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Abstract

A major issue in open-domain dialogue gener-
ation is the agent’s tendency to generate repet-
itive and generic responses. The lack in re-
sponse diversity has been addressed in recent
years via the use of latent variable models, such
as the Conditional Variational Auto-Encoder
(CVAE), which typically involve learning a
latent Gaussian distribution over potential re-
sponse intents. However, due to latent variable
collapse, training latent variable dialogue mod-
els are notoriously complex, requiring substan-
tial modification to the standard training pro-
cess and loss function. Other approaches pro-
posed to improve response diversity also largely
entail a significant increase in training complex-
ity. Hence, this paper proposes a Randomized
Link (RL) Transformer as an alternative to the
latent variable models. The RL Transformer
does not require any additional enhancements
to the training process or loss function. Empiri-
cal results show that, when it comes to response
diversity, the RL Transformer achieved compa-
rable performance compared to latent variable
models.

1 Introduction

Open-domain dialogue generation refers to the task
of generating coherent, natural and human-like dia-
logue given solely the dialogue context (also known
as the dialogue history). The development of open-
domain dialogue agents that can engage humans
in seamless general conversation (or chit-chat) is
one of the main objectives of conversational AI.
Currently, however, agents display a tendency to
generate repetitive and generic dialogue responses,
which negatively impact both naturalness and con-
textual coherence.

Recently, researchers have turned to latent vari-
able models, specifically the Conditional Varia-
tional Auto Encoder (CVAE) (Sohn et al., 2015),
to address this issue (Yang et al., 2021; Gao et al.,
2019; Zhao et al., 2017; Cao and Clark, 2017).

In addition to open-domain dialogue generation,
latent variable models have also been applied to
related tasks such as personalized dialogue (Lee.
et al., 2022; Wu et al., 2020; Song et al., 2019),
empathetic dialogue (Li et al., 2021, 2020b,a; Zhou
and Wang, 2018), and topical dialogue generation
(Wang et al., 2020). These works have generally
involved modelling the potential dialogue response
intents as a latent Gaussian prior, which is typically
generated by a Multi-Layer Perceptron (MLP). Dur-
ing inference, a latent instance is sampled from the
generated Gaussian prior via the reparameteriza-
tion trick and fed to the decoder. Stochasticity is
induced during the response generation via such
random sampling process. However, even though
latent variable models are effective at improving re-
sponse diversity, they are notoriously hard to train
primarily due to the Kullback-Liebler (KL) vanish-
ing problem. Usually, this problem is addressed via
KL annealing or incorporating a Bag-of-Words loss.
While KL annealing requires tuning the weighting
hyperparameter β, attaining the Bag-of-Words loss
involves defining an additional task of predicting
the response bag-of-words. This results in addi-
tional complexity during training.

Several other approaches to promoting response
diversity which involve introducing an alternate
loss function such as the Maximum Mutual Infor-
mation (MMI) objective (Li et al., 2016a), the In-
verse Token Frequency (ITF) objective (Nakamura
et al., 2018), and the Inverse N-gram Frequency
(INF) objective (Ueyama and Kano, 2020), require
considerable additional computation steps. On the
other hand, adversarial learning-based (Li et al.,
2017a) and embedding augmentation-based (Cao
et al., 2021) approaches require extensive modifi-
cations to the standard training process, resulting
in a significant increase in training complexity.

Hence, inspired by randomization-based neural
networks (Suganthan and Katuwal, 2021) and the
Random Vector Functional Link (RVFL) neural



network (Pao and Takefuji, 1992) in particular, we
introduce a novel Randomized Link (RL) Trans-
former. An alternative to latent variable models
which does not require any modifications or en-
hancements to the standard training process or loss
function. In other words, the RL Transformer can
be trained via standard gradient descent solely on
the standard negative log-likelihood loss. Experi-
mental results on the DailyDialog (Li et al., 2017b)
and EmpatheticDialogues (Rashkin et al., 2019)
corpora show that our RL Transformer successfully
improves the diversity of the generated response,
achieving comparable response diversification rel-
ative to latent variable approaches. In addition,
compared to the latent variable models, responses
generated by our RL Transformer are noticeably
more fluent and contextually coherent.

