
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECBRANCH: SPECULATIVE DECODING VIA HYBRID
DRAFTING AND ROLLBACK-AWARE BRANCH PARAL-
LELISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SD) has emerged as a promising technique to accelerate
LLM inference by employing a small draft model to propose draft tokens in
advance, and validating them in parallel with the large target model. However, the
existing SD methods still remain constrained by their serialized execution, which
causes the mutual waiting bubbles between the draft and target models. To address
this challenge, we draw inspiration from branch prediction in modern processors
and propose a novel framework SpecBranch to unlock branch parallelism in
SD. Specifically, we first take an in-depth analysis of the potential of branch
parallelism in SD, and recognize that the key challenge lies in the trade-offs between
parallelization and token rollback. Based on the analysis, we introduce parallel
speculative branches to preemptively hedge against likely rejections. Meanwhile,
to enhance parallelism, we jointly orchestrate adaptive draft lengths with a hybrid
combination of the implicit draft model confidence and explicit reusing of target
model features. Extensive experiments across various models and benchmarks
show that SpecBranch achieves over 1.8× ∼ 4.5× speedups against the auto-
regressive decoding and reduces rollback tokens by 50% for poorly aligned models,
while maintaining an identical sampling distribution.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have revolutionized natural language processing
(Achiam et al., 2023; Team et al., 2023; Bai et al., 2023; Guo et al., 2025). However, their real-world
deployment faces critical challenges of inference latency due to auto-regressive token-by-token
generation, which restricts LLMs to predicting one token at a time, creating a fundamental bottleneck
for real-time and large-scale applications.

To address this limitation, Speculative Decoding (SD) has emerged as a promising acceleration
paradigm (Leviathan et al., 2023; Chen et al., 2023; Li et al., 2024a). SD uses a small draft model to
proactively generate candidate tokens, which are then verified in parallel by the large target model.
By replacing serialized token generation with parallel validation, SD decouples the computational
workload from sequence length. However, a critical serial bottleneck still remains. As shown in
Fig. 1(a), the draft and target models operate in strict alternation: the draft model idles during target
model verification, but the target model cannot process new candidates until the draft model completes
its proposal. This mutual dependency leads to pipeline bubbles (Narayanan et al., 2019) that neither
model fully saturates the hardware resources.

Inspired by branch prediction in modern processors (Jiménez & Lin, 2001; Shi et al., 2019), we
allow the draft model to proactively generate speculative branches concurrently with target model
verification. Such a parallel SD paradigm creates a two-stage pipeline in which the draft model token
generation overlaps with the target model validation, effectively filling the inherent pipeline bubbles
in vanilla SD. Prior works such as PEARL (Liu et al., 2024b) use the target model to verify the first
draft token during the drafting phase (pre-verify), and use the draft model to continue generating
draft tokens during the verification phase (post-verify). However, unlike lockstep execution from
the existing SD that discards tokens only with a local penalty (called “rollback tokens” henceforth),
Parallel SD risks global invalidation if a token is rejected which causes all subsequent tokens to be

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Target modelTarget model

Speculative DecodingParallel Decoding (PEARL)

Parallel Decoding with Rollback Awareness (SpecBranch)

Idling

Rollback!

DraftModel

Target model Shortened Wall time！Waiting Bubbles HybridDraftingRollback Tokens NewBranch TargetModel

Unconfident! Need more branches! All tokens are correct!2 1

(a) Comparison of existing methods

Target model

Target model

 Speculative Decoding (SD)

Parallel SD (PEARL)

Idling

Rollback!
Parallel SD with Rollback Awareness (SpecBranch)

Draft
Model

Target model

Shortened Wall time！

Waiting
Bubbles

Hybrid
Drafting

Rollback
Tokens

New
Branch

Target
Model

Unconfident! Need more branches!

All tokens are correct!
2

1

(a) Comparison of existing methods

Figure 1: Architectural comparison and empirical analysis of SD frameworks: a) Vanilla SD, Parallel
SD (PEARL), and Parallel SD with Rollback Awareness (SpecBranch). When rejection occurs at
token x4, PEARL’s static pipeline forces verification of those “doomed tokens” x5−x10; SpecBranch
dynamically terminates invalid branches and spawns new branches. b) Distribution of accepted tokens
generally follows a truncated geometric distribution with longer token length (Vicuna 68M&13B,
γ = 8); c) Percentage of rollback tokens under different mechanisms.

rejected, and in turn, stall parallel pipelining. This is exacerbated with longer draft sequence length γ
since accepted tokens typically follow a truncated geometric distribution as shown in Fig. 1(b). This
creates an important trade-off between parallelism and rollback.

Unfortunately, PEARL inadequately addresses these challenges: 1) Pre-verify Rollback. PEARL
overlooks a critical condition for parallel acceleration: the tokens during the verification need to be
All-Accepted; otherwise, PEARL degenerates to serialized execution and loses its parallel capacity.
It verifies only the first token by the target model, while the system remains oblivious to mid-sequence
rollback until the parallel verification completes (e.g., when x4 is rejected in Fig. 1(b)). 2) Post-
verify Rollback. The static draft length lacks sufficient awareness of rollback and rejected tokens,
which also undermine the benefits of parallelism (shown in Fig. 1(c) with a high percentage of
rollback). Consequently, it leads to redundant computation of those “doomed tokens” and makes
the target model a bottleneck for processing unnecessary tokens from invalidated branches, despite
inevitable rollbacks. This is exacerbated in resource-constrained systems due to misalignment
between parameter-imbalanced draft and target models (68M draft&13B target).

Although recent dynamic drafting methods, categorized as implicit (confidence-driven early stop-
ping (Li et al., 2024b; Liu et al., 2024a; Agrawal et al., 2024; Zhang et al., 2023)) or explicit
(feature-based sequence modeling (Zhang et al., 2024)) partially mitigate the rollbacks, they face
practical challenges from per-task threshold tuning, error compounding and low prediction accuracy.
To this end, we propose SpecBranch with the following contributions:

✧ Branch-Parallel Architecture: We first establish theoretical models to quantify ideal parallel
speculation and extend it to consider rollback penalties in practice. Guided by these insights, we
propose a novel branch resampling mechanism that introduces parallel speculative branches to
preemptively hedge against likely rejections, while preserving the original sample distribution.

✧ Hybrid Adaptive Drafting: Based on extensive empirical analysis of adaptive draft structures,
we are the first to unify the implicit (draft model confidence) and explicit (target model feature)
methods into a hybrid framework that dynamically optimizes draft lengths. This effectively
reduces the percentage of rollback and improves parallel efficiency.

✧ Extensive Evaluation and Discussion: We conduct extensive experiments across various models
and tasks, demonstrating that SpecBranch consistently achieves a 1.8×to 4.5× speedup without
draft-model training and reduces rollback tokens by 50% for poorly aligned draft/target models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Methods Parallel Drafting Model-Training-free Draft Structure Modeling Speedup

Kangaroo (Liu et al., 2024a) % % Implicit (Confidence) -
EAGLE-2 (Li et al., 2024b) % % Implicit (Confidence) -
AdaEAGLE (Zhang et al., 2024) % % Explicit (Feature) -
Lookahead Decoding (Fu et al., 2024) % ! None 1.1×∼1.8×
AdaEDL (Agrawal et al., 2024) % ! Implicit (Entropy) 1.4×∼3.0×
PEARL (Liu et al., 2024b) ! ! None (Chunk-level) 1.6×∼4.2×

SpecBranch (Ours) ! ! Hybrid (Token-level) 1.8×∼4.5×

Table 1: Comparison of SpecBranch with the existing SD methods. SpecBranch is the first parallel
framework with hybrid drafting structures that does not require additional training of draft models.

2 RELATED WORK

Speculative Decoding While SD has demonstrated significant acceleration and lossless generaliza-
tion, increasing the acceptance rate of draft tokens by the target model remains a critical challenge.
Existing approaches rely on training-based (draft model) and training-free methods to align the draft
and target models. For instance, Medusa introduces auxiliary decoding heads Cai et al. (2024), while
EAGLE Li et al. (2024a) and Glide Du et al. (2024) reuse target model information to enhance accu-
racy. SpecInfer uses tree-based attention to verify multiple draft candidates to improve acceptance
rates (Chen et al., 2023). On the other hand, training-free methods such as Lookahead decoding
adopt a trajectory caching mechanism to store n-gram generation histories as draft candidates (Fu
et al., 2024). However, all these methods follow a sequential draft-then-verify paradigm, which is
fundamentally limited by the mutual waiting bottleneck. PEARL (Liu et al., 2024b) introduces a
parallel framework that verifies the first draft token while allowing the draft model to simultaneously
generate additional tokens during verification. However, it overlooks the impact of rollback when
verification fails, which negates the benefit of parallelism if not properly addressed.

Dynamic Drafting Structures Dynamic drafting structure is an effective approach to optimizing
SD. It adapts to the draft sequence length or tree configuration (e.g., depth, width, shape) based on
contextual speculation. Current methods to model drafting boundaries fall into two categories as
illustrated in Table 1: implicit and explicit. Implicit methods rely on output distribution metrics (e.g.,
confidence, entropy) to dynamically terminate drafts (Li et al., 2024b; Liu et al., 2024a; Agrawal
et al., 2024; Zhang et al., 2023). However, these require manually tuned thresholds and struggle to
balance flexibility with computational overhead, particularly in trainable-head variants (Huang et al.,
2024; Mamou et al., 2024), which require extra time to predict tokens individually. By eliminating
per-token prediction, explicit methods such as AdaEAGLE (Zhang et al., 2024) directly estimate
draft lengths based on target model features. Unfortunately, the prediction accuracy declines sharply
when the estimation sequence length becomes longer. Essentially, none of these works addresses
rollback, a key bottleneck where the draft model wastes tokens and stalls the parallelism. This work
proposes a hybrid framework to combine the implicit confidence-based termination with explicit
sequence modeling that reduces rollback substantially and improves parallel efficiency.

3 PRELIMINARIES

Notations We define the draft model as Mq and the target model as Mp. Given a prefix
X1:j = (x1, · · · , xj), q(·) and p(·) denote the probability distributions of the draft and target
models, respectively. The speed ratio c = Tp/Tq quantifies the relative latency. Token generation
maps X1:j to embeddings E1:j , which transforms to latent features F1:j and generates the next-token
distribution pj+1 from the final feature vector fj .

Speculative Decoding Speculative decoding accelerates autoregressive generation through par-
allel token verification. The draft model Mq proposes γ candidate tokens X̃1:γ with probabilities
{q(xi|X1:i−1)}γi=1. The target model Mp computes true probabilities in one forward pass. The

acceptance probability for each candidate xi is β(ti) = min
(
1, p(ti|X1:i−1)

q(ti|X1:i−1)

)
. We employ the

Match(p(ti|X1:i−1), q(ti|X1:i−1)) function (Zhao et al., 2024) to represent the verification process,
which identifies the set of accepted or newly sampled tokens. If xi is rejected, subsequent candidates
X̃i+1:γ are discarded, and a token is resampled from norm(max(0, p(xi)− q(xi))); if all γ tokens
are accepted, an additional token is sampled from p(tγ+1) (Leviathan et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 ANALYSIS OF PARALLEL DECODING

4.1 THEORETICAL SPEEDUP

We first quantify the theoretical speedup of parallel SD under different circumstances. The draft
model generates γ candidate tokens X1:γ , which are verified by the target model. Let Tq = t denote
the draft model’s per-token generation time, and Tp = ct be the target model’s verification time.
Under full acceptance of γ tokens, the baseline SD achieves TSD =

γ·Tq+Tp

γ+1 = γ+c
γ+1 · t.

Parallel SD (Ideal) Under the ideal full acceptance condition, the theoretical per-token latency
with parallel decoding (shown in Fig. 1(a)) can be derived as:

TPSD =
max(γt, ct)

γ
=

{
t, γ ≥ c
c
γ t, γ < c

(1)

Then the speedup ratio from SD is, TSD/TPSD = γ+c
γ+1 or γ+c

γ+1
c
γ . When γ ≈ c and c≫ 1, PD achieves

an optimal 2× speedup against SD. For autoregressive decoding with γ ≈ c, PD represents c×
speedup. Nevertheless, in practice, the actual performance depends on the draft acceptance rate,
which has been largely overlooked in the prior work (Liu et al., 2024b).

0 20 40 60
Draft length(c=40)

0

100

200

300

400

500

La
te

nc
y

un
de

r R
ol

lb
ac

k

=18.0

=23.0

=36.0
=40.0

=0.2
=0.4

=0.6
=0.8

Figure 2: Latency under rollback
(Theorem 1). For different α, the
minimum values are presented (the
curves have very mild slopes).

Parallel SD (with Rollback) Recall β as the acceptance rate
and assume βs are i.i.d. with α = E(β) as the expected accep-
tance rate (how well Mq approximates Mp). When k ≤ γ, the
draft accepted length can be approximated by a truncated geo-
metric distribution (Leviathan et al., 2023) (shown in Fig. 1(b),
detailed in Appendix F.6),

P (X = k) = (1− α) · αk · I(k < γ) + αγ · I(k = γ) (2)

where αγ is the probability of full acceptance and 1−αγ is the
probability of rollback. The rollback penalty becomes severe
when the draft model has limited capacity, which would cause
the subsequent tokens to be discarded and revert parallelism
back to serialized execution.

Theorem 1 (Latency under Rollback). The per-token latency
of parallel SD under rollback is,

TPSDr
=

2 ·max(γt, ct)

(1 + αγ) · α(1−αγ)
1−α

=

{
2ct(1−α)

α(1+αγ)(1−αγ) , γ ≤ c
2γt(1−α)

α(1+αγ)(1−αγ) , γ > c
(3)

We defer the proofs to Appendix B. As visualized in Fig. 2, the minimum latency occurs at the
segment of γ ≤ c, which theoretically validates the trade-off between parallelism and rollback: while
small γ underutilizes parallel resources, further increasing γ beyond the minimum value leads to
diminishing returns due to rollback accumulation. This trade-off is α-dependent: for well-aligned
models (α→ 1), a larger γ enjoys parallelism but for misaligned/capacity-constrained draft models
α ≤ 0.5, the penalties from rollback dominate. Though insightful, this theoretical analysis only
reflects the statistical properties rather than run-time dynamics. The actual accepted draft length is
context-dependent and varies substantially across different iterations (Zhang et al., 2024) (detailed by
Fig. 16 in Appendix), which necessitates adaptive control of γ rather than static configurations.

