
Synergy Between the Strong and the Weak:
Spiking Neural Networks are Inherently Self-Distillers

Yongqi Ding, Lin Zuo∗, Mengmeng Jing, Kunshan Yang, Pei He, Tonglan Xie
School of Information and Software Engineering

University of Electronic Science and Technology of China
{yqding,ksyang,202321090226,2021090907006}@std.uestc.edu.cn

linzuo@uestc.edu.cn, jingmeng1992@gmail.com

Abstract

Brain-inspired spiking neural networks (SNNs) promise to be a low-power alter-
native to computationally intensive artificial neural networks (ANNs), although
performance gaps persist. Recent studies have improved the performance of SNNs
through knowledge distillation, but rely on large teacher models or introduce ad-
ditional training overhead. In this paper, we show that SNNs can be naturally
deconstructed into multiple submodels for efficient self-distillation. We treat each
timestep instance of the SNN as a submodel and evaluate its output confidence,
thus efficiently identifying the strong and the weak. Based on this strong and weak
relationship, we propose two efficient self-distillation schemes: (1) Strong2Weak:
During training, the stronger "teacher" guides the weaker "student", effectively im-
proving overall performance. (2) Weak2Strong: The weak serve as the "teacher",
distilling the strong in reverse with underlying dark knowledge, again yielding
significant performance gains. For both distillation schemes, we offer flexible
implementations such as ensemble, simultaneous, and cascade distillation. Ex-
periments show that our method effectively improves the discriminability and
overall performance of the SNN, while its adversarial robustness is also enhanced,
benefiting from the stability brought by self-distillation. This ingeniously exploits
the temporal properties of SNNs and provides insight into how to efficiently train
high-performance SNNs.

1 Introduction

Currently, artificial neural networks (ANNs) have shown outstanding performance in both computer
vision and natural language processing [1, 2]. However, ANN inference involves intensive multiply-
accumulate (MAC) operations that consume significant power, limiting its deployment in power-
constrained scenarios such as edge devices [3]. To reduce power consumption toward sustainable
artificial intelligence, brain-inspired research is being conducted in anticipation of low-power artificial
intelligence through neuromorphic computing [4].

Spiking Neural Networks (SNNs) are considered to be a low-power alternative to ANNs by trans-
mitting information through bionic binary spikes, avoiding heavy MAC operations, and requiring
only energy-efficient accumulation (AC) operations [3, 5]. Moreover, spiking neurons, which model
the membrane potential dynamics of biological neurons that evolve over time, are able to extract
underlying temporal features, making SNNs more favorable for exploiting their potential in temporal
tasks [6, 7]. Combined with neuromorphic chips and dynamic vision sensors, SNNs can perform
various tasks with ultra-low latency and power consumption [8]. For example, the SNN on the
Tianmouc chip requires only 0.7mW to perform typical vision tasks [9].

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

However, limited by the binary information representation, there is still a performance gap between
SNNs and ANNs. Further improving the performance of SNNs can facilitate their widespread
deployment in real-world scenarios. Previous studies have optimized the spiking neurons [10, 11, 12,
13], network architectures [3, 14, 15], spike-specific BN layers [16, 17], and residual connections [18,
19, 20], significantly narrowing the performance gap. Another studies have focused on optimizing
the training process of SNNs to be compatible with a variety of neurons and architectures, have
received widespread attention [21, 22, 23]. Inspired by knowledge distillation, recent efforts have
attempted to improve the performance of lightweight SNNs with additional teacher models (ANNs
or SNNs) [24, 25]. However, teacher models incur additional pre-training overhead and typically
need to be customized for specific tasks, making the training process more cumbersome. To reduce
the additional overhead, [26] extends the timestep during training and adds a weak classifier for
spatio-temporal self-distillation. [27] relies on real labels to guide incorrect output with correct
output, which suffers from limited efficiency and performance. Given these unresolved issues, a
question worth exploring is: How to distill a high-performance SNN without additional overhead?

Following the philosophy of Occam’s razor, we answer the above question by proposing a simple yet
effective self-distillation strategy for SNNs. To begin with, we deconstruct the SNN in the temporal
dimension, considering its instances at each timestep as a submodel. Then, we evaluate the output
confidence of each submodel to identify the strong and the weak ones, respectively. Based on the
strong and weak relationships, we propose two efficient self-distillation schemes: (1) Strong2Weak
takes the strongest submodel as the "teacher" and guides the weakest "student" submodel to strengthen
the discriminative ability of the weaker model, elevating the "short boards in the barrel" to improve
the overall performance. (2) Weak2Strong works the other way around, where the weakest model
serves as a "teacher” to guide the strongest "student”. It is worth noting that Weak2Strong exploits
the underlying dark knowledge of the weak "teacher" to augment the strong "student", e.g., an overly
strong model may ignore detailed information leading to overfitting, while a weak model provides
complements or acts as a regularizer, thus improving generalization [28]. Both schemes allow flexible
implementations, with default one-to-one distillation and alternative ensemble, simultaneous and
cascade distillation. Moreover, these two distillation schemes are compatible with various network
architectures and neurons with superior generalization.

Visualizations and extensive experiments on both static and neuromorphic datasets show that the
proposed self-distillation schemes narrow the performance gap between submodels of the SNN,
improve overall performance, and enable inference with low latency. Meanwhile, the synergy
between the strong and the weak promotes overall stability and enhances the robustness of the SNN
against attacks. The contribution of this paper can be summarized as follows:

• We show that SNNs can be deconstructed into multiple submodels in the temporal dimension,
allowing for efficient self-distillation without any additional overhead.

• We efficiently identify the strong and the weak in the deconstructed submodels by confi-
dence, and propose Strong2Weak and Weak2Strong self-distillation schemes to improve the
performance of SNNs.

• Visualizations and experiments on both static and neuromorphic datasets show that the
proposed self-distillation schemes enhance the discriminability, performance, and robustness
of the SNN and enable satisfactory performance with ultra-low latency.

2 Related work

Spiking Neural Network. SNNs have received considerable attention due to their low-power
characteristics [29, 30, 31], especially in light of the significant energy requirements associated
with large language models. To improve the performance of SNNs, a plethora of studies have been
conducted on spike encoding [32], neuron models [10, 12], network architectures [3, 14, 15], and
training methods [21, 22, 23]. The contributions of this paper belong to training methods, compatible
with various encoding, neuron models and network architectures with great generalization. Compared
to other training methods, this paper deconstructs an SNN into multiple submodels and identifies the
strong and weak submodels for self-distillation learning, which significantly improves performance
without additional overhead.

Knowledge Distillation. Knowledge distillation originated in ANNs, which attempt to boost the
performance of a weak student model with a strong teacher model [33], leaving only the student

2

for inference without compromising inference efficiency. Depending on the spatial location of
the distillation signal, distillation can be categorized into logit distillation [34, 35] and feature
distillation [36, 37]. Logit distillation encourages the student to mimic the teacher’s output, and
feature distillation promotes intermediate feature consistency between the two. Feature distillation
typically offers superior performance, but the difficulty in obtaining the intermediate features of the
teacher model in many scenarios (for privacy and security reasons) makes logit distillation more
versatile and easier to implement [38, 39, 40]. To improve distillation efficiency, self-distillation
methods separate the teacher and student from a single model, e.g., by using intermediate checkpoints
or adding multiple output heads [28, 41]. This paper focuses on self-distillation learning in SNNs and
shows that SNNs can naturally distinguish between the strong and the weak without any checkpoints
or additional output heads, and are well suited for efficient self-distillation.

Distillation-Enhanced SNN. Given the remarkable gains of knowledge distillation in ANNs,
the community has introduced it to train SNNs. Previous studies have shown that large ANNs
and SNN teachers can improve the performance of small student SNNs [24, 42, 25, 43, 44].

Teacher model

Student SNN

Soft label

Distillation with teacher model

Previous self-distillation

Hard label

Hard label
Timestep extension

C
Weak classifier

Our self-distillation

Soft label

Hard label

Deconstruct

Identify
&

The strong

The weak

Soft label

Submodels

Figure 1: Comparison to other distillation methods. Our
self-distillation deconstructs an SNN into multiple sub-
models and identifies the strong and weak ones for self-
distillation without any additional overhead.

However, the teacher model requires addi-
tional storage and computational overhead.
To enhance the efficiency, self-distillation
in SNNs has been explored. [27] deter-
mines the correctness of the SNN output
at each timestep, with the correct one guid-
ing the incorrect one. However, this ne-
cessitates label information and cannot ex-
ploit the underlying dark knowledge in the
error output, resulting in limited perfor-
mance. [26] extends the training timestep
and adds a additional weak classifier for
spatio-temporal self-distillation, which im-
proves the distillation performance but im-
poses a heavier training overhead. Un-
like existing methods, our self-distillation
schemes require no additional overhead
and exploit both strong and weak dark knowledge with superior performance. A visual comparison
with other distillation methods is shown in Fig. 1.

