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Abstract

We study the problem of learning a Nash equilibrium (NE) in Markov games which
is a cornerstone in multi-agent reinforcement learning (MARL). In particular,
we focus on infinite-horizon adversarial team Markov games (ATMGs) in which
agents that share a common reward function compete against a single opponent,
the adversary. These games unify two-player zero-sum Markov games and Markov
potential games, resulting in a setting that encompasses both collaboration and
competition. [65] provided an efficient equilibrium computation algorithm for
ATMGs which presumes knowledge of the reward and transition functions and
has no sample complexity guarantees. We contribute a learning algorithm that
utilizes MARL policy gradient methods with iteration and sample complexity that
is polynomial in the approximation error ϵ and the natural parameters of the ATMG,
resolving the main caveats of the solution by [65]. It is worth noting that previously,
the existence of learning algorithms for NE was known for Markov two-player
zero-sum and potential games but not for ATMGs.
Seen through the lens of min-max optimization, computing a NE in these games
consists a nonconvex–nonconcave saddle-point problem. Min-max optimization
has received extensive study. Nevertheless, the case of nonconvex-nonconcave
landscapes remains elusive: in full generality, finding saddle-points is compu-
tationally intractable [33]. We circumvent the aforementioned intractability by
developing techniques that exploit the hidden structure of the objective function via
a nonconvex–concave reformulation. However, this introduces the challenge of a
feasibility set with coupled constraints. We tackle these challenges by establishing
novel techniques for optimizing weakly-smooth nonconvex functions, extending
the framework of [35].

1 Introduction

Multi-agent reinforcement learning (MARL) investigates behaviors of multiple interacting agents
within a dynamic, shared environment where the actions of each agent not only impact their individual
rewards but also the overall state of the system. MARL has introduced several practical techniques
that have justifiably captured public interest in recent years, particularly in skill-intensive games like
starcraft, go, chess, and poker [12, 97, 101, 79, 16, 15, 14, 86], where its empirical methods have
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achieved super-human performance. More recently, MARL methods combined with large language
models has excelled in the game of Diplomacy [6]. Despite these practical achievements, theoretical
understanding of MARL has lagged behind its empirical successes.

Markov games (MGs) [95] is a rigorous and versatile mathematical structure that MARL employs
to systematically formalize the strategic interactions in the dynamic settings [71]. These games
extend Markov decision processes (MDPs) [88] to multiple agents, each making decisions and
receiving rewards independently as the environment evolves. The joint decisions of the agents
influence both individual rewards and the transition of the environment. MARL in general is
occupied with leading the multi-agent system to a favorable outcome. Through the lens of game
theory, the notion of a “favorable outcome” is formally defined through concepts like a Nash
equilibrium and a (coarse) correlated equilibrium. Although computing Nash equilibria is generally
computationally intractable—even in two-player games without states [28, 24]—–it becomes tractable
in fully cooperative settings like Markov potential games [114, 68] and is also tractable in competitive
scenarios such as two-player zero-sum Markov games [27, 103, 17]. Recent advances [65] also show
computational tractability in adversarial team Markov games (ATMGs)—a context that combines
both cooperative and competitive dynamics among agents. More specifically, an infinite-horizon
adversarial team Markov game (ATMG) is a Markov Game in which n team players, compete against
one adversary. Each of the team players receives the same reward and is equal to minus the reward
of the adversary. ATMGs generalize both Markov zero-sum and potential games; the former can be
viewed as ATMGs with n = 1, the latter by choosing the adversary to be dummy (having one action).

Nash equilibrium computation in ATMGs naturally leads to a min-max optimization problem. Min-
max optimization has been deeply explored across game theory, optimization, and machine learning.
The past decade it has witnessed a proliferation of min-max optimization applications, notably in
areas like generative adversarial networks (GANs) [49], robust machine learning [73], and adversarial
training [50]. In these applications, the optimization objectives often involve nonconvex–nonconcave
functions which pose substantial challenges. Typically, the aim is to approximate saddle-points of
f(x,y). In normal form games, these points correspond to Nash equilibria. This correspondence
also holds true for MGs due to the gradient domination property [3]. Although we cannot aspire to
cover the vast quantity of works in MARL and optimization, we select some representative works
that we defer to Appendix A due to space constraints.

This paper aims to develop learning methods to approximate Nash equilibria in team Markov games
by using only individual rewards and state observations as feedback, addressing the following
question and answering one of the main caveats of the solutions provided in [65]:

Is it possible for agents to efficiently learn Nash equilibria in adversarial team
Markov games, having only access to trajectory roll-out samples and (almost⋆) no

communication, i.e., independently?
(⋆)

1.1 Our Contributions

Let us provide some context before stating our main results. An infinite-horizon adversarial team
Markov game (ATMG) is characterized by a finite state-space S , n team players, each equipped with
a finite action-space Ai, i ∈ {1, . . . , n}, and one adversary with a finite action-space B. Each of
the team players receives the same reward which is equal to minus the reward of the adversary. The
adversary’s value function is defined as the discounted expected sum of their rewards, where the
discount factor is γ ∈ [0, 1). An approximate Nash equilibrium is a product distribution over policy
space such that no agent can improve their value by unilaterally deviating. We propose a learning
algorithm that has both iteration and sample complexity polynomial in the parameters of the Markov
Game and returns approximate Nash equilibria.

Theorem 1.1 (Informal Version of Theorem 3.3). There is a learning algorithm (ISPNG) that uses
bandit feedback and guarantees convergence to an ϵ-approximate Nash equilibrium in adversarial

⋆We say “almost” as the agents need to take turns in updating their policies instead of making updates
simultaneously. Nevertheless, the learning dynamics remain uncoupled.
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team Markov games, the sample and iteration complexities of which are

poly

(
1

ϵ
, |S|,

n∑
k=1

|Ai|+ |B|,
1

1− γ

)
.

We deem noteworthy that our algorithm manages to compute a Nash equilibrium in a Markov game,
which combines opposing and shared agent interests, by only using a number of iterations and
samples that is polynomial in the approximation error and the description of the game. Further, it
manages to beat the curse of multi-agents [62]—i.e., its iteration and sample complexity depends on∑n

k=1 |Ai| instead of
∏n

k=1 |Ai|.
In order to achieve the latter contribution, we acquired convergence guarantees for stochastic projected
gradient descent in nonconvex functions when the gradient is Hölder-continuous—a notion of
continuity weaker than that of Lipschitz. Finally, we contribute a general result that guarantees
convergence to a saddle-point in functions that are nonconvex–hidden-strongly-concave.

1.2 Technical Overview

The problem of computing an approximate Nash equilibrium in an adversarial team Markov game
boils down to computing an approximate saddle-point (x∗,y∗) of the adversary’s value function
V (x,y); see Definition 2.3. The variables x denote the policies of the team, each member of
which aims to individually minimize V . Moreover, y denotes the policy of the adversary who
aims to maximize V . The equivalence between saddle-points and equilibria is due to (i) the game
being zero-sum between the team and the adversary and (ii) the gradient domination property (see
Lemma C.7) that holds per player, and has already been established in prior works [3, 68, 114]. In
words, gradient domination in our setting implies that any approximate first-order stationary policy is
also an approximate best response for that player.

The problem of computing an approximate saddle-point (x∗,y∗) of the objective V (x,y) poses com-
putational challenges due to its nonconvex–nonconcave nature. Previous work [65] showed that one
can compute an approximate saddle-point (x∗,y∗) of V , by first obtaining an approximate stationary
point x∗ of Φ(x) = maxy V (x,y) through a Moreau envelope argument and then extending it to
(x∗,y∗). The proof of extendibility uses involved arguments that utilize the Lagrange multipliers of a
carefully chosen nonlinear program (for the stationary point x∗), while the computation of y∗ requires
solving another linear program. It is worth noting that the aforementioned linear program presumes
access to the full description of the reward function and the transition model of the underlying Markov
game when the team plays policy x∗. This fact prevents the possibility of casting this approach into a
learning algorithm.

Our proposed (learning) algorithm bypasses the requirement for knowledge of the reward function
and the transition model, and works under the bandit feedback framework. The first idea behind our
algorithm is to consider the adversary’s value function as a function F of the adversary’s state-action
visitation measure λ, F (x,λ) := V (x,y), and the addition of a regularizing term −ν

2 ∥λ∥
2 (ν can

be thought of as a small positive scalar). As a result, the max function of the regularized value function,
Φν(x) := maxλ∈Λ(x)

{
F (x,λ)− ν

2 ∥λ∥
2
}

, is differentiable, where Λ(x) ⊆ ∆|S||B| denotes the
feasibility set of λ and depends on x. Effectively, different policies, x, for the team induce a different
single agent Markov decision process for the adversary. The addition of the regularizer allows us
to apply Danskin’s theorem on a function with a unique maximizer circumventing the necessity
of solving a linear program; one only needs to approach that unique solution. To the best of our
knowledge, this is the first work introducing a function of λ as a regularizing term.