The remainder of this paper is organized as fol-
lows: Section 2 provides additional background
information regarding open-domain dialogue gen-
eration and RVFL neural networks; Section 3 de-
scribes the proposed RL Transformer in detail; Sec-
tion 4 provides details regarding our implemen-
tations and experiments; Section 5 presents the
experimental results as well as our analysis of the
results; Section 6 concludes the paper.

2 Related Work

2.1 Neural Open-domain Dialogue
Generation

In recent years, generative neural models have been
commonly applied to the task of open-domain di-
alogue generation. Influenced by advances in ma-
chine translation, popular approaches to this task
featured a sequence-to-sequence (seq2seq) archi-
tecture (Sutskever et al., 2014). Recurrent neural
networks such as the Long Short Term Memory
(LSTM) and the Gated Recurrent Unit (GRU) have
been often utilized in both the encoder and decoder
of a seq2seq model (Shang et al., 2015; Sordoni
et al., 2015). More recently, Transformer-based
models (Vaswani et al., 2017) have taken centre
stage. Multiple works have leveraged Transformer-
based pretrained language models such as BERT,
GPT and GPT-2 to improve the overall language
understanding and generation capabilities of their
dialogue agents (Gu et al., 2021; Zhang et al., 2020;
Zhao et al., 2019). In addition to latent variable
models, different learning approaches such as re-
inforcement learning (Saleh et al., 2019; Li et al.,
2016b) and adversarial learning (Li et al., 2017a)

have also been applied to this task.

2.2 Random Vector Functional Link Neural
Networks

The Random Vector Functional Link (RVFL) neu-
ral network (Pao and Takefuji, 1992) is essentially
a single-layer feed forward neural network with a
direct link between the input and output layer. The
optimal weights of an RVFL can be obtained iter-
atively, or through a closed form solution via reg-
ularized least squares or the Moore-Penrose pseu-
doinverse. Prior work has mathematically proven
that the RVFL is an efficient and effective universal
approximator (Needell et al., 2020). Over the years,
multiple RVFL variants including (but not limited
to) the deep RVFL (Shi et al., 2021), ensemble deep
RVFL (Shi et al., 2021), sparse Pretrained-RVFL
(Zhang et al., 2019) and Rotation Forest-RVFL
(Malik et al., 2021) have been proposed. Recently,
RVFL neural networks have been applied to a broad
range of practical tasks across multiple domains
such as remote sensing (Dai et al., 2022), malware
classification (Elkabbash et al., 2021), medical im-
age classification (Nayak et al., 2020; Katuwal
et al., 2019) and even Covid-19 spread forecast-
ing (Hazarika and Gupta, 2020).

3 Methodology

3.1 Randomized Link (RL) Transformer

In this paper, we propose a Randomized Link (RL)
Transformer for open-domain dialogue generation.
Our proposed model generates the dialogue re-
sponse based only on the dialogue context. Similar
to the standard Transformer, the RL Transformer
consists of an encoder and decoder. The encoder
maps an input sequence X = {x0, ..., xJ−1} (J
refers to the length of the input sequence) to an in-
termediate representation Z = {z0, ..., zJ−1}. The
decoder then accepts Z as input and generates the
final output Y = {y0, ..., yK−1} (K refers to the
length of the output sequence) token by token, in
an auto-regressive manner.

The proposed RL Transformer leverages linear
layers with randomly initialized weights to incor-
porate stochasticity into the response generation
process. Our work is largely inspired by the Ran-
dom Vector Functional Link (RVFL) neural net-
work (Pao and Takefuji, 1992), a single-layer feed
forward randomization-based neural network con-
sisting of a fixed randomized hidden layer and a
direct link from the input to the output layer. The
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Figure 1: Model architecture of the proposed Random-
ized Link Transformer.

direct link is implemented by concatenating the
input with the randomized hidden layer output, be-
fore being fed to the output layer. Only the weights
in the output layer are trainable. We incorporate
the RVFL architecture into the self-attention and
feed forward networks of a Transformer.

Essentially, the Randomized Link Transformer
encoder consists of a Randomized Link Self-
Attention (RLSA) network and a Randomized Link
Feed Forward (RLFF) network. The decoder, on
the other hand, consists of a RLSA network, fol-
lowed by a Encoder-Decoder (ED) RLSA network
and a regular Feed Forward (FF) network. Similar
to the original Transformer architecture, residual
connections and layer normalization is introduced
after every RLSA, RLFF, ED RLSA and FF net-
work. An overview is provided in Figure 1.