3 Deconstructing the SNN

3.1 Temporal Properties of SNNs

The core of the SNN lies in the spiking neurons, which endows it with low power consumption and
temporal properties. Similar to biological neurons, spiking neurons maintain a membrane potential
state, and the membrane potential changes continuously over time, depending on the input current
received. In this paper, we use the most commonly used leaky integrate-and-fire (LIF) [45] neurons,
but it is worth noting that our method can be applied to other neurons as well, since both have similar
dynamics.

Let H denote the membrane potential of the LIF neuron and I indicate the input current generated
by the previous layer of spikes and synaptic weights, the membrane potential dynamics of the LIF
neuron can be expressed as:

H l
i(t) =

(
1− 1

τ

)
H l

i(t− 1) + I li(t), (1)

where t, l, and i are the timestep, layer, and neuron indices, respectively. τ is the membrane potential
time constant, which controls the degree of leakage of the membrane potential with time, i.e. the
membrane potential of the LIF gradually decreases when there is no input.

If the membrane potential reaches the firing threshold ϑ, the spiking neuron generates a spike with a
value of 1, otherwise the output value is 0 (i.e. no spike is generated). After the spike is fired, the
membrane potential is reset. This paper adopts the soft reset mechanism [46], i.e., the membrane

3

SNN with T timesteps

t=1

t=2

t=T

Deconstructed T submodels

Submodel 1

Submodel 2

Submodel T

Logical
deconstruction

Confidence
evaluation

Identify the strong and the weak

The strong

The weak

ℒ𝑆𝑆𝑆𝑆𝑆 ℒ𝑊𝑊𝑊𝑊𝑊

ℒ𝑆𝑆𝑆𝑆𝑆 : The strong help the weak
ℒ𝑊𝑊𝑊𝑊𝑊 : The weak enhance the strong

f(θ;1)

f(θ)

f(θ;2)

f(θ;T)

Shared
architecture & parameters

𝜎𝜎

𝜎𝜎

𝜎𝜎

𝜎𝜎 : Softmax function

Figure 2: Our method logically deconstructs the SNN with T timesteps into T submodels with the
same architecture and parameters, and evaluates the confidence level of each submodel to identify the
strong and the weak. The strong help the weak through distillation, and the weak transfer underlying
dark knowledge to the strong, thus improving overall performance.

potential is reduced by the same amount as the threshold:

H l
i(t) = H l

i(t)− Sl
i(t)ϑ, (2)

where S is the binary spike output.The residual membrane potential after reset remains until the
next timestep to continue the dynamics (Eq. 1), resulting in the initial membrane potential typically
varying across timesteps. This residual membrane potential is considered to carry time-dependent
information, so that the SNN can be used for temporal tasks [6, 7].

3.2 Deconstructing SNNs from the Temporal Dimension

The output of a spike neuron at a given timestep depends not only on the initial membrane potential
H l

i(t) but also on the received input I li(t). The difference between the two causes the output of the
SNN to vary over timestep. Existing strategies average the outputs of multiple timesteps to improve
overall output stability [45, 5]. However, we exploit this variability across timesteps to deconstruct
an SNN into multiple submodels along the time dimension.

Specifically, we consider the instances of the SNN at each timestep as a submodel. These submodels,
while sharing the same architecture and parameters, can produce different outputs due to differences
in neuron states and input currents. Let the SNN be f(θ), where f(·) and θ denote the architecture
and parameters, respectively. Assuming that the SNN runs for a total of T timesteps, we deconstruct
it into T submodels: {f(θ; 1), f(θ; 2), · · · , f(θ;T)}, as shown in Fig. 2.

In this way, we deconstruct an SNN into multiple submodels with different outputs. These multiple
distinct outputs form the necessary conditions for distillation learning, so that self-distillation can be
performed without the need for other modules or strategies to generate additional outputs. Notably,
this deconstruction is not limited to network architecture and neuron type, and is highly generaliz-
able. In the following we describe how to perform self-distillation learning with the deconstructed
submodels.

4 Self-Distillation with Deconstructed SNNs

Table 1: Accuracy comparison (%) of different
implementations.

Method CIFAR10-DVS DVS-Gesture

High-accuracy teacher 78.43± 0.33 90.62± 0.49
Low-loss teacher 78.93± 0.33 90.39± 0.71

Strong2Weak (Ours) 78.93± 0.12 91.43 ± 0.43
Weak2Strong (Ours) 79.33 ± 0.29 91.20± 0.33

With the deconstructed multiple submodels, the
key to distillation is to identify the teacher and
student models. A naive distillation scheme is
based on accuracy/loss, with a high-accuracy/low-
loss submodel as the teacher guiding the low-
accuracy/high-loss student. However, this man-
ner (i) requires step-by-step comparisons with
labels, which complicates the distillation process;
(ii) cannot be used in scenarios where labels are

4

missing, such as streaming online learning; and (iii) cannot exploit the underlying dark knowledge,
resulting in limited performance, as shown in Table 1. To this end, we propose to quantify the output
confidence of each submodel to efficiently evaluate the strong and weak relationships, and propose
two distillation schemes based on the strong and weak relationships.

4.1 Identify the Strong and the Weak

Formally, let the output of submodel f(θ; t) be o(t) = {o1(t), o2(t), · · · , oC(t)}, where C is the
number of the object categories. We calculate its predicted probability distribution across the C
categories as

p(t) = softmax(o(t)). (3)
Then, we define the output confidence of the submodel as the maximum probability in p(t):

con(t) = max(p(t)). (4)

As such, con(t) reflects the degree of certainty of the submodel with respect to the output, similarly
to [47].

Based on the output confidence con(t), we evaluate the strong and weak relationships of these
submodels. For any two submodels, we consider the one with the higher confidence to be the stronger
one and the other to be the weaker one. Therefore, we can identify the strongest and the weakest
among the T submodels and thus exploit this strong and weak relationship for distillation learning.
In particular, relying on confidence to evaluate strong and weak relationships does not require label
information and is computationally simple without sacrificing efficiency.

4.2 The Strong Help the Weak

In classical knowledge distillation, the teacher model typically carries more parameters than the stu-
dent and therefore better performance, i.e. strong teachers guide weak students [33, 34]. Accordingly,
we propose Strong2Weak distillation: the strong submodel leads and enhances the weak submodel,
thus improving overall performance.

Specifically, in each iteration we evaluate the confidence of each submodel and identify the strong
and weak submodels with the highest and lowest confidence. The strong submodel is considered as
the teacher and the weak submodel as the student, and logit distillation learning is performed between
the two.

Formally, let the timestep index of the strong submodel be ts and that of the weak submodel be tw.
The output logits of the two submodels are o(ts) and o(tw) respectively. We soften the logit to obtain
the probability distribution:

p(ts)j=
eo(ts)j/α∑C
c=1 e

o(ts)c/α
, p(tw)j=

eo(tw)j/α∑C
c=1 e

o(tw)c/α
, (5)

where α is the softening factor, set to 2. We then use KL divergence to transfer knowledge from the
strong model to the weak model:

LS2W=α2KL(p(ts)||p(tw))=α2
C∑

j=1

p(ts)j log(
p(ts)j
p(tw)j

). (6)

During training of the SNN, the distillation loss and the cross entropy loss synergistically optimize
the parameters. The total loss is therefore:

Ltotal = LCE(O, Y) + λS2WLS2W , (7)

where Y is the label information and λS2W is the coefficient, which defaults to 1.

During training, we use the rectangular surrogate gradient for optimization, since the spike activity
is non-differentiable [45]. Thus, the derivative of the spike activity with respect to the membrane
potential can be calculated as:

∂Sl
i(t)

∂H l
i(t)

≈ ∂h(H l
i(t), ϑ)

∂H l
i(t)

=
1

a
sign(|H l

i(t)− ϑ| < a

2
), (8)

where a is a hyperparameter that controls the shape of the gradient and is set to 1.0.

5

4.3 The Weak Enhance the Strong

In the real world, teachers are also improved as they teach their students. In addition, it has been
shown that weak models are able to learn underlying dark knowledge, which can contribute to the
performance of stronger models [28]. For example, an overly strong model may ignore detailed
information and suffer from overfitting, while a weak model may provide complements or act as a
regularizer to facilitate generalization [28]. To this end, we propose the Weak2Strong distillation
scheme: the weak submodel acts as the teacher, guiding the strong student to fully utilize the potential
dark knowledge to improve overall performance.