By reformulating the regularized value function using state-action visitation measure λ, the problem
boils down to learning an approximate saddle-point of a nonconvex–strongly-concave function with
coupled constraints. Coupled constraints are a type of constraints that cannot be expressed as a
Cartesian product (the main well-studied setting in min-max optimization [63]), i.e., the feasibility
set Λ(x), depends on x. The first challenge towards handling the coupled constraints is to argue
that ∇Φν is Hölder-continuous which is a notion of continuity weaker than Lipschitz continuity (see
Definition 2.1). Specifically, in Theorem 3.2, we show that Φν(x) is weakly-smooth, or equivalently,
∇Φν is Hölder-continuous. It seems unlikely that we could use Moreau envelope techniques to
prove convergence of stochastic projected gradient descent on a weakly-smooth function. The next
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step of our proof is to transfer the weakly-smooth nonconvex optimization problem into a smooth
optimization problem with inexact gradient oracles, extending the techniques from [35] to nonconvex
and constrained settings. Since we only allow each player to observe the reward they received and
not the action chosen by the other players (including the adversary), one last challenge we have to
deal with is the inability to estimate the state-action visitation measure λ of the adversary, making
the gradient inexact when computing∇Φν(x) in both deterministic and stochastic settings.

2 Preliminaries

Starting, we will introduce the notation conventions we use and split the rest of the preliminaries
into two subsections. Section 2.1 provides necessary definitions whereas Section 2.2 deals with the
preliminaries of (adversarial team) Markov games and the notion of Nash equilibrium.

Notation. We denote [n] := {1, . . . , n}. We use superscripts to denote the (discrete) time index,
and subscripts to index the players. We use boldface for vectors and matrices; scalars will be denoted
by lightface variables. We define ∥ · ∥2, ∥ · ∥1, ∥ · ∥∞ to be the ℓ2-norm, the ℓ1-norm and the ℓ∞ norm
respectively. The simplex of probability vectors supported on a finite set A is noted as ∆(A). Unless
specified otherwise, we denote ∥ · ∥2 by ∥ · ∥. DiamX denotes the diameter of a compact set X in
ℓ2-distance. For simplicity in the exposition, we may sometimes use the O(·) notation to suppress
dependencies that are polynomial in the natural parameters of the problem and Õ(·) to further hide
logarithmic factors; precise statements are given in the Appendix. For the convenience of the reader,
a comprehensive overview of our notation is given in Table 1.

2.1 Basic Definitions and Facts

We commence this subsection by introducing a number of concepts and statements of mathematical
analysis and optimization. We define Hölder continuity and the notion of a stationary point in
constrained minimization and min-max optimization.

The notion of Hölder continuity of the gradient is a weaker notion of Lipschitz gradient continuity.
Definition 2.1 (p-Hölder continuous gradient). A function ϕ : Rd → R is said to have a (ℓp, p)-
Hölder continuous gradient if for every z, z′ ∈ Rd, it holds that:

∥∇ϕ(z)−∇ϕ(z′)∥2 ≤ ℓp∥z − z′∥p2.
When p = 1, we retrieve the definition of an ℓ-smooth function.

Throughout, following standard conventions, we will refer to functions for which the gradient is
p-Hölder continuous with a p < 1 as weakly-smooth. We state the notions of first-order stationarity
relevant to our work.
Definition 2.2 (ϵ-FOSP). In the context of the constrained minimization problem minz∈Z ϕ(z), a
point z ∈ Z is said to be an ϵ-approximate stationary point if,

⟨−∇zϕ(z), z
′ − z⟩ ≤ ϵ, ∀z′ ∈ Z.

Similarly, we will define an ϵ-approximate saddle-point for the constrained min-max optimization
problem minX maxY f(x,y).
Definition 2.3 (ϵ-SP). Let a function f : X × Y → R. A point (x,y) ∈ X × Y is said to be an
ϵ-approximate saddle-point (or ϵ-FOSP for the min-max problem) if,

−∇xf(x,y)
⊤ (x′ − x) ≤ ϵ, ∀x′ ∈ X ;

∇yf(x,y)
⊤ (y′ − y) ≤ ϵ, ∀y′ ∈ Y.

2.2 Adversarial Team Markov Games

An adversarial team Markov game is the Markov game extension of normal-form adversarial team
games [98]. The game takes place in an infinite-horizon discounted setting where a team of identically-
interested players compete against one adversarial player, the adversary. We can formally define an
adversarial team Markov game as a tuple Γ(S, [n+ 1],A,B, r,P, γ,ρ), where:
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• S is the finite set of states, or state-space, with cardinality S := |S|;
• [n+ 1] is the set of players, with the first n players belonging to the team and the last one

being the adversary;
• A =×n

i=1
Ai is the finite set of the team’s joint actions (or, team’s action-space), while

Ai is the i-th player’s action-space; respectively B is the adversary’s action-space; further,
A := maxi∈[n] |Ai| and B := |B|;

• r : S ×A× B → [0, 1] is the adversary’s reward function;
• P : S ×A× B → ∆(S) is transition probability function;
• γ ∈ [0, 1) is the discount factor;
• ρ ∈ ∆(S) is the initial state distribution. We assume that ρ is of full-support, ρ(s) >
0,∀s ∈ S.

Every team player i ∈ [n] gets the same reward and the sum of team players’ rewards are equal to the
adversary’s loss, i.e.,

∑n
i=1 ri(s,a, b) = −r(s,a, b).

2.2.1 Policies, Value Function, and Visitation Measures

In this part, we describe policy classes, the value function, and the state-action visitation measures.
All of these notions are indispensable for our analysis.

Policy Definitions. For any agent i, a stationary policy πi is defined as a mapping from any given
state to a probability distribution over possible actions, where πi : S ∋ s 7→ πi(·|s) ∈ ∆(Ai). A
policy πi is described as deterministic when, for any state, it selects a particular action with probability
of 1. To simplify, we denote the policy spaces for the team and the adversary as Πteam : S → ∆(A)
and Πadv : S → ∆(B), respectively. Additionally, the combined policy space for all participants can
be represented as Π : S → ∆(A)×∆(B).

Direct Policy Parametrization. In the context of our work, we assume the strategy of direct policy
representation for all players. Specifically, for each player i within the set [n], the policy space Xi is
defined as ∆(Ai)

S , with πi = xi, such that the probability of choosing action a in state s, xi,s,a,
equals πi(a|s). By the usual game-theoretic convention, π−i denotes the policy of all agents apart
from i. For the adversary, Y is set as ∆(B)S , with πadv = y, so that ys,a = πadv(a|s).
Having defined policies, we can introduce some standard shortcut notations such as
r(s,x,y) := E(a b)∼(x,y)[r(s,a, b)], and the vectors r(x) ∈ R|S|×|B|, r(x,y) ∈ R|S| with
r(x) := [Ea∼x[r(s,a, b)]]s,b and r(x,y) :=

[
E(a,b)∼x[r(s,a, b)]

]
s
. Further, we define

P(s′|s,x,y) as P(s′|s,x,y) := E(a,b)∼(x,y)[P(s′|s,a, b)] and the vector P(s,x, b) ∈ ∆(S) with
P(s,x,y) :=

[
E(a,b)∼(x,y)[P(s′|s,a, b)]

]
s′
.

The Value Function. The value function Vs, for a given state s ∈ S, is defined as the adversary’s
expected total discounted reward over time under a combined policy (πteam,πadv) from the policy
space Π, with x = πteam being the aggregation of policies (π1, . . . ,πn). Formally, this is represented
as

Vs(x,y) := Ex,y

[ ∞∑
h=0

γhr(sh,ah, bh)

∣∣∣∣∣ s0 = s

]
,

where the expected value is calculated over the distribution of trajectories generated by the policies x
and y. If the initial state is instead sampled from a distribution ρ, the value function is expressed as
Vρ(x,y) = Es∼ρ [Vs(x,y)].

Visitation Measures. The important quantity of state-action visitation measures, or the expected
discounted sum of visitations of a state-action pair.
Definition 2.4 (State-Action Visit. Measure). For any initial distribution ρ ∈ ∆(S), transition
matrix P, a team policy x, and a policy y ∈ Y , we define the station-action visitation measure of the
adversary λ(y;x) as follows:

λs,b(y;x) :=

∞∑
h=0

γh P(sh = s, bh = b|x,y, s0 ∼ ρ).
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Where λs,b(y;x) denotes the (s, b)th entry of λ(y;x).

As we will further discuss in the appendix (Appendix C.1), the correspondence between y and λ is
“1–1” for a fixed team policy x. This property is crucial for our contributions.

Reformulation of the Value Function. A key property of the value function Vρ is that it can be
rewritten as a concave function of the state-action visitation measure:

Vρ(x,y) = r(x)⊤λ(y;x).

Definition 2.5 (ϵ-NE). A product policy
(
x∗,y∗) ∈ X × Y is called an ϵ-approximate Nash

equilibrium for an ϵ ≥ 0, when

Vρ(x
∗,y∗) ≤ Vρ((x

′
i,x

∗
−i),y

∗)+ ϵ, ∀x′
i ∈ Xi, ∀i ∈ [n];

and

Vρ(x
∗,y∗) ≥ Vρ(x

∗,y′)− ϵ, ∀y′ ∈ Y.

2.2.2 The Gradient and Visitation Measure Estimators.

An essential element that led to the development of policy gradient methods is the policy gradient
theorem [104]. Notably, it has enabled the design of finite-sample gradient estimators. This technique
fits well into the MARL independent learning protocol [27]. After all agents have proposed their
policy, the MDP is run to acquire batches of trajectories from which all agents will observe the chain’s
state and their individual reward. These samples are utilized to estimate gradients.