3.2 Randomized Link Self-Attention

In order to incorporate stochasticity into the re-
sponse generation process, we introduce a novel
Randomized Link Self-Attention (RLSA) network
featuring feed forward linear layers with random
weights. Similar to to the original Transformer
architecture, our randomized link self-attention in-
volves mapping a query vector, denoted by Q, and
a set of key-value vector pairs, denoted by K and
V respectively, to an output. The output is de-
rived by computing the weighted sum of the values,
where the weight assigned to each value is com-
puted by taking the dot product of the query with

the corresponding key. For each attention head in
the standard transformer architecture, the input is
passed to three distinct linear layers, resulting in
the query, key and value vectors Qn, Kn, and Vn,
where n refers to an arbitrary attention head.

In RLSA, each input will be fed to a single ran-
dom linear layer. The sizes of all random linear lay-
ers used in the randomized Transformer, denoted
by drand, are identical. Similar to the RVFL, we
introduce a direct link by concatenating the output
of this layer with the original input. The resul-
tant representation is fed to a separate linear layer
with trainable weights. Similarly, for multi-headed
RLSA, a distinct Qn, Kn, and Vn vector is defined
for each of the N attention heads. The dimension-
ality of the Qn and Kn vectors is denoted by dk,
and the dimensionality of the Vn vector is denoted
by dv. This can be expressed as follows:

Qn = WQn([X,W r
Qn

(X)]) (1)

Kn = WKn([X,W r
Kn

(X)]) (2)

Vn = WVn([X,W r
Vn
(X)]) (3)

where WQ, WK , and WV represent the weights
of the trainable linear layers corresponding to the
Q, K and V vectors respectively. We use the su-
perscript ()r to denote the randomized matrices,
whereby W r

Q, W r
K , and W r

V represent the weights
of the randomly initialized linear layers correspond-
ing to the Qn, Kn and Vn vectors respectively. X
denotes the input sequence, and [·] represents the
concatenate operation.

The randomized linear layers W r
Q, W r

K , and
W r

V are initialized every epoch with Xavier nor-
mal initialization (Glorot and Bengio, 2010) i.e.,
W r

Q,W
r
K ,W r

V ∼ N (0, σ2) where σ = γ ×√
2

dhidden+drand
. The gain value γ = 1.0. The

selection of the standard deviation or the variance
of the initialization is vital to model performance.
This is because an excessively large variance would
result in model divergence, while an excessively
small variance would result in a drop in stochastic-
ity. For the randomized layers in RLSA, weights
initialized from a normal distribution with a suit-
able standard deviation would allow the model to
converge while maintaining stochasticity. As seen
in the equation, for the Xavier normal initialization,
the standard deviation of the Gaussian distribution
from which the initial weights are sampled is a
function of the total number of inputs and outputs.
Empirically, we found that the standard deviation



value utilized during Xavier normal initialization
would generally outperforms other standard devia-
tion values across all randomized layer sizes.

Then, following the standard Transformer ar-
chitecture, the dot product of all corresponding Q
and K vectors are computed to obtain the atten-
tion maps. Then, to attain the score, the softmax
function is applied over the dot products divided
by the square root of the dimension of the Q and
K vectors i.e.,

√
dk. Each of the V vectors is then

multiplied with the attained score. This results in
the following expression:

Zn = softmax(
QnK

T
n√

dk
)Vn (4)

where T represents the transpose operation. The
output of each attention head Zn is concatenated
to form Z:

Z = [Z0, Z1, Z2 · · ·ZN−1] (5)

where N represents the number of attention heads.
Then, the resulting representation Z is then

passed to a single linear layer with randomly ini-
tialized weights. Once again, to obtain the encoder
output Z, the output of the random layer is con-
catenated with the original input Z̄, and fed to a
separate linear layer with trainable weights (direct
link).

Z = WZ([X,W r
Z(Z)]) (6)

where WZ and W r
Z represent the weights of the

trainable linear layer and randomized linear layer
used to obtain the encoder output Z respectively.
Similarly, the randomized linear layer W r

Z is initial-
ized every epoch with Xavier normal initialization
i.e., W r

Z ∼ N (0, σ2) where σ = γ ×
√

2
dv+drand

.
The gain value γ = 1.0.