Similar to Strong2Weak distillation, in Weak2Strong distillation we first identify the timestep indices
of the strong and weak submodels to obtain their output logits o(ts) and o(tw). Then we compute the
two corresponding probability distributions according to Eq. 5. When calculating the distillation loss,
we use p(tw) as the teacher to prompt p(ts) to learn the dark knowledge in o(tw):

LW2S=α
2KL(p(tw)||p(ts))=α2

C∑
j=1

p(tw)j log(
p(tw)j
p(ts)j

). (9)

Combined with the cross-entropy loss, the final loss is obtained as:

Ltotal = LCE(O, Y) + λW2SLW2S , (10)

where λW2S is the hyperparameter coefficient set to 1.

The schematic diagrams of these two distillation schemes are shown in Fig. 2. In this way, self-
distillation can be achieved without additional teacher models or auxiliary modules, and we provide
pseudocode for Strong2Weak and Weak2Strong distillation in Alg. 1. Note that in identifying the
strong and weak submodels, we take the confidence mean of a batch of samples rather than distilling
sample by sample.

4.4 Flexible Self-Distillation Implementation

The above describes the default implementation of the Strong2Weak (S2W) and Weak2Strong (W2S)
self-distillation schemes, i.e., one-to-one distillation of the strongest and weakest submodels with
KL divergence. In addition, we would like to emphasize that the deconstructed SNN allows flexible
distillation implementations with great extensibility. Below we discuss two flexible components that
can be reimplemented: distillation losses and teacher-student configurations. student configurations.

Table 2: Performance with flexible distillation loss
functions (%).

Loss function CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

KL divergence 78.93 79.33 91.43 91.20
MSE 76.50 76.67 92.47 91.44

Logit standardization [40] 75.93 75.77 91.67 91.55

Remark1: Flexible distillation loss function.
In Eq. 6 and Eq. 9 we use the most com-
monly used KL divergence as the distillation
loss. However, as shown in Table 2, our
method is able to seamlessly support other
distillation functions (e.g., MSE and Logit
standardization [40]) with consistently superior
performance. This flexibility allows practition-
ers to further improve performance by incorporating specially designed loss functions [34, 35, 40]
based on task requirements, establishing our method as a generalized substrate for high-performance
SNNs.

Table 3: Performance with flexible imple-
mentations (%).

Implementation CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

Default 78.93 79.33 91.43 91.20
Ensemble teacher 78.53 79.17 92.02 91.78
Ensemble student 78.30 78.37 91.55 91.55

Simultaneous 79.17 91.32
Cascade 79.03 79.37 93.41 92.13

Remark2: Flexible teacher and student configurations.
At each iteration, we distill between the strongest
and weakest submodels. Since the timestep is
usually greater than 2, there are options to use more
submodels to compose the teacher or student in the
implementation. For example, an average of the T − 1
higher/lower confidence submodels can be used as
the teacher to guide the weakest/strongest, and we
refer to this implementation as the ensemble teacher.
Similarly, a highest/lowest confidence submodel can
also guide the remaining T − 1 submodels, i.e., the ensemble student. Alternatively, both S2W
and W2S distillations can be performed simultaneously, or cascade distillation can be performed

6

depending on the confidence level. We detail and analyze these alternative implementations in
Appendix A. Table 3 shows the performance with various implementations, indicating that flexible
implementations can further improve performance, especially for cascade distillation. It is worth
noting that the simultaneous use of S2W and W2S did not achieve significantly better performance
because the excessive similarity between the submodels reduces the overall diversity of the SNN,
thus limiting generalizability. How to balance diversity and similarity between multiple submodels is
a perennial problem in ensemble learning [48, 49], and we leave it for future work.

It is worth noting that while our proposed method of self-distillation after deconstruction offers
wide scope for extension and implementation, the performance under different implementations is
often affected by various factors such as task, data, and experimental setup. Therefore, we have kept
the default configuration in the following experiments to highlight the superiority of our efficient
distillation methods rather than the specific implementation, leaving further extensions for future
work. More importantly, experimental results show that even the default implementation, which is
not deliberately tuned, can significantly improve the performance of vanilla SNNs, especially for
neuromorphic tasks with temporal dimensions.

5 Experiments

We perform experiments on both static images CIFAR10/100 [50], ImageNet and neuromorphic
datasets CIFAR10-DVS [51], DVS-Gesture [52] to confirm the effectiveness and performance advan-
tages of the proposed self-distillation schemes. Both VGG and MS-ResNet [19], and Transformer
architectures are used in the experiments. To reduce the influence of randomness, we report the
average results of three trials. The detailed experimental setup is presented in Appendix B.

5.1 Ablation Studies

Table 4: Ablation studies. The proposed self-
distillation schemes show consistent performance
gains, especially on neuromorphic datasets with
temporal properties.

Dataset Method Accuracy (%)
VGG-9 MS-ResNet18

Vanilla SNN 94.21 94.88
Strong2Weak 94.79+0.58 95.15+0.27CIFAR10
Weak2Strong94.70+0.49 95.13+0.25

Vanilla SNN 74.41 76.33
Strong2Weak76.02+1.61 78.25+1.92CIFAR100
Weak2Strong 76.16+1.75 77.98+1.65

Vanilla SNN 73.97 66.40
Strong2Weak78.93+4.96 70.50+4.10CIFAR10-DVS
Weak2Strong 79.33+5.36 71.57+5.17
Vanilla SNN 87.85 89.35
Strong2Weak 91.43+3.58 90.86+1.51DVS-Gesture
Weak2Strong91.20+3.35 91.55+2.20

In Table 4, we compare Strong2Weak and
Weak2Strong to the vanilla SNN on static and
neuromorphic datasets. The results show that
for both VGG and MS-ResNet architectures,
Strong2Weak and Weak2Strong are able to pro-
vide consistent performance gains. In particular,
recognition accuracy on CIFAR10-DVS was im-
proved by up to 5.26%, a more significant im-
provement than on static datasets. This is due to
the lack of temporal features in static images, so
the performance differences between the decon-
structed submodels are minimal and do not max-
imize the distillation effect. Neuromorphic data,
on the other hand, is rich in temporal features,
taking full advantage of the mutually enhancing
effect of strong and weak submodels. This sheds
light on the potential of our method to be applied
to more temporal tasks in the future.

5.2 Submodel Output Distribution Visualization

To illustrate more intuitively how the strong and weak submodels enhance each other, the output 2D
t-distributed stochastic neighbor embedding (t-SNE) distributions of the submodels for each timestep
are visualized in Fig. 3. In Fig. 3(a), the vanilla SNN exhibits a large output gap across timesteps
and is particularly weak at t = 0. Excessive differences between the strong and the weak affect the
overall performance. Compared to the vanilla SNN, the Strong2Weak distillation guides the weak and
compensates the deficiencies, thus contributing to the overall performance. Specifically, Weak2Strong
distills the weak into the strong and can improve the performance of the weak as well, embodying
the concept of teaching and learning. From an overall perspective, Strong2Weak and Weak2Strong
improve the discriminability of the submodel outputs at each timestep, which improves the overall
stability and performance. The visualization of the overall output can be found in Appendix C.

7

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

3

Vanilla SNN t=0

1
2
3
4
5
6
7
8
9
10

40 20 0 20 40

40

30

20

10

0

10

20

30

Vanilla SNN t=1
1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30

40

20

0

20

40

Vanilla SNN t=2

1
2
3
4
5
6
7
8
9
10

40 20 0 20 40

20

10

0

10

20

30 Vanilla SNN t=3

1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30

40

20

0

20

40
Vanilla SNN t=4

1
2
3
4
5
6
7
8
9
10

(a) Vanilla SNN

30 20 10 0 10 20 30

40

20

0

20

40
Strong2Weak t=0

1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30

20

0

20

40

Strong2Weak t=1

1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30

40

20

0

20

40

Strong2Weak t=2

1
2
3
4
5
6
7
8
9
10

40 20 0 20 40

40

30

20

10

0

10

20

30

Strong2Weak t=3

1
2
3
4
5
6
7
8
9
10

20 0 20 4040

30

20

10

0

10

20

30

40
Strong2Weak t=4

1
2
3
4
5
6
7
8
9
10

(b) Strong2Weak

40 20 0 20 40

30

20

10

0

10

20

30

Weak2Strong t=0
1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20

40

20

0

20

40
Weak2Strong t=1

1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30 40

40

20

0

20

40

Weak2Strong t=2

1
2
3
4
5
6
7
8
9
10

30 20 10 0 10 20 30

40

20

0

20

40

Weak2Strong t=3

1
2
3
4
5
6
7
8
9
10

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

Weak2Strong t=4

1
2
3
4
5
6
7
8
9
10

(c) Weak2Strong

Figure 3: Visualization of the output distribution of each timestep submodel. (a) The vanilla SNN
produces confusing outputs at t = 0, showing dramatic gaps between the strong and the weak. (b) (c)
Both Strong2Weak and Weak2Strong are able to improve the output discriminability of the submodels,
thus bridging the gap between strong and weak to improve the overall stability and performance.

Table 5: Comparative results (%) for reduced
timestep inference on CIFAR10-DVS. Our distil-
lation schemes can maintain decent performance
even with reduced inference timesteps.