The team agents implement a batch version of the REINFORCE estimator whose definition is
deferred to the Appendix C.6.1. As for the estimators that the adversary utilizes, we define the
state-action visitation measure estimator and their gradient estimator closely following [113].
Definition 2.6 (State-Action Visitation Measure Estimator). Let es,b be the standard basis for the
(s, b)th entry. Let τ = (s0, b0, s1, b1, · · · , sH−1, bH−1) denote a trajectory with length H sampled
under initial distribution ρ and policy y We define the estimator for λ(y;x) with the trajectory τ as
the following

λ̃(τ |y) :=
H−1∑
h=0

γh · esh,bh .

By applying policy gradient theorem [104] along with the chain-rule, the gradient estimator for a
value-function that is nonlinear in λ(y;x), is computed by the following estimator [113].
Definition 2.7 (Gradient Estimator). Let τ = (s0, b0, s1, b1, · · · , sH−1, bH−1) denote a trajectory
with length H sampled under initial distribution ρ and policy y. Let F (λ(y)) be the value function
of the MDP w.r.t. λ(y) and u := ∇λF (λ(y)). The estimator for gradient ∇yF (λ(y)) using the
sampled trajectory τ is defined as

g̃(τ |y;u) :=
H−1∑
h=0

γh · u(sh, bh) ·

(
h∑

h′=0

∇y log y(bh′ |sh′)

)
.

Sufficient Exploration. A standard, while rather naive, technique of bounding the variance of
the REINFORCE gradient estimator is using ζ-greedy policy parametrization. Effectively, every
action in a player’s dispose is played with a probability of at least ζ. For our convenience, we ensure
sufficient exploration by a ζ-truncated simplex approach. Moreover, for a given feasibility set X , we
denote X ζ to be the ζ-truncated feasibility set.

3 Main Results

We present our main results in two different subsections. In Section 3.1 we manage to attain
guarantees for convergence to an approximate stationary-point to constrained nonconvex optimization
with an stochastic inexact gradient oracle— we do so by extending previous results of [35]. While in
Section 3.2, we apply the latter results along with RL techniques in order to design the first learning
algorithm that computes a Nash equilibrium in ATMGs.
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3.1 Stochastic Weakly-Smooth Nonconvex Optimization with Inexact Gradients

In this subsection we prove that projected gradient descent with a stohcastic inexact gradient oracle
converges to an ϵ-FOSP in nonconvex functions with Hölder continuous gradients. We will use this
key result in subsequent sections. We begin by defining the inexact gradient oracle and its stochastic
version.
Definition 3.1 (Inexact Gradient Oracle). Let a differentiable function ϕ(z) and its gradient∇ϕ(z).
We call the vector-valued function g(z) a ϑ-inexact gradient oracle if,

∥g(z)−∇ϕ(z)∥ ≤ ϑ, ∀z.

Further, given a random variable ξ in some sample space Ξ, we define a stochastic inexact gradient
oracle G : Z×Ξ→ Rd. We assume that the expected value of this oracle will be equal to a ϑ-inexact
gradient oracle g(z). Additionally to being unbiased (with respect to a ϑ-inexact gradient oracle), we
assume its variance to be bounded.
Assumption 3.1 (Unbiased and Bounded Variance). For a variance parameter σ2 > 0, the gradient
oracle G, satisfies

Eξ[G(z, ξ)] = g(z) and Eξ

[
∥G(z, ξ)− g(z)∥2

]
≤ σ2.

Following, we consider the simple update rule of Mini-Batch Inexact Stochastic Projected Gradient
Descent, with a batch size M > 0 and ĝt = 1

M

∑M
j=1 G

(
zt, ξtj

)
,

zt+1 = ProjZ
(
zt − ηĝt

)
. (Inexact Stoch-PGD)

We can now state our convergence Theorem for (Inexact Stoch-PGD) whose proof we defer to the
appendix.
Theorem 3.1 (Convergence to ϵ-FOSP; Formally in Theorem B.1). Let ϕ : Z → R be a Lipschitz con-
tinuous function with (ℓp, p)-Hölder continuous gradient and a desired accuracy ϵ. Also, let a stochas-
tic inexact first-order oracle G satisfying Assumption 3.1. The update rule (Inexact Stoch-PGD),
with a step-size η = O

(
ϵ

1−p
p

)
, computes an ϵ-approximate stationary point after T = O

(
ϵ−

1+p
p

)
iterations.

3.2 Learning Nash Equilibria in Adversarial Team Markov Games

In this subsection we state our contributed Algorithm 1, or ISPNG, which converges to an ϵ-NE for
any ATMG, Γ, with an iteration and sample complexity that scales polynomially with 1/ϵ and the
parameters of Γ. To simply describe the algorithm, the team players initialize their policies and then
the following two steps are repeated for T iterations:

1. the adversary approximately maximizes a regularized version of their value function, V ν
ρ (x,y) :=

r(x)⊤λ(y;x)− ν
2 ∥λ(y;x)∥

2, using Algorithm 2, and then
2. every agent independently performs a gradient descent step on the value function.

During this process, all agents use only bandit feedback information in order to estimate the gradients
of the value function. We remark that the learning dynamics remain uncoupled. The only instance of
communication between agents is the fact that the team and the adversary take turns when updating
their policies. During their turn, the adversary approximately best-responds.

Of particular interest is the sub-routine of Algorithm 2, VIS-REG-PG. It is effectively a directly
parameterized policy gradient method for an objective function that is concave in the state-action
visitation measure λ(y;x) ∈ R|S||B|. The objective function is merely the original value func-
tion plus a quadratic term, −ν

2∥λ(y;x)∥
2. We remind the reader that due to the existence of this

introduced regularizer, the utility of the adversary u = ∇λ(y;x)F
ν
ρ (x,y) = r(x) − νλ(y;x).

In order to estimate a gradient, the adversary needs to collect a number of trajectories, τ =
(s0, b0, s1, . . . , sH−1, bH−1, sH), each of length H . Notably, the adversary only uses the empir-
ical state-action visitation measure for the purpose of gradient estimation of the regularized function.
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Algorithm 1 Independent Stochastic Policy-Nested-Gradient (ISPNG)
Input: Accuracy ϵ > 0

1: Based on ϵ, set stepsize ηx, Tx iterations, batch size M , truncation parameter ζx, and inner-loop
accuracy ϵy > 0. ▷ see Theorem C.3

2: x
(0)
i (s, a) = 1

|Ai| , ∀(s, a) ∈ S ×Ai. ▷ for all agents i ∈ [n]

3: for t← 1, 2, . . . , Tx do
4: y(t) ← VIS-REG-PG(x(t−1), ϵy) ▷ see Algorithm 2

5: ĝ
(t)
i ← REINFORCE

(
x(t−1),y(t);M

)
▷ for all agents i ∈ [n]

6: x
(t)
i ← ProjX ζx

i

(
x
(t−1)
i − ηxĝ

(t)
i

)
▷ for all agents i ∈ [n]

7: end for
8: y(Tx+1)← VIS-REG-PG(xTx , ϵy)

9: x∗ ← x(t⋆) ▷ pick the best iterate
10: y∗ ← y(t⋆+1)

Algorithm 2 Visitation-Regularized Policy Gradient Algorithm (VIS-REG-PG)
Input: An MDP, a joint strategy of the team x, and a desired accuracy ϵ > 0.

1: Based on ϵ, set batch size K, sample traj. length H , stepsize ηy, truncation parameter ζy and
regularization coeff. ν. ▷ see Theorem C.3

2: y(0)(s, b)← 1
|B| , ∀(s, b) ∈ S × B.

3: for Epoch t← 0, 1, . . . , Ty do
4: Independently sample K trajectories, K(t), of length H under policy y(t).

5: λ̂(t) ← 1

K

∑
τ∈K(t)

λ̃(τ |y(t)),

6: u← r(x)− νλ̂(t).

7: ĝ
(t)
y ←

1

K

∑
τ∈K(t)

g̃(τ |y(t);u). ▷ g̃ as in Definition 2.7.

8: y(t+1)← ProjYζy (y(t) + ηyĝ
(t)
y ).

9: end for

3.3 Analyzing Independent Stochastic Policy-Nested-Gradient

Algorithm 1, or ISPNG, is an instance of a nested-loop algorithm. As we have already
informally stated, ISPNG runs gradient descent on the regularized max function Φν(x) =

maxλ∈Λ(x)

{
r(x)⊤λ− ν

2 ∥λ∥
2
}

for some parameter ν. This function has Hölder-continuous gradi-
ent and, as such, the convergence proof is underpinned by Theorem 3.1. Formally we state that:
Theorem 3.2 (Grad. Contunuity of Reg-Max Function). Let function Φν(x) be the maximum function
of the regularized value function of an ATMG, with regularization coefficient ν > 0. It is the case
that, (i) Φν is differentiable, (ii)∇xΦ

ν is (1/2, ℓ1/2)-Hölder continuous, i.e,

∥∇xΦ
ν(x)−∇xΦ

ν(x)∥ ≤ ℓ1/2 ∥x− x′∥
1
2

with ℓ1/2 :=
30n

1
4 |S|

5
4 (

∑
i |Ai|+|B|)

2

ν mins ρ(s)(1−γ)
13
2

.