4.2 ANALYSIS OF ADAPTIVE DRAFT STRUCTURES

Thus, the next question is: “How to optimize draft structures to balance parallelism and rollback?”
To answer this, we compare the implicit and explicit methods on LLaMA 68M&7B across the
MT-Bench datasets (Zheng et al., 2023) for dialogue tasks. Implicit methods evaluate the confidence
maxxi

q(xi) (Du et al., 2024) or entropy 1−
√
λH(xi) (Agrawal et al., 2024) (positively correlated

with acceptance rate) against pre-determined thresholds ϵ, but the optimal ϵ are difficult to find across
different tasks, models, temperatures (detailed in Appendix F.8). Additionally, token-level predictions
would cause the error-compounding effect with higher instability across different tasks. On the other
hand, explicit methods like AdaEAGLE (Zhang et al., 2024) predict accepted length γ directly using
target model features. Unfortunately, the discriminative power of the explicit methods also declines
with the increase of accepted length as validated by the visually inseparable clusters in Fig. 3(a). As a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

50 0 50
TSNE Dimension 1

60

40

20

0

20

40

60

TS
NE

 D
im

en
sio

n
2

(a) 8-Class Explict TSNE
All reject
1 tokens

2 tokens
3 tokens

4 tokens
5 tokens

6 tokens
All accept

50 0 50
TSNE Dimension 1

60

40

20

0

20

40

60

TS
NE

 D
im

en
sio

n
2

(b) 3-Class Hybrid TSNE
All reject 1-6 tokens All accept

0 20 40 60 80 100
Iteration

70

80

90

100

Pr
ed

ict
ed

 A
cc

ur
ac

y
(%

)

(c) Prediction Accuracy
H-RAD
Confidence

Entropy
Explicit

Reasoning Coding Extraction
Evaluation tasks

1.4

1.6

1.8

2.0

Sp
ee

du
p

1.41 1.43
1.39

1.57
1.51

1.43

1.56
1.50

1.41
1.46 1.48 1.47

1.71
1.74

1.69

(d) Speedup Comparison
SD
Confidence

Entropy
Explicit

H-RAD

Figure 3: Empirical results of different drafting length estimation strategies: (a,b) comparison of
T-SNE visualization for the explicit and the proposed hybrid methods from the MLP activations;
(c) both implicit and explicit drafting structures have limitations of low prediction accuracy of the
accepted draft length; (d) impact of different drafting schemes on acceleration potentials.

result, the explicit method results in lower prediction accuracy than the implicit method as indicated
in Fig. 3(c), despite less overall variance of the ultimate speedup across different tasks (Fig. 3(d)). A
partial reason for this difficulty is due to the imbalanced geometric distribution of accepted lengths
and the limited contextual information from a single feature layer adopted by (Zhang et al., 2024).
Based on these insights, we introduce hybrid rollback-aware branch parallelism.

5 SPECBRANCH: HYBRID ROLLBACK-AWARE BRANCH PARALLELISM

To address the intertwined challenges from pipeline bubbles and rollback cost in SD, we present
SpecBranch with two novel components: 1) Hybrid Rollback-Aware Draft Structures (H-RAD), which
combine the draft model confidence early stopping and target model feature reuse for adaptive draft
lengths; 2) Branch Resampling, a parallel drafting-verification mechanism that eliminates sequential
bottlenecks through context-aware parallelism. We provide a profiling example in Appendix C.

5.1 H-RAD: HYBRID ROLLBACK-AWARE DRAFT STRUCTURE

As illustrated by Fig. 4 (Case 1), H-RAD predicts the optimal draft lengths before branch resampling
in the draft stage. Unlike PEARL’s limited pre-verification of only the first token by target model (Liu
et al., 2024b), we leverage the insights from the truncated geometric distribution of accepted tokens
in Fig. 1(b) to build a hybrid and lightweight predictor to reduce rollback.

Hybrid Drafting Length Prediction Given a prefix, our goal is to accurately predict the draft
length γ ≤ c. Since direct regression or multi-class classification of γ suffers from low accuracy, the
proposed hybrid design reduces the γ-class classification into a 3 class classification problem. This is
inspired by an intriguing bimodal phenomenon that target model features from multiple layers exhibit
strong separability for the fully accepted and rejected cases, and the rest, intermediate cases can be
resolved by the implicit approach. As illustrated in Fig. 3(b), the hybrid method provides a more
separable clustering compared to the overlapping distributions. Thus, we learn a lightweight MLP,

zt = Concat(ft−1, et) = Concat
(
h1
t−1, · · · ,hK

t−1, et
)
∈ RK·L·Dlayer+Demb , (4)

st = argmax(Softmax(MLP(zt))) ∈ {0, 1, 2}. (5)
where we extract K hidden states ht−1 from the target model’s last K layers and concatenate
them with the new token embedding et to (ft−1, et). To capture richer context than single-layer
approaches (Li et al., 2024a; Zhang et al., 2024), our method uses multiple layers for better length
prediction. The output st initiates a new hybrid drafting strategyHt with three classes,

Ht =


∅ if st = 0 (Hard signal: All Reject),
{x ∈ X1:γ | q(x) > ϵ} if st = 1 (Soft signal: Confidence),
X1:γ if st = 2 (Hard signal: All Accept).

(6)

Ht yields hybrid decisions of s0 and s2 as hard signals, and uses draft model confidence q(x) for
the intermediate soft signal s1. Here, the hard and soft signals refer to direct and pending decisions,
respectively. According to the empirical distribution, most tokens are handled by hard signals at once
(all accept or reject), while a small fraction is verified by soft signals later. Such a hybrid approach
improves the prediction accuracy of the explicit method as well as reduces the compounding errors
from the implicit methods. H-RAD predicts the draft length and branch points, providing a dynamic
decision for branch resampling, as described in Section 5.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The only way

��

to

��

�� > � �� < �

 (a) Draft stage

be good man

do great work

(b) Branch stage

way to do

is

work hard

to

love what

play fair

you do
1

2

stay true go fast

case1: Use confidence

Continue!

case3: All reject

great work is to

 �−�, ��

 ��, �� ve
rif

ic
at

io
n

ve
ri
fi
ca

ti
on

0

 ��, ��

�� �� �� �� �� �� ��

���−�

SpecBranch: Branch Speculative Decoding via Hybrid Rollback-Aware Draft Structure

������
0
1
2

���

��−�

��

is

to

2

1

1

2

3

�� �� �� �� �� �� ��� ���

Prefix

draft tokens accepted tokens branch points target model H-RAD

��

��

target tokens

Continue! Branch!

Branch!

case2: All accept

Branch!

��

love

0
21

Confidence

All reject
All accept

H-RAD

Figure 4: Architecture of SpecBranch. Case 1 (Use Confidence): H-RAD outputs st = 1, indicating
the branch point is determined by the draft model’s confidence. Case 2 (All Accept): H-RAD outputs
st = 2, predicting that all tokens should be retained, and the branch point is the next round’s first
token, ‘work’. Case 3 (All Reject): H-RAD outputs st = 0, predicting that no tokens should be
retained, and the branch point is the first token of this round, ‘what’.

5.2 BRANCH RESAMPLING: PARALLEL DRAFTING DURING VERIFICATION

Branch Resampling H-RAD identifies unconfident tokens as branch points through the hybrid
strategyHt in three cases as shown in Fig. 4. Then it splits the draft sequence at branch point xb and
sends the prefix X1:b−1 to the target model to verify. Meanwhile, it also spawns k parallel branches
via Top-k resampling from the draft model’s confidence distribution q(xb). For example, as illustrated
by Fig. 4 case 1, in the sequence ‘The only way to be’, H-RAD outputs st = 1 to use confidence and
the token ‘be’ (q3 < ϵ) triggers a new branch ‘do’ with ‘way to’ to be verified by the target model,

B = TopK (q(xb), k) =
{
x1
b , x

2
b , . . . , x

k
b

}
, where k = max (1, ⌊kmax · (1− q(xb))⌋) , (7)

in which k is adaptively controlled and scales inversely with xb’s confidence q(xb). Lower confidence
in xb indicates a lower acceptance rate (Du et al., 2024), thus spawning more branches to help SD
hedge against likely rejections. Each branch xi

b ∈ B generates subsequent tokens independently using
the shared KV-Cache of the prefix X1:b−1 and branch token xi

b to avoid redundant computation:

Xi
branch = X1:b−1 ⊕ xi

b ⊕Mq

(
KV-Cache(X1:b−1 ⊕ xi

b)
)
. (8)

The maximum draft length per branch is constrained by the draft/target model speed ratio c, ensuring
simultaneous verification and drafting to eliminate pipeline bubbles.

Branch Verification During token drafting, the target model Mp concurrently verifies the last round
tokens X1:b−1 using Match(p(xi|X1:i−1), q(xi|X1:i−1)) (Section 3). If any token xi is rejected, all
subsequent tokens are discarded, and the target model resamples a new token, back to the draft stage.
Unlike vanilla SD, if all tokens in X1:b−1 are accepted, we do not need to resample a new token.
Instead, we verify the branch point xb using p(xb) derived from xb−1, apply branch speculative
sampling algorithm to sample or adjust the distribution (details in Algorithm 2), consistent with (Li
et al., 2024a; Miao et al., 2024), ensuring that the distribution of the output branch point aligns with
the target LLM. The branch point verification is formalized as:

V = Match
((
q(x1

b) . . . , q(x
k
b)
)︸ ︷︷ ︸

Draft probability

,
(
p(x1

b), . . . , p(x
k
b)
)︸ ︷︷ ︸

Target probability

)
. (9)

Here, V represents the accepted branch point or resampled token after verification. If ∃ xi
b ∈ V ,

we then remain the corresponding branch, discarding all non-selected branches and their associated
KV-Cache. Unlike tree-based methods that spawn branches at every token (expensive KV-Cache

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Models Methods HumanEval GSM8K CNN/DM Speed Avg.

M Speedup M Speedup M Speedup (tokens/s) Speedup

LLaMA
68M&7B

SpS 2.64 1.46× 3.32 1.74× 2.26 1.42× 63.04 1.54×
AdaEDL 2.49 1.54× 3.25 1.89× 2.19 1.46× 67.21 1.63×
Lookahead 1.48 1.31× 1.96 1.71× 1.45 1.25× 57.63 1.42×
PEARL 2.79 1.69× 3.82 1.86× 2.64 1.66× 71.22 1.74×
SpecBranch 3.24 2.04× 4.46 2.12× 3.17 1.87× 82.41 2.01×

Vicuna
68M&13B

SpS 2.87 1.79× 2.54 1.56× 2.07 1.45× 48.79 1.60×
AdaEDL 2.77 1.95× 2.46 1.68× 2.01 1.53× 51.84 1.72×
Lookahead 1.76 1.57× 1.83 1.59× 1.52 1.23× 43.95 1.46×
PEARL 3.11 2.02× 2.83 1.61× 2.89 1.68× 53.31 1.77×
SpecBranch 3.69 2.47× 3.29 1.95× 3.21 1.89× 62.57 2.10×

Deepseek
1.3B&33B

SpS 4.45 2.16× 3.85 1.86× 3.91 1.96× 31.38 1.99×
AdaEDL 4.12 2.35× 3.57 2.01× 3.74 2.16× 34.22 2.17×
Lookahead 2.36 1.77× 1.74 1.43× 1.89 1.65× 25.55 1.62×
PEARL 16.97 3.39× 8.28 2.78× 6.45 2.63× 46.17 2.93×
SpecBranch 22.52 3.71× 10.19 3.02× 7.96 2.97× 50.94 3.23×

LLaMA-3.1
8B&70B

SpS 5.25 2.41× 5.15 2.31× 5.09 2.11× 16.21 2.28×
AdaEDL 4.96 2.55× 4.97 2.37× 4.85 2.19× 16.91 2.37×
Lookahead - - - - - - - -
PEARL 17.28 3.75× 14.33 3.35× 7.51 3.04× 24.03 3.38×
SpecBranch 21.74 4.02× 18.08 3.67× 9.41 3.37× 26.27 3.69×

Table 2: Comparison with existing baselines on HumanEval (Chen et al., 2021), GSM8K (Cobbe et al.,
2021) and CNN/DM (Nallapati et al., 2016). “–” indicate incompatibility: baseline implementations
(transformers = 4.36.2) conflict with LLaMA 3.1’s dependency on ≥ 4.43.0.

growth) (Miao et al., 2024), SpecBranch limits branching to uncertainty points identified by H-RAD
and avoids the need for complex tree attention verification. We provide more details in Appendix G.2.
Posterior Drafting in the Branch Stage As shown in Fig. 4 (Case 2/3), the parallel branch stage
introduces a potential temporal mismatch between drafting and verification. During the drafting stage,
H-RAD predicts the accepted length based on the previous features before the draft model generates
tokens. However, in the branch stage, the tokens from the previous round have not been verified yet,
which means H-RAD cannot immediately access those reliable target model features with sufficient
guidance from the history. To address this mismatch, we propose a posterior approach for selecting
the retained tokens after the branch generates tokens. Once parallel verification is completed, for
the remaining V branch, we use (ft−1, et) from the current round as input to H-RAD, and selectHt

after the verification step. This ensures that tokens for the next round are selected based on the most
up-to-date context, effectively resolving the mismatch as detailed in Appendix G.2.

6 EXPERIMENTS

Implementation Details We evaluate the effectiveness of SpecBranch across diverse LLM configu-
rations, particularly focusing on scenarios where draft models have significantly fewer parameters
(68M) and weak alignment with target models (7B-70B), and speedup ratios c ∈ [4, 15] (c is rounded
up to the integer value). This includes LLaMA (Miao et al., 2024) (68M, 7B, c = 10), Vicuna (Yang
et al., 2024) (68M, 13B, c = 15), models with better alignment such as Deepseek-Coder (Guo
et al., 2024) (1.3B, 33B, c = 4) and LLaMA-3.1 (Grattafiori et al., 2024) (8B, 70B, c = 5). We
assess SpecBranch across several text generation tasks, including HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), CNN/DM (Nallapati et al., 2016), and Spec-Bench (widely-adopted
six sub-tasks) (Xia et al., 2024b). More details are provided in Appendix E.
Baseline Methods We evaluate against the 4 model training-free methods. (1) Speculative Decod-
ing (SpS) (Chen et al., 2023): Standard implementation where a draft model generates γ tokens for
parallel verification. (2) AdaEDL (Agrawal et al., 2024): Early-stopping via entropy-based thresh-
olds to terminate low-probability drafts. (3) Lookahead Decoding (Fu et al., 2024): Token-level
speculation using cached n-gram matches without auxiliary draft models. (4) PEARL (Liu et al.,
2024b): Pipeline parallelism with pre/post-verification to overlap draft-target model execution.
Evaluation Metrics We report widely used metrics: Mean Accepted Length M , Wall-Time
Speedup Ratio, and Speed (tokens/sec). In SpecBranch, M represents the continuously accepted
length (Liu et al., 2024b). We also introduce a new metric, Rollback Rate (RB), defined as RB =
#Rollback tokens
#Total tokens , which quantifies computational waste from invalid drafts, detailed in Appendix E.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Models Methods
MT Bench QA Sum Math RAG Trans

Avg.M Speedup M Speedup M Speedup M Speedup M Speedup M Speedup

Vicuna

SpS 2.63 1.74× 2.47 1.64× 2.58 1.70× 2.37 1.55× 2.47 1.56× 2.57 1.65× 1.64×
AdaEDL 2.50 1.80× 2.43 1.67× 2.64 1.72× 2.31 1.62× 2.21 1.57× 2.45 1.75× 1.69×
Lookahead 1.56 1.31× 1.41 1.23× 1.49 1.25× 1.71 1.46× 1.38 1.15× 1.32 1.10× 1.25×
PEARL 2.62 1.78× 2.45 1.64× 2.78 1.83× 2.63 1.67× 2.61 1.66× 2.89 2.05× 1.77×
SpecBranch 3.11 2.09× 2.67 1.83× 2.72 1.78× 2.86 1.89× 2.83 1.86× 3.32 2.30× 1.96×

LLaMA-3.1

SpS 4.67 2.31× 4.57 2.27× 5.09 1.98× 5.01 2.44× 5.08 2.02× 5.52 2.57× 2.27×
AdaEDL 4.31 2.43× 4.23 2.30× 4.83 2.05× 4.94 2.46× 4.86 2.13× 5.24 2.65× 2.34×
Lookahead - - - - - - - - - - - - -
PEARL 8.46 2.96× 8.37 3.27× 9.10 3.32× 12.53 3.39× 8.35 3.41× 12.59 4.22× 3.43×
SpecBranch 10.85 3.24× 10.59 3.45× 11.40 3.63× 15.76 3.78× 9.16 3.40× 16.64 4.51× 3.67×

Table 3: Comparison with the existing baselines on Spec-Bench (Xia et al., 2024b).