Method T=1 T=2 T=3 T=4 T=5

Vanilla SNN 10.00 60.10 69.50 73.30 74.10
MPS [53] 66.60 74.30 75.50 75.70 76.60

Strong2Weak 71.50 76.20 77.10 78.20 78.60
Weak2Strong 73.40 76.50 77.50 78.80 79.70

Table 6: Improved adversarial robustness perfor-
mance (%) of the proposed distillation schemes.
Experiments were performed with VGG-11 on
CIFAR100, T = 8.

Method Clean GN FGSM PGD BIM CW

FEEL-SNN [54] 63.95 61.97 9.87 2.13 1.93 6.21
AT [55] 67.97 67.47 17.55 9.52 8.91 20.23

RAT [56] 69.99 69.06 19.00 9.11 8.46 22.59
Strong2Weak 70.68 69.53 21.15 10.30 9.40 23.40
Weak2Strong 70.09 68.87 21.23 10.70 9.75 24.08

5.3 Improved Performance at Low Timesteps

Timestep and inference latency are positively correlated. If lower latency is required, inference can
be performed with fewer timesteps. The performance of the SNN at different inference timesteps
is shown in Table 5, using the pre-trained model with 5 timesteps. The performance of the vanilla
SNN degrades significantly as the timestep is reduced. In particular, at 1 timestep, the corresponding
submodel is too weak, leading to a performance equivalent to a random guess. Membrane potential
smoothing [53] mitigates this problem to some extent, and decent performance can be achieved
at low latencies. Our distillation schemes narrow the gap in output across timesteps, improving
overall stability and maintaining satisfactory performance even with reduced timesteps. This makes it
possible to train a model to apply under various latency constraints without retraining.

5.4 Robustness Gains from Self-Distillation

The proposed self-distillation schemes improve the overall stability and performance of the SNN
by guiding the strong and weak submodels towards each other. Since stability is closely related
to robustness [54], we investigate whether our methods can improve the robustness of SNNs and
thus increase the reliability of deployment. We perform robustness experiments on CIFAR100 using
VGG-11, and the attack methods include common noise attack (Gaussian noise, GN) and adversarial

8

Table 7: Comparative results on ImageNet.
Method Architecture T Acc.(%)

w
/o

K
D

TAB [17]ICLR′24 ResNet34 4 67.78
Shortcut [60]NeurIPS′24 ResNet34 4 68.14
FSTA-SNN [61]AAAI′25 ResNet34 4 70.23
STAA-SNN [62]CV PR′25 ResNet34 4 70.40

SEW-ResNet [63]NeurIPS′21 SEW-ResNet34 4 67.04
IMP+LTS [64]ICLR′25 SEW-ResNet34 4 68.90

K
D

SSCL [65]AAAI′24 ResNet34 4 66.78
EnOF [44]NeurIPS′24 ResNet34 4 67.40
KDSNN [24]CV PR′23 SEW-ResNet34 4 67.28

MPS [53]ICLR′25 SEW-ResNet34 4 69.03
TKS [27]IEEE TAI′24 SEW-ResNet34 4 69.60

Strong2Weak SEW-ResNet34 4 70.53
Weak2Strong SEW-ResNet34 4 69.87

Table 8: Comparative results on CIFAR10/100.
Method Architecture T CIFAR10 CIFAR100

w
/o

K
D

RMP-Loss [66] VGG-16 10 94.39 73.30
CLIF [12] ResNet-18 4 94.89 77.00

NDOTO [67] VGG-11 4 94.79 76.18
MS-ResNet [19] MS-ResNet18 4 94.88 76.33
Spikformer [68] Transformer 4 93.94 75.96
QKFormer [69] QKFormer 4 96.18 81.15

K
D

SSCL [65] ResNet-20 4 94.27 72.86
EnOF [44] ResNet-20 4 94.74 73.01

KDSNN [24] ResNet-18 4 93.41 -
BKDSNN [43] ResNet-19 4 94.64 74.95

TKS [27] ResNet-19 4 96.35 79.89
MS-ResNet18 4 95.15 78.25

ResNet-19 4 96.62 81.83Strong2Weak
QKFormer 4 96.42 81.27

MS-ResNet18 4 95.13 77.98
ResNet-19 4 96.66 82.02Weak2Strong
QKFormer 4 96.29 81.23

attacks (FGSM [55], PGD with random start [57], BIM [58], and CW [59]). We combine the proposed
methods with RAT [56] to verify that they can maximize robustness in conjunction with each other.
Experimental details are given in the Appendix B.

The comparative adversarial robustness results are shown in Table 6, where our method further
improves the performance of RAT [56] for both clean and adversarial samples. In particular,
Weak2Strong improves robust accuracy under FGSM attacks by 2.23%, which is quite significant.
This confirms that the stability provided by self-distillation can indeed improve the robustness of the
model against attacks, and we will explore further effects of distillation on robustness promotion in
the future.

5.5 Comparison with Other Methods
Table 9: Comparative results (%) on neuromorphic
datasets.

Method Archi. T CIFAR10-DVS DVS-Gesture

w
/o

K
D

DSR [70] VGG-11 20 77.27 -
RMP-Loss [66] ResNet-20 10 75.60 -

NDOT [67] VGG-11 10 77.50 -
TAB [17] VGG-9 5 74.57 90.86
SLT [21] VGG-9 5 74.23 89.35
SSNN [5] VGG-9 5 73.63 90.74

K
D

MPS [53] VGG-9 5 76.77 93.23
TSSD [26] VGG-9 5 72.90 86.69
SSCL [65] ResNet-20 10 78.50 -
EnOF [44] ResNe-20 10 80.50 -
TKS [27] VGGSNN 10 85.30 -

VGG-9 5 78.93 91.43Strong2Weak VGGSNN 10 85.60 -
VGG-9 5 79.33 91.20Weak2Strong VGGSNN 10 86.70 -

SDT [3] Transformer 5 72.53 93.98
QKFormer [69] QKFormer 16 84.00 98.60

Transformer 5 73.57 95.14
5 82.50 95.14Strong2Weak QKFormer 16 84.60 99.08

Transformer 5 73.20 94.91
5 82.80 94.91Weak2Strong QKFormer 16 84.90 98.96

Static datasets. The comparative results on
ImageNet are shown in Table 7. Our method
achieves 70.53% accuracy at 4 timesteps,
surpassing other distillation methods and
specially designed modules. Compared to
TKS [27], which does not require a teacher
model for distillation, we outperform it by
0.93% in accuracy. Additionally, we also
achieved accuracies of 96.66% and 82.02%
on CIFAR10 and CIFAR100, respectively,
which again exceeded the other methods, as
shown in Table 8. We also show results
on Tiny-ImageNet in Table 18, where our
method can be combined with CILF [12]
neurons to further improve performance.

Neuromorphic datasets. The comparative
results on neuromorphic datasets are shown
in Table 9. Weak2Strong achieved 86.70%
accuracy on CIFAR10-DVS using the VG-
GSNN architecture with T = 10, which was
1.40% higher than TKS [27]. In addition,
our distillation schemes also enhance the
SNN with Transformer architecture. The performance of both the SDT [3] and the QKFormer [69]
architectures improves further, demonstrating the versatility of our method.

5.6 Combined with the Early Exit Dynamic Inference

Table 10 shows the performance of our method when combined with the early exit mechanism [47]
for dynamic inference. We used the VGG-9 model on the CIFAR10-DVS and DVS-Gesture datasets,
setting the early exit thresholds to 0.95, 0.9, 0.8, and 0.5. The results suggest that our method is highly

9

Table 10: The proposed method can be combined
with the early exit dynamic inference. ϑexit is the
early exit threshold, T is the average inference
timestep.

Method CIFAR10-DVS DVS-Gesture
T Acc. (%) T Acc. (%)

Vanilla SNN 5 73.97 5 87.85
Strong2Weak 5 78.60 5 92.01

+Early exit (ϑexit = 0.95) 3.16 78.40 2.35 91.32
+Early exit (ϑexit = 0.90) 2.73 78.20 1.87 90.62
+Early exit (ϑexit = 0.80) 2.30 77.80 1.56 90.28
+Early exit (ϑexit = 0.50) 1.38 74.70 1.06 88.54

Weak2Strong 5 79.70 5 91.67
+Early exit (ϑexit = 0.95) 3.19 79.50 2.22 91.67
+Early exit (ϑexit = 0.90) 2.74 79.40 1.89 90.62
+Early exit (ϑexit = 0.80) 2.27 78.80 1.58 89.93
+Early exit (ϑexit = 0.50) 1.38 75.80 1.01 86.11

Table 11: The proposed method can be combined
with the early exit dynamic inference. ϑexit is the
early exit threshold, T is the average inference
timestep.

Metric Distillation CIFAR10-DVS DVS-Gesture

Confidence Strong2Weak 78.93 91.43
Entropy Strong2Weak 78.80 90.97
Margin Strong2Weak 78.83 91.55

Diversity Strong2Weak 78.27 90.57
Confidence Strong2Weak 79.33 91.20

Entropy Strong2Weak 78.57 90.05
Margin Strong2Weak 78.57 90.97

Diversity Strong2Weak 78.73 91.78

compatible with the early-exit mechanism. Specifically, when the exit threshold is set to 0.8, our
method achieves accuracies of 77.8% (Strong2Weak, T = 2.3) and 78.8% (Weak2Strong, T = 2.27)
on CIFAR10-DVS. Compared to the vanilla SNN, our method demonstrates significantly improved
performance while reducing latency by half. This further demonstrates the potential of our method
for ultra-low-latency inference.

5.7 The Influence of Metrics on the Strong and the Weak

We use confidence as the default metric to distinguish between strong and weak submodels because it
can be efficiently calculated using only a softmax function. In addition, confidence typically reflects
the uncertainty of model output results and has been shown to be related to generalization error, which
to a certain extent reflects performance [71]. Due to these advantages, confidence is widely used to
evaluate model performance in areas such as model calibration [72, 73] and early exit [74, 47].

As a general distillation method, we can seamlessly replace confidence with other metrics such as
entropy, margin (maximum confidence difference between target category and other categories),
diversity (confidence differences between all categories), or other specially designed metrics. Table 11
shows the influence of different metrics on performance. The results suggest that different metrics do
not yield significant performance differences. This indicates that the straightforward and intuitive
confidence is sufficient and effective for distinguishing between strong and weak submodels.

6 Conclusion

In this paper, we deconstruct the multi timestep SNN into submodels and distill between the sub-
models, thereby eliminating the need for additional overhead. We identify the strong and the weak
by evaluating the output confidence of the submodels, and propose two self-distillation schemes,
Strong2Weak and Weak2Strong, respectively, where the strong helps the weak and the weak trans-
fers the underlying dark knowledge to the strong. These two distillation schemes can be flexibly
implemented, such as one-to-one, ensemble, simultaneous, and cascade distillation, with great ex-
tensibility. Extensive visualizations and experiments show that this efficient self-distillation method
effectively mitigates strong and weak gaps between submodels and significantly improves low-latency
inference performance. In particular, the adversarial robustness of the model is also gained with
the overall stability improvement delivered by self-distillation. This will contribute to efficient and
high-performance studies of SNNs.

Limitation. The aim of this paper is to demonstrate efficient self-distillation schemes for SNNs, and
therefore there is no deliberate tuning of the distillation loss functions and coefficients, which allows
the performance of the proposed method to be further enhanced by improving these.

Any highly efficient, high-performance model is at risk of misuse in the real world, especially SNNs,
which are known for their low power consumption and low latency. To mitigate the risk of misuse,
we believe it is necessary to integrate offensive and defensive strategies and security measures into
the proposed method. As an alternative, privacy-preserving mechanisms, such as federated learning,
should be incorporated during deployment.

10

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No.
62276054 and 62406060.

References
[1] Kunshan Yang, Lin Zuo, Mengmeng Jing, Xianlong Tian, Kunbin He, and Yongqi Ding. Flexible vig:

Learning the self-saliency for flexible object recognition. IEEE Transactions on Circuits and Systems for
Video Technology, pages 1–1, 2025.

[2] Zhiwei Hao, Jianyuan Guo, Kai Han, Han Hu, Chang Xu, and Yunhe Wang. Revisit the power of vanilla
knowledge distillation: from small scale to large scale. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
10170–10183. Curran Associates, Inc., 2023.

[3] Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems, volume 36, pages 64043–64058. Curran Associates, Inc., 2023.

[4] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence with
neuromorphic computing. Nature, 575(7784):607–617, 2019.

[5] Yongqi Ding, Lin Zuo, Mengmeng Jing, Pei He, and Yongjun Xiao. Shrinking your timestep: Towards
low-latency neuromorphic object recognition with spiking neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 11811–11819, 2024.

[6] Wachirawit Ponghiran and Kaushik Roy. Spiking neural networks with improved inherent recurrence
dynamics for sequential learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8001–8008, 2022.

[7] Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Anna Hambitzer, and Priyadarshini
Panda. Exploring temporal information dynamics in spiking neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 8308–8316, 2023.

[8] Jibin Wu, Chenglin Xu, Xiao Han, Daquan Zhou, Malu Zhang, Haizhou Li, and Kay Chen Tan. Progressive
tandem learning for pattern recognition with deep spiking neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(11):7824–7840, 2022.

[9] Zheyu Yang, Taoyi Wang, Yihan Lin, Yuguo Chen, Hui Zeng, Jing Pei, Jiazheng Wang, Xue Liu, Yichun
Zhou, Jianqiang Zhang, et al. A vision chip with complementary pathways for open-world sensing. Nature,
629(8014):1027–1033, 2024.

[10] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating
learnable membrane time constant to enhance learning of spiking neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 2661–2671, October 2021.

[11] Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. GLIF: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

[12] Yulong Huang, Xiaopeng LIN, Hongwei Ren, Haotian FU, Yue Zhou, Zunchang LIU, biao pan, and Bojun
Cheng. CLIF: Complementary leaky integrate-and-fire neuron for spiking neural networks. In Forty-first
International Conference on Machine Learning, 2024.

[13] Yongqi Ding, Lin Zuo, Kunshan Yang, Zhongshu Chen, Jian Hu, and Tangfan Xiahou. An improved
probabilistic spiking neural network with enhanced discriminative ability. Knowledge-Based Systems,
280:111024, 2023.

[14] Boyan Li, Luziwei Leng, Shuaijie Shen, Kaixuan Zhang, Jianguo Zhang, Jianxing Liao, and Ran Cheng.
Efficient deep spiking multilayer perceptrons with multiplication-free inference. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–13, 2024.

[15] Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer in
spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5610–5619, June 2024.

11

[16] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 34377–34390.
Curran Associates, Inc., 2022.

[17] Haiyan Jiang, Vincent Zoonekynd, Giulia De Masi, Bin Gu, and Huan Xiong. TAB: Temporal accumulated
batch normalization in spiking neural networks. In The Twelfth International Conference on Learning
Representations, 2024.

[18] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep residual
learning in spiking neural networks. Advances in Neural Information Processing Systems, 34:21056–21069,
2021.

[19] Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward deep
residual learning. IEEE Transactions on Neural Networks and Learning Systems, pages 1–15, 2024.

[20] Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on Neural
Networks and Learning Systems, 34(8):5200–5205, 2023.

[21] Srinivas Anumasa, Bhaskar Mukhoty, Velibor Bojkovic, Giulia De Masi, Huan Xiong, and Bin Gu.
Enhancing training of spiking neural network with stochastic latency. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 10900–10908, 2024.

[22] JiaKui Hu, Man Yao, Xuerui Qiu, Yuhong Chou, Yuxuan Cai, Ning Qiao, Yonghong Tian, Bo XU,
and Guoqi Li. High-performance temporal reversible spiking neural networks with $\mathcal{O}(l)$
training memory and $\mathcal{O}(1)$ inference cost. In Forty-first International Conference on Machine
Learning, 2024.

[23] Lin Zuo, Yongqi Ding, Wenwei Luo, Mengmeng Jing, Xianlong Tian, and Kunshan Yang. Temporal
reversed training for spiking neural networks with generalized spatio-temporal representation, 2024.

[24] Qi Xu, Yaxin Li, Jiangrong Shen, Jian K. Liu, Huajin Tang, and Gang Pan. Constructing deep spiking neural
networks from artificial neural networks with knowledge distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7886–7895, June 2023.

[25] Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, and Rajbabu Velmurugan. Distilling spikes:
Knowledge distillation in spiking neural networks. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 4536–4543, 2021.

[26] Lin Zuo, Yongqi Ding, Mengmeng Jing, Kunshan Yang, and Yunqian Yu. Self-distillation learning based
on temporal-spatial consistency for spiking neural networks, 2024.

[27] Yiting Dong, Dongcheng Zhao, and Yi Zeng. Temporal knowledge sharing enable spiking neural network
learning from past and future. IEEE Transactions on Artificial Intelligence, 5(7):3524–3534, 2024.

[28] Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via label
smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[29] Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep directly-
trained spiking neural networks for object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6555–6565, October 2023.

[30] Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models using
implicit differentiation. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pages
10998–11006, 2024.

[31] Guobin Shen, Dongcheng Zhao, Tenglong Li, Jindong Li, and Yi Zeng. Are conventional snns really
efficient? a perspective from network quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 27538–27547, June 2024.

[32] Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated attention
coding for training high-performance and efficient spiking neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 601–610, 2024.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

[34] Ying Jin, Jiaqi Wang, and Dahua Lin. Multi-level logit distillation. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 24276–24285, 2023.

12

[35] Zheng Li, Xiang Li, Lingfeng Yang, Borui Zhao, Renjie Song, Lei Luo, Jun Li, and Jian Yang. Curriculum
temperature for knowledge distillation, 2022.

[36] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets, 2015.

[37] Martin Zong, Zengyu Qiu, Xinzhu Ma, Kunlin Yang, Chunya Liu, Jun Hou, Shuai Yi, and Wanli Ouyang.
Better teacher better student: Dynamic prior knowledge for knowledge distillation. In The Eleventh
International Conference on Learning Representations, 2023.

[38] Mengyang Yuan, Bo Lang, and Fengnan Quan. Student-friendly knowledge distillation, 2023.

[39] Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang, Chun Yuan, and Yu Li. From knowledge distillation
to self-knowledge distillation: A unified approach with normalized loss and customized soft labels, 2023.

[40] Shangquan Sun, Wenqi Ren, Jingzhi Li, Rui Wang, and Xiaochun Cao. Logit standardization in knowledge
distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15731–15740, June 2024.

[41] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your own
teacher: Improve the performance of convolutional neural networks via self distillation. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 3712–3721, 2019.

[42] Yufei Guo, Weihang Peng, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Xuhui Huang, and Zhe Ma. Joint
a-snn: Joint training of artificial and spiking neural networks via self-distillation and weight factorization.
Pattern Recognition, 142:109639, 2023.

[43] Zekai Xu, Kang You, Qinghai Guo, Xiang Wang, and Zhezhi He. Bkdsnn: Enhancing the performance
of learning-based spiking neural networks training with blurred knowledge distillation. In Computer Vision
– ECCV 2024, pages 106–123, Cham, 2024.

[44] Yufei Guo, Weihang Peng, Xiaode Liu, Yuanpei Chen, Yuhan Zhang, Xin Tong, Zhou Jie, and Zhe
Ma. EnOF-SNN: Training accurate spiking neural networks via enhancing the output feature. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[45] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in Neuroscience, 12, 2018.

[46] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential neuron
for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[47] Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal spiking early
exit neural networks. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 63327–63342. Curran Associates,
Inc., 2023.

[48] Muhammad Ammar Ali, Yusuf Sahin, Süreyya Özöğür Akyüz, Gozde Unal, and Buse Cisil Otar. Tuning
accuracy-diversity trade-off in neural network ensemble via novel entropy loss function. In 2021 13th
International Conference on Electrical and Electronics Engineering (ELECO), pages 365–368, 2021.

[49] Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 16001–16011. Curran Associates, Inc., 2020.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[51] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-stream dataset
for object classification. Frontiers in Neuroscience, 11, 2017.

[52] Arnon Amir et al. A low power, fully event-based gesture recognition system. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 7388–7397, 2017.

[53] Yongqi Ding, Lin Zuo, Mengmeng Jing, Pei He, and Hanpu Deng. Rethinking spiking neural networks from
an ensemble learning perspective. In The Thirteenth International Conference on Learning Representations,
2025.

[54] Mengting Xu, De Ma, Huajin Tang, Qian Zheng, and Gang Pan. FEEL-SNN: Robust spiking neural
networks with frequency encoding and evolutionary leak factor. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

13

[55] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[56] Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian K Liu. SNN-RAT: Robustness-enhanced
spiking neural network through regularized adversarial training. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[57] Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[58] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC, 2018.

[59] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57, 2017.

[60] Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, and Zhe
Ma. Take a shortcut back: Mitigating the gradient vanishing for training spiking neural networks. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[61] Kairong Yu, Tianqing Zhang, Hongwei Wang, and Qi Xu. Fsta-snn:frequency-based spatial-temporal
attention module for spiking neural networks, 2025.

[62] Tianqing Zhang, Kairong Yu, Xian Zhong, Hongwei Wang, Qi Xu, and Qiang Zhang. Staa-snn: Spatial-
temporal attention aggregator for spiking neural networks. arXiv preprint arXiv:2503.02689, 2025.

[63] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
21056–21069. Curran Associates, Inc., 2021.

[64] Hangchi Shen, Qian Zheng, Huamin Wang, and Gang Pan. Rethinking the membrane dynamics and
optimization objectives of spiking neural networks. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[65] Yuhan Zhang, Xiaode Liu, Yuanpei Chen, Weihang Peng, Yufei Guo, Xuhui Huang, and Zhe Ma. Enhancing
representation of spiking neural networks via similarity-sensitive contrastive learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pages 16926–16934, 2024.

[66] Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang, and Zhe
Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 17391–17401, October
2023.

[67] Haiyan Jiang, Giulia De Masi, Huan Xiong, and Bin Gu. NDOT: Neuronal dynamics-based online training
for spiking neural networks. In Forty-first International Conference on Machine Learning, 2024.

[68] Zhaokun Zhou et al. Spikformer: When spiking neural network meets transformer. In The Eleventh
International Conference on Learning Representations, 2023.

[69] Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma,
Huihui Zhou, and Yonghong Tian. QKFormer: Hierarchical spiking transformer using q-k attention. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[70] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12444–12453, June 2022.

[71] Wei Bian and Dacheng Tao. Constrained empirical risk minimization framework for distance metric
learning. IEEE Transactions on Neural Networks and Learning Systems, 23(8):1194–1205, 2012.

[72] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321–1330. PMLR, 06–11
Aug 2017.

14

[73] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network
overconfidence with logit normalization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 23631–23644.
PMLR, 17–23 Jul 2022.

[74] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks
for efficient inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[75] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang, Huihui
Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning infrastructure
platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

[76] Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking neural
networks with local tandem learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 12662–12676.
Curran Associates, Inc., 2022.

[77] Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In International Conference on Machine Learning, pages 35798–
35816. PMLR, 2023.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the contribution and scope of
this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly point out the limitations of this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16

Justification: We demonstrate the superior performance of our method through experimenta-
tion.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly illustrate the experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]

Justification: Our method is based on open-source datasets and existing methods, and
provides detailed experimental details.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details of the experiments in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results of three trials to minimize the errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computing platform.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no potential social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This point is irrelevant to the topic of this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source assets and provide explicit references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

21

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This point is irrelevant to the topic of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Algorithm 1 Pseudocode for the proposed self-distillation schemes

x: Input data with dimension [T,B,C,H,W].
y: Label information with dimension [B,M].
snn: The SNN.
out: Output of the SNN with dimension [T,B,M].
def self_distillation(x,y,snn,lambda):

out = snn(x)
strong,weak = identify(out)
p_s,p_w = softmax(strong),softmax(weak)
L_ce = cross_entropy(out.mean(0),y)
if Strong2Weak:

L_s2w = KL_div(log(p_w), p_s)
L_total = L_ce + lambda*L_s2w

elif Weak2Strong:
L_w2s = KL_div(log(p_s),p_w)
L_total = L_ce + lambda*L_w2s

return L_total

con: Submodel output confidence with dim [T].
def identify(out):

T = out.shape[0]
con = zeros(T)
for t in range(T):

tmp = max(softmax(out[t], dim=1), dim=1)
con[t] = mean(tmp)

max_index,min_index = argmax(con),argmin(con)
strong = out[max_index]
weak = out[min_index]
return strong,weak

A Appendix A: Flexible Self-Distillation Implementation

While Strong2Weak and Weak2Strong are implemented as one-to-one distillations by default, both can
be implemented in flexible ways such as ensemble teacher, ensemble student, simultaneous distillation,
and cascade distillation. Below are descriptions of alternative distillation implementations.

Ensemble teacher: For an SNN with T > 2 timesteps, it can be deconstructed into T submodels.
In this case, one submodel is taken as the student, while the remaining set of T − 1 submodels is
ensembled as the teacher model to guide the student. When Strong2Weak is implemented, the student
model is the one with the lowest confidence; when Weak2Strong is implemented, the student model
is the one with the highest confidence.

Ensemble student: For T > 2 submodels, the ensemble student takes one of the submodels as the
teacher, while the remaining ensemble submodels are distilled as the student model, which is the
opposite of the ensemble teacher.

Simultaneous distillation: For the strong submodel with the highest confidence and the weak
submodel with the lowest confidence, simultaneous distillation is performed for both Strong2Weak
and Weak2Strong distillation, i.e., the final loss is the cross-entropy loss LCE(O, Y) + λS2WLS2W

+ λW2SLW2S .

Cascade distillation: For T > 2 submodels, cascade distillation ranks them in order of decreasing
confidence to obtain submodels {Sub1, Sub2, ..., SubT }, and then distillation is performed between
two submodels with adjacent rankings. For example, for Subt and Subt+1, the implementation of
Strong2Weak takes Subt as the teacher and makes Subt+1 the student, and the opposite is true for
the implementation of Weak2Strong. We provide PyTorch-style pseudocode for cascade distillation
in Alg. 2.

A.1 Performance Analysis of Various Implementations

The performance of different implementations on CIFAR10-DVS and DVS-Gesture is shown in
Table. 12. The results show that the performance of these implementations varies slightly from
dataset to dataset, where cascade distillation consistently delivers better performance. In addition, we
would like to emphasize that we did not deliberately adjust the hyperparameters in Table. 12, such
as the coefficients of Strong2Wweak and Weak2Strong losses, which should have an impact on the
performance, especially for simultaneous distillation.

23

Algorithm 2 PyTorch-style pseudocode for implementing cascade distillation

x: Input data with dimension [T,B,C,H,W].
y: Label information with dimension [B,M].
snn: The SNN.
out: Output of the SNN with dimension [T,B,M].
def cascade_distillation(x,y,snn,lambda):

out = snn(x)
loss = 0
ranked_indices = rank(out)
for i in range(T-1):

strong = out[ranked_indices[i]]
weak = out[ranked_indices[i+1]]
p_s,p_w = softmax(strong),softmax(weak)
if Strong2Weak:

loss += KL_div(log(p_w),p_s)
elif Weak2Strong:

loss += KL_div(log(p_s),p_w)
loss /= (T-1)
L_ce = cross_entropy(out.mean(0),y)
L_total = L_ce + lambda*loss
return L_total

con: Submodel output confidence with dim [T].
ranked_indices: Timestep indices ranked in descending confidence order.
def rank(out):

T = out.shape[0]
con = zeros(T)
for t in range(T):

tmp = max(softmax(out[t], dim=1), dim=1)
con[t] = mean(tmp)

ranked_indices = torch.argsort(con, descending=True)
return ranked_indices

Table 12: Performance with flexible distillation implementations (%). The coefficient for all dis-
tillation losses is set to 1. Performance varies slightly for different implementations, with cascade
distillation consistently giving better performance.

Distillation configuration CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

Default 78.93 79.33 91.43 91.20
Ensemble teacher 78.53 79.17 92.02 91.78
Ensemble student 78.30 78.37 91.55 91.55

Simultaneous 79.17 91.32
Cascade 79.03 79.37 93.41 92.13

Performance Gains from Simultaneous Distillation. The simultaneous distillation of the weak by
the strong and the distillation of the strong by the weak is able to utilize both the representational
power of the strong and the dark knowledge of the weak, and thus should be expected to yield greater
gains than either alone. However, in Table. 12, simultaneous distillation does not perform optimally
as expected. We attribute this to too much similarity between multiple submodels. From an ensemble
learning perspective [48, 53, 49], excessive similarity between members leads to a decrease in overall
diversity, which is unfavorable for generalization. However, how to balance similarity and diversity is
a perennial challenge in ensemble learning [48, 49] that we leave for future work.

In addition, the adjustment of the two distillation loss coefficients is expected to reduce the conflict
between sim ilarity and diversity, thereby improving the performance of simultaneous distillation. For
example, incorporating advanced knowledge distillation loss adjustment methods and multi-task loss
factor settings. Since our goal is to provide efficient self-distillation schemes for SNNs rather than
carefully selecting optimal hyperparameter settings, therefore in this paper we do not deliberately
combine other methods to improve the accuracy. When using the self-distillation schemes provided in
this paper for performance-critical tasks, incorporating additional strategies to improve performance
is further work worth exploring.

24

B Appendix B: Experimental Details

B.1 Datasets

We perform experiments on static images and neuromorphic datasets.

CIFAR10 and CIFAR100 [50] are static image benchmark datasets containing 10 and 100 classes of
32 × 32 color images, respectively. Both datasets contain 50,000 training images and 10,000 test
images. For CIFAR10 and CIFAR100 data, we preprocessed them using standard data augmentation
strategies: random cropping, horizontal flipping, and normalization. We also use the AutoAugment
strategy for CIFAR10.

The ImageNet dataset of 1.2 million training images, 50,000 validation images, and 150,000 test
images with 1,000 categories is the most challenging object recognition benchmark. For the ImageNet
dataset, we unify the images to a 224 × 224 size during training and testing, and evaluate the
performance of our method on the test set.

CIFAR10-DVS dataset [51] is the neuromorphic version of the CIFAR10 dataset. The CIFAR10-DVS
dataset has 10,000 samples for a total of 10 object classes, and the dimension of each sample is
[t, p, x, y], where t is the timestamp, p is the polarity of the intensity change of the corresponding pixel,
and x and y are the spatial coordinates of the pixel point, respectively. The spatial size of each sample
in CIFAR10-DVS is 128× 128, which we downsampled to 48× 48 resolution before inputting to
the SNN. Additionally, due to the high temporal resolution of the neuromorphic dataset, we integrate
a neuromorphic sample into T event frames [T, p, x, y] using the SpikingJelly framework [75] to
match the timestep T of the SNN. For each training, we randomly divide 90% of the data as the
training set and test on the remaining 10% of the data, which is by far the most common strategy [5].

The DVS-Gesture [52] dataset contains neuromorphic data for 11 hand gestures with 1176 training
samples and 288 test samples. The dimension of each sample is [T, p, x, y], and we downsample
its spatial resolution from 128 × 128 to 48 × 48 before feeding the samples into the SNN. The
pre-processing of the DVS-Gesture data is the same as in CIFAR10-DVS, which also utilizes the
SpikingJelly framework to obtain the event frame [T, p, x, y] by integrating it by timestep.

B.2 Implementation Details

Our experiments are based on the PyTorch package running on an Nvidia RTX 4090 GPU. For the
VGG-9 and MS-ResNet architectures, we follow the training strategy of [5]: train the model with an
initial learning rate of 0.1 for 100 epochs, reducing it by a factor of ten every 30 epochs. A stochastic
gradient descent optimizer with a momentum of 0.9 and a batch size of 64 was used. The weight
decays for the static and neuromorphic datasets are 1e-4 and 1e-3, respectively. We used the LIF
neuron model with a firing threshold ϑ of 1.0 and a membrane potential time constant τ of 2.0.

When using CLIF neurons, we replace the LIF neurons in our model with CLIF neurons and leave
the other parameters unchanged. We use the CLIF neuron implementation from the publicly available
code of the original paper [12].

When using the Spike-driven Transformer architecture, we followed the training strategy of the
original model on CIFAR10-DVS [3]: 200 epochs were trained using the Spike-driven Transformer-
2-256 architecture, see [3] for details.

When using the ResNet19 architecture, for a fair comparison with TKS [27], we use the same training
strategy as TKS and use their published code.

For the QKFromer [69] architecture, we use the proposed method directly on the officially released
code and follow its training settings. However, when we used our self-distillation for QKFormer, we
noticed a performance degradation when we set the loss function coefficient to 1, so we set this value
to 0.01.

To reduce the influence of randomness, we repeated all our experiments three times, and the average
results are reported in the paper. Notably, when evaluating the performance of different inference
timesteps using the pre-trained five-timestep model, we only report the results of the evaluation on a
single pre-trained model, and do not conduct multiple experiments using multiple models.

25

To evaluate the robustness of the proposed method, we follow the training setup of [54] and rely on
its publicly available code. The parameters, architecture, etc. related to the robustness experiment are
the same as in [54]. For robustness results, we report the results of a single trial.

C Appendix C: Additional Visualizations

C.1 t-SNE Visualization

The comparison of the 2D t-SNE visualization of the overall output of the SNN is shown in Fig. 4,
where our distillation schemes produce outputs that are more discriminative and thus have better
performance.

40 30 20 10 0 10 20 30 40

30

20

10

0

10

20

30

40

Vanilla SNN
1
2
3
4
5
6
7
8
9
10

40 30 20 10 0 10 20 30

40

20

0

20

40
Strong2Weak

1
2
3
4
5
6
7
8
9
10

40 20 0 20 40
40

30

20

10

0

10

20

30

Weak2Strong
1
2
3
4
5
6
7
8
9
10

Figure 4: Visualization of the overall output of the vanilla SNN, Strong2Weak distillation, and
Weak2Strong distillation. Strong2Weak and Weak2Strong distillation schemes provide superior
performance by allowing for more discriminable outputs than the vanilla SNN.

C.2 Timestep Evolution for Strong and Weak Submodels

During training, we examined the timesteps corresponding to the strong and weak submodels and
found that the weak submodel was not always located at the earliest timestep and that the strong
model was not always the last. In fact, the weak submodel appears at every timestep, as shown
in Fig. 5. However, it appears most frequently at the earliest timestep and less frequently at other
timesteps. This is consistent with our experimental results: the vanilla SNN performs worst at the
earliest timestep, while our method significantly improves the performance of the first timestep, so
it is not always the weakest. The strong submodel is less likely to be selected in the first timestep,
but is typically selected for subsequent timesteps. This demonstrates that our method of evaluating
submodels based on confidence and dynamically selecting timesteps for distillation is capable of
adapting to the training of SNNs to a certain extent. Otherwise, it would degrade to distillation with
specified timesteps.