ISPNG manages to run gradient descent on function Φν though the agents can never observe the
exact gradient of Φν . This is not only due to the randomness of gradient estimators but mainly
because they cannot observe the adversary’s actions and thus do not know the gradient w.r.t the
regularizing term. Fortunately, the regularization coefficient plays a second role in bounding the
inexactness error of the gradient estimates. For that reason, parameter ν admits a careful tuning.

Finally, the differentiability of Φν and the per-player gradient domination property of the Vρ implies
that an ϵ-FOSP x∗ and the corresponding best-response for the regularized value function, y∗,
constitute an ϵ-NE, leading to the main Theorem of this subsection:
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Theorem 3.3 (Main Result; Formally in Theorem C.3). Given a desired accuracy ϵ > 0, Algorithm 1
outputs a joint policy (x∗,y∗) for which it holds that,

E
[
Vρ(x

∗,y∗)− min
x′

i∈Xi

Vρ(x
′
i,x

∗
−i,y

∗)

]
≤ ϵ, ∀i ∈ [n];

and

E
[
max
y′∈Y

Vρ(x
∗,y′)− Vρ(x

∗,y∗)

]
≤ ϵ,

with a number of iterations and a number of samples that are
poly

(
1
ϵ , n, |S|,

∑
i |Ai|+ |B|, Dm,

1
1−γ ,

1
mins ρ(s)

)
. By Dm we denote the mismatch coeffi-

cient Dm :=
∥∥∥dx,y

ρ

ρ

∥∥∥
∞

(Definition C.2).

4 Minimax in Nonconvex–Hidden-Strongly-Concave Functions

Finally, we would state a more general result compared to that of Theorem 3.3. We consider the
general min-max nonconvex–nonconcave optimization problem, minx∈X maxy∈Y f(x,y), when
an additional structural assumption holds, i.e., when f is nonconvex–hidden-strongly-concave. In
particular, function f admits a reformulation of the form,

H(x,u) := f
(
x, c−1(u;x)

)
,

where function H is a nonconvex–strongly-concave function defined on X × U . The sets X and U
are closed and convex, while c(·;x) : Y → U is an invertible mapping parametrized by x. Moreover,
we will denote U(x) := {u|u = c(y;x), ∀y ∈ Y}. We further assume that the mapping c and its
inverse are Lipschitz-continuous. Specifically,

Assumption 4.1. For the mapping c and its inverse, c−1, it holds that

∥c(y;x)− c(y′;x′)∥ ≤ Lc(∥x− x′∥+ ∥y − y′∥), ∀x,x′ ∈ X ;y,y′ ∈ Y∥∥c−1(u;x)− c−1(u′;x′)
∥∥ ≤ Lc−1(∥x− x′∥+ ∥u− u′∥), ∀x,x′ ∈ X ;u,u′ ∈ U .

If this is the case, the maximizer u⋆(x) := argmaxu∈U(x) H(x,u), is Hölder continuous w.r.t. x as
stated by the following Theorem.

Theorem 4.1 (Formally in Theorem D.2). Let function f(x,y) be nonconvex–hidden-strongly-
concave with a modulus of ν > 0. Let also function H be a LH -Lipschitz continuous and ℓH -
smooth nonconvex–strongly-concave reformulation of f with an invertible mapping c for which
Assumption 4.1 holds. Then,

∥u⋆(x)− u⋆(x′)∥ ≤ L⋆ ∥x− x′∥
1
2 , ∀x,x′ ∈ X .

where, L⋆ = O
(
1
ν

)
.

Theorem 4.2 (Convergence to an ϵ-SP; Formally in Theorem D.3). Let f be a nonconvex–hidden-
strongly-concave function obeying to the same assumptions as f in Theorem 4.1 and ϵ > 0. Further
assume a maximization oracle with O(νϵ2)-accuracy. There exists an algorithm that computes an
ϵ-approximate saddle-point (x∗,y∗) by making T = O

(
1

ν2ϵ3

)
calls to the maximization oracle. Also,

the maximization oracle can be implemented by stochastic gradient ascent with iteration complexity
T ′ = Õ

(
1

ν3ϵ2

)
, and stepsize ηy = O(ν2ϵ2).

5 Conclusion, Future Work, and Limitations

Conclusions We expanded stochastic gradient techniques to be able to compute a stationary point
in constrained optimization of nonconvex with weakly-smooth functions. We applied that result to
design the first learning algorithm that computes an ϵ-approximate Nash equilibrium in adversarial
team Markov games using a finite number of samples and iterations that scale polynomially with 1/ϵ
and the natural parameters of the game.

9



Future Work We believe that some questions that require further investigation are the following:
(i) Is it possible to extend the techniques of [34] to establish convergence guarantees of stochastic
gradient descent on nonconvex functions with Hölder-continuous gradient without batch-sampling of
the gradient? (ii) Can we design a two-timescale gradient descent-ascent scheme for ATMGs that
converges to a Nash equilibrium with best-iterate guarantees? (iii) Can we utilize some variance-
reduction techniques to achieve a better sample complexity for learning an ϵ-NE in ATMGs?

Limitations The main limitations of our work are (i) the notion of independent learning as presented
is weaker than the one presented in [27] – i.e., our algorithm has an “inner loop”, (ii) the fact that we
did not present an example for which the function Φν fails to be smooth; hence, it is unclear if we can
prove the smoothness of this function and achieve tighter analysis. The first item can be addressed in
future work by developing a two-timescale algorithmic approach. As for the second item, we remark
that even if it is the case that Φν is smooth for ATMGs, our provided convergence rates would be
straightforwardly improved without any qualitative modification of the algorithm. Also, we would
like to highlight that this discussion is related to Remark 2.
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A Further Related Work

We accommodate this section to mention a brief collection of related literature in the fields of team
games, reinforcement learning, and optimization. The literature is vast and we can only manage to
mention some representative works.

A.1 Team Games

Research on team games has been a major focus in economic and group decision theory for decades
[75, 53, 89, 59]. A key modern reference is [98], which introduced the team-maxmin equilibrium
(TME) for normal-form games, where the team’s strategy maximizes their minimal expected payoff
against any adversary response. Despite their optimality, TMEs are computationally intractable even
for 3-player team games [54, 11]. Recently, practical algorithms have been developed for multiplayer
games [117, 116, 7]. Team equilibria are also relevant to two-player zero-sum games with imperfect
recall [87].

Due to TME’s intractability, TMECor, a relaxed equilibrium concept involving a correlation device,
has been studied [42, 21, 7, 117, 111, 110, 20]. TMECor permits correlated strategies but can be
impractical in certain scenarios [98]. TMECor is also NP-hard for imperfect-information extensive-
form games (EFGs) [26], although fixed-parameter-tractable (FPT) algorithms have been developed
for specific EFG classes [111, 110].

The computational aspects of standard Nash equilibrium (NE) in adversarial team games are not
well-understood, even in normal-form games. Von Neumann’s minimax theorem [102] does not apply
to team games, rendering traditional methods ineffective. [94] characterized the duality gap between
teams, while in [66] it was shown that standard no-regret learning dynamics, such as gradient descent
and optimistic Hedge, may fail to converge to mixed NE in binary-action adversarial team games.
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A.2 Reinforcement Learning

Multiagent RL Nash equilibrium computation has been central in multiagent RL. Notable algo-
rithms, such as Nash-Q [60, 61], guarantee convergence to Nash equilibria only under strict game
conditions. The behavior of independent policy gradient methods [93] remains poorly understood.
The impossibility result by the authors of [56] precludes universal convergence to Nash equilibria
even in normal-form games, aligning with the computational intractability (PPAD-completeness) of
Nash equilibria in two-player general-sum games [28, 24]. Surprisingly, recent work shows similar
hardness in turn-based stochastic games, making (stationary) CCEs intractable [29, 64].

Thus, research has focused on specific game classes, like Markov potential games [68, 37, 114, 23, 74,
46] or two-player zero-sum Markov games [27, 103, 91, 22, 92]. As noted, adversarial Markov team
games can unify and extend these settings. Identifying multi-agent settings where Nash equilibria are
efficiently computable is a key open problem (see, e.g., [27]). Recent guarantees for convergence
to Nash equilibria have been found in symmetric games, including symmetric team games [39].
Additionally, weaker solution concepts, relaxing either Markovian or stationarity properties, have
gained attention [29, 62].

Convex RL Maximizing a value function regularized by a term that is strongly-concave with
respect to the state-action visitation measure is an instance of a convex RL problem. In that sense, our
work is also related to that strain of literature. Convex RL [108, 112] is a framework that generalizes
standard MDP problems by considering the optimization of an objective function that is convex
(or concave) in the state (or state-action) visitation measures that the agent’s policies induce. The
value function of standard RL has an objective function linear to that measure. Common well-known
problems that are unified below the lens of convex are (i) “pure-exploration” RL [57], where the
agent maximizes the entropy of the state visitation measure, (ii) imitation learning [1], where an agent
minimizes the distance of the state visitation measure their policy induces and the one induced by
an expert, (iii) risk-averse RL [47] where the agent optimizes an objective function that is sensitive
to the tail behavior of the agent and not merely their expected behavior [100, 99, 25, 9, 115, 80],
(iv) constrained RL [4], where an agent optimizes their value function while making sure to satisfy
a number of constraints that are dependent on their state-action visitation measure [5, 107, 13, 2],
(v) diverse skills discovery, where the goal is to drive learning agents to acquire a diverse set of
emergent skills [19, 41, 52, 55, 58, 72, 96, 109].