H-RAD Training and Generalization The training data for H-RAD pairs the feature vector zt
from Eq. (4) with the corresponding three-class labels st. We implement a lightweight three-layer
MLP with ReLU activation. Training is performed offline for 20 epochs and 32 batch size. The
training converges within 5 minutes on a single NVIDIA A100 GPU and eliminates the need for costly
online fine-tuning. We further conduct experiments demonstrating the cross-task generalization of
H-RAD, where its performance only degrades by 5% (Table 8). We provide details in Appendix E.4.

6.1 MAIN RESULTS

Vicuna 68M & 13B LLaMA 3.1 8B & 70B
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

SpS
AdaEDL
Lookahead

PEARL
SpecBranch

76.60

14.88

66.50

12.54

81.40

18.45

90.30

21.99

39.60

9.51

Figure 5: Comparison of Rollback
Rates on HumanEval.

The main results from Tables 2, 3 and Fig. 5 are explained be-
low: (I) On HumanEval, GSM8K, and CNN/DM, SpecBranch
shows superior efficiency over prior methods, achieving con-
sistent speedups of 1.9× to 4.0× over vanilla autoregressive
decoding. On Spec-Bench, our method also achieves signifi-
cant acceleration from 1.8× to 4.5× on six diverse sub-tasks,
indicating its robustness and versatility. (II) For poorly aligned
models (LLaMA, Vicuna), rollback dominates parallel accel-
eration. SpecBranch improves over PEARL by 15%. As shown
in Fig. 5, SpecBranch reduces rollback from 66-90% to under
40%, yielding longer generated lengths M compared to the
baseline (Tables 2, 3). This validates the capability of H-RAD
to terminate those draft paths with ultimate failure. (III) For
well-aligned models (Deepseek, LLaMA-3.1), SpecBranch improves parallelism and resource uti-
lization through branch resampling. E.g., it achieves 3.23× speedup vs. PEARL’s 2.93× (10.2%),
with a 4.14× improvement of the average accepted length M against SpS on code generation tasks.
It also reduces the rollback rate by 10% and improves speedup by 8% compared to PEARL. These
results empirically validate the trade-off in Theorem 1 and more details are provided in Appendix F.

6.2 ABLATION STUDIES

MT QA Sum Math RAG Trans

1.6

1.8

2.0

2.2

Sp
ee

du
p

(a) Vicuna 68M & 13B

1.87

1.73 1.75
1.71 1.73

2.03

1.75

1.67
1.72

1.65 1.64

1.89

2.09

1.83
1.78

1.89 1.86

2.30

MT QA Sum Math RAG Trans

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

(b) LLaMA 3.1 8B & 70B

2.77

2.53
2.35

2.71

2.43
2.63

2.91

3.17
3.37 3.35

3.24

4.15

3.24
3.45

3.63
3.78

3.40

4.51

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
ac

ce
pt

ed
 le

ng
th

8

3

2

7

12

17

M
ea

n
ac

ce
pt

ed
 le

ng
th

SpecBranch w/o branch
SpecBranch w/o H-RAD

SpecBranch
SpecBranch w/o branch

SpecBranch w/o H-RAD
SpecBranch

Figure 6: Component Ablation on the Spec-Bench benchmark: (a) for poorly aligned model pairs
like Vicuna 68M-13B, H-RAD provides higher contributions; (b) for better-aligned models such as
LLaMA-3.1 8B-70B, branch resampling plays a more important role in acceleration.
Component Analysis Our ablation studies first isolate the two core components by removing:
(1) branch resampling (SpecBranch w/o branch), or (2) H-RAD (SpecBranch w/o H-RAD). Fig. 6
reveals that the absence of either component degrades performance. H-RAD dominates efficiency

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

gains for misaligned model pairs like Vicuna 68M-13B, which improves the speedup from 1.72×
to 1.95×. On the other hand, branch resampling contributes more with better-aligned pairs like
LLaMA-3.1 8B-70B. Both components offer complementary advantages to reduce rollback and
improve parallelism by adapting to different model capacity. Meanwhile, branch parallelism and
H-RAD are both modular designs, which are orthogonal to methods like EAGLE (Li et al., 2024a;b)
and can be quickly adapted, which we leave for future exploration as detailed in Appendix G.2.
Hyperparameter Sensitivity Since H-RAD still entails the confidence threshold from the implicit
methods, we evaluate its sensitivity to such threshold and feature layer hyperparameters in Tables 4
and 5 by integrating H-RAD with vanilla SD. Table 4 shows that while the speed for implicit methods
drops from 64 to 49 tokens/s as ϵ increases, H-RAD only decreases from 72 to 67 tokens/s, with less
dependence on the threshold. The explicit variant in Table 5 reveals diminishing returns with more
feature layers (K), that increasing context layers K from 4 to 32 has marginal gains of 1− 2 tokens/s
but 8× more memory overhead. Thus, we choose K = 4 to balance the speed and memory.

ϵ Implict(Confidence) Implict(Entropy) Hybrid(H-RAD)
0.1 61.05 60.28 70.32
0.2 64.26 63.03 72.15
0.4 61.12 59.21 71.02
0.6 56.43 54.73 69.91
0.8 53.21 52.29 68.62
0.9 49.46 48.18 67.31

Table 4: Results of Stop thresholds ϵ of LLaMA
68M&7B on HumanEval. (tokens/sec)

K HumanEval(coding) GSM8K(reason) CNN/DM(sum)
1 62.35 63.28 52.82
2 64.06 76.14 57.46
4 72.15 79.24 63.46
8 73.28 80.22 63.86

16 73.83 81.27 64.35
32 74.18 81.33 64.41

Table 5: Results of feature layers K of LLaMA
68M&7B on H-RAD+SD. (tokens/sec)

Resource Consumption We further validate SpecBranch’s effectiveness across three dimensions of
resource consumption. For memory consumption, we test the LLaMA-3.1 models on HumanEval; for
energy/time cost, we use poorly-aligned Vicuna on HumanEval. Fig. 7(a) shows that, due to the shared
prefix KV-Cache, memory consumption for parallel branches with varying k (from 1 to 16) only has a
slight increment to 28% of the baseline model parameters. In SpecBranch, k is dynamically adjusted
based on confidence at the branch point with kmax typically capped by 6. SpecBranch strategically
spawns sparse branch points at high-impact tokens, which improves computational and memory
efficiency by avoiding unnecessary branching. By the rollback-aware designs, Fig. 7(b) demonstrates
that SpecBranch reduces energy consumption by 43% against PEARL. Fig. 7(c) shows the time cost
for each SpecBranch module, where the H-RAD prediction cost is negligible (0.38% of total latency).
SpecBranch eliminates the mutual waiting bubbles between draft and target models with almost
identical execution time (30.9 vs 31.4 ms per step). We provide more details in Appendix F.4, G.1.

Methods

Sp

Energy (J)

S 383k

PEARL 445k

Spec-
Branch 251k

(c) Time consumption

Modules Latency (ms)

Draft 30.9 ± 1.36

Verification 31.4 ± 1.62

Predict 0.24 ± 0.02

(b) Energy consumption(a) Memory consumption

Figure 7: Resource consumption of SpecBranch through NVIDIA DCGM. (a) Trace of memory
footprint of SpecBranch inference with different number of branches k on HumanEval using LLaMA-
3.1 8B-70B; (b)(c) Energy and time cost on HumanEval using Vicuna 68M-13B.

More Discussion Due to space, we include more results and discussions in the Appendix, including
more comparisons with the tree methods (EAGLE) (F.1), kmax analysis (F.2), memory-constrained
application (G.1), tree structure and temporal mismatch (G.2) and more ablation results (F.8, F.10).

7 CONCLUSION

We propose SpecBranch, a rollback-aware parallel SD framework. By enabling concurrent branch
drafting and verification, SpecBranch addresses the bottleneck of serialized execution via two key
innovations of branch resampling and hybrid drafting structures. Experiments show that SpecBranch
achieves 1.8 ∼ 4.5× speedup and reduces computational waste up to 50% for poorly aligned models,
while theoretically guaranteeing the preservation of the generated text’s distribution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The datasets used in our experiments are publicly released and labeled through interaction with
humans in English. In this process, user privacy is protected, and no personal information is contained
in the dataset. The scientific artifacts that we used are available for research with permissive licenses.
The use of these artifacts in this paper is consistent with their intended purpose.

REPRODUCIBILITY STATEMENT

All the results in this work are reproducible and our code will be released upon paper acceptance.
We discuss the experimental settings in Section 6 and Appendix E, including implementation details
such as models, datasets, inference setup, and evaluation metrics.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sudhanshu Agrawal, Wonseok Jeon, and Mingu Lee. Adaedl: Early draft stopping for speculative de-
coding of large language models via an entropy-based lower bound on token acceptance probability.
arXiv preprint arXiv:2410.18351, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, and Greg Brockman et al. Evaluating large
language models trained on code. 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yu-Hsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable and robust speculative decoding. Advances in Neural Information
Processing Systems, 37:129531–129563, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. Cornell University -
arXiv,Cornell University - arXiv, Oct 2021.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
and Anirudh Goyal et al. The llama 3 herd of models, 2024. URL https://arxiv.org/
abs/2407.21783.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the

10

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths. arXiv preprint arXiv:2405.19715, 2024.

Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with perceptrons. In Proceedings
HPCA Seventh International Symposium on High-Performance Computer Architecture, pp. 197–
206. IEEE, 2001.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, and Yunhe Wang.
Kangaroo: Lossless self-speculative decoding for accelerating llms via double early exiting.
Advances in Neural Information Processing Systems, 37:11946–11965, 2024a.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. Parallel speculative decoding
with adaptive draft length. arXiv preprint arXiv:2408.11850, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe Berchansky, Nadav Timor, Moshe Wasserblat,
and Roy Schwartz. Dynamic speculation lookahead accelerates speculative decoding of large
language models. arXiv preprint arXiv:2405.04304, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive
text summarization using sequence-to-sequence rnns and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, Jan 2016. doi: 10.18653/v1/
k16-1028. URL http://dx.doi.org/10.18653/v1/k16-1028.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gregory R
Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM symposium on operating systems principles, pp.
1–15, 2019.

Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the cache
replacement problem. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 413–425, 2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Zhepei Wei, Wei-Lin Chen, Xinyu Zhu, and Yu Meng. Adadecode: Accelerating llm decoding with
adaptive layer parallelism. arXiv preprint arXiv:2506.03700, 2025.

11

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
http://dx.doi.org/10.18653/v1/k16-1028

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. Swift: On-the-fly self-speculative
decoding for llm inference acceleration. arXiv preprint arXiv:2410.06916, 2024a.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. Jan 2024b.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. Jan
2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu, Lu Chen, Kunyao Lan, and Kai Yu. Adaeagle:
Optimizing speculative decoding via explicit modeling of adaptive draft structures. arXiv preprint
arXiv:2412.18910, 2024.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu, Chaojun Xiao, Xinrong Zhang, Yewei Fang,
Kaihuo Zhang, Zhiyuan Liu, and Maosong Sun. Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. arXiv preprint arXiv:2402.13720, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric.P Xing, Hao Zhang, JosephE. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. Jun 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. Jan 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROCEDURES OF SPECBRANCH

Algorithm 1: Algorithm of SpecBranch
Input: Prefix I , draft model Mq , target model Mp, max length L, target model feature f , target

model embedding e, predicted output st, confidence threshold ϵ, num branches B, max
gamma γm, execution mode E.

Output: Generated sequence x.
x← I , γ ← γm, E ← DRAFTING
while |x| < L do

if E =DRAFTING then
// Drafting phase: only drafting candidate tokens
γ = Predictor(ft−1, et,ϵ, γm)
for i← 1 to γ do

qi ←Mq

(
x+ [x1, . . . , xi−1]

)
xi ∼ qi

end
E ← VERIFICATION

// Verification phase: evaluate branches
foreach b ∈ {1, . . . , B} do

for i← γ + 1 to 2γ do
q(b,i) ← Mask(Mq

(
x+ [x(b,1), . . . , x(b,i−1)]

)
)

x(b,i) ∼ q(b,i)
if q(b,i)[x(b,i)] < ϵ then

keep the invalid position

end
end
(p1, . . . , pγ)←

(
Mp(x+ [x1]), . . . ,Mp(x+ [x1, . . . , xγ])

)
Retrieve (q1, . . . , qγ) from cache
for i← 1 to γ do

ri ∼ U(0, 1)
end
n← min

(
{ i− 1 | ri > pi[xi]

qi[xi]
} ∪ {γ}

)
if n = γ then

// All drafted tokens accepted
if ∃ b : rb ≤ p[xn+1]

q(b,n+1)[xn+1]
then

x← x+ [x(b∗,n+1), . . . , x(b∗,γ)]
γ ← Predictor(ft, et+1,ϵ, γm)
E ← VERIFICATION

else
// Reject next token — fallback to target
y ∼ N

(
max(0, pn+1 − q(b,n+1))

)
x← x+ [y]
E ← DRAFTING

end
else

// Rejection occurred at position n

y ∼ N
(
max(0, pn+1 − qn+1)

)
x← x+ [x1, . . . , xn, y]
E ← DRAFTING

end
end
return x

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B PROOF OF THEOREM 1

We re-state Theorem 1 (Section 4.1) here for convenience with the basic assumption from (Leviathan
et al., 2023) that the token acceptance is i.i.d. with P(accept) = α. Recall that the generation time
Tq = t, the verification time Tp = ct, and any rollback would trigger a full retry of γ tokens. To
prove Theorem 1, we present Lemma 1 on the expected token draft length first.