For the Encoder Decoder (ED) RLSA in the de-
coder, the encoder outputs and prior decoder out-
puts are used as input. The output of the prior
decoder layer is used to generate the queries, and
the encoder outputs are used to generate the keys
and values. An overview of the RLSA network is
presented in Figure 2.

3.3 Randomized Link Feed Forward Network
The feed forward network in the standard Trans-
former consists of a two-layer fully trainable feed
forward neural network. Likewise, the Randomized
Link Feed Forward (RLFF) network is a two-layer
feed forward neural network which features a ran-
domly initialized fixed linear layer with a ReLU

Input Input Input

Attn Map

Softmax

Output

Figure 2: Overview of Randomized Link Self Attention.
⊕ refers to the concatenate operation.

activation function followed by a trainable linear
layer. Similarly, the direct link is introduced by
concatenating the output of the randomized layer
with the original inputs, and passing the resultant
representation to the trainable layer. In contrast
to the RLSA network (Section 3.2), no additional
randomized layers are introduced in the RLFF net-
work. The first linear layer is randomized instead.
This can be expressed as:

RLFF (Z) = W2([ReLU(W r
1 (Z)), Z]) (7)

where W r
1 and W2 refer to the first random linear

layer and the second trainable linear layer respec-
tively. The size of the randomized linear layer W r

1

is represented by dff , and the size W2 is dhidden.
Unlike the RLSA network, for the RLFF network,
the randomized linear layer W r

1 is initialized every
epoch with Xavier uniform initialization (Glorot
and Bengio, 2010) i.e., W r

Z ∼ U(−a, a) where
a = γ ×

√
6

dhidden+dff
. Since the ReLU activa-

tion is applied to the layer output, the gain value.
The gain value γ =

√
2. We found that utilizing a

uniform initialization in the RLFF network instead
of a normal initialization would result in a slight
increase in response diversity. Also, it should be
noted that the RLFF network is only utilized in
the encoder of the Randomized Transformer. An
overview of the RLFF network is presented in Fig-
ure 3.
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Figure 3: Overview of Randomized Link Feed Forward
network. ⊕ refers to the concatenate operation.

4 Experiment

4.1 Data

We evaluate the Randomized Link Transformer
on the DailyDialogs (Li et al., 2017b) and Em-
patheticDialogues (Rashkin et al., 2019) corpora.
For the EmpatheticDialogues corpus, the agent is
expected to generate an appropriately empathetic
response given the dialogue context and emotion
label, which is not used in our experiments. The
training, validation and test set consists of 19,533,
2,770, and 2,547 dialogues respectively. The Dai-
lyDialog corpus consists of general human-written
dialogue examples covering a wide range of topics
and emotions. Similarly, the provided intent and
emotion labels are not used in our experiments. The
training, validation and test set consists of 11,118,
1,000 and 1,000 dialogues respectively.

4.2 Implementation

In our experiments, we implement the Randomized
Link (RL) Transformer with 4 encoding layers, 4
decoding layers, with 4 attention heads (N = 4).
Since the 300 dimensional GloVe embedding (Pen-
nington et al., 2014) is used, the hidden dimension
dhidden = 300. The size of all randomized layers
in the RLSA network drand is fixed at 512. dk,
dv and dz were set to 64 for experiments of the
DailyDialog corpus, and 256 on the EmpatheticDi-
alogues corpus. For the RLFF network, dff is set
to 2048. Inputs to the RL Transformer consists of
the dialogue context (limited to 4 dialogue turns).
Responses are generated via greedy decoding. Dur-
ing training, the Adam optimizer (learning rate =
0.00015, batch size = 32) is used.

4.3 Baselines

We implement the following four models in our
experiments:

Transformer. We implement a Transformer
(Vaswani et al., 2017) with standard self attention
and feed forward components. The Transformer
parameters are identical to the RL Transformer as
described in Section 4.2.
CVAE. Similar to Zhao et al. (2017) and Lin et al.
(2020), we implement a Transformer-based CVAE
where the latent variable sampled from the latent
Gaussian is combined with the output of the en-
coder before being fed to the decoder. Following
Lin et al. (2020), the latent Gaussian is generated
by a three-layer MLP with 512 node hidden layers,
and the size of the random latent variable is fixed
at 300. The remaining Transformer parameters are
identical to the RL Transformer as described in
Section 4.2.
SVT. We also implement the Sequential Variational
Transformer (SVT) proposed in Lin et al. (2020).
The SVT replaces the standard Transformer de-
coder with a variational decoder layer which im-
plicitly generates a distinct latent variable for each
position. Similarly, the latent Gaussians are gener-
ated via three-layer MLPs with 512 node hidden
layers, and the size of the random latent variable is
fixed at 300. The remaining Transformer parame-
ters are identical to the RL Transformer described
in Section 4.2.
RL Transformer. We implement the proposed
RL Transformer with configuration described in
Section 3.2.