A.3 Optimization

Min-max Optimization Min-max optimization studies problems of the form
minx∈X maxy∈Y f(x,y). When the objective function f is convex in x and concave in y,
the corresponding variational inequality (VI) is monotone, and a wide range of algorithms have been
proposed for computing an approximate saddle-point — see, e.g., [81, 69].

It is also known that standard Gradient Descent/Ascent (GDA) exhibits time-averaged convergence
while the actual trajectory of iterates might cycle [30, 31]. Methods like Extra Gradient or techniques
such as optimism are used to ensure convergence [30, 31, 32, 76, 78, 18, 51].

For more general objectives, we know how to compute approximate saddle-points when the weak
Minty Property is satisfied [36] and for functions where one (or both) side satisfies the PŁcondition
[83, 44, 105]. On the negative side, we know that the problem in its full generality (nonconvex–
nonconcave landscape with coupled linear constraints) is computationally intractable [33].

Hidden-Convex Optimization This nascent field of optimization [43, 48] considers nonconvex
objectives that can be reformulated, through a change of variables, into a convex objective. Further,
in the context of game theory, the notion of hidden-monotonicity has made its appearance in [45] and
the subsequent works [77, 90].

Weakly-Smooth Optimization The majority of references that we encounter for weakly-smooth
minimization assume convexity and concern the unconstrained setting. We mention the important
references of [35, 82] while also more recent works [106, 85, 84].
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B Nonconvex Weakly-Smooth Constrained Optimization

In this section we prove that stochastic projected gradient descent with an stochastic inexact oracle
converges to an ϵ-FOSP in functions with Hölder continuous gradient. We complement this section
with the proof of folklore lemmas of constrained optimization that show that the “gradient mapping”
(Definition B.1) is an appropriate surrogate of stationarity also for the family of functions we consider.
Definition B.1 (Gradient Mapping). We define the gradient mapping and stochastic gradient mapping,
rη and r̂η, to be:

• rη(z) :=
1
η (z − ProjZ (z − ηg (z))), with a shorthand notation, rtη := rη(z

);

• r̂η(z) :=
1
η (z − ProjZ (z − ηĝ(z))), similarly, r̂tη := r̂η(z

) .

B.1 Auxiliary Lemmas

In general, demonstrating that the gradient mapping is an adequate surrogate of stationarity in
differentiable constraint optimization relies on the Lipschitz continuity of the function. We make sure
that this is the case when the gradient is only Hölder continuous with p < 1.
Lemma B.1 (Inexact-Gradient Mapping as a Stationarity Surrogate). If

∥∥rη(z)∥∥ ≤ ϵ for some
z ∈ Z , it holds that:

max
z′∈Z,∥z′−z+∥≤1

〈
−∇ϕ(z+), z′ − z+

〉
≤ ϑ+ η2ϵ+ ℓpη

pϵp,

where z+ := ProjZ (z − ηg(z)).

Proof. In (Inexact Stoch-PGD), ∥g(z)−∇ϕ(z)∥ ≤ ϑ, ∀z ∈ Z . Since z+ := ProjZ (z − ηg(z)),
it holds that

z+ = argmin
z′∈Z

{
∥z′ − (z − ηg(z))∥2

}
.

Due to the optimality condition, we have

−
(
z+ − z +

1

η
g(z)

)
∈ NZ(z

+),

where NZ(z) is the normal cone of Z at z, NZ(z) := {v| ⟨v, z′ − z⟩ ≤ 0,∀z′ ∈ Z}. From the
latter, we can conclude that

−
(
z+ − z +

1

η
∇ϕ(z)

)
− 1

η
(−∇ϕ(z) + g(z)) ∈ NZ(z

+)

−
(
z+ − z +

1

η
∇ϕ(z)

)
∈ NZ(z

+) +B

(
ϑ

η

)
− 1

η
∇ϕ(z+)−

(
z+ − z +

1

η
∇ϕ(z)− 1

η
∇ϕ(z+)

)
∈ NZ(z

+) +B

(
ϑ

η

)
.

Now, we bound
∥∥∥z+ − z + 1

η∇ϕ(z)−
1
η∇ϕ(z

+)
∥∥∥,∥∥∥∥z+ − z +

1

η
∇ϕ(z)− 1

η
∇ϕ(z+)

∥∥∥∥ ≤ ∥∥z+ − z
∥∥+ 1

η

∥∥∇ϕ(z)−∇ϕ(z+)
∥∥

≤
∥∥z+ − z

∥∥+ ℓp
η

∥∥z+ − z
∥∥p

≤ ηϵ+
ℓp

η1−p
ϵp.

Therefore we have

−∇ϕ(z+) ∈ NZ(z
+) +B

(
ϑ+ η2ϵ+ ℓpη

pϵp
)
.

The latter display implies the statement of the lemma.
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We immediately have the following corollary,

Corollary B.1. For any z ∈ Z, denote z+ := ProjZ (z − ηg(z)). E
[∥∥rη(z)∥∥] ≤ ϵ implies that

E
[

max
z′∈Z,∥z′−z+∥≤1

〈
−∇ϕ(z+), z′ − z+

〉]
≤ ϑ+ η2ϵ+ ℓpη

pϵp.

B.2 Stochastic PGD with Inexact Gradients

The folklore proof of gradient descent for nonconvex functions relies on the Lipschitz continuity
of the gradient to prove convergence to a first-order stationary point. When the gradient are not
Lipschitz continuous but continuous in the weaker notion of Hölder continuity implies the following
fact that we will eventually use to prove a “descent lemma”.

Fact B.1. Let a function ϕ : Z → R with (p, ℓp)-Hölder continuous gradient. Then, it is the case
that for all z, z′,

|ϕ(z′)− ϕ(z) + ⟨∇f(z), z′ − z⟩| ≤ ℓp
1 + p

∥z′ − z∥1+p
.

Following [35], we discuss functions with Hölder-continuous gradient (see Definition 2.1) through
the framework of inexact oracle. We show that the answer (ϕ(z),∇ϕ(z)) of an exact oracle for
a nonconvex function satisfying Hölder gradient continuity can be translated into some “inexact”
information for a smooth function. Parameters δ, ℓ′ in Proposition B.1 can be treated as “inexactness”
parameters and will be chosen as appropriate parameters of the exponent p of Hölder continuity.

Proposition B.1. For given δ, ℓp, and a tuning of ℓ′ := ℓ
2

1+p
p

δ
1−p
1+p

, it holds that for any x,x′,

ℓp
1 + p

∥x− x′∥1+p ≤ ℓ′

2
∥x− x′∥2 + δ.

Proof. We let χ := ∥x− x′∥. By choosing the optimal ℓ′ we can verify that

2max
χ≥0

{
ℓp

1 + p
χ−1+p − δχ−2

}
= ℓp

(
ℓp
2δ
· 1− p

1 + p

) 1−p
1+p

≤ ℓ
2

1+p
p

δ
1−p
1+p

.

Where in the inequality we use the fact that
(

1−p
2(1+p)

) 1−p
1+p ≤ 1 for 0 ≤ p ≤ 1. Setting ℓ′ =

ℓ
2

1+p
p

δ
1−p
1+p

yields the desired inequality.

Now, we can use Proposition B.1 as in place of the “descent-lemma” to Theorem C.3 to prove
convergence to an ϵ-FOSP.

Theorem B.1. Let ϕ : Z → R be a (p, ℓp)-weakly smooth nonconvex function. Further,
assume a stochastic inexact gradient oracle ĝ. I.e., it holds that E [ĝ(z)− g(z)] = 0 and

E
[
∥ĝ(z)− g(z)∥2

]
≤ σ2

M for some g : Z → Z∗ where ∥g(z)−∇ϕ(z)∥ ≤ ϑ, ∀z ∈ Z . Im-

plementing T updates of the form (Inexact Stoch-PGD) using ĝ and a stepsize η = 1
2ℓ′ guarantees

that:

1

T

T−1∑
t=0

E
[∥∥r̂tη∥∥2] ≤ 8ℓ

2
1+p
p

(
E
[
ϕ
(
z0
)]
− ϕ∗)

δ
1−p
1+p T

+
8σ2

M
+ 8ℓ

2
1+p
p δ

2p
1+p + 4ϑ2.