Lemma 1 (Expected Draft Accepted length) For truncated geometric distribution,
X ∼ TruncGeo(α, γ),

E[X] =
α(1− αγ)

1− α
(10)

Proof.

E[X] =

γ∑
k=0

k · P(X = k) =

γ−1∑
k=0

k · (1− α)αk + γ · αγ

Let S =
∑γ−1

k=0 α
k = 1−αγ

1−α . Take differentiation regarding α, we have,

dS

dα
=

γ−1∑
k=0

kαk−1 =
1− γαγ−1 + (γ − 1)αγ

(1− α)2

E[X] = (1− α)α · dS
dα

+ γ · αγ =
α(1− αγ)

1− α

Theorem 1 (Latency under Rollback) The latency of parallel SD under rollback is,

TBDr =
2 ·max(γt, ct)

(1 + αγ) · α(1−αγ)
1−α

=


2ct(1− α)

α(1 + αγ)(1− αγ)
, γ ≤ c

2γt(1− α)

α(1 + αγ)(1− αγ)
, γ > c

Proof. Define the acceptance vector ω = (ω1, . . . , ωγ) ∈ {0, 1}γ , where ωi = 1 if and only if token
i is accepted. The accepted token count is,

X =

γ∑
i=1

ωi, P(ωi = 1) = α (i.i.d.).

To compute the total number of tokens with retry, define two rounds of: 1) γ tokens (accepted if
ω = 1); 2) Retry if Round 1 fails, which yields E[X] tokens. Thus, the total expectation is

Etotal = αγ(γ + E[X]) + (1− αγ)
(E[X]− γαγ)

1− αγ
= (1 + αγ) · E[X] (1)

This implies that Parallel SD (with Rollback) achieves an acceleration factor of (1 + αγ)× compared
to the vanilla SD (with Rollback). As α approaches 1, the acceleration ratio reaches 2×, matching
the acceleration of the Ideal Parallel SD in Eq. (1). Thus, the total time for the two rounds (parallel
generation/verification):

Ttotal = 2 ·max(γt, ct) (2)

TPSDr =
Ttotal

Etotal
=

2 ·max(γt, ct)

(1 + αγ) · α(1−αγ)
1−α

(3)

For different cases of length γ, we have,

Case 1: γ ≤ c (Verification time ct > γt):

TPSDr
=

2ct

(1 + αγ) · α(1−αγ)
1−α

=
2ct(1− α)

α(1 + αγ)(1− αγ)
.

Case 2: γ > c (Generation time γt > ct):

TPSDr
=

2γt

(1 + αγ) · α(1−αγ)
1−α

=
2γt(1− α)

α(1 + αγ)(1− αγ)
.

(Simplified using γt = ct · γc > ct). This completes the proof of Theorem 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROFILING EXAMPLE

We have illustrated the main process of SpecBranch in Fig. 4. Here, we provide a more detailed
step-by-step profiling example of SpecBranch with an input prefix ‘the only’ in Fig. 8.

Step Prefix Input
Signals

Draft model Output Target
model
Output

Judgement Tips

1 The only draft stage
(predict)

st =1
q(be) ＜eps

way to be \No In the draft stage, H-RAD
outputs st = 1 and uses
confidence to decide the
branch point before
generating tokens. If q(be)
< eps, the branch is in
‘be’.

2 The only branch stage
(posterior)

st=2
all accept

(1) be good man is to
(2) do great work is to

way to do In the branch stage, 'be'
and 'do' continue as
branches. After
verification, 'do' is kept,
and H-RAD outputs st =
2, retaining all tokens for
the next verification.

3 The only way to do branch stage
(posterior)

st=0
all reject

(1) work hard play fair
(2) stay true go fast
(3) love what you do

great work
is to love

In the branch stage, ‘work’
starts branchs,‘stay’‘love’.
After verification, ‘love’
is retained, and H-RAD
outputs st = 0, discarding
all tokens while
branching to ‘what’.

4 The only way to do
great work is to love

branch stage
(posterior)

st=1
q(devote) ＜
eps

(1) what you do
throughout the
(2) the efforts you
devote during

the In the branch stage, ‘what’
branches to ‘the’. After
verification, ‘the’ remains,
and H-RAD outputs st =
1, using confidence and
q(devote) < eps to branch
into ‘devote’.

5 The only way to do
great work is to love
the

branch stage
(posterior)

st=2
all accept

(1) devote during the
whole research
(2) put into the whole
project

the efforts
you put

In the branch stage,
‘devote’ branches to ‘put’.
After verification, ‘put’ is
kept, and H-RAD outputs
st = 2, retaining all tokens
for the next verification.

6 The only way to do
great work is to love
the efforts you put

branch stage
(posterior)

Rollback!

(1) but not the fame
(2) and the insight you

into the
whole
research

In the branch stage, ‘but’
branches to ‘and’. After
verification, project is
rejected, and a rollback
occurs to ‘whole’
concatenated with
‘research’.

7 The only way to do
great work is to love
the efforts you put
into the whole
research

draft stage
(predict)

st=2
all accept

but not the successes \No Once a token is rejected
by the target model
(either at the branch point
or as a normal token), the
process returns to the
draft stage and repeats.

Figure 8: A step-by-step profiling example of SpecBranch with an input prefix ‘the only’.

The blue text represents the stage and the red text indicates branch points or rejected tokens.
Underlined text signifies the tokens retained after each round of posterior drafting in the branch
stage, which are sent to the target model for verification. The dashed lines represent the tokens
discarded during rollback. We give some explanations about the whole process step by step.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1) At step 1, we extract features from the prefix ‘The only’ and input it to H-RAD (assuming the
preceding context is already established), which outputs the generation strategy st = 1. It means
that we use the implicit confidence q(x) to determine when to begin branching. Then, ‘The only’
is input to the draft model, and the target model does not operate during this stage. The draft
model generates ‘way to’ until q(be) < ϵ, at which point we branch at ‘be’ and send ‘way to’ to
the target model for parallel verification, transitioning from the draft stage to the branch stage.

2) At step 2, ‘be’ and ‘do’ are generated in parallel as two separate branches, while ‘way to’ is
verified by the target model. Once both drafting and verification are completed, the target model
outputs ‘way to do,’ indicating that the second branch ‘do’ is selected and the ‘be’ branch is
discarded. This allows SpecBranch to successfully avoid the rollback of ‘be’ through H-RAD
prediction and branch resampling. Then, H-RAD reuses the feature output st = 2, indicating that
all tokens have a high acceptance probability, and ‘great work is to’ is sent for verification in the
next round.

3) At step 3, since st = 2, ‘word’ is the first token of this round and is considered as an unconfident
token, prompting the generation of new branches ‘stay’ and ‘love’. After the target model verifies
and accepts the sequence ‘great work is to,’ it also outputs ‘love’ to match the branch. By
generating a new branch, the rejection of ‘work’ is avoided. Then, H-RAD reuses the feature
output st = 0, indicating that all tokens have a low acceptance probability, and only ‘love’ is sent
to the target model to match the branch point ‘what’.

4) At step 4, ‘what’ branches to ‘the’ and generates tokens in parallel. Then, the target model outputs
‘the’, meaning ‘what’ is rejected and the ‘the’ branch is retained, thus avoiding the rollback of
‘what’. H-RAD and branch resampling combine to improve token rollback handling, while PEARL
suffers from token rollback. Then, H-RAD outputs st = 1, meaning we need to use confidence to
determine the branch point ‘devote’, and send ‘the efforts you’ to the target model for the next
round of verification.

5) At step 5, similarly, SpecBranch combats the unconfident token ‘devote’ through implicit confi-
dence early stopping and branch resampling, improving parallel efficiency. Once ‘the efforts you
put’ is accepted, H-RAD outputs st = 2 to retain all tokens generated by the ‘put’ branch.

6) At step 6, we provide a rollback case. In the new round, the first token ‘but’ branches to ‘and’,
drafting tokens. However, the target model rejects the previous round’s token ‘project’ and
resamples a new token ‘research’. This means that all the tokens generated in parallel need to be
discarded, and we return to ‘whole’ and concatenate with ‘research’. Meanwhile, if none of the
branch points match the output of the target model, this is also treated as a rollback.

7) At step 7, once a token is rejected by the target model (either at the branch point or as a normal
token), the process returns to the draft stage and repeats the above process of draft branch in
parallel. For those “doomed tokens” that cannot be avoided, they have to be rolled back to the
draft stage. This completes the feedback loop.

（1）动作：(draft tokens, signal,) = (,{s0,s1,s2}) st and signal。就说signal就行了。
（2）状态：S= branch有三种状态。{serial，branch_all_accept， branch}
（3）转换函数：P{St|St-1}： other wise
（4）初始状态：S0=BOS(serial stage)
（5）终止状态： Z=EOS()

描述的是分支的开打开和关闭。
什么时候打开分支，什么时候关闭分支。
DFA。分支的打开和关闭。

在Serial阶段，每一次状态转换都是小模型生成token后。
在Branch阶段每一次状态转换都是大模型验证完毕后，或者。
我们就是描述这个Serial和Branch的生成和转换过程，最后取一条树上的某条通路。

prefix EOSdraft

�� = 0, �ℎ� ������� ����� ����� �����

�� = 1, �＜�
�� = 2, �ℎ� ���� ����� ����� �����

branch

rollback

st=0,1,2

H-
RAD

branching

H-
RAD branching

predict posterior

Figure 9: Illustration of the SpecBranch state transitions.

Meanwhile, to better illustrate the SpecBranch workflow, we present a simplified stage-transition
logical loop in Fig. 9. Given a prefix, if target-model features are available, H-RAD reuses these
features to predict the draft length during the draft stage. The transition from the draft stage to
the branch stage occurs when a branch point is selected, which can be one of three scenarios: (1)
st = 0 (all-reject), indicating that the branch point is the first token of this round; (2) st = 1, where
confidence is used to decide the branch point; and (3) st = 2 (all-accept), indicating that the branch

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

point is the first token of the next round. Each scenario triggers a distinct branching to ensure correct
overlap between drafting and verification.

Similarly, in the branch stage, H-RAD uses a posterior approach to select the retained tokens, leading
to three branching scenarios for parallel execution. Once a token is rejected by the target model
(either at the branch point or as a regular token), the branch stage reverts to the draft stage and repeats
the draft-branch process in parallel, thus maintaining the logical loop.

D BRANCH SPECULATIVE SAMPLING

As discussed in Section 5.2, we verify the branch point xb using p(xb) derived from xb−1, and apply
branch speculative sampling algorithms to sample or adjust the distribution of candidate branches.
The branch point verification is formalized as:

V = Match
((
q(x1

b) . . . , q(x
k
b)
)︸ ︷︷ ︸

Draft probability

,
(
p(x1

b), . . . , p(x
k
b)
)︸ ︷︷ ︸

Target probability

)}
. (11)

Single-round speculative sampling relies on a chain-structured draft, whereas SpecBranch adopts a
branch structure. Inspired by (Li et al., 2024a; Miao et al., 2024), SpecBranch introduces Branch
Speculative Sampling. Specifically, given the target model’s distribution p(xb) for the branch point,
we perform speculative sampling token-by-token on the top-k branch point candidates. For each
candidate xi

b, we evaluate it against the criterion rb <
p(xi

b)

q(xi
b)

. Once any branch point token xi
b

is verified and accepted, the corresponding branch is selected and retained. In non-acceptance
scenarios, branch speculative sampling recursively invokes single-round speculative sampling, instead
of retaining the original naive sampling. The pseudocode corresponding to Branch Speculative
Sampling is detailed in Algorithm 2.

Algorithm 2: Branch Speculative Sampling

Input: Branch points target model distribution p(xb), top-k branch points xi
b and distributions

q(xi
b) for each i from 1 to k, where xi

b is sampled from q(xi
b),

Output: a sample xb ∼ p(xb);
i← 1
for i ≤ k do
rb ← U(0, 1)
if rb < p(xi

b)/q(x
i
b) then

Return xi
b

end if
p(xb)← norm(max(0, p(xb)− q(xi

b)))
i← i+ 1

end for
Sample a new token xb ∼ p(xb)
Return xb

Unlike tree-based methods that spawn branches at every token (expensive KV-Cache growth) (Miao
et al., 2024), SpecBranch limits branching to uncertainty points identified by H-RAD and avoids the
need for complex tree attention mask verification. This means SpecBranch only applies branch spec-
ulative sampling at branch points, while employing the typical speculative sampling for subsequent
draft tokens. This ensures an identical sampling distribution of the target model, enabling lossless
acceleration while also significantly reducing deployment complexity and computational overhead.

Our main experiments are conducted under greedy decoding conditions that are consistent across
all baselines i.e., target model temperature = 0. To further verify the lossless nature of our method,
we perform additional experiments on GSM8K across different temperatures to evaluate accuracy. As
shown in the Table 6, despite a slight variation for Vicuna, SpecBranch achieves identical accuracy
with the vanilla autoregressive decoding across various model pairs and temperatures. Branch
Speculative Sampling theoretically guarantees the original output distribution of the target LLM.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Models Methods Temperature=0 Temperature=0.5 Temperature=1

Acc. Speedup Acc. Speedup Acc. Speedup

Vicuna Vanilla 0.29 1.00× 0.25 1.00× 0.21 1.00×
SpecBranch 0.29 1.95× 0.24 1.83× 0.22 1.75×

LLaMA-3.1 Vanilla 0.93 1.00× 0.92 1.00× 0.90 1.00×
SpecBranch 0.93 3.67× 0.92 3.58× 0.90 3.54×

Table 6: SpecBranch achieves lossless acceleration across various model pairs and temperatures on
GSM8K (Cobbe et al., 2021).

E EVALUATION DETAILS

For reproducibility, we discuss the experimental setup (Section 6) in detail and the source code of
this project will be made available at a later time.

E.1 DATA CONFIGURATIONS

In our experiments, we evaluate SpecBranch using the following dataset settings. The tasks include
code generation, multilingual arithmetic reasoning, summarization, and Spec-Bench (a widely-
adopted benchmark consisting of six sub-tasks) (Xia et al., 2024b). For code generation, we use
HumanEval (Chen et al., 2021), a widely recognized benchmark comprising 164 problems. For
arithmetic reasoning and multilingual inference, we use GSM8K (Cobbe et al., 2021), presenting their
results side by side. Specifically, we sample the first 100 examples from GSM8K. For summarization,
we use CNN/DM (Nallapati et al., 2016), and also sample the first 100 examples. The maximum
generation length for these tasks is set to 512 tokens.

