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ABSTRACT

Many real-world processes are characterized by complex spatio-temporal depen-
dencies, from climate dynamics to disease spread. Here, we introduce a new neural
network architecture to model such dynamics at scale: the Space-Time Encoder.
Building on recent advances in location encoders, models that take as inputs geo-
graphic coordinates, we develop a method that takes in geographic and temporal
information simultaneously and learns smooth, continuous functions in both space
and time. The inputs are first transformed using positional encoding functions and
then fed into neural networks that allow the learning of complex functions. We
implement a prototype of the Space-Time Encoder, discuss the design choices of
the novel temporal encoding, and demonstrate its utility in climate model emula-
tion. We discuss the potential of the method across use cases, as well as promising
avenues for further methodological innovation.

1 INTRODUCTION

Spatio-temporal dynamics occur frequently in tasks within climate science and adaptation that involve
geographic information – data that can be mapped onto the sphere of our planet. A common problem
in domains such as atmospheric science, ecology, and agriculture is to build dense maps from
observations that are sparse in space and time. Traditionally, Gaussian Processes (GPs) have been
used for such interpolation tasks, however, GPs struggle to adapt to the ever-growing volume of
geographic data available. There is a clear need for scalable neural network methods for processing
geographic time series and for learning complex spatio-temporal functions (Reichstein et al., 2019).
In this work, we address this research gap by introducing the Space-Time Encoder, a neural network
architecture aimed at learning complex spatio-temporal patterns at scale.

While previous work has investigated spatial-only geographic location encoders for supervised
learning and pretraining tasks (Mac Aodha et al., 2019; Mai et al., 2023), geospatial data often
contains additional temporal components that affects the observed process, and may be expected to
change the optimal spatial encoding. Such spatio-temporal dynamics occur in diverse problems, such
as climate model emulation (Watt-Meyer et al., 2023), species distribution modeling of migratory
birds (Zuckerberg et al., 2016), and crop yield forecasting (Cai et al., 2018). It is thus natural to
consider whether location encoding methods may be expanded to account for temporal information.

Research on geospatial embeddings indicates that choosing orthonormal function families for en-
coding geocoordinates boosts prediction performance (Rußwurm et al., 2023). Therefore, it is of
interest to construct orthonormal function families for the spatio-temporal domain and compare the
prediction performance of such families with the performance of non-orthonormal encodings.

In this work, we introduce the Space-Time Encoder, including a novel temporal encoding system
and proposing several different, modular design options. We show that our approach improves
performance on a sparse, multi-variate climate model emulation task on the ACE dataset (Watt-Meyer
et al., 2023), representing an important problem in monitoring long-term atmospheric dynamics under
climate change. We report results for different configurations of the temporal encoding component
and consider the effect of orthonormal regularization. We believe our work represents a meaningful
step towards spatio-temporal encoding systems that may be useful across many tasks relevant to
climate science and adaptation.
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2 METHOD

Figure 1: Overview of our proposed Space-Time Encoder (left panel), with a focus on the orthonormal
regularizer (center panel) and different time encoding configurations (right panel)

Our method addresses the direct prediction problem of learning functions mapping spatio-temporal
coordinates – expressed in longitude, latitude, and time – to environmental variables such as air
temperatures at different altitudes. The proposed space-time encoder first maps the spatial and
temporal coordinates to two separate embedding vectors. For the space encoder, we achieve this by
applying a set of spherical harmonics functions to the spatial coordinates, which has proved effective
in previous work. The resulting vector can then be passed through a neural network module to
obtain the final space embedding vector. For the time encoder, we proceed similarly by choosing an
encoding function, which we then apply to the time coordinate to obtain an embedding vector. A
neural network can then transform this embedding vector further to obtain the final time embedding
vector. The two embedding vectors are combined and passed through a neural network trained to
output the prediction vector.

The focus of our investigation is the choice of function family for the time encoder. We investigate
different choices of families in order to improve on the direct embedding of the time coordinate. We
further investigate a novel regularizer whose design is guided by insights from previous investigations
of geo-spatial encoders. An overview of our proposed method is given in Figure 1.