We postpone the proof to state a corollary that might help the reader gain some intuition on how the
iteration complexity scales with p.
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Corollary B.2. Let ϕ, ĝ, the update rule of (Inexact Stoch-PGD) as in Theorem B.1, and stepsize
η = ( ϵ1−p

23−2p·ℓp )
1
p . For t∗ drawn uniformly at random from [1, . . . , T ], it holds that:

E
[∥∥r∗η∥∥2] ≤ 8ℓ

2
1+p
p

(
E
[
ϕ
(
z0
)]
− ϕ∗)

δ
1−p
1+p T

+ 16ℓ
2

1+p
p δ

2p
1+p + 8ϑ2 +

18σ2

M
,

where r∗η := rt
∗

η . Furthermore, by setting the parameters as T ≥ 8
1+p
p ℓ

1
p
p (E[ϕ(z0)]−ϕ∗)

ϵ
1+p
p

, δ ≤ ( ϵ
8 )

1+p
p

ℓ
1
p
p

,

ϑ ≤ ϵ
8 , and M ≥ 9σ2

2ϵ2 , it is guaranteed that there will exist a t⋆ ∈ {0, . . . , T − 1} such that
E[rη(zt⋆)] ≤ ϵ.

Proof. For the first claim,

E
[∥∥r∗η∥∥2] = E

[∥∥∥∥1η (zt∗ − ProjZ

(
zt∗ − ηg(zt∗)

))∥∥∥∥2
]

≤ 2E

[∥∥∥∥1η (zt∗ − ProjZ

(
zt∗ − ηĝ(zt∗)

))∥∥∥∥2
]

+ 2E

[∥∥∥∥1η (ProjZ (zt∗ − ηĝ(zt∗)
)
− ProjZ

(
zt∗ − ηg(zt∗)

))∥∥∥∥2
]

≤ 2E
[∥∥r̂∗η∥∥2]+ 2E

[∥∥∥∥1η (zt∗ − ηĝ(zt∗)− zt∗ − ηg(zt∗)
)∥∥∥∥2

]

= 2E
[∥∥r̂∗η∥∥2]+ 2E

[∥∥∥ĝ(zt∗)− g(zt∗)
∥∥∥2]

≤
8ℓ

2
1+p
p

(
E
[
ϕ
(
z0
)]
− ϕ∗)

δ
1−p
1+p T

+ 16ℓ
2

1+p
p δ

2p
1+p + 8ϑ2 +

18σ2

M
.

Where the last inequality follows from Theorem B.1 and the fact that E
[
∥ĝ(z)− g(z)∥2

]
≤ σ2

M . By

setting the parameters as in the corollary, we have E[rη(zt⋆)] ≤ ϵ.

Remark 1. With the same parameters we choose in Corollary B.2, Lemma B.1 guarantees that for
any p ∈ (0, 1], rη(z) is a sufficient surrogate for stationarity. In particular,

∥∥rη(z)∥∥ ≤ ϵ implies that

−∇ϕ(z+) ∈ NZ(z
+) +B

(((
81−p

ℓp

) 2
p

+ 9

)
ϵ

)
.

Finally, we state one more auxiliary claim before proceeding to the proof of Theorem C.3.
Claim B.1. Consider an iterate of (Inexact Stoch-PGD), zt. Also, define z+ = ProjZ (zt − ηg(z)),
where g is the inexact-gradient oracle. It is the case that,∥∥zt+1 − z+

∥∥ ≤ η2
σ2

M
.

Proof. The proof follows easily from arguments we have already used,

E
[∥∥zt+1 − z+

∥∥2] = E
[∥∥ProjZ (zt − ηĝt

)
− ProjZ

(
zt − ηgt

)∥∥2]
≤ E

[∥∥ηĝt − ηgt
∥∥2]

= η2E
[∥∥ĝt − gt

∥∥2]
≤ η2

σ2

M
.
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Proof of Theorem B.1

Proof. Since ∥g(z)−∇ϕ(z)∥ ≤ ϑ, from the weakly-smooth condition, we have

ϕ
(
zt+1

)
≤ ϕ(zt) +

〈
∇ϕ

(
zt
)
, zt+1 − zt

〉
+

ℓp
1 + p

∥∥zt+1 − zt
∥∥1+p

≤ ϕ(zt) +
〈
∇ϕ

(
zt
)
, zt+1 − zt

〉
+

ℓ′

2

∥∥zt+1 − zt
∥∥2 + δ (1)

= ϕ(zt) +
〈
g
(
zt
)
, zt+1 − zt

〉
+
〈
∇ϕ(zt)− g(zt), zt+1 − zt

〉
+

ℓ′η2

2

∥∥r̂tη∥∥2 + δ

= ϕ(zt)− η
〈
g
(
zt
)
, r̂tη
〉
+ η

〈
∇ϕ(zt)− g(zt), r̂tη

〉
+

ℓ′η2

2

∥∥r̂tη∥∥2 + δ (2)

= ϕ(zt)− η
〈
ĝ
(
zt
)
, r̂tη
〉
+ η

〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη
〉
+ η

〈
∇ϕ(zt)− g(zt), r̂tη

〉
+

ℓ′η2

2

∥∥r̂tη∥∥2 + δ

≤ ϕ(zt)− η
∥∥r̂tη∥∥2 + η

〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη
〉
+ η

〈
∇ϕ(zt)− g(zt), r̂tη

〉
+

ℓ′η2

2

∥∥r̂tη∥∥2 + δ (3)

≤ ϕ(zt)− η
∥∥r̂tη∥∥2 + η

〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη
〉
+

η

2

∥∥∇ϕ(zt)− g(zt)
∥∥2

+
η

2

∥∥r̂tη∥∥2 + ℓ′η2

2

∥∥r̂tη∥∥2 + δ (4)

≤ ϕ(zt)−
(
η

2
− ℓ′η2

2

)∥∥r̂tη∥∥2 + η
〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη
〉
+

η

2
ϑ2 + δ (5)

≤ ϕ(zt)−
(
η

2
− ℓ′η2

2

)∥∥r̂tη∥∥2
+ η

〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη − rtη

〉
+

η

2
ϑ2 + δ.

Where

• (1) is because of Proposition B.1;

• in (2), we plug-in the definition of r̂tη;

• (3) uses the fact that −
〈
ĝ(zt), r̂tη

〉
≤ − 1

η

∥∥r̂tη∥∥2;

• (4) is due to Young’s inequality;

• in (5), we plug-in the error bound on the inexact-gradient oracle ∥∇ϕ(z)− g(z)∥2 ≤ ϑ.

Continuing we have

ϕ
(
zt+1

)
≤ ϕ(zt)−

(
η

2
− ℓ′η2

2

)∥∥r̂tη∥∥2 + η
〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

〈
ĝ
(
zt
)
− g

(
zt
)
, r̂tη − rtη

〉
+

η

2
ϑ2 + δ

≤ ϕ(zt)−
(
η

2
− ℓ′η2

2

)∥∥r̂tη∥∥2 + η
〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

∥∥ĝ (zt
)
− g

(
zt
)∥∥2 + η

2
ϑ2 + δ.
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Summing for t = 0, . . . , T − 1,

T−1∑
t=0

ϕ
(
zt+1

)
≤

T−1∑
t=0

(
ϕ
(
zt
)
−
(
η

2
− ℓ′η2

2

)
∥r̂tη∥2 + η

〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

∥∥ĝ (zt
)
− g

(
zt
)∥∥2)

+
η

2
ϑ2T + δT.

This is equivalent to

T−1∑
t=0

(
η

2
− ℓ′η2

2

)∥∥r̂tη∥∥2
≤ ϕ

(
z0
)
− ϕ

(
zT
)
+

T−1∑
t=0

(
η
〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

∥∥ĝ (zt
)
− g

(
zt
)∥∥2)

+
η

2
ϑ2T + δT

≤ ϕ
(
z0
)
− ϕ∗ +

T−1∑
t=0

(
η
〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉
+ η

∥∥ĝ (zt
)
− g

(
zt
)∥∥2)+ η

2
ϑ2T + δT.

Taking expectations, we have(
η

2
− ℓ′η2

2

) T−1∑
t=0

E
[∥∥r̂tη∥∥2]

≤ E
[
ϕ
(
z0
)]
− ϕ∗ +

T−1∑
t=0

(
ηE
[〈
ĝ
(
zt
)
− g

(
zt
)
, rtη
〉]

+ ηE
[∥∥ĝ (zt

)
− g

(
zt
)∥∥2])

+ δT +
η

2
ϑ2T

≤ E
[
ϕ
(
z0
)]
− ϕ∗ + η

σ2

M
T + δT +

η

2
ϑ2T.

By setting η ← 1
2ℓ′ , it holds that

1

T

T−1∑
t=0

E
[∥∥r̂tη∥∥2] ≤ 8ℓ′

(
E
[
ϕ
(
z0
)]
− ϕ∗)

T
+

8σ2

M
+ 8ℓ′δ + 4ϑ2

=
8ℓ

2
1+p
p

(
E
[
ϕ
(
z0
)]
− ϕ∗)

δ
1−p
1+p T

+
8σ2

M
+ 8ℓ

2
1+p
p δ

2p
1+p + 4ϑ2.

This completes the proof.
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C Adversarial Team Markov Games

In this section we the formal proofs of our claims regarding ATMGs. Before proceeding, let us
provide a roadmap of the current section:

• Beginning, in Table 1 we offer a concise summary of our ATMG-related notation.
• We proceed to present a number of crucial facts regarding MDPs in Appendix C.1. In

particular, facts regarding the state-action visitation measure.
• In Appendix C.3, we demonstrate that the regularized value function has a unique maximizer

that changes in Hölder-continuous way w.r.t. to team policies x. This leads to the Hölder-
continuity of the gradient of the regularized maximum function Φν (see Theorem C.2).