For Spec-Bench, we define distinct templates for each subtask. The template for Vicuna follows the
official format, while for LLaMA and DeepSeek, the templates are as follows:

✧ MT-Bench: “A conversation between a curious user and an AI assistant, where the assistant
provides helpful, detailed, and polite answers to the user’s questions."

✧ QA: “A conversation between a curious user and an AI assistant, where the assistant gives helpful,
detailed, and polite answers to the user’s questions.”

✧ Summarization: “Summarize: QUESTION TL;DR.”
✧ Translation: “Translate German to English. German: QUESTION English.”
✧ Math: “Let’s think step by step.”
✧ RAG: “A conversation between a curious user and an AI assistant, where the assistant gives

helpful, detailed, and polite answers to the user’s questions.”

Specifically, due to the unique characteristics of LLaMA-3.1, we design a specialized template as
follows: “You are a helpful, respectful, and honest assistant. Always answer as helpfully as possible,
while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive
in nature. If a question does not make sense or is not factually coherent, explain why instead of
providing an incorrect answer. If you don’t know the answer, please do not share false information.”

E.2 MODEL CONFIGURATIONS

To validate performance, we select state-of-the-art open-source model pairs such as the LLaMA series
(JackFram /LLaMA-68M, huggyLLaMA/LLaMA-7b), Vicuna (double7/vicuna-68M, lmsys/vicuna-
13b-v1.3), Deepseek-Coder (deepseek-ai/deepseek-coder-1.3b-instruct, deepseek-ai/deepseek-coder-
33b-instruct) and LLaMA-3.1 (meta-LLaMA/LLaMA-3.1-8B-Instruct, meta-LLaMA/LLaMA-3.1-
70B-Instruct) for each task. All model weights are loaded in bfloat16 format for optimized GPU
inference without quantization. As a draft model training-free method, SpecBranch does not modify
any draft model parameters during evaluation. We summarize the model configuration in Table 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Models Layers dim FFN dim Vocabulary size

LLaMA 68M 2 768 3072 32000
LLaMA 7B 32 4096 11008 32000
Vicuna 68M 2 768 3072 32000
Vicuna 13B 40 5120 13824 32000

Deepseek 1.3B 24 2048 5504 32256
Deepseek 33B 62 7168 19200 32256
LLaMA-3.1 8B 32 4096 14336 128256
LLaMA-3.1 70B 80 8192 28672 128256

Table 7: Model configurations.

E.3 EVALUATION DETAILS

We report widely used metrics for speculative decoding (SD): Mean Accepted Length M , Wall-Time
Speedup Ratio, and Speed (tokens/sec). Additionally, we introduce a new metric, Rollback Rate
(RB), defined as RB = #Rollback tokens

#Total tokens , which quantifies computational waste due to invalid drafts. In
SpecBranch, M represents the continuously accepted length (Liu et al., 2024b), which is not the fixed
length accepted in a single round of γ, but rather the higher accepted length achieved through multiple
rounds of parallel generation, surpassing the performance of Vanilla SD. RB specifically refers to
the number of rollbacks during the draft model’s forward times, excluding additional token loss due
to branch and tree structures (since the impact of draft parallelism on acceleration is negligible).

All experiments, including the main results and ablation studies, are conducted on NVIDIA A100-
PCIE-40G GPUs. Models with fewer than 8B parameters are run on a single device, 33B models
on two devices, and 70B models on four devices. For inference, we set the batch size to 1 to match
standard speculative decoding settings.

Temperature Sampling For SpecBranch and other baselines, we set the draft and target model
temperature to 0 as greedy sampling. Since Top-k resampling is adopted in SpecBranch, we derive the
draft token confidence in temperature 1. More discussions about temperature sampling are detailed in
Table 6.

Resource Consumption In the resource consumption experiments, we use the NVIDIA Data
Center GPU Manager (DCGM) to monitor real-time GPU memory usage and power. Energy
consumption is calculated by multiplying the average power by the total inference time over the entire
benchmark.

All baselines, such as PEARL and SpS, are reproduced from their original papers and official
codebases, using the optimal configurations reported by the authors. Experiments are conducted
under identical conditions to avoid introducing bias. Importantly, for LLaMA-3.1 model pairs, the
implementation of Lookahead requires transformers = 4.36.2, which conflicts with LLaMA 3.1’s
dependency on transformers ≥ 4.43.0. A similar situation is also found in (Liu et al., 2024b).

E.4 TRAINING DETAILS AND CROSS-TASK GENERALIZATION

H-RAD Training Our H-RAD training is performed offline on specific datasets, including our
benchmarks. The training data for H-RAD pairs the feature vector zt from Eq. (4) with the
corresponding three-class labels st. We implement a lightweight three-layer MLP with ReLU
activation and dropout (rate= 0.4). The model architecture consists of two hidden layers (256 and 64
units) followed by a classification layer. Training is performed offline for 20 epochs with 32 batch
size using the AdamW optimizer (Loshchilov & Hutter, 2017) (learning rate= 5 × 10−5, weight
decay= 1× 10−4). To address class imbalance issues, we employ SMOTE (Synthetic Minority Over-
sampling Technique) data augmentation (Chawla et al., 2002), specifically targeting underrepresented
classes in H-RAD. The augmentation process involves standardizing features, applying SMOTE with
k = 5 nearest neighbors, and then inverse transforming the synthetic samples. Additionally, we
utilize label smoothing (smoothing= 0.1) in the loss function to prevent overconfident predictions
and improve generalization. The training process incorporates several optimization strategies:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

✧ Learning rate scheduling with ReduceLROnPlateau (factor= 0.5, patience= 2).

✧ Early stopping with 5 epochs patience.

✧ Gradient clipping with max norm of 1.0.

✧ Weighted random sampling to balance class distributions.

The training converges within 5 minutes on a single NVIDIA A100 GPU and avoids the need for
costly online fine-tuning while maintaining adaptability to diverse domains. The model achieves
balanced performance across the three classes, as validated through confusion matrix analysis and
t-SNE visualization of the learned feature space.

Cross-Task Generalization First, we emphasize that H-RAD consists of a lightweight MLP
predictor, which involves very low offline training costs. Re-training and deployment on new datasets
require minimal additional expenses. To better demonstrate its generalization capacity across different
datasets and tasks, we conduct more experiments and analyses.

We define H-RAD pre-trained with Spec-Bench as the experimental module, referred to as SpecBranch
(Spec). As shown in Table 3, our method performs exceptionally well across six different sub-tasks
of Spec-Bench, highlighting H-RAD’s strong cross-task performance.

Additionally, we transfer pre-trained H-RAD (Spec) directly to HumanEval, GSM8K, and CNN/DM
and compare with the original SpecBranch trained on specific datasets. As shown in Table 8, we see a
little performance drop of less than 10%, with an average decrease of only 5%, yet it still outperforms
the baseline PEARL, showcasing H-RAD’s generalization and robustness.

Models Methods HumanEval GSM8K CNN/DM Speed Avg.

M Speedup M Speedup M Speedup (tokens/s) Speedup

Vicuna

PEARL 3.11 2.02× 2.83 1.61× 2.89 1.68× 53.31 1.77×
SpecBranch 3.69 2.47× 3.29 1.95× 3.21 1.89× 62.57 2.10×
SpecBranch(Spec) 3.45 2.31×(6.48%) 3.13 1.78×(8.72%) 3.15 1.81×(4.24%) 58.81 1.97×(6.20%)

LLaMA-3.1

PEARL 17.28 3.75× 14.33 3.35× 7.51 3.04× 24.03 3.38×
SpecBranch 21.74 4.02× 18.08 3.67× 9.41 3.37× 26.27 3.69×
SpecBranch(Spec) 20.53 3.93×(2.31%) 17.58 3.48×(5.18%) 9.15 3.19×(5.35%) 25.03 3.52×(4.71%)

Table 8: Cross-Task Generalization of SpecBranch (H-RAD pre-trained with Spec-Bench).

This generalization capability can be partially attributed to the hybrid prediction of H-RAD, where
intermediate token results are determined by confidence, rather than relying on dataset distributions.
Thus, H-RAD achieves better generalization than a purely explicit method. Furthermore, the features
of the target model provide guidance for token acceptance, which is influenced more by the model
pair. Across different tasks, the predictive effectiveness of these features remains highly consistent,
demonstrating that H-RAD exhibits strong generalization across target tasks or domains for
specific model pairs. Online training of H-RAD is a promising future direction since H-RAD can
learn in real-time from historical draft lengths and target model features, thereby enhancing its
generalization capacity in real-world deployments.

F MORE EXPERIMENTAL RESULTS

F.1 MORE COMPREHENSIVE COMPARISONS WITH THE TREE-BASED METHODS

To further elucidate the differences between our method and tree-based methods, we conduct addi-
tional comparisons as described in the following.

Compared to training-required tree-based methods:

Since training-required methods such as EAGLE (Li et al., 2024a) incur substantial training costs, it
is unfair to directly compare with EAGLE since our method is model training-free and such cost is
well-recognized in the field. To further highlight the efficiency of SpecBranch, we provide a detailed
breakdown of the draft model and predictor training costs (refer to Table ?? for additional details).

We compare the draft model and predictor training costs of SpecBranch with three representative
training-required methods: EAGLE, Medusa (Cai et al., 2024) and Kangroo (Liu et al., 2024a). The

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Method Training Cost Details

EAGLE Model: 1-2 days (LLaMA-2-13B, 8 RTX 3090 GPUs)
Predictor: None

Medusa Model: 5 hours (Vicuna 7B, 1 NVIDIA A100-PCIE GPU)
Predictor: None

Kangaroo Model: 24 hours (Vicuna-7B, 8 NVIDIA V100-PCIE GPUs)
Predictor: None

SpecBranch Model: None
Predictor: ≤ 5 mins (1 NVIDIA A100-PCIE GPU)

Table 9: Comparison of draft model and predictor training costs.

latter two also require time-intensive fine-tuning on large datasets. In contrast, the draft model of
SpecBranch does not require training. H-RAD only involves training a lightweight MLP predictor
that takes a few minutes on a single NVIDIA A100 GPU and we can see the training cost is 250×
lower than EAGLE.

To further highlight SpecBranch’s exceptional performance in terms of latency, we provide key
metrics including the mean accepted tokens (M) and speedup, for comparison between SpecBranch
and the EAGLE family on LLaMA-2 Chat 7B&70B.

Models Methods HumanEval GSM8K CNN/DM Speed Avg.

M Speedup M Speedup M Speedup (tokens/s) Speedup

LLaMA-2

EAGLE 4.45 3.51× 3.97 3.09× 3.78 2.98× 22.35 3.20×
EAGLE-2 5.46 3.78× 4.49 3.52× 4.98 3.48× 25.13 3.59×
PEARL 15.34 3.21× 13.29 3.07× 12.98 2.96× 21.56 3.08×
SpecBranch 18.27 3.59× 15.98 3.37× 14.02 3.23× 23.73 3.39×

Table 10: Comparison with training-required tree methods on LLaMA-2 7B&70B.

As shown in the Table 10, SpecBranch demonstrates an impressive speedup of 3.59×, surpassing
EAGLE’s 3.51×. While it is slightly behind EAGLE-2 (Li et al., 2024b) ’s 3.78×, the performance
closeness already indicates the significant potential of SpecBranch’s branch-parallel framework and
the H-RAD predictor.

Additionally, H-RAD is an independent component that can be “plug and play” into EAGLE. While
EAGLE-2 dynamically adjusts the tree width through token confidence, H-RAD further optimizes the
tree depth. We also point out that the parallel paradigm can be combined with EAGLE. For example,
we can train a 4-layer EAGLE model with early-exit capability, enabling dynamic adjustment of the
draft model’s layers based on context, using parameters from {1, 2, 3, 4} layers. By combining this
early-exit, multi-layer draft model with the target model for parallel prediction, we can form a new
branching parallel framework.

Models Methods HumanEval GSM8K CNN/DM Speed Avg.

M Speedup M Speedup M Speedup (tokens/s) Speedup

LLaMA-2

REST 1.97 1.78× 1.65 1.46× 1.68 1.57× 10.99 2.28×
Ouroboros 5.16 2.10× 5.96 2.58× 3.28 1.57× 14.60 2.08×
SWIFT 4.27 1.56× 2.99 1.43× 3.87 1.45× 10.15 1.48×
PEARL 15.34 3.21× 13.29 3.07× 12.98 2.96× 21.56 3.08×
SpecBranch 18.27 3.59× 15.98 3.37× 14.02 3.23× 25.83 3.39×

Table 11: Comparison to model training-free tree methods on LLaMA-2 7B&70B.

Compared to model training-free tree methods:

To justify SpecBranch against tree-structure methods, we have also conducted more experiments
of the recent model training-free methods, such as REST (He et al., 2023) (retrieval tree structure

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

self-SD), Ouroboros (Zhao et al., 2024) (lookahead tree structure), and SWIFT (Xia et al., 2024a)
(layer-skip tree structure self-SD), evaluated on Spec-Bench using LLaMA-2 Chat 7B&70B.

The comparisons in the Table 11 show that SpecBranch outperforms other tree-structure methods.
Moreover, the parallel framework can be orthogonally combined with these methods, offering
significant future potential.

F.2 EVALUATION RESULTS OF VARYING kmax

The number of branches k is a crucial hyperparameter, which is discussed in Section 6.2 Resource
Consumption. Fig. 7 demonstrates that memory consumption for parallel branches increases only
slightly with k ranging from 1 to 6. Furthermore, we perform more discussion and new experiments
to report how varying kmax affects overall speedup and rollback rate (RB). As shown in Table 12, we
conduct SpecBranch experiments on HumanEval for Vicuna 68M&13B and LLaMA-3.1 8B&70B
under varying kmax.

kmax = 1 kmax = 2 kmax = 4 kmax = 6 kmax = 12 kmax = 18

Model RB Speedup RB Speedup RB Speedup RB Speedup RB Speedup RB Speedup

Vicuna 68M&13B 87.56% 2.05× 62.13% 2.16× 48.02% 2.28× 45.14% 2.36× 39.60% 2.47× 38.92% 2.48×
LLaMA-3.1 8B&70B 19.63% 3.76× 15.63% 3.88× 11.63% 3.97× 9.51% 4.02× 8.93% 4.05× 8.87% 4.06×

Table 12: Performance comparison under different kmax values.

We observe that as kmax increases, SpecBranch initially exhibits rapid acceleration, then slows down
as speedup diminishes. Conversely, the rollback rate behaves in an opposite manner. When kmax = 1,
there is only one parallel branch. As the number of branches increases, more candidate branching
points are available, improving the acceptance rate of unconfident tokens. However, this comes at the
cost of higher memory consumption.

(1) For poorly aligned model pairs, the lower token acceptance rate necessitates more branches to
increase the acceptance of unconfident tokens, thereby reducing rollback and improving parallel
efficiency to achieve a trade-off. Accordingly, a lightweight draft model can handle more memory,
enabling more branches to be processed in parallel.

(2) For well-aligned model pairs, the improved alignment between the target and draft models
mitigates the impact of rollback, meaning that a smaller kmax is sufficient to achieve the desired
trade-off.

F.3 LATENCY STABILITY ACROSS SEQUENCES

In principle, for SpecBranch or any other SD methods, latency is highly correlated with acceptance.
We define the acceptance for each iteration as the number of accepted tokens in that round divided
by γ (draft length one iteration). In practical scenarios, the acceptance for each iteration varies
significantly, as shown in the Appendix F.9. This is why finding an optimal draft length is challenging
and only dynamic draft lengths can effectively enable acceleration.

However, when we shift the time scale from iterations to requests, we find that the average acceptance
rate for each request is quite consistent, with α being more dependent on model alignment. As
shown in the Table 13 (HumanEval with LLaMA 68M&7B), when we treat a request as the unit of
measurement, the latency of SpecBranch remains quite stable.

Method Response Time per Request (s) Std. Dev.
1 2 3 4 5 6 7 8 9 10 (n=100)

PEARL 4.55 4.80 5.21 4.92 4.74 5.90 5.58 4.98 5.77 6.04 0.589
SpecBranch 4.10 4.31 4.67 4.39 4.28 5.37 5.00 4.44 5.10 5.02 0.423

Table 13: Response time and standard deviation for different methods across requests

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Compared to PEARL, by using H-RAD to efficiently predict unconfident tokens, we reduce token
rollback, leading to better stability in latency. Specifically, the standard deviation for 100 requests is
only 0.423, much lower than 0.589 of PEARL.

F.4 TIME AND ENERGY CONSUMPTION

We have provided some evaluation results of time and energy consumption in Section 6.2. In this
section, we conduct more experiments on the time consumption of various model pairs on HumanEval
while we further test the energy consumption of various model pairs on HumanEval and GSM8K.

Time consumption As shown in Table 14, regardless of model size, the time spent on H-RAD
prediction and communication between multiple GPUs is almost negligible compared to the total
inference time for a single step. This indicates that the H-RAD module retains its lightweight nature
with minimum resource consumption and the inter-GPU communications have low operational
overhead as well. On the other hand, the time span for the draft stage and the target model verification
stage is nearly equal. This is consistent with our prior results that SpecBranch effectively implements
parallelism between these two stages to alleviate the mutual waiting bubbles.

Modules LLaMA 68M&7B Vicuna 68M&13B Deepseek 1.3&33B LLaMA-3.1 8B&70B
H-RAD Predict 0.26 ms 0.27 ms 0.31 ms 0.28 ms
Communication 0.21 ms 0.31 ms 0.26 ms 0.26 ms

Draft Stage 20.8 ms 30.9 ms 58.3 ms 125.1 ms
Verification Stage 21.7 ms 31.4 ms 56.1 ms 128.0 ms

Table 14: Time cost of each module (per step) on the HumanEval dataset.

Energy consumption We use the NVIDIA Data Center GPU Manager (DCGM) toolkit
to monitor the real-time power consumption and collect relevant traces. Energy consumption is
calculated by multiplying the average power by the total inference time over the entire benchmark.
The results are provided in Table 15 and Table 16.

For poorly aligned models (LLaMA, Vicuna), SpecBranch with its rollback-aware dynamic draft
length through H-RAD, significantly reduces redundant tokens, thereby lowering energy consumption
compared to PEARL and SpS. Unlike PEARL, which pre-verifies only the first token using the target
model in parallel, SpecBranch utilizes H-RAD to predict all tokens during the draft stage. This
approach reduces the number of forward passes required by the target model. For LLaMA 68M&7B
on HumanEval, SpecBranch reduces the target model forward passes to 32,285, compared to 44,949
in PEARL, resulting in lower energy consumption for target model inference. For better-aligned
models (Deepseek, LLaMA-3.1), where token rollback is significantly reduced, parallel efficiency
improves considerably. While energy savings are less pronounced, SpecBranch still outperforms
PEARL.

Theoretically, Parallel SD incurs negligible energy consumption compared to Vanilla SD. The speedup
achieved through parallelism offsets the additional power consumption caused by extra forward passes
in the target model. However, the parallelism and communication overhead still contribute to some
energy consumption in real-world deployments. Overall, SpecBranch, with its hybrid rollback-aware
draft structure, significantly optimizes energy consumption compared to PEARL. Notably, for poorly
aligned models, it outperforms SD in terms of energy efficiency.

Methods LLaMA 68M&7B Vicuna 68M&13B Deepseek 1.3&33B LLaMA-3.1 8B&70B
SpS 217 KJ 383 KJ 565 KJ 1021KJ

PEARL 287 KJ 445 KJ 631 KJ 1231 KJ
SpecBranch 156 KJ 251 KJ 582 KJ 1092 KJ

Table 15: Energy cost of SpecBranch and baseline methods on the HumanEval dataset.

F.5 MORE EVALUATION RESULTS ON THE SPEC-BENCH BENCHMARK

As illustrated in Section 6, we provide more evaluation results of SpecBranch in Table F.5 with
both LLaMA 68M&7B and Deepseek 1.3&33B on Spec-Bench. Notably, LLaMA 3.1 is a more

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Methods LLaMA 68M&7B Vicuna 68M&13B Deepseek 1.3&33B LLaMA-3.1 8B&70B
SpS 146 KJ 250 KJ 393 KJ 741 KJ

PEARL 193.6 KJ 295 KJ 428 KJ 901 KJ
SpecBranch 128 KJ 178 KJ 395 KJ 791 KJ

Table 16: Energy cost of SpecBranch and baseline methods on the GSM8K dataset.

recent LLM version that requires the transformer version to be greater than 4.43.0. Due to this
incompatibility, we cannot reproduce the results of baseline Lookahead Decoding as described
before.

Models Methods
MT Bench QA Sum Math RAG Trans

Avg.M Speedup M Speedup M Speedup M Speedup M Speedup M Speedup

LLaMA

SpS 2.78 1.77× 4.43 2.57× 2.62 1.51× 5.02 2.50× 2.39 1.28× 5.28 2.90× 2.09×
AdaEDL 2.74 1.86× 4.25 2.59× 2.56 1.54× 4.83 2.43× 2.27 1.39× 4.93 2.96× 2.13×
Lookahead 1.58 1.31× 1.62 1.34× 1.59 1.32× 1.73 1.51× 1.31 1.15× 1.36 1.23× 1.31×
PEARL 2.83 2.14× 5.98 3.15× 2.79 1.85× 7.58 3.37× 2.48 1.43× 7.65 4.03× 2.66×
SpecBranch 3.01 2.34× 6.57 3.53× 2.87 1.76× 8.57 3.77× 3.06 1.64× 8.57 4.32× 2.89×

Vicuna

SpS 2.63 1.74× 2.47 1.64× 2.58 1.70× 2.37 1.55× 2.47 1.56× 2.57 1.65× 1.64×
AdaEDL 2.50 1.80× 2.43 1.67× 2.64 1.72× 2.31 1.62× 2.21 1.57× 2.45 1.75× 1.69×
Lookahead 1.56 1.31× 1.41 1.23× 1.49 1.25× 1.71 1.46× 1.38 1.15× 1.32 1.10× 1.25×
PEARL 2.62 1.78× 2.45 1.64× 2.78 1.83× 2.63 1.67× 2.61 1.66× 2.89 2.05× 1.77×
SpecBranch 3.11 2.09× 2.67 1.83× 2.72 1.78× 2.86 1.89× 2.83 1.86× 3.32 2.30× 1.96×

Deepseek

SpS 3.99 2.03× 4.02 2.12× 4.08 2.02× 3.93 2.06× 3.95 1.94× 4.37 2.21× 2.06×
AdaEDL 3.54 2.26× 3.81 2.33× 3.74 2.03× 3.81 2.28× 3.69 2.03× 4.12 2.38× 2.22×
Lookahead 1.78 1.51× 1.81 1.64× 1.59 1.42× 1.75 1.53× 1.53 1.32× 1.74 1.50× 1.49×
PEARL 6.60 2.77× 5.15 2.91× 5.81 2.68× 7.14 2.79× 5.77 2.65× 6.20 3.09× 2.81×
SpecBranch 8.31 3.02× 5.71 2.87× 6.67 2.95× 8.92 3.21× 6.82 2.76× 6.86 3.28× 3.02×

LLaMA-3.1

SpS 4.67 2.31× 4.57 2.27× 5.09 1.98× 5.01 2.44× 5.08 2.02× 5.52 2.57× 2.27×
AdaEDL 4.31 2.43× 4.23 2.30× 4.83 2.05× 4.94 2.46× 4.86 2.13× 5.24 2.65× 2.34×
Lookahead - - - - - - - - - - - - -
PEARL 8.46 2.96× 8.37 3.27× 9.10 3.32× 12.53 3.39× 8.35 3.41× 12.59 4.22× 3.43×
SpecBranch 10.85 3.24× 10.59 3.45× 11.40 3.63× 15.76 3.78× 9.16 3.40× 16.64 4.51× 3.67×

Table 17: More evaluation results on Spec-Bench. “–” indicate incompatibility: baseline implementa-
tions (transformers = 4.36.2) and LLaMA 3.1’s dependency on ≥ 4.43.0.

We draw several interesting findings from Table F.5: 1) SpecBranch demonstrates consistent speedups
across six subtasks, regardless of the model alignment quality; 2) In particular, the LLaMA 68M&7B
model combination performs exceptionally well, due to the capacity of the LLaMA model, which
excels in the Math, QA, and Translation tasks, with an average accepted length even surpassing
DeepSeek. However, there are significant performance variations across other tasks. This suggests
that the alignment between the small draft models and the large target model may vary across tasks,
leading to highly task-specific effects. These findings also indicate incorporate multiple draft models
for speculative sampling in future research. Different draft models can be tailored to specific tasks
under the Mixture-of-Experts (MoE) principles to further enhance inference efficiency.

F.6 MORE EVALUATION RESULTS OF ROLLBACK RATIO

As discussed in Section 6, rollback is an important metric for the parallel efficiency. Here, we
provide more evaluation results on HumanEval, GSM8K, CNN/DM, and Spec-Bench, as shown
in Fig. 10. The results demonstrate that SpecBranch achieves significantly lower rollback ratios
across various datasets and subtasks compared to other methods. This is consistent with our prior
justification that the H-RAD module plays an essential role in mitigating rollback – the additional
evaluations in Fig. 10 further validate the generalization capacity of H-RAD in different tasks. It is
worth mentioning that for poorly aligned model combinations (e.g., Vicuna, LLaMA), SpecBranch
reduces the rollback ratio by nearly 50% compared to PEARL. Even for better-aligned model pairs
(e.g., Deepseek, LLaMA-3.1), it achieves about 10% reduction. These results indicate the potential of
SpecBranch in resource-constrained environments where the draft model sizes are typically restrained.
The proposed framework can reduce the percentage of rollbacks as well as save computation/energy
resources in the long run.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

SpS AdaEDL Lookahead PEARL SpecBranch

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100
R

ol
lb

ac
k

R
at

e
(%

)
(a) HumanEval

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(b) GSM8K

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(c) CNN/DM

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(d) MT Bench

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(e) QA

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(f) Summarization

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(g) Math

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(h) RAG

Vicuna Deepseek LLaMA LLaMA-3.1
0

20

40

60

80

100

R
ol

lb
ac

k
R

at
e

(%
)

(i) Translation

Figure 10: Comparison of Rollback Rates on HumanEval, GSM8K, CNN/DM, Spec-Bench for
different model combinations.

F.7 MORE RESULTS OF TOKEN DISTRIBUTION

Recall that in Section 4.1 and Fig. 1(b), we introduce a truncated geometric distribution (Leviathan
et al., 2023)(shown in Fig. 1(b),

P (X = k) = (1− α) · αk · I(k < γ) + αγ · I(k = γ), (12)

where αγ is the probability of full acceptance and 1− αγ is the probability of rollback. To validate
this, we present additional token distribution results for Vicuna 68M&13B and Deepseek 1.3B&33B
on HumanEval and GSM8K in Figs. 11 and 12. These results show that the token acceptance
distribution closely follows the truncated geometric distribution, which is consistent with our prior
statements of a bimodal phenomenon extracted from the target model features. This has laid the
foundation for the H-RAD module to perform token length predictions with high fidelity.

In particular, Fig. 11 shows that for poorly aligned models, the acceptance rate α is low, and the
truncated geometric distribution peaks at All-Reject. In this scenario, the rollback in SD is exacerbated,
particularly in Parallel SD, since it only achieves parallelism under the All-Accept condition. Given
the low proportion of All-Accept in this token distribution, the efficiency of parallelism is significantly

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

38.4%

18.6%

11.8%

8.5%

22.8%

(a) = 4 on HumanEval

All Reject (x=0)
All Accept (x=4)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

39.4%

19.5%

12.8%

8.7%

4.3%
3.0% 1.9% 1.4%

9.1%

(b) = 8 on HumanEval

All Reject (x=0)
All Accept (x=8)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8 9 10111213141516
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

41.2%

20.0%

12.6%

7.6%

4.6%
3.0%

1.8%1.4%1.1%1.0%0.9%0.7%0.5%0.5%0.4%0.3%
2.3%

(c) = 16 on HumanEval

All Reject (x=0)
All Accept (x=16)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

42.7%

21.5%

11.3%

8.2%

16.3%

(d) = 4 on GSM8K

All Reject (x=0)
All Accept (x=4)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

43.5%

22.1%

11.2%
8.4%

4.0% 3.5%
1.8% 1.3%

4.2%

(e) = 8 on GSM8K

All Reject (x=0)
All Accept (x=8)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8 9 10111213141516
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

44.0%

21.9%

11.3%
8.6%

4.2%3.3%
1.8%1.0%0.7%0.6%0.5%0.3%0.3%0.2%0.2%0.2%0.8%

(f) = 16 on GSM8K

All Reject (x=0)
All Accept (x=16)
Empirical Distribution
Theoretical Distribution

Figure 11: More evaluation results demonstrate that the distribution of accepted tokens generally
follows a truncated geometric distribution of different token length γ of Vicuna 68M&13B.

0 1 2 3 4
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

5.9% 3.5% 3.4% 2.6%

84.5%

(a) = 4 on HumanEval

All Reject (x=0)
All Accept (x=4)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

7.6%
3.9% 3.9% 3.1% 2.6% 2.2% 2.0% 1.8%

72.8%

(b) = 8 on HumanEval

All Reject (x=0)
All Accept (x=8)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8 9 10111213141516
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

11.0%

5.0%4.8%
3.1%2.9%2.6%2.1%1.9%2.0%1.6%1.6%1.4%1.4%1.3%1.2%1.3%

54.7%

(c) = 16 on HumanEval

All Reject (x=0)
All Accept (x=16)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

17.1%

10.3%
7.3% 6.0%

59.3%

(d) = 4 on GSM8K

All Reject (x=0)
All Accept (x=4)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

20.6%

11.0%

7.7% 7.1%

4.2% 3.5% 3.1% 2.6%

40.4%

(e) = 8 on GSM8K

All Reject (x=0)
All Accept (x=8)
Empirical Distribution
Theoretical Distribution

0 1 2 3 4 5 6 7 8 9 10111213141516
Accepted tokens per iteration

0.00

0.10

0.20

0.30

0.40

N
or

m
al

iz
ed

 D
is

tri
bu

tio
n

24.4%

13.0%

9.1%
7.4%

4.3%3.9%
2.8%2.5%1.9%2.2%1.4%1.5%1.1%1.1%1.0%1.3%

21.1%

(f) = 16 on GSM8K

All Reject (x=0)
All Accept (x=16)
Empirical Distribution
Theoretical Distribution

Figure 12: Distribution of accepted tokens generally follows a truncated geometric distribution of
different token length γ of Deepseek 1.3B &33B.

impacted by rollback. This highlights our motivation to jointly consider rollback with parallelism for
traditional SD.

For better-aligned models, Fig. 12 shows that the acceptance rate α is high and the truncated geometric
distribution peaks at All-Accept. In this scenario, the rollback effects in SD are undermined, with
the balance between rollback and parallelism leaning towards parallelism. As a result, the parallel
framework shows significant acceleration compared to vanilla SD, even approaching the theoretical
speedup limit with well-aligned models. However, it is evident that as the draft length increases, the
impact of rollback becomes non-negligible. SpecBranch effectively balances the trade-off between
these factors.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.8 EVALUATION RESULTS OF IMPLICIT DISTRIBUTION

As discussed in Sections 4.2 and 6.2, we primarily analyze the sensitivity of hyperparameters in the
implicit methods. Here, we further examine the top-1 implicit distribution under different experimen-
tal setups. We conduct extensive experiments with LLaMA 68M&7B, Deepseek 1.3B&33B, and
LLaMA-3.1 8B&70B on HumanEval, GSM8K, and CNN/DM under various temperature settings.

Task Sensitivity We first explore the task sensitivity of two main implicit values: confidence
and entropy, which measure confidence by maxxi q(xi) (Du et al., 2024) and entropy as 1 −√
λH(xi) (Agrawal et al., 2024) against pre-determined thresholds ϵ. Fig. 13 illustrates that the

implicit values have different distributions across tasks. In summarization tasks (CNN/DM), both the
average accepted confidence (0.91) and entropy (0.77) are significantly higher than in other tasks.
Meanwhile, the rejected implicit values also vary notably (0.26 to 0.45), especially for entropy in
summarization tasks. This indicates that the implicit distribution is highly task-sensitive, making the
selection of the stop threshold ϵ static and finding an optimal value difficult.

0 1
Category (X-Value)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pl

ic
it

Va
lu

e

HumanEval-Confidence

0 1
Category (X-Value)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pl

ic
it

Va
lu

e

GSM8K-Confidence

0 1
Category (X-Value)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pl

ic
it

Va
lu

e

CNN/DM-Confidence

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

Va
lu

e

HumanEval-Entropy

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

Va
lu

e

GSM8K-Entropy

0 1
Category (X-Value)

0.0

0.2

0.4

0.6

0.8

1.0

Im
pl

ic
it

Va
lu

e

CNN/DM-Entropy

(a) Distribution Analysis

Figure 13: The top-1 implicit values (Confidence) distribution of LLaMA 68M&7B on HumanEval,
GSM8k and CNN/DM with temperature = 1. Category 0 denotes the top-1 values of rejected draft
tokens while 1 denotes the corresponding values of accepted tokens.
On the other hand, we observe that compared to entropy, confidence has a clearer and more distinct
distribution for accepted and rejected tokens. This is why confidence is chosen for H-RAD, as it
provides higher fidelity. Additionally, we note that around 0.5, both confidence and entropy show
considerable overlap between accepted and rejected values, which indicates a key limitation of the
implicit methods.

Model Sensitivity The distribution of entropy is less effective than that of confidence, so we
further test the model sensitivity of implicit methods (confidence) on three different model sizes:
LLaMA 68M&7B, Deepseek 1.3B&33B, and LLaMA-3.1 8B&70B. As shown in Fig. 14, the average
accepted confidence of better-aligned models (0.98) is higher than that of poorly aligned models
(0.79), and the same holds for rejected confidence (0.27 against 0.11). This demonstrates that the
confidence distribution is sensitive to model pairs, with lower average confidence in poorly aligned
models, resulting in a higher rate of rollback.

Temperature Sensitivity Temperature plays an important role in the draft model’s sampling
process. Thus, we conduct additional analysis on the temperature parameter. As shown in Fig. 15,
we observe a sharp variation in the confidence distribution with temperature, especially for rejected
tokens. When temperature = 1, the draft model generates tokens with higher randomness, leading to
a more distinct and separated confidence distribution. At temperature = 0.7, the average rejected
confidence rises to 0.55, overlapping more with accepted confidence. When temperature = 0.2, the
randomness of the draft model’s sampling decreases, causing the rejected and accepted confidence
distributions to overlap, making it difficult to distinguish early stop tokens. From the above, we

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (LLaMA)

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (Deepseek)

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (LLaMA-3.1)

(a) Confidence Distribution Analysis

Figure 14: The top-1 implicit values (Confidence) distribution of LLaMA 68M&7B, Deepseek
1.3B&33B, and LLaMA-3,1 8B&70B on HumanEval with temperature = 1. Category 0 denotes the
top-1 values of rejected draft tokens, while 1 denotes the corresponding values of accepted tokens.

conclude that higher temperatures increase randomness and allow the confidence distribution to
better reflect whether draft tokens are accepted by the target model or not. Notably, SpecBranch uses
temperature = 1 for top-k sampling and confidence selection, optimizing the use of implicit values
for better representation.

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (temperature=0.2)

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (temperature=0.5)

0 1
Category (X-Value)

0.00

0.25

0.50

0.75

1.00

Im
pl

ic
it

va
lu

e

HumanEval-Confidence (temperature=1.0)

(a) Confidence Distribution Analysis

Figure 15: The top-1 implicit values (Confidence, Entropy) distribution of LLaMA 68M&7B on
HumanEval with temperature = 0.2, 0.5 and 1.

Based on the above discussion, we summarize the advantages of H-RAD over implicit methods. H-
RAD significantly reduces the frequency of implicit confidence calls at the token-level by leveraging
explicit target model features. This mitigates error accumulation in implicit confidence, desensitizes
and reduces the dependency on thresholds. Moreover, H-RAD improves the accuracy of dynamic
draft structures, resulting in a significant reduction of rollback tokens. Specifically, our H-RAD
predictor is invoked only once during each draft process, incurring far lower overhead compared to
the token-level implicit training predictors (Huang et al., 2024).

F.9 THE OPTIMAL DRAFT LENGTH

0 20 40 60 80 100
Iteration

0

10

20

30

40

D
ra

ft
Le

ng
th

Variation in Accepted Draft Length
static optimal draft length
iteration accept draft length

Figure 16: Variation of the optimal draft length over different iterations.

In Section 4.1, we have discussed the theoretical solution under rollback. However, this theoretical
analysis only reflects the statistical properties rather than the runtime dynamics. As shown in Fig. 16,
the actual optimal accepted draft length is context-dependent and varies significantly across different
iterations and the same phenomenon is observed in (Zhang et al., 2024; Liu et al., 2024b). Hence,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

fixed draft length would result in substantial rollback and token waste. This highlights the need for
adaptive control of γ rather than relying on static configurations.

F.10 MORE ABLATION STUDY OF THE ORIGINAL MODULE AND THE HYPERPARAMETER
SENSITIVITY

Component Analysis To better demonstrate the effect of branch resampling by comparing with
the original module, we conduct more experiments comparing vanilla SD and SpecBranch without
H-RAD on the Spec-Bench of LLaMA 3.1 8B&70B. As shown in Table 18, SpecBranch shows a
significant speedup (3.36×) over SD (2.27×).

Methods MTBench QA Sum Math RAG Trans Avg.

M Speedup M Speedup M Speedup M Speedup M Speedup M Speedup M Speedup

Vanilla SD 4.67 2.31× 4.57 2.27× 5.09 1.98× 5.01 2.44× 5.08 2.02× 5.52 2.57× 4.99 2.27×
SpecBranch w/o H-RAD 8.14 2.91× 8.21 3.17× 8.87 3.37× 11.49 3.35× 7.98 3.24× 11.73 4.15× 9.40 3.36×

Table 18: Comparing the original module of the vanilla SD and SpecBranch without H-RAD.

Hyperparameter sensitivity To improve alignment with established practices, we conduct more
experiments with the Branch-Parallel structure of LLaMA 68M&7B on HumanEval and the explicit
method. The results shown in Table 19 confirm H-RAD’s high acceleration efficiency and lower
sensitivity to hyperparameters.

More Discussion We further clarify connections among SpecBranch’s components: 1) Branch-
Parallel is a holistic structure that covers draft parallelism as well as branch resampling. Single-
sequence parallelism (e.g., PEARL (Liu et al., 2024b)) is a special case with kmax = 1. Detailed results
on SpecBranch’s performance across kmax values are shown in Appendix F.2. The branch-parallel
framework uses top-k sampling for unconfident tokens (vs. top-1 in single-sequence parallelism)
to mitigate potential token rollbacks. 2) Isolating branches from SpecBranch would significantly
stall parallel efficiency. Combining single-sequence parallelism and H-RAD alone cannot counteract
rejections or reduce rollbacks. Early termination of the draft model would make the target model a
bottleneck, leaving overall latency unchanged. In summary, SpecBranch is a unified framework with
two synergistic modules. H-RAD first identifies unconfident tokens that are prone to rollback. Then
the branch-parallel strategy counteracts rejections while accelerating inference in parallel.

ϵ
Implict(Confidence) Implict(Entropy) Hybrid(H-RAD) Explicit(Feature)

M Speedup M Speedup M Speedup M Speedup

0.1 2.39 1.67× 2.37 1.65× 3.02 1.98× 2.21 1.51×
0.2 2.63 1.76× 2.51 1.74× 3.24 2.04×
0.4 2.31 1.59× 2.27 1.56× 3.19 2.02×
0.6 1.98 1.47× 1.96 1.45× 2.97 1.95×

Table 19: The hyperparameter sensitivity on the branch-parallel structure.

G FURTHER ANALYSIS AND DISCUSSION

G.1 MEMORY CONSTRAINED SCENARIOS

We have discussed the memory consumption of SpecBranch in Section 6.2. Here, we provide a more
detailed discussion about memory-constrained scenarios.

Clarification of the Application Scenarios First, we clarify the application scenarios of
SpecBranch: most existing methods operate on a “draft-then-verify” sequential execution, which
limits the ability to fully utilize the computational resources available. In contrast, the main appli-
cation scenarios for SpecBranch focus on environments with sufficient computational resources to
enable parallel frameworks, where serialized execution is not able to adequately leverage available
resources.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

SpecBranch in Memory-Abundant Scenarios. Specifically, SpecBranch is well-suited for multi-
GPU parallel scenarios in cloud environments with ample GPU resources, as well as for cloud-edge
collaborative settings. In such scenarios, the draft and target models are deployed on the edge and
cloud devices, respectively. Additionally, it can be applied to heterogeneous processor environments,
including CPU/GPU configurations or heterogeneous GPUs. We foresee significant potential for
SpecBranch in these scenarios, where both the draft and target models are independently deployed
across processors. This avoids slowdown caused by memory contention. Our main experiments are
conducted under these settings. Furthermore, integrating tensor parallelism (TP) with SpecBranch in
these environments (Zhong et al., 2024) can further enhance acceleration in the future.

Methods MT Bench QA Summarization Math RAG Translation Avg.
Sps 2.03× 2.12× 2.02× 2.06× 1,94× 2.21× 2.06×

SpecBranch 3.02× 2.87× 2.95× 3.21× 2.76× 3.28× 3.02×
SpecBranch(PP) 2.80× 2.56× 2.57× 2.93× 2.41× 3.02× 2.73×

Performance retain 92.57% 89.03% 89.78% 91.38% 87.21% 91.93% 89.76%

Table 20: Comparisons of Deepseek 1.3B&33B on the Spec-Branch tasks with the proposed Spec-
Bench in memory-constrained scenarios.

SpecBranch in Memory-Constrained Scenarios. We also consider memory-constrained sce-
narios, where resource contention between the draft and target model may arise. To mitigate this,
we consider a common real-world scenario using the A100 40GB GPU. In this case, a large target
model (33B) is deployed across two GPUs, while a smaller draft model (1.3B) is deployed on one
of these GPUs. In such a scenario, we employ a modified pipeline parallelism (PP) version of
SpecBranch to alleviate resource contention based on PEARL (Liu et al., 2024b). Specifically, the
target model’s computation is sequential across multiple GPUs: while the target model runs on
GPU 0, the draft model can operate in parallel on GPU 1 to generate the first ⌈γ2 ⌉ tokens; when the
target model progresses to GPU 1, the draft tokens generated on GPU 1 are transferred to the idle
GPU 0, which continues generating the remaining ⌈γ2 ⌉ tokens, thereby avoiding memory contention.
Although this PP approach introduces additional communication overhead, it effectively mitigates
memory contention in this specific scenario. We conduct experiments with Deepseek 1.3B&33B on
Spec-Bench and find that SpecBranch maintains approximately 90% of the reliable performance
through PP, which outperforms the vanilla SD and auto-regressive decoding in memory-constrained
settings. The results are shown in Table 20.

Meanwhile, SpecBranch conducts extensive experiments on poorly aligned lightweight model combi-
nations (68M&7B, 68M&13B). The experimental results demonstrate that, under H-RAD’s rollback
mitigation, SpecBranch exhibits better adaptability and energy efficiency for small draft models,
making it more suitable for deployment in resource-constrained environments.

Methods MT Bench QA Summarization Math RAG Translation Avg.
PEARL(Sps) 1.74× 1.64× 1.70× 1.55× 1.56× 1.65× 1.64×

SpecBranch w/o branch 1.87× 1.73× 1.75× 1.71× 1.73× 2.03× 1.81×

Table 21: Comparisons of Vicuna 68M&13B on the Spec-Branch tasks with the proposed Spec-Bench
in single GPU scenarios.

SpecBranch in Single GPU Scenarios. In the extreme resource-constrained scenarios, where
only a single GPU is available for inference deployment, we can still apply the pipeline parallelism
(PP) strategy by offloading the draft model to the CPU (DRAM), enabling heterogeneous parallelism
between the CPU and GPU. This approach is left as future work for SpecBranch. If deployment
is limited to a single GPU, SpecBranch degenerates to a non-parallel framework, as discussed in
Section 6.2 under SpecBranch w/o branch. In this case, the H-RAD component operates independently
of the parallel framework and can be seamlessly integrated with the existing draft-then-verify methods.
In contrast, PEARL’s pre-verify and post-verify stages degenerate to vanilla SD under extreme
resource constraints. We conduct experiments with Vicuna 68M and 13B on Spec-Bench using a
single A100 GPU and find that SpecBranch w/o branch outperforms PEARL (vanilla SD) in these
single-GPU scenarios. The results are shown in Table 21.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.2 TREE STRUCTURE AND TEMPORAL MISMATCH

In this section, we provide more detailed discussions about the tree structure and temporal mismatch
to gain an in-depth understanding of SpecBranch (Section 5).

Tree-based Structure We primarily focus on the vanilla tree structures. For example, SpecIn-
fer (Miao et al., 2024) constructs a token tree using k independent sequences, a topology that is
constrained by the expected number of tokens it can accept, regardless of the tree size, as shown
in Fig. 17(a). However, this structure is dense, as top-k sampling is applied to each token, which
generates additional sequences. In the case where the draft length is γ and the tree size is k, the
number of tokens for each round is given by kγ−1

k−1 . We observe that the number of tokens in a tree
structure grows exponentially with γ, causing KV-Cache storage to increase exponentially as well.
To address this challenge, EAGLE2 (Li et al., 2024b) and SEQUOIA (Chen et al., 2024) employ
dynamic draft tree adjustments to prune unnecessary branches, resulting in a sparse tree structure.
Our SpecBranch adopts a similar sparse branch structure. The difference is that, unlike traditional tree
structures, where each token generates a branch, our approach utilizes H-RAD to predict high-impact
token positions and spawns sparse branch points that minimize speculative divergence. As illustrated
in Fig. 17(b), we branch at b ≤ γ positions, resulting in the number of tokens per round in the branch
structure being k · γ − (k − 1) · (b+ 1), which is significantly smaller than in vanilla tree structures.
In general, vanilla tree structures maintain the KV-Cache for the entire search tree, with a space
complexity of O(kγ), whereas SpecBranch reduces the complexity to O(k · γ) by sparsely targeting
specific branches.

(a) Vanilla Tree structures (Dense) (b) Branch structures (Sparse)

next round starting next round starting

prefix draft tokens branch points

Figure 17: Comparison of the vanilla tree structures (dense) and branch structures (sparse).

Moreover, trees require complex attention mask verification to process the entire structure in parallel,
whereas our approach only needs to verify the branch point. From a practical perspective, branch
structures offer advantages in terms of deployment complexity and resource efficiency. Additionally,
for sparse tree structures, SpecBranch can be easily integrated, which we leave for future work.
However, a key limitation is that tree structures are not well-suited for parallel architectures as
illustrated next.

Temporal Mismatch As shown in Fig. 18, we observe that the parallel branch stage introduces
a temporal mismatch between drafting and verification. In the draft stage (a), the previous tokens
have already been verified by the target model (except for the first round, where the target model
lacks feature information). As a result, H-RAD can utilize the historical target model feature pairs
to predict the token generation length for the next round. In this stage, H-RAD uses features in a
priori fashion for prediction. However, in the branch stage (b), the draft model proactively generates
speculative branches concurrently with target model verification. Such parallelization of drafting
and verification leads to a unique challenge that tokens from the previous round have not been fully
verified by the target model before new tokens are generated. This temporal mismatch prevents
H-RAD from obtaining reliable features from the target model before new branches generate tokens.

For vanilla tree structures, temporal mismatch limits the verification process to only determining the
first token of the next round. In other words, the next round starting (Fig. 17) in tree structures is not
just one token, but rather (γ − 1) · k tokens from a partial tree. This means that during the parallel

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

phase, the number of tokens in a dense tree structure will reach (γ− 1) · k · k
γ−1
k−1 , which is (γ− 1) · k

times higher than the KV-Cache in the previous intermediate steps, further exacerbating the memory
overhead. On the other hand, branch structures only retain one branch after each verification step due
to sparsity. This ensures that each new round starts afresh and mitigates the memory overhead.

Temporal mismatch is a unique “byproduct” of parallelism, which is unavoidable. Its mistreatment
would delay the validation of draft tokens by the target model, potentially forming bottlenecks without
specialized treatment such as PEARL. In our work, SpecBranch explicitly addresses such temporal
mismatch by introducing adjustments to mitigate such asynchronous challenge. This is done via a
posterior approach for token selection in case the target model’s features are unavailable. In the next
Section, we also explore priori methods, which resolve this issue and enable feature reuse similar to
EAGLE.

(a) Draft Stage (predict) (b) Branch stage (posterior)

 ��−�, ��
��

tokens have not been fully validated！

predict the aceepted length select the retained tokens after verification

 ��, ��+�

��+�

no reliable
 feature!

prefix draft tokens branch points target model H-RAD

Figure 18: Comparison of the Draft and Branch Stages. The parallel branch stage introduces a
temporal mismatch between drafting and verification.

Posterior Approach To address this temporal mismatch, we introduce a posterior approach in
Section 5.2. Once the previous tokens are fully verified by the target model, since γ represents
the speed ratio c between the draft and target models, by the time this happens, the branch has
also completed token generation. Then, for the remaining branch V , we use the features (ft, et+1)
from the current round as input to H-RAD and select the retained tokens Ht after the verification
step. This posterior approach effectively resolves the temporal mismatch between verification and
drafting, ensuring that H-RAD always uses the most up-to-date and relevant context. It also leverages
parallelism, making the time loss from the posterior approach negligible. However, on the other
hand, unlike in the draft stage, we cannot implement early stopping. While the parallelization mostly
mitigates time impact due to bottlenecks at the target model, this introduces additional token waste.
Moreover, this feature utilization method does not fully align with the current mainstream methods
such as EAGLE (Li et al., 2024a).

1 2 3 4 5 6
History Feature Rounds

60

70

80

90

Pr
ed

ic
te

d
Ac

cu
ra

cy
 (%

)

94.48%

87.36%

83.06%

77.46%

69.53%

58.21%

Figure 19: Predictive capability of
the features progressively decay of
LLaMA 68M&7B on HumanEval.

A priori Approach We further explore a priori methods to
unify the verification processes between the draft and branch
stages. We leverage the temporal locality of transformer hidden
states, where features from earlier time steps, though slightly
outdated, still retain sufficient predictive power. Thus, H-RAD
can proactively reuse features from the target model, specifi-
cally (ft−1, et), to predictHt, whereas the posterior approach
uses (ft, et+1) as input. In other words, if we cannot reuse fea-
tures from the previous round’s token, we rely on token features
from the two rounds back, which exhibits a temporal decay,
where the predictive capability of the target model features
diminishes across multiple rounds.

To quantify such decay, we conduct an evaluation of LLaMA
68M&7B on HumanEval as shown in Fig. 19. It measures the
prediction accuracy of the MLP used in H-RAD. We observe
that as the distance and number of rounds increase – transition-
ing from (ft, et+1) to (ft−n, et+1−n) – the contextual informa-

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

tion and predictive capability of the features decay gradually. However, note that the features from
the previous two rounds (ft−1, et) still exhibit some predictive capacity. In scenarios where speed
is not as critical, these stale features may serve as a viable surrogate for the more recent features
(ft, et+1). This a priori approach better unifies the operations of the draft and branch stages. While
the acceleration effect is not as significant as the posterior approach, the early stopping mechanism
reduces the number of tokens generated. Additionally, this method can be combined with EAGLE (Li
et al., 2024a) to reuse features with the draft model in future.

G.3 MORE DISCUSSIONS ABOUT OUR CONTRIBUTION

The key novelty/difference from the prior methods is that Prior Work such as PEARL is Rollback-
Oblivious and Static, but our approach is Rollback-Aware and Dynamic. The previous works do
not take any active measures as the rollback-oblivious methods would continue processing those
“doomed tokens” and make the target model a bottleneck with useless computations, especially under
poorly aligned models (shown in Fig. 5). In sharp contrast, our approach makes it preemptive, since
we are hedging against possible failures. This is accomplished by:

✧ Anticipates Failure: At points of high uncertainty, we proactively spawn alternative futures via
“branch resampling”, i.e., we do not just hope a single path to succeed; we plan for its potential
failure.

✧ Instantly Prunes Bad Paths: Once the branch point is verified, we commit to the correct path
and immediately terminate the invalid ones, ceasing all computation and freeing their KV-Cache.
This is a fundamental difference from the static pipeline of prior work.

✧ Maintains Sparsity and Efficiency: Unlike tree-based methods (e.g., SpecInfer) that create a
dense, memory-intensive tree structure, our branches are more sparse, created only at critical
junctures. This reduces KV-Cache complexity substantially, making our parallel approach practical
and scalable (Appendix G.2, Fig. 17).

Furthermore, the second novelty is the unification of implicit and explicit drafting strategies since
they have their own pros and cons. The hybrid approach we proposed makes the drafting problem
simpler and more tractable: 1) reducing the difficult N -class length prediction into a 3-class problem
where features are separable; 2) using the explicit methods for what it is good at by identifying the
high-confidence hard signals of the two extreme cases, but for ambiguous “uncertain” cases where
the MLP falters, we fall back to the implicit confidence score as a “soft signal”. In fact, it turns out
that such a simple and elegant solution is effective and would be able to cut the rollback rates by up
to 50% based on our experimental validations.

The key differences between the existing architectures are highlighted by Table 1 (Sec. 2), which
states that SpecBranch and PEARL are the only two parallel drafting techniques, but SpecBranch
takes a step forward to make the process rollback-aware.

G.4 MORE DISCUSSIONS ABOUT TRAINING-FREE

SpecBranch is the first parallel framework with hybrid drafting structures that DOES NOT require
additional training of draft models. Similar to the previous works, we define training as an extra
procedure with a non-trivial cost. For example, REST (He et al., 2023) replaces the draft model
with a trained retrieval model, advancing the development of Self-SD. AdaDecode (Wei et al., 2025)
introduces lightweight language model (LM) heads at intermediate layers, achieving a more efficient
layer skip compared to truly “training-free” methods like SWIFT (Xia et al., 2024a). In contrast, the
training cost of a three-layer MLP for our predictor module is indeed lightweight.

G.5 MORE DISCUSSIONS ABOUT COMPUTE AND COMPLEXITY

Real-time Compute While branch resampling accelerates wall time, it also introduces additional
computational overhead. However, current LLM inference acceleration is more constrained by
memory bounds. In contrast to Autograssive Decoding, Speculative Decoding mitigates this limitation
by increasing computational resources. Therefore, increasing computation to achieve higher speedups
shows significant potential. SpecBranch fully leverages hardware resources to provide higher
speedups.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

On the other hand, SpecBranch uses H-RAD to strategically spawn branches, which reduces token
rollback by 50%, and the additional energy consumption remains lower compared to PEARL. Note
that we have considered the energy cost in this work (see Section 6.2 and Appendix F.4) which has
not been unveiled by contemporary works and we believe this is essential for real-world production
environments.

Complexity In fact, the additive complexity turns out to be worth it. This is because the perfor-
mance gains outweigh the cost: our system as a whole deliver 1.8× – 4.5× speedups with 50% less
rollback, while the cost can be easily justified: 1) H-RAD is a lightweight 3-layer MLP (trained
offline in 5 minutes on a single A100) with minimal overhead-predict latency (0.38% of total latency),
requiring no additional draft-model training; 2) Branch resampling uses adaptive logic to auto-tune
branch counts based on draft tokens confidence, that alleviates manual hyperparameter tuning. For
services like ChatGPT, Google’s Bard/Gemini, or a large enterprise API, inference is a massive
operational expense. If the performance margin compared to existing works could translate directly
into millions of dollars in savings on GPU infrastructure and energy costs, rather than being a barrier
to widespread adoption. The implementation of our framework is not complex either as we will make
it publicly available later. The core software code only contains about 500 lines of Python, in which
each component is modularized and easy to adapt to other techniques.

G.6 GROUP SPECULATIVE DECODING AND HETEROGENEOUS DEVICES

Group SD within a Single GPU Cluster In SpecBranch, we rigorously validate the acceleration
effectiveness for a single draft-target model pair. However, as Model-as-a-Service (MaaS) becomes
more prevalent, serving multiple model instances within a cluster is increasingly important for
maximizing resource utilization. Meanwhile, we plan to extend our system to support simultaneous
SD for multiple draft-target pairs with more than one draft model per GPU and high throughput. For
example, in an 8×A100 80G configuration, we can deploy 7 different target models (33B) on 7 GPUs
and up to 15 draft models (1.3B) on the remaining GPUs. These draft models can be paired with the
same or different target models through advanced communication and network design.

Speculative Decoding on Heterogeneous Devices During validation, we find that large models
often require multiple high-end GPUs to fit into memory (e.g., a 70B-parameter model experiment
requires at least 4×A100 40G GPUs). While one solution discussed in the previous section is to pack
multiple draft models in a single device, the prerequisite for large-memory devices remains unchanged.
However, we discover that under the setting of SD, homogeneous deployment is unnecessary, i.e.,
the draft models do not need to be co-located on the same device as the target models. Thus, we
present a heterogeneous structure that runs smaller draft models on consumer-grade GPUs (e.g., RTX
3090) and connects them over the network to target models on data-center GPUs (e.g., A100). The
challenges on the system level, including synchronization, communication latency, and workload
balancing, remain as future work for SpecBranch.

H USE OF LLMS STATEMENT

We do not use any Large Language Models (LLMs) in paper writing.

34

	Introduction
	Related Work
	Preliminaries
	Analysis of Parallel Decoding
	Theoretical Speedup
	Analysis of Adaptive Draft Structures

	SpecBranch: hybrid rollback-aware branch parallelism
	H-RAD: Hybrid Rollback-aware Draft Structure
	Branch Resampling: Parallel Drafting During Verification

	Experiments
	Main Results
	Ablation Studies

	Conclusion
	Procedures of SpecBranch
	Proof of Theorem 1
	Profiling Example
	Branch Speculative Sampling
	Evaluation Details
	Data Configurations
	Model Configurations
	Evaluation Details
	Training Details and Cross-Task Generalization

	More Experimental Results
	More comprehensive comparisons with the tree-based methods
	Evaluation Results of varying kmax
	Latency Stability Across Sequences
	Time and Energy Consumption
	More Evaluation Results on the Spec-Bench Benchmark
	More Evaluation Results of Rollback Ratio
	More Results of Token Distribution
	Evaluation Results of Implicit Distribution
	The Optimal Draft Length
	More ablation study of the original module and the Hyperparameter Sensitivity

	Further Analysis and Discussion
	Memory constrained scenarios
	Tree Structure and Temporal mismatch
	More Discussions about our Contribution
	More Discussions about training-free
	More Discussions about compute and complexity
	Group Speculative Decoding and Heterogeneous Devices

	Use of LLMs Statement