4.4 Evaluation

4.4.1 Objective Measures

Distinct-N. We use the Distinct-1 and 2 scores, de-
noted by D-1 and D-2 respectively, to quantify the
inter-response diversity of the generated responses.
Essentially, the Distinct-n score involves comput-
ing the number of distinct n-grams in a given text,
and dividing the number by the total number of
tokens. The Distinct score is derived based on all
generated responses.
MTLD & MATTR. Additionally, we also uti-
lize lexical diversity measures such as the Mea-
sure of Textual Lexical Diversity (MTLD) and
Moving-Average Type–Token Ratio (MATTR)
score. MATTR and MTLD are essentially text
length invariant variants of the Token-Type Ratio
(TTR). MTLD involves computing the Token-Type
Ratio (TTR) for sequentially larger segments of
the sentence until a predefined threshold h. On the
other hand, deriving MATTR requires averaging



DailyDialog
Length D-1 D-2 MATTR MTLD METEOR ROUGE-L

Transformer (Vaswani et al., 2017) 6.075 0.004 0.017 0.360 12.461 0.076 0.060
CVAE (Zhao et al., 2017) 11.656 0.035 0.200 0.661 32.927 0.117 0.103

SVT (Lin et al., 2020) 10.244 0.032 0.199 0.580 21.371 0.118 0.108
RL Transformer 7.678 0.050 0.221 0.649 30.049 0.113 0.101

EmpatheticDialogues
Length D-1 D-2 MATTR MTLD METEOR ROUGE-L

Transformer (Vaswani et al., 2017) 9.757 0.015 0.049 0.396 16.479 0.103 0.116
CVAE (Zhao et al., 2017) 11.367 0.028 0.226 0.728 49.394 0.097 0.084

SVT (Lin et al., 2020) 12.568 0.023 0.240 0.691 36.536 0.105 0.096
RL Transformer 11.808 0.030 0.239 0.734 51.396 0.101 0.085

Table 1: Performance comparison of the proposed RL Transformer to the three baselines on the DailyDialog and
EmpatheticDialogues corpora.

the TTR of successive segments of the generated
response with a fixed window size w. In this pa-
per, h and w were fixed at 0.72 and 4 respectively.
Both MTLD and MATTR are derived based on all
generated responses.
ROUGE-L & METEOR. Both ROUGE-L and
METEOR compares the generated response to the
response label. Computing the ROUGE-L score
involves first identifying the Longest Common Sub-
sequence (LCS) between the generated response
and response label, followed by computing the har-
monic mean of the precision and recall between
the LCS and the generated response. METEOR is
similarly based on the harmonic mean between pre-
cision and recall calculated based on the generated
response and response label, with more emphasis
placed on recall.

4.4.2 Human Evaluation
For human evaluation, we engage five graduate stu-
dents (native English speakers) to evaluate the Flu-
ency, Diversity and Coherence of the generated re-
sponses. The Fluency criteria measures the natural-
ness and human-likeness of the generated response.
For the Fluency criteria, the evaluators were told
to regard the response in isolation, without regard
for the dialogue context. The Diversity criteria ac-
counts for the diversity on terms of vocabulary in
the generated response. Coherence refers to the
contextual coherence of the generated response i.e.,
the relevance of the generated response in relation
to the dialogue context. The evaluators were given
the dialogue context, and told to consider the appro-
priateness of the generated responses with regard
to the dialogue context. For each example, they
were told to compare a response generated by RL

Transformer and a response generated by either
the base Transformer, CVAE or SVT. The superior
response in terms of either Fluency, Coherence or
Diversity is selected by the evaluator, and either
a ‘Win’, ‘Lose’ or ‘Tie’ is assigned to the corre-
sponding model. The percentage of wins, loses or
ties for each pair is then computed. Each evaluator
was given 50 randomly sampled dialogue contexts
and the corresponding responses generated by the
implemented models for evaluation.