• Having established the latter, in Section 3.2 we invoke the results on gradient descent for
nonconvex functions with Hölder continuous gradient to get our main theorem regarding
ϵ-NE learning in ATMGs (Theorem C.3).

• The tuning of the parameters of Theorem C.3 is supported by (i) Appendix C.5, where we
get precise guarantees for maximizing the regularizing value function w.r.t. the adversary’s
policy y (Theorem C.4) (ii) Appendix C.6, where we define and analyze the gradient
estimators used by the agents of the MG.
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Table 1: Notation

Parameters of the model:

S State space
N Set of players
r Reward function of the adversary
n Number of players in the team
Ai Action space of player i of the team
A Team’s joint action space
B Action space of the adversary
Ai Number of actions available to player i of the team
B Number of actions available to the adversary
Xi The set of feasible directly parameterized policies of player i: Xi :=

∆(Ai)
S

X The set of feasible directly parameterized policies of the team: X :=

×n

i=1
Xi

Y The set of feasible directly parameterized policies of the adversary player:
Y := (B)S

P(s′|s,a, b) Probability of transitioning from state s to s′ under the action profile
(a, b)

P(x,y) The (row-stochastic) transition matrix of the Markov chain induced by
(x,y)

γ Discount factor
dx,ys0 (s) The (un-normalized) state visitation measure for policy (x,y)
λ(y;x) The state-action visitation measure of the adversary when the team is

playing policy x
V (x,y), Vρ(x,y) The value vector per-state, the expected value under initial distribution ρ
V ν(x,y), V ν

ρ (x,y) The regularized value vector per-state, the expected value under initial
distribution ρ

τ A trajectory of states and joint actions of the Markov game
Estimators:

λ̃ A single estimate of the state-action visitation measure
λ̂ The estimator of the state-action visitation measure
g̃ A single estimate of the gradient
ĝy The estimator of the gradient
Parameters:

LV Lipschitz constant of the value function Vρ(·, ·)
ℓV Smoothness constant of the value function Vρ(·, ·)
Dm Distribution mismatch coefficient
Additional notation:

Φ(x) Maximum of the value function given x: Φ(x) = maxy∈Y Vρ(x,y)
Φν(x) Maximum of the regularized value function given x: Φν(x) =

maxy∈Y V ν
ρ (x,y)
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C.1 Further Background on Markov Decision Processes

We need additional preliminaries on Markov decision processes (MDPs). Specifically, we will
discuss the properties of the (discounted) state and state-action visitation measure. These measures
represent the “discounted” expected amount of time the Markov chain—induced by the players’ fixed
policies—spends at state s (respectively, at a state action pair (s, b)) starting from initial state s′. Each
visit is weighted by a discount factor γh, where h is the visit time. Notably, in [3] it is defined as a
probability measure, meaning that for an initial state distribution ρ, the discounted state visitation
distribution sums to 1. For convenience, we will use the unnormalized definition from [88, Chapter
6.10], which sums to 1

1−γ . This is why we refer to it as a measure instead of a distribution.

Definition C.1 (State Visit. Measure). Given an initial state distribution ρ ∈ ∆(S) and a stationary
joint policy π ∈ Π, we define the state visitation frequency dπs as follows:

dπs (s) =

∞∑
h=0

γh P(sh = s|π, s0 = s).

Additionally, expanding the definition, we define dπρ (s) = Es∼ρ [d
π
s (s)] .

For convenience, the expression dx,yρ (s) is utilized to represent the state visitation measure resulting
from the policies (x,y) ∈ X × Y .
Fact C.1. Let MDP,M(S,B,P, r, γ). Let a policy π ∈ ∆(B)|S|. For the corresponding state-action
visitation measure λ ∈ RS×B and the state visitation measure dπ

ρ ∈ RS , it holds that,

λs,b(π) = dπρ (s)π(s, b), ∀s ∈ S,∀b ∈ B.

A quantity that is important in contemporary RL literature is that of the mismatch coefficient which
we formally define here.
Definition C.2 (Distribution Mismatch Coefficient). Let ρ ∈ ∆(S) be a full-support distribution
over states, and Π be the joint set of policies. We define the distribution mismatch coefficient D as

Dm := sup
π∈Π

∥∥∥∥dπ
ρ

ρ

∥∥∥∥
∞

,

where
dπ
ρ

ρ denotes element-wise division.

The following theorem that relates policies and visitation measures is essential to our analysis.
Theorem C.1 ([88, Theorem 6.9.1]). Consider an adversarial Markov game Γ and a fixed team
policy x,

(i) Any y ∈ Y defines a feasible state-action visitation measure λ ∈ R|S|×|B|; namely,

λs,b(y;x) :=
∑
s∈S

ρ(s) · Ey

[
γt P(s(t) = s, b(t) = b | x, s(0) = s)

]
.

(ii) Any feasible state-action visitation measure λ defines a feasible y ∈ Y; namely,

ys,b :=
λ(s, b)∑

b′∈B λ(s, b′)
, ∀(s, b) ∈ S × B.

Further, for any such y ∈ Y it holds that λs,b(y;x) = λ(s, b), ∀(s, b) ∈ S × B, where
λ(y;x) is the induced discounted state-action measure.

An implication of the latter theorem is the fact that λ(·;x) is a “1–1” mapping between policies and
visitation measures. Following, we see that this mapping is also Lipschitz-continuous and smooth
(see Lemmas C.1 to C.3).
Lemma C.1. For any initial distribution ρ ∈ ∆(S), function Vρ is L-Lipschitz and ℓ-smooth with

L :=

√∑n
i=1 |Ai|+|B|
(1−γ)2 and ℓ :=

2γ(
∑n

i=1 |Ai|+|B|)
(1−γ)3 , in other words

|Vρ(x,y)− Vρ(x
′,y′)| ≤

√∑n
i=1 |Ai|+ |B|
(1− γ)2

∥(x,y)− (x′,y′)∥ ;

∥∇Vρ(x,y)−∇Vρ(x
′,y′)∥ ≤

2γ (
∑n

i=1 |Ai|+ |B|)
(1− γ)3

∥(x,y)− (x′,y′)∥ .
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Proof. The proof follows from Lemma 4.4 in [68].

Lemma C.2. Let λ ∈ R|S||B| be the state-action visitation measure for the adversary, then λ is
Lλ-Lipschitz continuous and ℓλ-smooth w.r.t to policy (x,y). Specifically, we have

∥λ (y;x)− λ (y′;x′)∥ ≤
|S| 12 (

∑
i |Ai|+ |B|)

(1− γ)2
(∥x− x′∥+ ∥y − y′∥) ,

and

∥∇λ (y;x)−∇λ (y′;x′)∥ ≤
2|S| 12 (

∑
i |Ai|+ |B|)

3
2

(1− γ)3
(∥x− x′∥+ ∥y − y′∥) .

Proof. Each λs,b can be considered as a value function for the given state s and the reward function
is r(a′, b′) = 1(b = b′). Then by applying Lemma C.1, we have

|λs,b (y;x)− λs,b (y
′;x′)| ≤

√∑
i |Ai|+ |B|
(1− γ)2

· (∥x− x′∥+ ∥y − y′∥) , (6)

∥∇λs,b (y;x)−∇λs,b (y
′;x′)∥ ≤

2γ (
∑

i |Ai|+ |B|)
(1− γ)3

· (∥x− x′∥+ ∥y − y′∥) . (7)

From Equation (6) we get

∥λ (y;x)− λ (y′;x′)∥∞ ≤
√∑

i |Ai|+ |B|
(1− γ)2

· (∥x− x′∥+ ∥y − y′∥) .

This implies

∥λ (y;x)− λ (y′;x′)∥ ≤
√
|S||B| ∥λ (y;x)− λ (y′;x′)∥∞

≤
√
|S||B|

√∑
i |Ai|+ |B|

(1− γ)2
· (∥x− x′∥+ ∥y − y′∥)

≤
√
|S| (

∑
i |Ai|+ |B|)

(1− γ)2
· (∥x− x′∥+ ∥y − y′∥) .

Similarly, from Equation (7), we have

∥∇λs,b (y;x)−∇λs,b (y
′;x′)∥ ≤

2γ (
∑

i |Ai|+ |B|)
(1− γ)3

· (∥x− x′∥+ ∥y − y′∥) .

Thus

∥∇λ (y;x)−∇λ (y′;x′)∥F ≤
√
|S||B| · max

s∈S,b∈B
∥∇λs,b (y;x)−∇λs,b (y

′;x′)∥

≤
2γ
√
|S||B| (

∑
i |Ai|+ |B|)

(1− γ)3
· (∥x− x′∥+ ∥y − y′∥) .