2.1 DEFINITION OF ORTHONORMALITY

Let F = {f1, . . . fN} denote a set of functions mapping a common domain, D, to the real numbers,
that is, fi : D → R. For our method, this domain will usually be the sphere S2, the interval I , or
their Cartesian product S2 × I . Recall that the scalar product of two functions f, g : D → R can be
defined as the integral of their point-wise product over the domain D: ⟨f, g⟩ =

∫
D
f(x)g(x)dx. The

set of functions F is an orthonormal set of functions if the scalar product of any two of its elements
equals the Kronecker delta: ⟨f, g⟩ = δf,g, which is 1 if f = g and 0 otherwise.

We now consider the neurons of a neural network layer as functions, ni : D → R from the domain of
the neural network to the real numbers. We define a neural network layer to be orthonormal if its
neurons are representing a set of orthonormal functions. Note that an orthonormal layer consisting of
a weight matrix A, bias vector b, and activation function σ, need not have an orthonormal weight
matrix A and that A being an orthonormal matrix need not imply that the layer is orthonormal.

2.2 EMBEDDING THE SPATIO-TEMPORAL DOMAIN

Previous work has shown the effectiveness of using sets of spherical harmonics function to create
geo-spatial coordinate embeddings. Those sets of functions are orthonormal and we are therefore
constructing sets of orthonormal functions for spatio-temporal coordinates from S2 × I . There
are several examples of orthonormal function sets on the interval such as Fourier bases, Legendre
polynomials - the analogous concept to spherical harmonics on the interval - and sawtooth bases.
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Orthonormal functions on the sphere and on the interval can be combined to orthonormal functions
on cross product of sphere and interval as follows: Consider an orthonormal set of functions
S = {f1, . . . fN}, which are defined on the sphere, S2, and an orthonormal set of functions which are
defined on the interval, I , I = {g1, . . . , gM}. Then the set S ⊗I = {f1⊗ g1, . . . , fi⊗ gj , . . . , fN ⊗
gM} is orthonormal on the Cartesian product S2 × I . Here, the tensor product of two functions
f : S2 → R and g : I → R is just defined as f ⊗ g : S2 × I → R, (x, y) 7→ f(x) · g(y). The proof
that S ⊗ I is indeed orthonormal, can be done via Fubini’s theorem.

2.3 ORTHONORMAL REGULARIZATION

Given a uniform sample from the data manifold X = {x1, . . . , xN}, one can approximately
evaluate the integrals that are necessary for testing orthonormality: ⟨f, g⟩ =

∫
D
f(x)g(x)dx ≈

1
N

∑
i f(xi)g(xi). We define a data-dependent scalar product using this Monte Carlo approxima-

tion: ⟨f, g⟩X := 1
N

∑
i f(xi)g(xi). Using this new scalar product, for a layer L = {n1, . . . nK}

we can express an approximate version of the orthonormality condition as: ⟨nj , nk⟩X − δj,k = 0.
By squaring each such equation and summing over the equations for all j, k ∈ [K], we obtain an
orthonormality regularizer N (L|X ) :=

∑
j

∑
k(⟨nj , nk⟩X − δj,k)

2. Notice that computing this
regularizer needs O(NK2) additions and O(K2) squaring operations.

3 EXPERIMENTS

Our experiments are based on the dataset of the AI2 Climate Emulator (Watt-Meyer et al., 2023). The
original dataset is composed of 11 climate model simulations each over a period of 10 years. The
simulations associate values for 55 climate variables to spatio-temporal location coordinates. The
temporal resolution is 6h and the spatial resolution is 100km.

We select 1 year of data from 1 simulation and further select 8 climate variables representing
temperatures at different altitudes. We consider the task of interpolation given a sparse set of spatio-
temporal coordinates. We used 3% of the available grid-points for training set, validation set and test
set in equal proportion, i.e. 1% of data, or around 1 million space-time coordinates sampled randomly
from a uniform distribution, for each set.