5 Results and Discussion

5.1 Quantitative Analysis

Automatic metric scores attained on the DailyDia-
log and EmpatheticDialogues copora are presented
in Table 1. Human evaluation was only conducted
on the DailyDialog corpus. Results are presented
in Table 3.

Based on the results attained, it can be concluded
that the performance of the RL Transformer is com-
parable to that of latent variable models such as the
CVAE and SVT. On the DailyDialog corpus, RL
Transformer outperformed all implemented base-
lines in terms of Distinct-1 and 2 scores. On the
EmpatheticDialogues corpus, RL Transformer out-
performed all implemented baselines in terms of
Distinct-1, MATTR and MTLD.

When it comes to response diversity, the human
evaluation results largely corroborate the automatic
metric scores. In terms of Diversity, the RL Trans-
former achieved a high percentage of ‘Wins’ over
the standard Transformer, and a relatively high per-
centage of ‘Ties’ against the latent variable models.

It can also be observed that the RL Transformer
also achieved a high percentage of ‘Wins’ over la-



Dialogue
Context

User: Hey, Peter , have you had lunch yet?

Transformer much?
CVAE I’m sorry , Mom. I was hoping to have my husband.
SVT No , I didn’t . I got to eat it .

RL Transformer No , I didn’t . I just want to go to bed.
Label No . How about you?

Dialogue
Context

User: How did you find your apartment?

Transformer much?
CVAE I went there.
SVT I bought it in the kitchen.

RL Transformer I had a leaking faucet in the kitchen.
Label You can check on the bulletin boards at school for local housing.

Dialogue
Context

User: Very glad to know something about you , then what are you going to do when you
finish.
Agent: Oh , I’ll go to shanghai to practice there.
User: That’s a good idea . It must be easy to find a job in shanghai.

Transformer I’m sorry to see.
CVAE No , I’m not sure.
SVT well , that’s a great sense. I’ll be great.

RL Transformer I’m not sure I’ ll be able to find a job.
Label I think so , you know there is a great deal of opportunity for business there.

Table 2: Examples of responses generated by the Transformer, CVAE, SVT and RL Transformer models.

tent variable models in terms of Coherence. This
is corroborated by the qualitative analysis of the
responses provided in the following section. We
suspect that low Coherence scores attained by the
latent variable models could be partially attributed
to the random sampling process. Since the latent
Gaussian models the potential dialogue response
intents, sampled random variables which deviate
significantly from the mean could encompass an
irrelevant dialogue intent. When this random vari-
able is fed to the decoder, an incoherent response
would likely be generated. Similarly, it can also be
observed that the RL Transformer also achieved a
high percentage of ‘Wins’ over latent variable mod-
els in terms of Fluency. This could be potentially
attributed to the random linear layers introduced in
the RLSA networks, which serve to improve the
overall capability of the RL Transformer.

Additionally, as reported in Liu et al. (2016), we
note that the ROUGE and METEOR scores do not
correlate with any aspect of human evaluation.

5.2 Qualitative Analysis

We conduct a qualitative analysis by examining the
responses generated by each of the implemented

Fluency
Win Tie Loss Kappa

Transformer 23% 63% 14% 0.68
CVAE 71% 19% 10% 0.72
SVT 64% 25% 11% 0.77

Coherence
Win Tie Loss Kappa

Transformer 56% 27% 17% 0.73
CVAE 71% 11% 18% 0.77
SVT 69% 23% 8% 0.67

Diversity
Win Tie Loss Kappa

Transformer 81% 6% 13% 0.62
CVAE 39% 51% 10% 0.59
SVT 46% 39% 15% 0.64

Table 3: Human evaluation results on the DailyDialog
corpus. For each criteria (Fluency, Coherence, and Di-
versity), responses generated by the RL Transformer
are compared against responses generated by the Trans-
former, CVAE and SVT models. The average ‘Win’,
‘Tie’, and ‘Loss’ percentages are presented. Kappa
scores largely range from 0.6 to 0.7, indicating sub-
stantial to moderate inter-annotator agreement.