0 20 40 60 80 100

Epoch
0

1

2

3

4

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Changes in timestep and accuracy for the strong and the weak on the training set
Strong timestep
Weak timestep
Strong accuracy
Weak accuracy

Figure 5: The evolution trend of timestep indices corresponding to strong and weak submodels during
training.

26

Additionally, we compare distillation with specified timesteps. We construct Last2First and First2Last
distillation schemes under the assumption that the first timestep is the weakest and the last timestep
is the strongest. The comparative results are shown in Table 16. The results show that specifying
these two timestep distillations is much less effective than our confidence selection distillation. This
highlights the importance of dynamically selecting teacher and student timesteps.

D Appendix D: Additional Experiments

D.1 Influence of Loss Function Coefficients

By default, the distillation function coefficients for Strong2Weak and Weak2Strong are set to 1.0. In
Table 13, we explore the performance for other values of the loss function coefficients. The results
show that the accuracy varies slightly with the coefficients, but remains stable overall (except for the
weights of 0.1 and 2.0). The adjustment of the loss coefficients based on well-established theories
should further contribute to the performance of the proposed methods, taking into account the relevant
work in the field of knowledge distillation.

Table 13: Influence of loss function coefficient values on performance (%). The accuracy varies
slightly with the coefficients, but remains stable overall.

Coefficient CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

0.1 77.27 76.43 93.06 91.67
0.5 78.30 78.57 92.13 91.55
1.0 78.93 79.33 91.43 91.20
1.5 79.13 78.53 90.51 90.16
2.0 79.17 78.17 89.24 87.96

D.2 Influence of Distillation Temperature

The default distillation temperature is set to 2.0. Table 14 shows the influence of distillation tem-
perature on performance. The results indicate that adjusting the distillation temperature within a
reasonable range only causes slight fluctuations in performance without leading to significant degra-
dation. These results also demonstrate that our method can achieve satisfactory performance without
the need for deliberate adjustments to the distillation temperature. However, when the temperature or
distillation weight falls outside the normal range (e.g., a temperature of 0.5), the performance of our
method deteriorates. Nevertheless, it consistently outperforms vanilla SNNs.

Table 14: Influence of distillation temperature on performance (%).

Temperature CIFAR10-DVS DVS-Gesture
S2W W2S S2W W2S

0.5 75.30 76.77 91.09 91.32
1.0 77.63 78.43 92.13 91.44
2.0 78.93 79.33 91.43 91.20
3.0 78.27 78.43 90.86 91.21
5.0 78.75 79.03 92.01 91.67

D.3 Comparison with High Accuracy Submodel Teacher

After deconstructing the SNN into multiple submodels, the naive distillation method is to select the
submodel with the highest accuracy among them as the teacher guiding the submodel with the lowest
accuracy. However, the naive method has three weaknesses that limit its availability and performance.

• The distillation process is complicated by the comparison to the label on a timestep basis for
each training batch.

27

• It can only be used with labeled learning, and the accuracy of each submodel cannot be
evaluated if labels are missing.

• Relying only on accuracy to assess the strong and the weak, without being able to utilize
the underlying dark knowledge, leads to limited performance. As shown in Table 15, this
naive method is inferior to our two proposed distillation schemes on both CIFAR10-DVS
and DVS-Gesture.

Table 15: Comparative results (%) with high-accuracy submodel teacher (Abbreviated as HAST). This
method is inferior to our two proposed distillation schemes on both CIFAR10-DVS and DVS-Gesture.

Method CIFAR10-DVS DVS-Gesture

HAST 78.43 90.62
Strong2Weak 78.93 91.43
Weak2Strong 79.33 91.20

D.4 Comparison with Random Submodel Distillation

Table 16 shows the comparative results between the proposed method and random submodel distilla-
tion (where two randomly selected submodels of different time steps are distilled). The experimental
results show that:

(1) Random distillation outperforms the vanilla SNN, even without deliberately selecting the teacher
and student. We consider this method to randomly transition between Strong2Weak and Weak2Strong,
achieving an effect similar to using both simultaneously. This makes our deconstruction-after-
destillation scheme more flexible and versatile. However, distillation cannot be abused entirely
between submodels. As shown by the Last-to-First and First-to-Last results, performing distillation
only between the first and last time steps leads to significant performance degradation.

(2) Using confidence to determine teacher and student submodels for distillation consistently achieved
better performance than random distillation. This shows that although confidence is straightforward,
it can be used to determine the performance of a model relatively well (though not absolutely). In
fact, previous research on empirical risk minimization has shown that confidence is usually correlated
with the generalization error of a model, i.e., high confidence often corresponds to low generalization
error [71]. In contrast, random distillation cannot guarantee optimization in the direction of either
strong to weak (toward low generalization error) or vice versa (toward high generalization error
regularization). This easily leads to a conflict between consistency and diversity, similar to suboptimal
performance when using both simultaneously.

Table 16: Comparative results (%) between the proposed method and random submodel distillation.
Method CIFAR10-DVS DVS-Gesture

Vanilla SNN 73.97 87.85
Last-to-First 74.75 89.12
First-to-Last 74.29 88.89

Random-to-Random 78.03 90.16
Strong2Weak 78.93 91.43
Weak2Strong 79.33 91.20

D.5 Further Analysis of the Adversarial Robustness Gains of the Proposed Method

Our method guides the student submodel using the output of the teacher submodel as soft labels,
which can simultaneously achieve distillation and regularization effects to promote better consistency
and generalization. To investigate the source of the gains in adversarial robustness, we compared our
method with those of typical label smoothing and entropy regularization (with the same settings as
Table 6, VGG-11 with 8 timesteps was used on CIFAR100). Further experimental results are shown
in Table 17. We found that using regularization methods alone can achieve decent performance on
clean samples. However, pure regularization methods severely degrade and are significantly inferior

28

to our method when faced with adversarial attacks. Therefore, we consider the source of the SNN’s
robustness to be the distillation that promotes internal consistency, making it immune to interference.
However, it should be emphasized that regularization also plays a role to a certain extent, just as label
smoothing can also achieve decent robustness.

Table 17: Comparative results (%) of the proposed method versus label smoothing and entropy
regularization in terms of adversarial robustness.

Method Clean GN FGSM PGD BIM CW

Label smoothing 69.92 68.52 18.29 8.42 7.89 23.65
Entropy regularization 70.05 69.11 17.89 8.17 7.38 18.88

Strong2Weak 70.68 69.53 21.15 10.30 9.40 23.40
Weak2Strong 70.09 68.87 21.23 10.70 9.75 24.08

D.6 Comparative Results on Tiny-ImageNet

The results of the proposed self-distillation schemes compared to other methods on Tiny-ImageNet
are shown in Table 18. Our method achieves competitive performance compared to other methods. In
addition, our method can be seamlessly integrated with CLIF [12] to further improve performance.
This demonstrates the potential of our method to fuse with a wider range of neurons.

Table 18: Comparative results on Tiny-ImageNet dataset. * denotes self-implementation results with
open-source code.

Method Architecture T Accuracy(%)

Online LTL [76] VGG-16 16 56.87
ASGL [77] VGG-13 8 56.81

Joint A-SNN [42] VGG-16 4 55.39
CLIF [12] VGG-13 4 61.93*

Strong2Weak VGG-13(LIF) 4 59.78
VGG-13(CLIF) 4 62.65

Weak2Strong VGG-13(LIF) 4 59.40
VGG-13(CLIF) 4 62.45

29

	Introduction
	Related work
	Deconstructing the SNN
	Temporal Properties of SNNs
	Deconstructing SNNs from the Temporal Dimension

	Self-Distillation with Deconstructed SNNs
	Identify the Strong and the Weak
	The Strong Help the Weak
	The Weak Enhance the Strong
	Flexible Self-Distillation Implementation

	Experiments
	Ablation Studies
	Submodel Output Distribution Visualization
	Improved Performance at Low Timesteps
	Robustness Gains from Self-Distillation
	Comparison with Other Methods
	Combined with the Early Exit Dynamic Inference
	The Influence of Metrics on the Strong and the Weak

	Conclusion
	Appendix A: Flexible Self-Distillation Implementation
	Performance Analysis of Various Implementations

	Appendix B: Experimental Details
	Datasets
	Implementation Details

	Appendix C: Additional Visualizations
	t-SNE Visualization
	Timestep Evolution for Strong and Weak Submodels

	Appendix D: Additional Experiments
	Influence of Loss Function Coefficients
	Influence of Distillation Temperature
	Comparison with High Accuracy Submodel Teacher
	Comparison with Random Submodel Distillation
	Further Analysis of the Adversarial Robustness Gains of the Proposed Method
	Comparative Results on Tiny-ImageNet