We first consider a direct time encoding baseline in which the time is input directly to the model
without further encoding. We then explore two methods for improving further on this baseline. First,
we vary the type of the positional time encoding considering five encoding families as shown in 1.
We further investigate adding an orthonormal regularization term as described in 2.3 for last layer
during training.

We use the FCNet architecture which has been proved effective for geospatial interpolation (Rußwurm
et al., 2023) for the positional encoding networks and the climate predictor modules. The model
has 4 Residual Blocks with 1024 hidden neurons in each layer with a total of 10.2M trainable
parameters. We fix the positional space encoding to a set of 1600 spherical harmonics basis functions
also following the approach in Rußwurm et al. (2023). The size of the positional time encoding is
fixed to 120 dimensions across all experiments. Both positional encodings are concatenated to form
a combined spatio-temporal positional encoding. All the models are trained for 5 epochs with the
Adam optimizer and a Mean Square Error loss function. The training data are mean-centered and
scaled by their standard deviation. The models are evaluated with Root Mean Square Error (RMSE)
averaged over the 8 considered temperature variables.

4 RESULTS & DISCUSSION

We report the RMSE of the different models, averaged over the 8 temperature variables in Table 1. A
map of the prediction error for an single time step is given in Figure 2 As anticipated, we observe
that adding the time coordinate as an input to the model improves on using spatial coordinates alone
for our task, demonstrating the relevance of including the temporal domain.
The fact that Legendre embeddings improve on the direct time embedding while monomial embed-
dings actually result in worse performance indicate the importance of using orthonormal encodings
since one can obtain Legendre functions by orthonormalizing sets of monomials. The fact that
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without orthonormal regularization with orthonormal regularization
no time coordinate 5.691 5.737

direct time embedding 3.147 3.144
monomial time embedding 3.222 3.190
Legendre time embedding 2.971 2.953
Fourier time embedding 2.731 2.704

sawtooth time embedding 3.456 3.44

Table 1: Average Test RMSE for 8 temperature variables from ACE dataset. Orthonormal regulariza-
tion improves the test performance of our space-time encoder for most types of temporal encodings

Figure 2: Left - Spatial averages over target and predictions from Space-Time Encoder with Fourier
embeddings and orthonormal regularization for points from a test set with 30% of points from 12
months of data. Right - Example predictions for a randomly sampled single time step and temperature
variable 4.

Fourier embeddings perform best also points to the importance of orthonormality at the encoding
level. Additionally, we find that adding orthonormal regularization improves performance, for all
considered time embeddings with the best performance being achieved by the model with Fourier
time embedding and orthonormal regularization. While these experiments are still a proof of concept
on a small subset of the ACE dataset, they point to the potential of the Space-Time encoder for the
task of climate prediction and of the use of orthonormal regularization in this context. Qualitatively,
we observe that the spatial averages align well, as shown in Fig. 2 on the left. Immediate next steps
include extending experiments to use a larger subset of the ACE dataset, considering multiple years
and more climate variables, as well as tuning the models more rigorously, and comparing different
architectures for the positional encodings networks and the climate predictor module.

5 CONCLUSION

We introduced the Space-Time Encoder, aimed at capturing spatio-temporal dynamics, which are
crucial in real-world processes such as climate prediction. We implement a prototype that we test
on the task of climate dynamics prediction on a subset of the ACE dataset. We explore different
possibilities for the encoding the time coordinate, and show that adding orthonormal regularization
is a promising avenue to improve predictions. Our experiments demonstrate the potential of the
Space-Time Encoder, and we plan on comparing it to other methods that can take as input continuous
space-time coordinates such as vanilla neural networks or Gaussian Processes. Future work includes
applying this approach to other climate-relevant tasks, including crop yield prediction and species
range map estimation. We plan on using the Space-Time encoder as a prior to condition models,
building on the work of Mac Aodha et al. (2019). We will also investigate pre-training general
spatio-temporal embeddings which could then serve as space-time prior, using unlabeled Earth
observation data, in a similar way to SatCLIP location embeddings (Klemmer et al., 2023).
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