D-1 D-2 MATTR MTLD
RL Trans 0.050 0.221 0.649 30.049
−RLSS(E) 0.018 0.080 0.523 18.455
−RLFF(E) 0.042 0.173 0.601 24.364
−RLSS(D) 0.020 0.106 0.502 17.237
−ED RLSS 0.026 0.111 0.532 18.231
+RLFF(D) 0.035 0.140 0.577 21.620
RL Trans
w/o Links

0.002 0.006 0.220 11.596

RL Trans
(Normal)

0.044 0.197 0.634 28.034

RL Trans
(Uniform)

0.035 0.185 0.683 28.663

Table 4: Ablation study results. ‘-’ indicates that the
corresponding RLSA or RLFF network was replaced
with the standard variant.‘+’ indicates that the standard
self-attention or feed forward network was replaced with
either RLSA or RLFF.

models. The qualitative analysis largely support
observations from our quantitative analysis. The
responses generated by the standard transformer
were short, generic and repetitive. As expected,
responses generated by the latent variable mod-
els CVAE and SVT as well as our proposed RL
Transformer were noticeably more diverse and less
repetitive.

However, numerous responses generated by
CVAE and SVT were relatively unnatural due to the
relatively poor fluency and contextual coherence.
A large number responses generated by the latent
variable models had grammatical or structural is-
sues, and a significant number were irrelevant in
relation to the dialogue context i.e., out of context.
On the other hand, the responses generated by the
RL Transformer were significantly more natural
and human-like, displaying far fewer grammati-
cal or structural issues and greater relevance with
regard to the dialogue context.

Samples of the generated responses along with
the corresponding dialogue contexts are provided
in Table 2.

5.3 Ablation Study
We also conduct an ablation study, using the Dai-
lyDialog corpus, to investigate the contributions
of each of the RLSA and RLFF components in
the encoder and decoder. Additionally, to examine
the importance of the direct links, we implement
a variant of the RL Transformer without any di-
rect links. The results of the ablation study are

D-1 D-2 MATTR MTLD
64 0.005 0.025 0.426 13.142
128 0.036 0.142 0.527 17.396
256 0.043 0.168 0.628 22.053
512 0.050 0.221 0.649 30.049
1024 0.023 0.100 0.586 19.884

Table 5: Ablation study results for 64, 128, 256, 512,
and 1024 nodes in the random layers.

presented in Table 4. In the same table, we also
provide the diversity scores for two variants of the
RL Transformer where the randomized layers are
initialized via Normal initialization (N (0.0, 0.1))
and Uniform initialization (U(0.0, 0.01)) respec-
tively.

Based on the results attained, we can observe
that the RLSA network in the encoder, and the
RLSA and ED RLSA networks in the decoder have
a relatively large impact on response diversity. Sub-
stituting the RLSA or ED RLSA networks for the
standard self-attention network results in a signifi-
cant drop on all diversity measures. However, sub-
stituting the RLFF in the encoder for a standard
feed forward network results in a relatively minor
decrease in diversity. Hence, we conclude that
stochasticity introduced in the self-attention net-
works contribute to overall response diversity to a
much larger extent compared to the RLFF network.
Although, it should also be noted that, substituting
the standard feed forward network in the decoder
with a RLFF network would result in a slightly
lower diversity scores.

Also, the importance of the direct links cannot
be overstated. From the results attained by the RL
Transformer without links, it is apparent that re-
moval of the direct links would result in extremely
low response diversity. Upon closer inspection
of the responses generated by this variant of the
RL Transformer, we notice that a majority of the
generated responses are short, generic and highly
repetitive.

In addition, we present the results attained by
varying the number of hidden nodes in the ran-
domized layers in Table 5. Intuitively, this implies
varying levels of stochasticity. From Table 5, we
can observe that increasing the number of neurons
in the randomized layer would generally result in
an increase in diversity. This can be attributed to an
increase in stochasticity due to an increase in the
number of randomized weights. However, there



is a significant drop in diversity when the size of
the randomized layers exceed 512. In this case,
the model fails to learn effectively, and generates
meaningless, generic, and repetitive responses in-
stead.

6 Conclusion

In this paper, we have proposed a novel RL Trans-
former which successfully improves response diver-
sity in the task of open-domain dialogue generation.
This is achieved by inducing stochasticity in the
self-attention and the feed forward networks of a
Transformer via randomized layers and direct links.
Experimental results on the DailyDialog and Empa-
theticDialogues corpora show that, compared to la-
tent variable models, the RL Transformer achieved
comparable levels of diversification while further
improving on contextual coherence and fluency. In
the future, the RL Transformer can be adapted for
related dialogue generation tasks such as personal-
ized, empathetic or topical dialogue generation.
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