Where ∥·∥F denotes the Frobenius norm of the matrix. Finally, we have

∥∇λ (y;x)−∇λ (y′;x′)∥ ≤ ∥∇λ (y;x)−∇λ (y′;x′)∥F

≤
2γ
√
|S||B| (

∑
i |Ai|+ |B|)

(1− γ)3
· (∥x− x′∥+ ∥y − y′∥)

≤
2γ
√
|S| (

∑
i |Ai|+ |B|)3

(1− γ)3
· (∥x− x′∥+ ∥y − y′∥)

≤
2
√
|S| (

∑
i |Ai|+ |B|)3

(1− γ)3
· (∥x− x′∥+ ∥y − y′∥) .
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Lemma C.3. Consider λinv(λ(y;x)) :=
λs,b(y;x)∑
b′ λs,b′ (y;x)

, which is a function that maps the adversary’s
state-action visitation measure λ(y;x) ∈ Λ(x) to the adversary’s policy y ∈ Y . For any fixed team
policy x, λinv is Lλinv

-Lipschitz continuous with respect λ where Lλinv
= maxs∈S

2
ρ(s)(1−γ) .

Specifically, it holds that

∥y − y′∥ ≤ Lλinv
∥λ(y;x)− λ(y′;x)∥ .

Proof. Take the partial derivative of λinv(λ), we have∣∣∣∣ ∂

∂λs,b

λs,b∑
b′ λs,b′

∣∣∣∣ = ∣∣∣∣ 1∑
b′ λs,b′

− λs,b

(
∑

b′ λs,b′)

∣∣∣∣
≤
∣∣∣∣ 1∑

b′ λs,b′

∣∣∣∣+ ∣∣∣∣ λs,b

(
∑

b′ λs,b′)

∣∣∣∣
≤ max

s∈S

{∣∣∣∣ 1

ρ(s)

∣∣∣∣+ 1

ρ(s)(1− γ)

}
≤ max

s∈S

2

ρ(s)(1− γ)
.

This implies the Lipschitz continuity.

The Regularized Value Function.

Lemma C.4. Function V ν
ρ (x,y) := V ν

ρ (x,y) − ν
2 ∥λ (y;x)∥2 is Lν-Lipschitz continuous and

ℓν-smooth, where Lν := L+ νLλ

2(1−γ) and ℓν := ℓ+ νℓλ
2(1−γ) +

νL2
λ

2 .

Proof. For Lipschitz continuity, we have∣∣V ν
ρ (x,y)− V ν

ρ (x′,y′)
∣∣

≤ |Vρ(x,y)− Vρ(x
′,y′)|+ ν

2

∣∣∣∥λ (y;x)∥2 − ∥λ (y′;x′)∥2
∣∣∣

≤ |Vρ(x,y)− Vρ(x
′,y′)|+ ν

2
max
x,y
∥λ (y;x)∥ ·

∣∣∣ ∥λ (y;x)∥ − ∥λ (y′;x′)∥
∣∣∣

≤ |Vρ(x,y)− Vρ(x
′,y′)|+ ν

2
· 1

1− γ
∥λ (y;x)− λ (y′;x′)∥

≤
(
L+

νLλ

2(1− γ)

)
· (∥x− x′∥+ ∥y − y′∥) .

For smoothness, denote the Jacobian matrix of λ(y;x) w.r.t to (x,y) by Jλ(x,y), it holds that∥∥∥∇x ∥λ (y;x)∥2 −∇x ∥λ (y′;x′)∥2
∥∥∥

=
∥∥∥λ (y;x)

⊤
Jλ(x,y)− λ (y′;x′)

⊤
Jλ(x

′,y′)
∥∥∥

≤
∥∥∥λ (y;x)

⊤
Jλ(x,y)− λ (y;x)

⊤
Jλ(x

′,y′)
∥∥∥

+
∥∥∥λ (y;x)

⊤
Jλ(x

′,y′)− λ (y′;x′)
⊤
Jλ(x

′,y′)
∥∥∥

≤ ∥λ (y;x)∥ ∥Jλ(x,y)− Jλ(x
′,y′)∥+ ∥λ (y;x)− λ (y′;x′)∥ ∥Jλ(x

′,y′)∥

≤ 1

1− γ
∥Jλ(x,y)− Jλ(x

′,y′)∥+ ∥λ (y;x)− λ (y′;x′)∥ ∥Jλ(x
′,y′)∥ (8)

≤
(

ℓλ
1− γ

+ Lλ · Lλ

)
· (∥x− x′∥+ ∥y − y′∥).
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Where in (8) we used the fact that ∥Jλ(x
′,y′)∥ ≤ Lλ. We conclude that∥∥∇V ν

ρ (x,y)−∇V ν
ρ (x′,y′)

∥∥
=
∥∥∥∇Vρ(x,y)−∇Vρ(x

′,y′) +
ν

2

(
∇x ∥λ (y;x)∥2 −∇x ∥λ (y′;x′)∥2

)∥∥∥
≤ ∥∇Vρ(x,y)−∇Vρ(x

′,y′)∥+ ν

2

∥∥∥∇x ∥λ (y;x)∥2 −∇x ∥λ (y′;x′)∥2
∥∥∥

≤
(
ℓ+

νℓλ
2(1− γ)

+
νL2

λ

2

)
· (∥x− x′∥+ ∥y − y′∥).

Finally, we compute the Lipschitz continuity parameter of the reward vector that we already used in
our previous claims.
Lemma C.5. Let r(x) be the reward function for the adversary when the team is playing policy x.
Then it holds that

∥r(x)− r(x′)∥ ≤ Lr ∥x− x′∥ ,
where Lr =

√
S (
∑n

i=1 |Ai|+B) .

Proof.
∥r(x)− r(x′)∥ ≤

√
|S||B|∥r(x)− r(x′)∥∞

=
√
|S||B|max

s,b
|r(s,x, b)− r(s,x′, b)|

=

√
|S||B|

∑
i=1

|Ai|∥x− x′∥ (9)

≤
√
|S|

(
n∑

i=1

|Ai|+B

)
∥x− x′∥.

Where (9) follows from Claim D.9. in [65].

C.2 Auxiliary Lemmas

Bounding the stationarity error on the truncated simplex. The ζ-truncated simplex, ∆m,ζ is
defined a the set of all probability vectors with no entry smaller than ζ > 0. More formally, for a
given dimension m and a 0 < ζ ≤ 1

m , the ζ-truncated simplex is defined to be

∆m,ζ =

{
x

∣∣∣∣∣xi ≥ ζ,

m∑
i=1

xi = 1

}
.

Lemma C.6. [40, Lemma 15] Let ∆m,ζ be the ζ-truncated m-simplex. If 0 ≤ ζ ≤ 1
2m , then for all

x ∈ ∆m, there exists a xζ ∈ ∆m,ζ such that ∥x− xζ∥ ≤ 2ζm.
Proposition C.1 (Stationarity on the trunc. simplex). Let an Lf -Lipschitz continuous differentiable
function f : ∆m → R. Also, let an ϵ-approximate stationary point xζ when the feasibility set is the
truncated simplex ∆m,ζ such that〈

−∇f(xζ),x
′
ζ − xζ

〉
≤ ϵ, ∀x′

ζ ∈ ∆m,ζ .

Then, xζ is an (ϵ+ 2ζmLf )-stationary point when the entire simplex is considered, i.e,

⟨−∇f(xζ),x− xζ⟩ ≤ ϵ+ 2ζmLf , ∀x ∈ ∆m.

Proof. Consider x′
ζ ∈ ∆m,ζ such that

∥∥∥x− x′
ζ

∥∥∥ ≤ 2ζm, such point exists due to Lemma C.6, we
have

⟨−∇f(xζ),x− xζ⟩ =
〈
−∇f(xζ),x

′
ζ − xζ

〉
+
〈
−∇f(xζ),x− x′

ζ

〉
≤ ϵ+ 2ζmLf .
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Where in the last inequality we use the fact that for all x′
ζ ∈ ∆m,ζ , we have

〈
−∇f(xζ),x

′
ζ − xζ

〉
≤

ϵ and ∥∇f(xζ)∥ ≤ Lf .

From stationarity to optimality.
Lemma C.7 (Gradient Domination). Let a single-agent MDP with action-space A and directly-
parametrized policy x ∈ ∆ζ (A)|S|. Then it holds that

max
x⋆∈∆(A)|S|

Vρ(x
⋆)− Vρ(x) ≤

1

1− γ
Dm max

x′∈∆ζ(A)|S|
(x′ − x)⊤∇xVρ(x) +

2Dmζ|S||A|L
1− γ

.

Proof. The proof follows easily from Proposition C.1 and the gradient domination property [3,
Lemma 4.1].

C.3 Continuity of the maximizers

We begin this section by firstly introducing a proposition which we will leverage in Lemma C.8.
Proposition C.2. Consider the inequality of the form αλ2 ≤ βλχ+ γχ where λ and χ are variables
and α, β, γ are coefficients. Under the constraints that α, β, γ, λ, χ ≥ 0, there is no solution of the
form λ ≤ cχ for any finite constant c ≥ 0.

Proof. Solving the quadratic inequality for λ gives:

0 ≤ λ ≤
βχ+

√
χ(4αγ + β2χ)

2α
.

We search for a positive constant c such that λ ≤ βχ+
√

χ(4αγ+β2χ)

2α ≤ cχ, or equivalently,

1

2α

(
β +

√
4αγ

χ
+ β2

)
≤ c.

By observing that when α, β, γ are all positive constants and as χ→ 0, c→∞, we conclude that no
such finite constant c exists.

We first define the maximizer for the regularized function r(x)⊤λ− ν
2 ∥λ∥

2
. