = 1) and negative 381

(label = 0), i.e., positive means the candidate is a 382

correct rewrite and negative means the opposite. 383

For this dataset, each query has at least one posi- 384

tive candidate among the 5 candidates, i.e., correct 385

rewrite. We collect 1-month period data for training 386

and subsequent 1-week period data for validation 387

and testing. Moreover, after getting the raw test set, 388

we have manually identified the true labeled cases 389

and removed the noise. More details of this dataset 390

are deferred to the Appendix A.1. 391

Models and Baseline We evaluate the pro- 392

posed tree-based and neural-based ranking mod- 393
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els and the baselines: UFS-QR (Fan et al., 2021),394

DASALC (Qin et al., 2021). The DASALC model395

is a ranking model that combines data augmen-396

tation (DA), self-attention (SA) and Latent Cross397

(LC). For the proposed tree-based model, we im-398

plement the structure described in Figure 1 (left)399

with a pre-trained encoder. Since we specifically400

implement LambdaMART, we refer this model as401

LambdaMART. For the neural ranking model, we402

consider two types of neural ranking model: 1)403

Point-Wise Neural Ranking model (PWNR) with404

structure outlined in Figure 1 (mid) and point-wise405

loss function defined in (5); 2) List-Wise Neural406

Ranking model (LWNR) with the same structure in407

Figure 1 (mid), but list-wise loss function defined408

in (4). Thus, we outline the models below:409

• UFS-QR: GBDT-based tree ranker proposed410

by Fan et al. (2021).411

• DASALC: Data Augmented Self Attentive412

Latent Cross ranking model (Qin et al., 2021).413

• LambdaMART: Tree-based ranking model414

with structure described in Figure 1 (left).415

• PWNR: Neural Ranking model with structure416

described in Figure 1 (mid) and point-wise417

loss defined in (5).418

• LWNR: Neural Ranking model with structure419

described in Figure 1 (mid) and list-wise loss420

defined in (4).421

Training and Hyper-parameter Setting For the422

fair comparison, we implement the dssm-based423

retriever in Fan et al. (2021). Thus, all the rank-424

ing candidates are from the same retrieval model.425

Recall that we have three parts in our tree-based426

model, i.e., BERT encoder, Information Retrieval427

(IR) layer, and Ranking layer. Thus, we need to428

setup each part to obtain the final model. For the429

IR layer, we follow the setting in (Fan et al., 2021)430

to generates IR features for each query and can-431

didate pair. For the BERT encoder in both tree-432

based ranking model (LambdaMART) and neural433

ranking model (LWNR and PWNR), we use a pre-434

trained BERT which is trained using the machine-435

annotated training data with objective loss func-436

tion defined in (3). Then, we concatenate the IR437

feature from the IR layer and the neural embed-438

ding from the pre-trained BERT to form a new fea-439

ture vector for each sample (query and candidate440

pair). Given the concatenated feature, we train the441

Approach Precision %
USF-QR 94.20
DASALC 97.65

LambdaMART 98.22
PWNR 98.05
LWNR 97.13

Table 2: Precision on test set at 10% trigger rate. The
tree-based ranking model LambdaMART achieves high-
est precision among all models. The PWNR obtains
competitive result comparing with other neural ranking
models.

LambdaMART. Specifically, we implement Lamb- 442

daMART using the λMARTGBM library. For 443

λMARTGBM , following Qin et al. (2021), we do a 444

grid search for number of trees ∈ {300, 500, 1000}, 445

number of leaves ∈ {200, 500, 1000}, and learning 446

rate ∈ {0.01, 0.05, 0.1, 0.5}. 447

For the PWNR and LWNR, we jointly train 448

the BERT encoder and the fully connected rank- 449

ing layer. The BERT encoder is initialized us- 450

ing the weight of the pre-trained BERT. Using 451

the pre-trained BERT encoder helps the encoder 452

adapts to the domain of the machine-annotated data. 453

We use point-wise loss defined in (5) as our loss 454

function in the joint training phrase for PWNR, 455

and list-wise loss defined in (4) for LWNR. We 456

use ADAM as the optimizer for training all the 457

models. The other hyperparameters of ADAM 458

are default. For the learning rate, we follow 459

the grid search method with linear search space 460

{ 10−6, 5 × 10−6, 10−5, 5 × 10−5, 10−4}. We 461

use a fixed budget on the number of epochs, i.e., 5 462

to train the model and pick the model that performs 463

best on the validation set. 464

Evaluation Metrics We use trigger rate and pre- 465

cision as the evaluation metrics. In practice, the 466

query rewriting system will not rewrite/trigger ev- 467

ery query from the users to consider the cases such 468

that the query itself may not be defected or the 469

candidate list does not consider the correct rewrite. 470

Thus, the ranking model will only trigger the query 471

with a certain confidence. In detail, the ranking 472

model obtains a list of ranking scores correspond- 473

ing to the list of candidates for each query. If the 474

largest ranking score in the list exceeds a certain 475

trigger threshold τ , we trigger the query and use 476

the top 1 candidate as the rewrite. Then the trigger 477

label for this query is 1. Otherwise, the trigger la- 478

bel is 0. The trigger rate denotes the ratio between 479
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Approach
All Has-Rewrite

TR % Precision % TR % Precision %
USF-QR 17.67 74.91 29.26 89.89

LambdaMART 19.13 84.80 34.38 93.93
PWNR 16.79 73.56 27.75 88.91
CANR 19.12 87.60 35.64 94.80

Table 3: Trigger rate and precision of the proposed models on the Full-Scale test set. With the help of context, the
context-aware neural model CANR obtains highest precision, even though it has a higher trigger rate.

Context Candidate List and Label
USER: play me on bridges please

AGENT: Did you mean play the song
That Old Forth Bridge and Me?

USER: no play leon bridges

AGENT: I think you are asking for the song
That Old Forth Bridge and Me, is that right?

USER: no leon bridges (Query)

play leon bridges, label: 1

leon bridges, label: 0

play leon bridges radio no, label: 0

leon bridges live, label: 0

beyond leon bridges, label: 0

Table 4: An example of Full-Scale data.

triggered cases and all cases. The precision mea-480

sures how often the triggered top 1 rewrite matches481

the correct rewrite. Mathematical definition of the482

trigger rate and precision is in Appendix A.1.483

Experimental Results We present the results in484

Table 2. We mainly focus on comparing the pre-485

cision of the proposed models with the baseline.486

The higher trigger rate means that more queries are487

triggered by the model. For a fixed trigger rate, the488

higher precision means that, among the triggered489

queries the more defected-query receive the cor-490

rect rewrite by the model. Note that, naturally one491

can control the precision by manually adjusting492

the trigger rate. For example, one can increases493

the trigger threshold τ to trigger queries with high494

ranking scores, thus the precision can be increased495

since the analyst only account the precision for496

the queries with high ranking score (high ranking497

confidence). To offer a fair comparison, we set498

different values of τ for different models where the499

value τ of each model is decided by ensuring the500

model achieves the same trigger rate, i.e., 10% trig-501

ger rate on the test set. The result shows that The502

tree-based ranking model LambdaMART achieves503

highest precision among all models. The PWNR504

obtains competitive result comparing with other505

neural ranking models.506

5.2 Context-aware neural ranking model 507

In this section, we conduct experiment to eval- 508

uate the proposed context-aware neural ranking 509

model. We mainly focus on comparing the context- 510

aware neural ranking model with LambdaMART 511

and PWNR in this set of experiment since these 512

two models achieves the best results among the pre- 513

limary models and baseline. We refer the Context- 514

Aware Neural Ranking model to as CANR 1 in this 515

section for simplicity. 516

Datasets In this set of experiment, we consider 517

a more realistic dataset that includes all types of 518

real-word queries. We refer to this dataset as Full- 519

Scale Data. To be specific, in addition to the type 520

of queries in preliminary ranking models’ experi- 521

ments, here we consider 1) queries that have con- 522

text information and 2) queries that do not have a 523

positive candidate retrieved by the retrieval model. 524

Each sample is comprised of a query, its dialogue 525

context between the user and the conversational 526

AI agent, and 5 candidates for rewrite. Table 4 527

provide an example of this full-scale dataset with 528

labels. In practice, for some queries, there is no cor- 529

rect rewrite among the 5 candidates provided by the 530

retrieval model. For those queries without correct 531

1We use point-wise loss to train CANR since the point-
wise model achieves better performance than the list-wise
model as shown in Table 2.
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Approach
All Has-Rewrite

w/ context w/o context w/ context w/o context
TR % Precision TR % Precision % TR % Precision % TR % Precision %

PWNR 17.63 75.67 16.36 73.00 28.37 89.47 27.38 88.59
CANR 21.95 88.38 17.67 87.12 39.67 95.21 33.42 94.54

Table 5: Trigger rate and precision on Full-Scale test set with two subsets, i.e., w/ context and w/o context. For
both queries with context and queries without context, the context-aware model achieves higher precision even with
higher trigger rate. Thus, the context information can boost the performance of the neural model.

rewrite in the candidate list, it is hard to qualify the532

performance of the ranking model due to the inher-533

ent data constraint. Thus, we specifically consider a534

subset of the original dataset named Has-Rewrite,535

i.e., the set of queries that has at least one positive536

candidate in the candidate list. For each query, the537

5 candidates are also labeled as positive (label =538

1) and negative (label = 0), i.e., positive means the539

candidate is a correct rewrite and negative means540

the opposite. We provide details about this dataset541

in the Appendix A.1.542

Main Result We present the results in Table 3.543

We mainly focus on comparing the CANR with544

LamdaMART and PWNR since LamdaMART and545

PWNR outperforms the other preliminary models546

in Section 5.1. To offer a fair comparison, we also547

set different τ for different models as in Section 5.1,548

where the value τ is decided by ensuring the model549

achieves the same trigger rate, i.e., 10% trigger rate550

on a validation set.551

First, the result in Table 3 shows that the552

tree-based ranking model LambdaMART achieves553

higher precision compared to the neural ranking554

model PWNR, even with a higher trigger rate.555

Not surprisingly, the tree-based ranking model out-556

performs the neural ranking model as observed557

in Qin et al. (2021). However, with the help of558

context information, the neural model can obtain559

higher precision than the tree-based model, i.e.,560

the context-aware neural ranking model achieves561

the highest precision, even though it triggers more562

queries. Note that the ALL Machine Annotated563

data also contains the queries that do not have a cor-564

rect rewrite in the candidate list, meaning that for565

a fraction of triggered queries, the models always566

find false positive candidates. In consequence, the567

precision on the Full-Scale data is lower than the568

precision in Table 2, i.e., results on a less challeng-569

ing dataset. Thus, we also report the trigger rate570

and precision on the Has-Rewrite subset, and the571

result in 5 shows the same story holds, i.e., the572

CANR model outperforms the tree-based ranking573

model and neural ranking model. The above re- 574

sult demonstrates that the context information can 575

boost the model performance. 576

Effect of Context To further validate the observa- 577

tion that the neural model benefits from the context 578

information, we also report the results for queries 579

with context and queries without context. In par- 580

ticular, we split both ALL and Has-Rewrite into 581

two subsets, i.e., w/ context and w/o context. “w/o 582

context” denotes the current query is the first turn 583

of a dialogue session and thus no available dialogue 584

context. While “w/o context” denotes the current 585

query is not the first turn in a dialog. The ALL 586

dataset is composed of 33.78% queries with con- 587

text and 66.22% queries without context. The Has- 588

Rewrite subset is composed of 35.53% queries 589

with context and 64.48% context without contex. 590

The trigger rate and precision for the neural ranking 591

model and context-aware neural ranking model are 592

reported in Table 5. The result shows that for both 593

queries with context and queries without context, 594

the context-aware model achieves higher precision 595

even with a higher trigger rate. Thus, the context 596

information can boost the performance of the neu- 597

ral model. We provide case study in Appendix to 598

further demonstrate the advantage of context. 599

6 Conclusion 600

We investigate the ranking approaches for search- 601

based query rewriting system in this work. we first 602

propose both tree-based and neural-based ranking 603

models for QR. Then, we demonstrate the necessity 604

of incorporating dialog context information into the 605

Qr task and propose simple but effective context- 606

aware ranking approach. We evaluate the proposed 607

models on various data sets and demonstrate that 608

the proposed context-aware ranking model can sig- 609

nificantly improve the QR performance. Extensive 610

analyses reveal that context-aware ranking model 611

is robust on different scenarios even the query is 612

the first turn in a dialog and no context available in 613

testing stage. 614
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A Appendix747

A.1 Additional Experimental Setup748

Evaluation Metrics We use trigger rate and pre-749

cision as the precision metrics. In practice, the750

query rewriting system will not rewrite/trigger ev-751

ery query from the users to consider the cases752

such that the query itself may not be defected or753

the candidate list does not consider the correct754

rewrite. Thus, the ranking model will only trig-755

ger the query with certain confidence. In detail, the756

ranking model obtains a list of ranking scores cor-757

responding to the list of candidates for each query.758

If the largest ranking score in the list of ranking759

scores exceeds a certain threshold, we trigger the760

query and use the top 1 candidate as the rewrite.761

Then the trigger label for this query is 1. For the762

query with largest ranking score below a certain763

threshold, the trigger label is 0. Mathematically764

speaking, given N queries {qi} and a list rank-765

ing scores {sji}mj=1
2 for each query qi, the trigger766

rate is
∑N

i=1 I{maxj si,j≥τ}
N where τ is the threshold.767

For the triggered query, if the top 1 candidate is a768

correct rewrite (label = 1), the prediction is correct.769

Thus, the precision is ratio of the number of queries770

that a model give correct prediction to the number771

of triggered queries. Mathematically speaking, let772

yi,j ∈ {0, 1} denote the label for candidate pji and773

query qi, ∀i ∈ [N ], j ∈ [m]. The precision is774

defined as
∑N

i=1 I{yi,argmaxj si,j
=1, and maxj si,j≥τ}∑N

i=1 I{maxj si,j≥τ}
.775

Datasets in Section 5.1 For training data, we use776

the weak-labeled data similar to Fan et al. (2021).777

For the retrieval phrase, from de-identified histori-778

cal interactions of a large-scale conversational AI779

agent, we find two consecutive user utterances,780

where the first turn was defected and the second781

turn was successful by utilizing a defect detection782

model Gupta et al. (2021). For ranking, each query783

has 5 rewrite candidates retrieved from an index784

with FAISS search (Johnson et al., 2017). For each785

query, the 5 candidates are also labeled as positive786

(label = 1) and negative (label = 0), i.e., positive787

means the candidate is a correct rewrite and neg-788

ative means the opposite. For this dataset, each789

query has at least one positive candidate among790

the 5 candidates, i.e., correct rewrite. We collect791

the training and test set from different time peri-792

ods, i.e., 1-month data for training and subsequent793

2In our experiment, we specify m = 5, i.e., 5 candidates
for each query.

Training Validation Test
No. queries 10.0x 1.0x 3.0x

Table 6: Summary of the preliminary ranking models
datasets in Section 5.1. We report relative sizes with
respect to the validation set.

1-week data for testing. Moreover, after getting the 794

raw test set, we have manually identified the true 795

labeled cases and removed the noise. Number of 796

queries of the dataset is provided in Table 6. 797

Datasets in Section 5.2 In this set of experiment, 798

we consider a more realistic dataset that includes all 799

types of real-word queries. We refer to this dataset 800

as Full-Scale Data. To be specific, different from 801

the data set used in preliminary ranking models’ 802

experiments, here we consider 1) queries that have 803

context information and 2) queries that do not have 804

a positive candidate retrieved by the retrieval model. 805

Each sample is comprised of a query, its dialogue 806

context between the user and the conversational 807

AI agent, and 5 candidates for rewrite. In prac- 808

tice, for some queries, there is no correct rewrite 809

among the 5 candidates provided by the retrieval 810

model. For those queries without correct rewrite 811

in the candidate list, it is hard to qualify the per- 812

formance of the ranking model due to the inherent 813

data constraint. Thus, we specifically consider a 814

subset of the original dataset named Has-Rewrite, 815

i.e., the set of queries that has correct rewrites in 816

the candidate list. For each query, the 5 candidates 817

are also labeled as positive (label = 1) and negative 818

(label = 0), i.e., positive means the candidate is a 819

correct rewrite and negative means the opposite. 820

We use the same way to extract and construct the 821

training and test sets as we described before. Table 822

4 provide an example of this full-scale dataset with 823

labels. Number of queries of the dataset is provided 824

in Table 7. 825

A.2 Case Study 826

To further understand the advantage of context in- 827

formation for the context-aware ranking model, 828

we provide examples of queries and the results 829

of CANR and PWNR in Table 8. The major differ- 830

ence between CANR and PWNR is that CANR has 831

utilized context information. In the first example, 832

the user asked, “do you have reminders today you” 833

which is defected. Then we can see that the CANR 834

model can pick the correct rewrite “any reminders 835

today”. However, the PWNR model fails to pick 836
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Full-Scale Data
Training Validation Test

All Has-Rewrite All Has-Rewrite All Has-Rewrite
15.0x 10.0x 2.0x 1.0x 2.0x 1.0x

Table 7: Summary of the Full-Scale Data in Section 5.2. We report relative sizes with respect to the “Has-Rewrite”
validation set.

Context Retrieval candidates Model predictions
USER: kitchen lights on
AGENT: ok
USER: do you have reminders today
AGENT: George, here is your upcoming reminder.
George, you have one reminder today. Time to take
medications for our baby Tommy., everyday at 8:50
PM
USER: do we have notification today
AGENT: You don’t have any notifications.
USER: do you have reminders today you (query)

any reminders today

do you have do i have any reminders

can you reminders today

no reminders today

do you have reminders

CANR: any reminders today

PWNR: do you have reminders

USER:who sings this
AGENT: This is Fugazi .
USER: play modern music
AGENT:The station: Country Heat Radio.
USER: play america’s got talent music
AGENT: Six Ways to Bomb on America’s
Got Talent by Melinda Hill , on Amazon Music.
USER: play music from america con talent (query)

music from america’s got talent

play music by america

play imagine from america’s got talent

play music from america

play american’s got talent music

CANR: music from america’s got talent

PWNR: play music from America

Table 8: Case study of comparing the context-aware neural ranking model CANR with PWNR. The correct
rewrite (positive candidate) is underlined. The CANR can pick the correct rewrite since it incorporates the context
information in the ranking.

up the correct rewrite. The important information837

“today” is missed by PWNR model. Similarly, in838

the second example, PWNR model has missed the839

information “got talent” in the rewrite. For both840

cases, we can see that that important information,841

i.e., “today” and “got talent”, has appeared many842

times in the queries’ context, which explains the843

good performance of the context-aware model.844
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