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Abstract

Brain-inspired spiking neural networks (SNNs) promise to be a low-power alter-
native to computationally intensive artificial neural networks (ANNs), although
performance gaps persist. Recent studies have improved the performance of SNNs
through knowledge distillation, but rely on large teacher models or introduce ad-
ditional training overhead. In this paper, we show that SNNs can be naturally
deconstructed into multiple submodels for efficient self-distillation. We treat each
timestep instance of the SNN as a submodel and evaluate its output confidence,
thus efficiently identifying the strong and the weak. Based on this strong and weak
relationship, we propose two efficient self-distillation schemes: (1) Strong2Weak:
During training, the stronger "teacher" guides the weaker "student", effectively im-
proving overall performance. (2) Weak2Strong: The weak serve as the "teacher",
distilling the strong in reverse with underlying dark knowledge, again yielding
significant performance gains. For both distillation schemes, we offer flexible
implementations such as ensemble, simultaneous, and cascade distillation. Ex-
periments show that our method effectively improves the discriminability and
overall performance of the SNN, while its adversarial robustness is also enhanced,
benefiting from the stability brought by self-distillation. This ingeniously exploits
the temporal properties of SNNs and provides insight into how to efficiently train
high-performance SNNs.

1 Introduction

Currently, artificial neural networks (ANNs) have shown outstanding performance in both computer
vision and natural language processing [1, 2]. However, ANN inference involves intensive multiply-
accumulate (MAC) operations that consume significant power, limiting its deployment in power-
constrained scenarios such as edge devices [3]. To reduce power consumption toward sustainable
artificial intelligence, brain-inspired research is being conducted in anticipation of low-power artificial
intelligence through neuromorphic computing [4].

Spiking Neural Networks (SNNs) are considered to be a low-power alternative to ANNs by trans-
mitting information through bionic binary spikes, avoiding heavy MAC operations, and requiring
only energy-efficient accumulation (AC) operations [3, 5]. Moreover, spiking neurons, which model
the membrane potential dynamics of biological neurons that evolve over time, are able to extract
underlying temporal features, making SNNs more favorable for exploiting their potential in temporal
tasks [6, 7]. Combined with neuromorphic chips and dynamic vision sensors, SNNs can perform
various tasks with ultra-low latency and power consumption [8]. For example, the SNN on the
Tianmouc chip requires only 0.7mW to perform typical vision tasks [9].
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However, limited by the binary information representation, there is still a performance gap between
SNNs and ANNs. Further improving the performance of SNNs can facilitate their widespread
deployment in real-world scenarios. Previous studies have optimized the spiking neurons [10, 11, 12,
13], network architectures [3, 14, 15], spike-specific BN layers [16, 17], and residual connections [18,
19, 20], significantly narrowing the performance gap. Another studies have focused on optimizing
the training process of SNNs to be compatible with a variety of neurons and architectures, have
received widespread attention [21, 22, 23]. Inspired by knowledge distillation, recent efforts have
attempted to improve the performance of lightweight SNNs with additional teacher models (ANNs
or SNNs) [24, 25]. However, teacher models incur additional pre-training overhead and typically
need to be customized for specific tasks, making the training process more cumbersome. To reduce
the additional overhead, [26] extends the timestep during training and adds a weak classifier for
spatio-temporal self-distillation. [27] relies on real labels to guide incorrect output with correct
output, which suffers from limited efficiency and performance. Given these unresolved issues, a
question worth exploring is: How to distill a high-performance SNN without additional overhead?

Following the philosophy of Occam’s razor, we answer the above question by proposing a simple yet
effective self-distillation strategy for SNNs. To begin with, we deconstruct the SNN in the temporal
dimension, considering its instances at each timestep as a submodel. Then, we evaluate the output
confidence of each submodel to identify the strong and the weak ones, respectively. Based on the
strong and weak relationships, we propose two efficient self-distillation schemes: (1) Strong2Weak
takes the strongest submodel as the "teacher" and guides the weakest "student" submodel to strengthen
the discriminative ability of the weaker model, elevating the "short boards in the barrel" to improve
the overall performance. (2) Weak2Strong works the other way around, where the weakest model
serves as a "teacher” to guide the strongest "student”. It is worth noting that Weak2Strong exploits
the underlying dark knowledge of the weak "teacher" to augment the strong "student", e.g., an overly
strong model may ignore detailed information leading to overfitting, while a weak model provides
complements or acts as a regularizer, thus improving generalization [28]. Both schemes allow flexible
implementations, with default one-to-one distillation and alternative ensemble, simultaneous and
cascade distillation. Moreover, these two distillation schemes are compatible with various network
architectures and neurons with superior generalization.

Visualizations and extensive experiments on both static and neuromorphic datasets show that the
proposed self-distillation schemes narrow the performance gap between submodels of the SNN,
improve overall performance, and enable inference with low latency. Meanwhile, the synergy
between the strong and the weak promotes overall stability and enhances the robustness of the SNN
against attacks. The contribution of this paper can be summarized as follows:

• We show that SNNs can be deconstructed into multiple submodels in the temporal dimension,
allowing for efficient self-distillation without any additional overhead.

• We efficiently identify the strong and the weak in the deconstructed submodels by confi-
dence, and propose Strong2Weak and Weak2Strong self-distillation schemes to improve the
performance of SNNs.

• Visualizations and experiments on both static and neuromorphic datasets show that the
proposed self-distillation schemes enhance the discriminability, performance, and robustness
of the SNN and enable satisfactory performance with ultra-low latency.

2 Related work

Spiking Neural Network. SNNs have received considerable attention due to their low-power
characteristics [29, 30, 31], especially in light of the significant energy requirements associated
with large language models. To improve the performance of SNNs, a plethora of studies have been
conducted on spike encoding [32], neuron models [10, 12], network architectures [3, 14, 15], and
training methods [21, 22, 23]. The contributions of this paper belong to training methods, compatible
with various encoding, neuron models and network architectures with great generalization. Compared
to other training methods, this paper deconstructs an SNN into multiple submodels and identifies the
strong and weak submodels for self-distillation learning, which significantly improves performance
without additional overhead.

Knowledge Distillation. Knowledge distillation originated in ANNs, which attempt to boost the
performance of a weak student model with a strong teacher model [33], leaving only the student
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for inference without compromising inference efficiency. Depending on the spatial location of
the distillation signal, distillation can be categorized into logit distillation [34, 35] and feature
distillation [36, 37]. Logit distillation encourages the student to mimic the teacher’s output, and
feature distillation promotes intermediate feature consistency between the two. Feature distillation
typically offers superior performance, but the difficulty in obtaining the intermediate features of the
teacher model in many scenarios (for privacy and security reasons) makes logit distillation more
versatile and easier to implement [38, 39, 40]. To improve distillation efficiency, self-distillation
methods separate the teacher and student from a single model, e.g., by using intermediate checkpoints
or adding multiple output heads [28, 41]. This paper focuses on self-distillation learning in SNNs and
shows that SNNs can naturally distinguish between the strong and the weak without any checkpoints
or additional output heads, and are well suited for efficient self-distillation.

Distillation-Enhanced SNN. Given the remarkable gains of knowledge distillation in ANNs,
the community has introduced it to train SNNs. Previous studies have shown that large ANNs
and SNN teachers can improve the performance of small student SNNs [24, 42, 25, 43, 44].
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Figure 1: Comparison to other distillation methods. Our
self-distillation deconstructs an SNN into multiple sub-
models and identifies the strong and weak ones for self-
distillation without any additional overhead.

However, the teacher model requires addi-
tional storage and computational overhead.
To enhance the efficiency, self-distillation
in SNNs has been explored. [27] deter-
mines the correctness of the SNN output
at each timestep, with the correct one guid-
ing the incorrect one. However, this ne-
cessitates label information and cannot ex-
ploit the underlying dark knowledge in the
error output, resulting in limited perfor-
mance. [26] extends the training timestep
and adds a additional weak classifier for
spatio-temporal self-distillation, which im-
proves the distillation performance but im-
poses a heavier training overhead. Un-
like existing methods, our self-distillation
schemes require no additional overhead
and exploit both strong and weak dark knowledge with superior performance. A visual comparison
with other distillation methods is shown in Fig. 1.

3 Deconstructing the SNN

3.1 Temporal Properties of SNNs

The core of the SNN lies in the spiking neurons, which endows it with low power consumption and
temporal properties. Similar to biological neurons, spiking neurons maintain a membrane potential
state, and the membrane potential changes continuously over time, depending on the input current
received. In this paper, we use the most commonly used leaky integrate-and-fire (LIF) [45] neurons,
but it is worth noting that our method can be applied to other neurons as well, since both have similar
dynamics.

Let H denote the membrane potential of the LIF neuron and I indicate the input current generated
by the previous layer of spikes and synaptic weights, the membrane potential dynamics of the LIF
neuron can be expressed as:

H l
i(t) =

(
1− 1

τ

)
H l

i(t− 1) + I li(t), (1)

where t, l, and i are the timestep, layer, and neuron indices, respectively. τ is the membrane potential
time constant, which controls the degree of leakage of the membrane potential with time, i.e. the
membrane potential of the LIF gradually decreases when there is no input.

If the membrane potential reaches the firing threshold ϑ, the spiking neuron generates a spike with a
value of 1, otherwise the output value is 0 (i.e. no spike is generated). After the spike is fired, the
membrane potential is reset. This paper adopts the soft reset mechanism [46], i.e., the membrane
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Figure 2: Our method logically deconstructs the SNN with T timesteps into T submodels with the
same architecture and parameters, and evaluates the confidence level of each submodel to identify the
strong and the weak. The strong help the weak through distillation, and the weak transfer underlying
dark knowledge to the strong, thus improving overall performance.

potential is reduced by the same amount as the threshold:

H l
i(t) = H l

i(t)− Sl
i(t)ϑ, (2)

where S is the binary spike output.The residual membrane potential after reset remains until the
next timestep to continue the dynamics (Eq. 1), resulting in the initial membrane potential typically
varying across timesteps. This residual membrane potential is considered to carry time-dependent
information, so that the SNN can be used for temporal tasks [6, 7].

3.2 Deconstructing SNNs from the Temporal Dimension

The output of a spike neuron at a given timestep depends not only on the initial membrane potential
H l

i(t) but also on the received input I li(t). The difference between the two causes the output of the
SNN to vary over timestep. Existing strategies average the outputs of multiple timesteps to improve
overall output stability [45, 5]. However, we exploit this variability across timesteps to deconstruct
an SNN into multiple submodels along the time dimension.

Specifically, we consider the instances of the SNN at each timestep as a submodel. These submodels,
while sharing the same architecture and parameters, can produce different outputs due to differences
in neuron states and input currents. Let the SNN be f(θ), where f(·) and θ denote the architecture
and parameters, respectively. Assuming that the SNN runs for a total of T timesteps, we deconstruct
it into T submodels: {f(θ; 1), f(θ; 2), · · · , f(θ;T )}, as shown in Fig. 2.

In this way, we deconstruct an SNN into multiple submodels with different outputs. These multiple
distinct outputs form the necessary conditions for distillation learning, so that self-distillation can be
performed without the need for other modules or strategies to generate additional outputs. Notably,
this deconstruction is not limited to network architecture and neuron type, and is highly generaliz-
able. In the following we describe how to perform self-distillation learning with the deconstructed
submodels.

4 Self-Distillation with Deconstructed SNNs

Table 1: Accuracy comparison (%) of different
implementations.

Method CIFAR10-DVS DVS-Gesture

High-accuracy teacher 78.43± 0.33 90.62± 0.49
Low-loss teacher 78.93± 0.33 90.39± 0.71

Strong2Weak (Ours) 78.93± 0.12 91.43 ± 0.43
Weak2Strong (Ours) 79.33 ± 0.29 91.20± 0.33

With the deconstructed multiple submodels, the
key to distillation is to identify the teacher and
student models. A naive distillation scheme is
based on accuracy/loss, with a high-accuracy/low-
loss submodel as the teacher guiding the low-
accuracy/high-loss student. However, this man-
ner (i) requires step-by-step comparisons with
labels, which complicates the distillation process;
(ii) cannot be used in scenarios where labels are
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missing, such as streaming online learning; and (iii) cannot exploit the underlying dark knowledge,
resulting in limited performance, as shown in Table 1. To this end, we propose to quantify the output
confidence of each submodel to efficiently evaluate the strong and weak relationships, and propose
two distillation schemes based on the strong and weak relationships.

4.1 Identify the Strong and the Weak

Formally, let the output of submodel f(θ; t) be o(t) = {o1(t), o2(t), · · · , oC(t)}, where C is the
number of the object categories. We calculate its predicted probability distribution across the C
categories as

p(t) = softmax(o(t)). (3)
Then, we define the output confidence of the submodel as the maximum probability in p(t):

con(t) = max(p(t)). (4)

As such, con(t) reflects the degree of certainty of the submodel with respect to the output, similarly
to [47].

Based on the output confidence con(t), we evaluate the strong and weak relationships of these
submodels. For any two submodels, we consider the one with the higher confidence to be the stronger
one and the other to be the weaker one. Therefore, we can identify the strongest and the weakest
among the T submodels and thus exploit this strong and weak relationship for distillation learning.
In particular, relying on confidence to evaluate strong and weak relationships does not require label
information and is computationally simple without sacrificing efficiency.

4.2 The Strong Help the Weak

In classical knowledge distillation, the teacher model typically carries more parameters than the stu-
dent and therefore better performance, i.e. strong teachers guide weak students [33, 34]. Accordingly,
we propose Strong2Weak distillation: the strong submodel leads and enhances the weak submodel,
thus improving overall performance.

Specifically, in each iteration we evaluate the confidence of each submodel and identify the strong
and weak submodels with the highest and lowest confidence. The strong submodel is considered as
the teacher and the weak submodel as the student, and logit distillation learning is performed between
the two.

Formally, let the timestep index of the strong submodel be ts and that of the weak submodel be tw.
The output logits of the two submodels are o(ts) and o(tw) respectively. We soften the logit to obtain
the probability distribution:

p(ts)j=
eo(ts)j/α∑C
c=1 e

o(ts)c/α
, p(tw)j=

eo(tw)j/α∑C
c=1 e

o(tw)c/α
, (5)

where α is the softening factor, set to 2. We then use KL divergence to transfer knowledge from the
strong model to the weak model:

LS2W=α2KL(p(ts)||p(tw))=α2
C∑

j=1

p(ts)j log(
p(ts)j
p(tw)j

). (6)

During training of the SNN, the distillation loss and the cross entropy loss synergistically optimize
the parameters. The total loss is therefore:

Ltotal = LCE(O, Y ) + λS2WLS2W , (7)

where Y is the label information and λS2W is the coefficient, which defaults to 1.

During training, we use the rectangular surrogate gradient for optimization, since the spike activity
is non-differentiable [45]. Thus, the derivative of the spike activity with respect to the membrane
potential can be calculated as:

∂Sl
i(t)

∂H l
i(t)

≈ ∂h(H l
i(t), ϑ)

∂H l
i(t)

=
1

a
sign(|H l

i(t)− ϑ| < a

2
), (8)

where a is a hyperparameter that controls the shape of the gradient and is set to 1.0.
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4.3 The Weak Enhance the Strong

In the real world, teachers are also improved as they teach their students. In addition, it has been
shown that weak models are able to learn underlying dark knowledge, which can contribute to the
performance of stronger models [28]. For example, an overly strong model may ignore detailed
information and suffer from overfitting, while a weak model may provide complements or act as a
regularizer to facilitate generalization [28]. To this end, we propose the Weak2Strong distillation
scheme: the weak submodel acts as the teacher, guiding the strong student to fully utilize the potential
dark knowledge to improve overall performance.

Similar to Strong2Weak distillation, in Weak2Strong distillation we first identify the timestep indices
of the strong and weak submodels to obtain their output logits o(ts) and o(tw). Then we compute the
two corresponding probability distributions according to Eq. 5. When calculating the distillation loss,
we use p(tw) as the teacher to prompt p(ts) to learn the dark knowledge in o(tw):

LW2S=α
2KL(p(tw)||p(ts))=α2

C∑
j=1

p(tw)j log(
p(tw)j
p(ts)j

). (9)

Combined with the cross-entropy loss, the final loss is obtained as:

Ltotal = LCE(O, Y ) + λW2SLW2S , (10)

where λW2S is the hyperparameter coefficient set to 1.

The schematic diagrams of these two distillation schemes are shown in Fig. 2. In this way, self-
distillation can be achieved without additional teacher models or auxiliary modules, and we provide
pseudocode for Strong2Weak and Weak2Strong distillation in Alg. 1. Note that in identifying the
strong and weak submodels, we take the confidence mean of a batch of samples rather than distilling
sample by sample.

4.4 Flexible Self-Distillation Implementation

The above describes the default implementation of the Strong2Weak (S2W) and Weak2Strong (W2S)
self-distillation schemes, i.e., one-to-one distillation of the strongest and weakest submodels with
KL divergence. In addition, we would like to emphasize that the deconstructed SNN allows flexible
distillation implementations with great extensibility. Below we discuss two flexible components that
can be reimplemented: distillation losses and teacher-student configurations. student configurations.

Table 2: Performance with flexible distillation loss
functions (%).

Loss function CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

KL divergence 78.93 79.33 91.43 91.20
MSE 76.50 76.67 92.47 91.44

Logit standardization [40] 75.93 75.77 91.67 91.55

Remark1: Flexible distillation loss function.
In Eq. 6 and Eq. 9 we use the most com-
monly used KL divergence as the distillation
loss. However, as shown in Table 2, our
method is able to seamlessly support other
distillation functions (e.g., MSE and Logit
standardization [40]) with consistently superior
performance. This flexibility allows practition-
ers to further improve performance by incorporating specially designed loss functions [34, 35, 40]
based on task requirements, establishing our method as a generalized substrate for high-performance
SNNs.

Table 3: Performance with flexible imple-
mentations (%).

Implementation CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

Default 78.93 79.33 91.43 91.20
Ensemble teacher 78.53 79.17 92.02 91.78
Ensemble student 78.30 78.37 91.55 91.55

Simultaneous 79.17 91.32
Cascade 79.03 79.37 93.41 92.13

Remark2: Flexible teacher and student configurations.
At each iteration, we distill between the strongest
and weakest submodels. Since the timestep is
usually greater than 2, there are options to use more
submodels to compose the teacher or student in the
implementation. For example, an average of the T − 1
higher/lower confidence submodels can be used as
the teacher to guide the weakest/strongest, and we
refer to this implementation as the ensemble teacher.
Similarly, a highest/lowest confidence submodel can
also guide the remaining T − 1 submodels, i.e., the ensemble student. Alternatively, both S2W
and W2S distillations can be performed simultaneously, or cascade distillation can be performed
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depending on the confidence level. We detail and analyze these alternative implementations in
Appendix A. Table 3 shows the performance with various implementations, indicating that flexible
implementations can further improve performance, especially for cascade distillation. It is worth
noting that the simultaneous use of S2W and W2S did not achieve significantly better performance
because the excessive similarity between the submodels reduces the overall diversity of the SNN,
thus limiting generalizability. How to balance diversity and similarity between multiple submodels is
a perennial problem in ensemble learning [48, 49], and we leave it for future work.

It is worth noting that while our proposed method of self-distillation after deconstruction offers
wide scope for extension and implementation, the performance under different implementations is
often affected by various factors such as task, data, and experimental setup. Therefore, we have kept
the default configuration in the following experiments to highlight the superiority of our efficient
distillation methods rather than the specific implementation, leaving further extensions for future
work. More importantly, experimental results show that even the default implementation, which is
not deliberately tuned, can significantly improve the performance of vanilla SNNs, especially for
neuromorphic tasks with temporal dimensions.

5 Experiments

We perform experiments on both static images CIFAR10/100 [50], ImageNet and neuromorphic
datasets CIFAR10-DVS [51], DVS-Gesture [52] to confirm the effectiveness and performance advan-
tages of the proposed self-distillation schemes. Both VGG and MS-ResNet [19], and Transformer
architectures are used in the experiments. To reduce the influence of randomness, we report the
average results of three trials. The detailed experimental setup is presented in Appendix B.

5.1 Ablation Studies

Table 4: Ablation studies. The proposed self-
distillation schemes show consistent performance
gains, especially on neuromorphic datasets with
temporal properties.

Dataset Method Accuracy (%)
VGG-9 MS-ResNet18

Vanilla SNN 94.21 94.88
Strong2Weak 94.79+0.58 95.15+0.27CIFAR10
Weak2Strong94.70+0.49 95.13+0.25

Vanilla SNN 74.41 76.33
Strong2Weak76.02+1.61 78.25+1.92CIFAR100
Weak2Strong 76.16+1.75 77.98+1.65

Vanilla SNN 73.97 66.40
Strong2Weak78.93+4.96 70.50+4.10CIFAR10-DVS
Weak2Strong 79.33+5.36 71.57+5.17
Vanilla SNN 87.85 89.35
Strong2Weak 91.43+3.58 90.86+1.51DVS-Gesture
Weak2Strong91.20+3.35 91.55+2.20

In Table 4, we compare Strong2Weak and
Weak2Strong to the vanilla SNN on static and
neuromorphic datasets. The results show that
for both VGG and MS-ResNet architectures,
Strong2Weak and Weak2Strong are able to pro-
vide consistent performance gains. In particular,
recognition accuracy on CIFAR10-DVS was im-
proved by up to 5.26%, a more significant im-
provement than on static datasets. This is due to
the lack of temporal features in static images, so
the performance differences between the decon-
structed submodels are minimal and do not max-
imize the distillation effect. Neuromorphic data,
on the other hand, is rich in temporal features,
taking full advantage of the mutually enhancing
effect of strong and weak submodels. This sheds
light on the potential of our method to be applied
to more temporal tasks in the future.

5.2 Submodel Output Distribution Visualization

To illustrate more intuitively how the strong and weak submodels enhance each other, the output 2D
t-distributed stochastic neighbor embedding (t-SNE) distributions of the submodels for each timestep
are visualized in Fig. 3. In Fig. 3(a), the vanilla SNN exhibits a large output gap across timesteps
and is particularly weak at t = 0. Excessive differences between the strong and the weak affect the
overall performance. Compared to the vanilla SNN, the Strong2Weak distillation guides the weak and
compensates the deficiencies, thus contributing to the overall performance. Specifically, Weak2Strong
distills the weak into the strong and can improve the performance of the weak as well, embodying
the concept of teaching and learning. From an overall perspective, Strong2Weak and Weak2Strong
improve the discriminability of the submodel outputs at each timestep, which improves the overall
stability and performance. The visualization of the overall output can be found in Appendix C.
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Figure 3: Visualization of the output distribution of each timestep submodel. (a) The vanilla SNN
produces confusing outputs at t = 0, showing dramatic gaps between the strong and the weak. (b) (c)
Both Strong2Weak and Weak2Strong are able to improve the output discriminability of the submodels,
thus bridging the gap between strong and weak to improve the overall stability and performance.

Table 5: Comparative results (%) for reduced
timestep inference on CIFAR10-DVS. Our distil-
lation schemes can maintain decent performance
even with reduced inference timesteps.

Method T=1 T=2 T=3 T=4 T=5

Vanilla SNN 10.00 60.10 69.50 73.30 74.10
MPS [53] 66.60 74.30 75.50 75.70 76.60

Strong2Weak 71.50 76.20 77.10 78.20 78.60
Weak2Strong 73.40 76.50 77.50 78.80 79.70

Table 6: Improved adversarial robustness perfor-
mance (%) of the proposed distillation schemes.
Experiments were performed with VGG-11 on
CIFAR100, T = 8.

Method Clean GN FGSM PGD BIM CW

FEEL-SNN [54] 63.95 61.97 9.87 2.13 1.93 6.21
AT [55] 67.97 67.47 17.55 9.52 8.91 20.23

RAT [56] 69.99 69.06 19.00 9.11 8.46 22.59
Strong2Weak 70.68 69.53 21.15 10.30 9.40 23.40
Weak2Strong 70.09 68.87 21.23 10.70 9.75 24.08

5.3 Improved Performance at Low Timesteps

Timestep and inference latency are positively correlated. If lower latency is required, inference can
be performed with fewer timesteps. The performance of the SNN at different inference timesteps
is shown in Table 5, using the pre-trained model with 5 timesteps. The performance of the vanilla
SNN degrades significantly as the timestep is reduced. In particular, at 1 timestep, the corresponding
submodel is too weak, leading to a performance equivalent to a random guess. Membrane potential
smoothing [53] mitigates this problem to some extent, and decent performance can be achieved
at low latencies. Our distillation schemes narrow the gap in output across timesteps, improving
overall stability and maintaining satisfactory performance even with reduced timesteps. This makes it
possible to train a model to apply under various latency constraints without retraining.

5.4 Robustness Gains from Self-Distillation

The proposed self-distillation schemes improve the overall stability and performance of the SNN
by guiding the strong and weak submodels towards each other. Since stability is closely related
to robustness [54], we investigate whether our methods can improve the robustness of SNNs and
thus increase the reliability of deployment. We perform robustness experiments on CIFAR100 using
VGG-11, and the attack methods include common noise attack (Gaussian noise, GN) and adversarial
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Table 7: Comparative results on ImageNet.
Method Architecture T Acc.(%)

w
/o

K
D

TAB [17]ICLR′24 ResNet34 4 67.78
Shortcut [60]NeurIPS′24 ResNet34 4 68.14
FSTA-SNN [61]AAAI′25 ResNet34 4 70.23
STAA-SNN [62]CV PR′25 ResNet34 4 70.40

SEW-ResNet [63]NeurIPS′21 SEW-ResNet34 4 67.04
IMP+LTS [64]ICLR′25 SEW-ResNet34 4 68.90

K
D

SSCL [65]AAAI′24 ResNet34 4 66.78
EnOF [44]NeurIPS′24 ResNet34 4 67.40
KDSNN [24]CV PR′23 SEW-ResNet34 4 67.28

MPS [53]ICLR′25 SEW-ResNet34 4 69.03
TKS [27]IEEE TAI′24 SEW-ResNet34 4 69.60

Strong2Weak SEW-ResNet34 4 70.53
Weak2Strong SEW-ResNet34 4 69.87

Table 8: Comparative results on CIFAR10/100.
Method Architecture T CIFAR10 CIFAR100

w
/o

K
D

RMP-Loss [66] VGG-16 10 94.39 73.30
CLIF [12] ResNet-18 4 94.89 77.00

NDOTO [67] VGG-11 4 94.79 76.18
MS-ResNet [19] MS-ResNet18 4 94.88 76.33
Spikformer [68] Transformer 4 93.94 75.96
QKFormer [69] QKFormer 4 96.18 81.15

K
D

SSCL [65] ResNet-20 4 94.27 72.86
EnOF [44] ResNet-20 4 94.74 73.01

KDSNN [24] ResNet-18 4 93.41 -
BKDSNN [43] ResNet-19 4 94.64 74.95

TKS [27] ResNet-19 4 96.35 79.89
MS-ResNet18 4 95.15 78.25

ResNet-19 4 96.62 81.83Strong2Weak
QKFormer 4 96.42 81.27

MS-ResNet18 4 95.13 77.98
ResNet-19 4 96.66 82.02Weak2Strong
QKFormer 4 96.29 81.23

attacks (FGSM [55], PGD with random start [57], BIM [58], and CW [59]). We combine the proposed
methods with RAT [56] to verify that they can maximize robustness in conjunction with each other.
Experimental details are given in the Appendix B.

The comparative adversarial robustness results are shown in Table 6, where our method further
improves the performance of RAT [56] for both clean and adversarial samples. In particular,
Weak2Strong improves robust accuracy under FGSM attacks by 2.23%, which is quite significant.
This confirms that the stability provided by self-distillation can indeed improve the robustness of the
model against attacks, and we will explore further effects of distillation on robustness promotion in
the future.

5.5 Comparison with Other Methods
Table 9: Comparative results (%) on neuromorphic
datasets.

Method Archi. T CIFAR10-DVS DVS-Gesture

w
/o

K
D

DSR [70] VGG-11 20 77.27 -
RMP-Loss [66] ResNet-20 10 75.60 -

NDOT [67] VGG-11 10 77.50 -
TAB [17] VGG-9 5 74.57 90.86
SLT [21] VGG-9 5 74.23 89.35
SSNN [5] VGG-9 5 73.63 90.74

K
D

MPS [53] VGG-9 5 76.77 93.23
TSSD [26] VGG-9 5 72.90 86.69
SSCL [65] ResNet-20 10 78.50 -
EnOF [44] ResNe-20 10 80.50 -
TKS [27] VGGSNN 10 85.30 -

VGG-9 5 78.93 91.43Strong2Weak VGGSNN 10 85.60 -
VGG-9 5 79.33 91.20Weak2Strong VGGSNN 10 86.70 -

SDT [3] Transformer 5 72.53 93.98
QKFormer [69] QKFormer 16 84.00 98.60

Transformer 5 73.57 95.14
5 82.50 95.14Strong2Weak QKFormer 16 84.60 99.08

Transformer 5 73.20 94.91
5 82.80 94.91Weak2Strong QKFormer 16 84.90 98.96

Static datasets. The comparative results on
ImageNet are shown in Table 7. Our method
achieves 70.53% accuracy at 4 timesteps,
surpassing other distillation methods and
specially designed modules. Compared to
TKS [27], which does not require a teacher
model for distillation, we outperform it by
0.93% in accuracy. Additionally, we also
achieved accuracies of 96.66% and 82.02%
on CIFAR10 and CIFAR100, respectively,
which again exceeded the other methods, as
shown in Table 8. We also show results
on Tiny-ImageNet in Table 18, where our
method can be combined with CILF [12]
neurons to further improve performance.

Neuromorphic datasets. The comparative
results on neuromorphic datasets are shown
in Table 9. Weak2Strong achieved 86.70%
accuracy on CIFAR10-DVS using the VG-
GSNN architecture with T = 10, which was
1.40% higher than TKS [27]. In addition,
our distillation schemes also enhance the
SNN with Transformer architecture. The performance of both the SDT [3] and the QKFormer [69]
architectures improves further, demonstrating the versatility of our method.

5.6 Combined with the Early Exit Dynamic Inference

Table 10 shows the performance of our method when combined with the early exit mechanism [47]
for dynamic inference. We used the VGG-9 model on the CIFAR10-DVS and DVS-Gesture datasets,
setting the early exit thresholds to 0.95, 0.9, 0.8, and 0.5. The results suggest that our method is highly
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Table 10: The proposed method can be combined
with the early exit dynamic inference. ϑexit is the
early exit threshold, T is the average inference
timestep.

Method CIFAR10-DVS DVS-Gesture
T Acc. (%) T Acc. (%)

Vanilla SNN 5 73.97 5 87.85
Strong2Weak 5 78.60 5 92.01

+Early exit (ϑexit = 0.95) 3.16 78.40 2.35 91.32
+Early exit (ϑexit = 0.90) 2.73 78.20 1.87 90.62
+Early exit (ϑexit = 0.80) 2.30 77.80 1.56 90.28
+Early exit (ϑexit = 0.50) 1.38 74.70 1.06 88.54

Weak2Strong 5 79.70 5 91.67
+Early exit (ϑexit = 0.95) 3.19 79.50 2.22 91.67
+Early exit (ϑexit = 0.90) 2.74 79.40 1.89 90.62
+Early exit (ϑexit = 0.80) 2.27 78.80 1.58 89.93
+Early exit (ϑexit = 0.50) 1.38 75.80 1.01 86.11

Table 11: The proposed method can be combined
with the early exit dynamic inference. ϑexit is the
early exit threshold, T is the average inference
timestep.

Metric Distillation CIFAR10-DVS DVS-Gesture

Confidence Strong2Weak 78.93 91.43
Entropy Strong2Weak 78.80 90.97
Margin Strong2Weak 78.83 91.55

Diversity Strong2Weak 78.27 90.57
Confidence Strong2Weak 79.33 91.20

Entropy Strong2Weak 78.57 90.05
Margin Strong2Weak 78.57 90.97

Diversity Strong2Weak 78.73 91.78

compatible with the early-exit mechanism. Specifically, when the exit threshold is set to 0.8, our
method achieves accuracies of 77.8% (Strong2Weak, T = 2.3) and 78.8% (Weak2Strong, T = 2.27)
on CIFAR10-DVS. Compared to the vanilla SNN, our method demonstrates significantly improved
performance while reducing latency by half. This further demonstrates the potential of our method
for ultra-low-latency inference.

5.7 The Influence of Metrics on the Strong and the Weak

We use confidence as the default metric to distinguish between strong and weak submodels because it
can be efficiently calculated using only a softmax function. In addition, confidence typically reflects
the uncertainty of model output results and has been shown to be related to generalization error, which
to a certain extent reflects performance [71]. Due to these advantages, confidence is widely used to
evaluate model performance in areas such as model calibration [72, 73] and early exit [74, 47].

As a general distillation method, we can seamlessly replace confidence with other metrics such as
entropy, margin (maximum confidence difference between target category and other categories),
diversity (confidence differences between all categories), or other specially designed metrics. Table 11
shows the influence of different metrics on performance. The results suggest that different metrics do
not yield significant performance differences. This indicates that the straightforward and intuitive
confidence is sufficient and effective for distinguishing between strong and weak submodels.

6 Conclusion

In this paper, we deconstruct the multi timestep SNN into submodels and distill between the sub-
models, thereby eliminating the need for additional overhead. We identify the strong and the weak
by evaluating the output confidence of the submodels, and propose two self-distillation schemes,
Strong2Weak and Weak2Strong, respectively, where the strong helps the weak and the weak trans-
fers the underlying dark knowledge to the strong. These two distillation schemes can be flexibly
implemented, such as one-to-one, ensemble, simultaneous, and cascade distillation, with great ex-
tensibility. Extensive visualizations and experiments show that this efficient self-distillation method
effectively mitigates strong and weak gaps between submodels and significantly improves low-latency
inference performance. In particular, the adversarial robustness of the model is also gained with
the overall stability improvement delivered by self-distillation. This will contribute to efficient and
high-performance studies of SNNs.

Limitation. The aim of this paper is to demonstrate efficient self-distillation schemes for SNNs, and
therefore there is no deliberate tuning of the distillation loss functions and coefficients, which allows
the performance of the proposed method to be further enhanced by improving these.

Any highly efficient, high-performance model is at risk of misuse in the real world, especially SNNs,
which are known for their low power consumption and low latency. To mitigate the risk of misuse,
we believe it is necessary to integrate offensive and defensive strategies and security measures into
the proposed method. As an alternative, privacy-preserving mechanisms, such as federated learning,
should be incorporated during deployment.
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• It should be clear whether the error bar is the standard deviation or the standard error
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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didn’t make it into the paper).

9. Code of ethics
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Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics in every respect.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no potential social impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This point is irrelevant to the topic of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source assets and provide explicit references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


Algorithm 1 Pseudocode for the proposed self-distillation schemes

# x: Input data with dimension [T,B,C,H,W].
# y: Label information with dimension [B,M].
# snn: The SNN.
# out: Output of the SNN with dimension [T,B,M].
def self_distillation(x,y,snn,lambda):

out = snn(x)
strong,weak = identify(out)
p_s,p_w = softmax(strong),softmax(weak)
L_ce = cross_entropy(out.mean(0),y)
if Strong2Weak:

L_s2w = KL_div(log(p_w), p_s)
L_total = L_ce + lambda*L_s2w

elif Weak2Strong:
L_w2s = KL_div(log(p_s),p_w)
L_total = L_ce + lambda*L_w2s

return L_total

# con: Submodel output confidence with dim [T].
def identify(out):

T = out.shape[0]
con = zeros(T)
for t in range(T):

tmp = max(softmax(out[t], dim=1), dim=1)
con[t] = mean(tmp)

max_index,min_index = argmax(con),argmin(con)
strong = out[max_index]
weak = out[min_index]
return strong,weak

A Appendix A: Flexible Self-Distillation Implementation

While Strong2Weak and Weak2Strong are implemented as one-to-one distillations by default, both can
be implemented in flexible ways such as ensemble teacher, ensemble student, simultaneous distillation,
and cascade distillation. Below are descriptions of alternative distillation implementations.

Ensemble teacher: For an SNN with T > 2 timesteps, it can be deconstructed into T submodels.
In this case, one submodel is taken as the student, while the remaining set of T − 1 submodels is
ensembled as the teacher model to guide the student. When Strong2Weak is implemented, the student
model is the one with the lowest confidence; when Weak2Strong is implemented, the student model
is the one with the highest confidence.

Ensemble student: For T > 2 submodels, the ensemble student takes one of the submodels as the
teacher, while the remaining ensemble submodels are distilled as the student model, which is the
opposite of the ensemble teacher.

Simultaneous distillation: For the strong submodel with the highest confidence and the weak
submodel with the lowest confidence, simultaneous distillation is performed for both Strong2Weak
and Weak2Strong distillation, i.e., the final loss is the cross-entropy loss LCE(O, Y ) + λS2WLS2W

+ λW2SLW2S .

Cascade distillation: For T > 2 submodels, cascade distillation ranks them in order of decreasing
confidence to obtain submodels {Sub1, Sub2, ..., SubT }, and then distillation is performed between
two submodels with adjacent rankings. For example, for Subt and Subt+1, the implementation of
Strong2Weak takes Subt as the teacher and makes Subt+1 the student, and the opposite is true for
the implementation of Weak2Strong. We provide PyTorch-style pseudocode for cascade distillation
in Alg. 2.

A.1 Performance Analysis of Various Implementations

The performance of different implementations on CIFAR10-DVS and DVS-Gesture is shown in
Table. 12. The results show that the performance of these implementations varies slightly from
dataset to dataset, where cascade distillation consistently delivers better performance. In addition, we
would like to emphasize that we did not deliberately adjust the hyperparameters in Table. 12, such
as the coefficients of Strong2Wweak and Weak2Strong losses, which should have an impact on the
performance, especially for simultaneous distillation.
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Algorithm 2 PyTorch-style pseudocode for implementing cascade distillation

# x: Input data with dimension [T,B,C,H,W].
# y: Label information with dimension [B,M].
# snn: The SNN.
# out: Output of the SNN with dimension [T,B,M].
def cascade_distillation(x,y,snn,lambda):

out = snn(x)
loss = 0
ranked_indices = rank(out)
for i in range(T-1):

strong = out[ranked_indices[i]]
weak = out[ranked_indices[i+1]]
p_s,p_w = softmax(strong),softmax(weak)
if Strong2Weak:

loss += KL_div(log(p_w),p_s)
elif Weak2Strong:

loss += KL_div(log(p_s),p_w)
loss /= (T-1)
L_ce = cross_entropy(out.mean(0),y)
L_total = L_ce + lambda*loss
return L_total

# con: Submodel output confidence with dim [T].
# ranked_indices: Timestep indices ranked in descending confidence order.
def rank(out):

T = out.shape[0]
con = zeros(T)
for t in range(T):

tmp = max(softmax(out[t], dim=1), dim=1)
con[t] = mean(tmp)

ranked_indices = torch.argsort(con, descending=True)
return ranked_indices

Table 12: Performance with flexible distillation implementations (%). The coefficient for all dis-
tillation losses is set to 1. Performance varies slightly for different implementations, with cascade
distillation consistently giving better performance.

Distillation configuration CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

Default 78.93 79.33 91.43 91.20
Ensemble teacher 78.53 79.17 92.02 91.78
Ensemble student 78.30 78.37 91.55 91.55

Simultaneous 79.17 91.32
Cascade 79.03 79.37 93.41 92.13

Performance Gains from Simultaneous Distillation. The simultaneous distillation of the weak by
the strong and the distillation of the strong by the weak is able to utilize both the representational
power of the strong and the dark knowledge of the weak, and thus should be expected to yield greater
gains than either alone. However, in Table. 12, simultaneous distillation does not perform optimally
as expected. We attribute this to too much similarity between multiple submodels. From an ensemble
learning perspective [48, 53, 49], excessive similarity between members leads to a decrease in overall
diversity, which is unfavorable for generalization. However, how to balance similarity and diversity is
a perennial challenge in ensemble learning [48, 49] that we leave for future work.

In addition, the adjustment of the two distillation loss coefficients is expected to reduce the conflict
between sim ilarity and diversity, thereby improving the performance of simultaneous distillation. For
example, incorporating advanced knowledge distillation loss adjustment methods and multi-task loss
factor settings. Since our goal is to provide efficient self-distillation schemes for SNNs rather than
carefully selecting optimal hyperparameter settings, therefore in this paper we do not deliberately
combine other methods to improve the accuracy. When using the self-distillation schemes provided in
this paper for performance-critical tasks, incorporating additional strategies to improve performance
is further work worth exploring.
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B Appendix B: Experimental Details

B.1 Datasets

We perform experiments on static images and neuromorphic datasets.

CIFAR10 and CIFAR100 [50] are static image benchmark datasets containing 10 and 100 classes of
32 × 32 color images, respectively. Both datasets contain 50,000 training images and 10,000 test
images. For CIFAR10 and CIFAR100 data, we preprocessed them using standard data augmentation
strategies: random cropping, horizontal flipping, and normalization. We also use the AutoAugment
strategy for CIFAR10.

The ImageNet dataset of 1.2 million training images, 50,000 validation images, and 150,000 test
images with 1,000 categories is the most challenging object recognition benchmark. For the ImageNet
dataset, we unify the images to a 224 × 224 size during training and testing, and evaluate the
performance of our method on the test set.

CIFAR10-DVS dataset [51] is the neuromorphic version of the CIFAR10 dataset. The CIFAR10-DVS
dataset has 10,000 samples for a total of 10 object classes, and the dimension of each sample is
[t, p, x, y], where t is the timestamp, p is the polarity of the intensity change of the corresponding pixel,
and x and y are the spatial coordinates of the pixel point, respectively. The spatial size of each sample
in CIFAR10-DVS is 128× 128, which we downsampled to 48× 48 resolution before inputting to
the SNN. Additionally, due to the high temporal resolution of the neuromorphic dataset, we integrate
a neuromorphic sample into T event frames [T, p, x, y] using the SpikingJelly framework [75] to
match the timestep T of the SNN. For each training, we randomly divide 90% of the data as the
training set and test on the remaining 10% of the data, which is by far the most common strategy [5].

The DVS-Gesture [52] dataset contains neuromorphic data for 11 hand gestures with 1176 training
samples and 288 test samples. The dimension of each sample is [T, p, x, y], and we downsample
its spatial resolution from 128 × 128 to 48 × 48 before feeding the samples into the SNN. The
pre-processing of the DVS-Gesture data is the same as in CIFAR10-DVS, which also utilizes the
SpikingJelly framework to obtain the event frame [T, p, x, y] by integrating it by timestep.

B.2 Implementation Details

Our experiments are based on the PyTorch package running on an Nvidia RTX 4090 GPU. For the
VGG-9 and MS-ResNet architectures, we follow the training strategy of [5]: train the model with an
initial learning rate of 0.1 for 100 epochs, reducing it by a factor of ten every 30 epochs. A stochastic
gradient descent optimizer with a momentum of 0.9 and a batch size of 64 was used. The weight
decays for the static and neuromorphic datasets are 1e-4 and 1e-3, respectively. We used the LIF
neuron model with a firing threshold ϑ of 1.0 and a membrane potential time constant τ of 2.0.

When using CLIF neurons, we replace the LIF neurons in our model with CLIF neurons and leave
the other parameters unchanged. We use the CLIF neuron implementation from the publicly available
code of the original paper [12].

When using the Spike-driven Transformer architecture, we followed the training strategy of the
original model on CIFAR10-DVS [3]: 200 epochs were trained using the Spike-driven Transformer-
2-256 architecture, see [3] for details.

When using the ResNet19 architecture, for a fair comparison with TKS [27], we use the same training
strategy as TKS and use their published code.

For the QKFromer [69] architecture, we use the proposed method directly on the officially released
code and follow its training settings. However, when we used our self-distillation for QKFormer, we
noticed a performance degradation when we set the loss function coefficient to 1, so we set this value
to 0.01.

To reduce the influence of randomness, we repeated all our experiments three times, and the average
results are reported in the paper. Notably, when evaluating the performance of different inference
timesteps using the pre-trained five-timestep model, we only report the results of the evaluation on a
single pre-trained model, and do not conduct multiple experiments using multiple models.
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To evaluate the robustness of the proposed method, we follow the training setup of [54] and rely on
its publicly available code. The parameters, architecture, etc. related to the robustness experiment are
the same as in [54]. For robustness results, we report the results of a single trial.

C Appendix C: Additional Visualizations

C.1 t-SNE Visualization

The comparison of the 2D t-SNE visualization of the overall output of the SNN is shown in Fig. 4,
where our distillation schemes produce outputs that are more discriminative and thus have better
performance.
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Figure 4: Visualization of the overall output of the vanilla SNN, Strong2Weak distillation, and
Weak2Strong distillation. Strong2Weak and Weak2Strong distillation schemes provide superior
performance by allowing for more discriminable outputs than the vanilla SNN.

C.2 Timestep Evolution for Strong and Weak Submodels

During training, we examined the timesteps corresponding to the strong and weak submodels and
found that the weak submodel was not always located at the earliest timestep and that the strong
model was not always the last. In fact, the weak submodel appears at every timestep, as shown
in Fig. 5. However, it appears most frequently at the earliest timestep and less frequently at other
timesteps. This is consistent with our experimental results: the vanilla SNN performs worst at the
earliest timestep, while our method significantly improves the performance of the first timestep, so
it is not always the weakest. The strong submodel is less likely to be selected in the first timestep,
but is typically selected for subsequent timesteps. This demonstrates that our method of evaluating
submodels based on confidence and dynamically selecting timesteps for distillation is capable of
adapting to the training of SNNs to a certain extent. Otherwise, it would degrade to distillation with
specified timesteps.
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Figure 5: The evolution trend of timestep indices corresponding to strong and weak submodels during
training.
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Additionally, we compare distillation with specified timesteps. We construct Last2First and First2Last
distillation schemes under the assumption that the first timestep is the weakest and the last timestep
is the strongest. The comparative results are shown in Table 16. The results show that specifying
these two timestep distillations is much less effective than our confidence selection distillation. This
highlights the importance of dynamically selecting teacher and student timesteps.

D Appendix D: Additional Experiments

D.1 Influence of Loss Function Coefficients

By default, the distillation function coefficients for Strong2Weak and Weak2Strong are set to 1.0. In
Table 13, we explore the performance for other values of the loss function coefficients. The results
show that the accuracy varies slightly with the coefficients, but remains stable overall (except for the
weights of 0.1 and 2.0). The adjustment of the loss coefficients based on well-established theories
should further contribute to the performance of the proposed methods, taking into account the relevant
work in the field of knowledge distillation.

Table 13: Influence of loss function coefficient values on performance (%). The accuracy varies
slightly with the coefficients, but remains stable overall.

Coefficient CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

0.1 77.27 76.43 93.06 91.67
0.5 78.30 78.57 92.13 91.55
1.0 78.93 79.33 91.43 91.20
1.5 79.13 78.53 90.51 90.16
2.0 79.17 78.17 89.24 87.96

D.2 Influence of Distillation Temperature

The default distillation temperature is set to 2.0. Table 14 shows the influence of distillation tem-
perature on performance. The results indicate that adjusting the distillation temperature within a
reasonable range only causes slight fluctuations in performance without leading to significant degra-
dation. These results also demonstrate that our method can achieve satisfactory performance without
the need for deliberate adjustments to the distillation temperature. However, when the temperature or
distillation weight falls outside the normal range (e.g., a temperature of 0.5), the performance of our
method deteriorates. Nevertheless, it consistently outperforms vanilla SNNs.

Table 14: Influence of distillation temperature on performance (%).

Temperature CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

0.5 75.30 76.77 91.09 91.32
1.0 77.63 78.43 92.13 91.44
2.0 78.93 79.33 91.43 91.20
3.0 78.27 78.43 90.86 91.21
5.0 78.75 79.03 92.01 91.67

D.3 Comparison with High Accuracy Submodel Teacher

After deconstructing the SNN into multiple submodels, the naive distillation method is to select the
submodel with the highest accuracy among them as the teacher guiding the submodel with the lowest
accuracy. However, the naive method has three weaknesses that limit its availability and performance.

• The distillation process is complicated by the comparison to the label on a timestep basis for
each training batch.

27



• It can only be used with labeled learning, and the accuracy of each submodel cannot be
evaluated if labels are missing.

• Relying only on accuracy to assess the strong and the weak, without being able to utilize
the underlying dark knowledge, leads to limited performance. As shown in Table 15, this
naive method is inferior to our two proposed distillation schemes on both CIFAR10-DVS
and DVS-Gesture.

Table 15: Comparative results (%) with high-accuracy submodel teacher (Abbreviated as HAST). This
method is inferior to our two proposed distillation schemes on both CIFAR10-DVS and DVS-Gesture.

Method CIFAR10-DVS DVS-Gesture

HAST 78.43 90.62
Strong2Weak 78.93 91.43
Weak2Strong 79.33 91.20

D.4 Comparison with Random Submodel Distillation

Table 16 shows the comparative results between the proposed method and random submodel distilla-
tion (where two randomly selected submodels of different time steps are distilled). The experimental
results show that:

(1) Random distillation outperforms the vanilla SNN, even without deliberately selecting the teacher
and student. We consider this method to randomly transition between Strong2Weak and Weak2Strong,
achieving an effect similar to using both simultaneously. This makes our deconstruction-after-
destillation scheme more flexible and versatile. However, distillation cannot be abused entirely
between submodels. As shown by the Last-to-First and First-to-Last results, performing distillation
only between the first and last time steps leads to significant performance degradation.

(2) Using confidence to determine teacher and student submodels for distillation consistently achieved
better performance than random distillation. This shows that although confidence is straightforward,
it can be used to determine the performance of a model relatively well (though not absolutely). In
fact, previous research on empirical risk minimization has shown that confidence is usually correlated
with the generalization error of a model, i.e., high confidence often corresponds to low generalization
error [71]. In contrast, random distillation cannot guarantee optimization in the direction of either
strong to weak (toward low generalization error) or vice versa (toward high generalization error
regularization). This easily leads to a conflict between consistency and diversity, similar to suboptimal
performance when using both simultaneously.

Table 16: Comparative results (%) between the proposed method and random submodel distillation.
Method CIFAR10-DVS DVS-Gesture

Vanilla SNN 73.97 87.85
Last-to-First 74.75 89.12
First-to-Last 74.29 88.89

Random-to-Random 78.03 90.16
Strong2Weak 78.93 91.43
Weak2Strong 79.33 91.20

D.5 Further Analysis of the Adversarial Robustness Gains of the Proposed Method

Our method guides the student submodel using the output of the teacher submodel as soft labels,
which can simultaneously achieve distillation and regularization effects to promote better consistency
and generalization. To investigate the source of the gains in adversarial robustness, we compared our
method with those of typical label smoothing and entropy regularization (with the same settings as
Table 6, VGG-11 with 8 timesteps was used on CIFAR100). Further experimental results are shown
in Table 17. We found that using regularization methods alone can achieve decent performance on
clean samples. However, pure regularization methods severely degrade and are significantly inferior
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to our method when faced with adversarial attacks. Therefore, we consider the source of the SNN’s
robustness to be the distillation that promotes internal consistency, making it immune to interference.
However, it should be emphasized that regularization also plays a role to a certain extent, just as label
smoothing can also achieve decent robustness.

Table 17: Comparative results (%) of the proposed method versus label smoothing and entropy
regularization in terms of adversarial robustness.

Method Clean GN FGSM PGD BIM CW

Label smoothing 69.92 68.52 18.29 8.42 7.89 23.65
Entropy regularization 70.05 69.11 17.89 8.17 7.38 18.88

Strong2Weak 70.68 69.53 21.15 10.30 9.40 23.40
Weak2Strong 70.09 68.87 21.23 10.70 9.75 24.08

D.6 Comparative Results on Tiny-ImageNet

The results of the proposed self-distillation schemes compared to other methods on Tiny-ImageNet
are shown in Table 18. Our method achieves competitive performance compared to other methods. In
addition, our method can be seamlessly integrated with CLIF [12] to further improve performance.
This demonstrates the potential of our method to fuse with a wider range of neurons.

Table 18: Comparative results on Tiny-ImageNet dataset. * denotes self-implementation results with
open-source code.

Method Architecture T Accuracy(%)

Online LTL [76] VGG-16 16 56.87
ASGL [77] VGG-13 8 56.81

Joint A-SNN [42] VGG-16 4 55.39
CLIF [12] VGG-13 4 61.93*

Strong2Weak VGG-13(LIF) 4 59.78
VGG-13(CLIF) 4 62.65

Weak2Strong VGG-13(LIF) 4 59.40
VGG-13(CLIF) 4 62.45
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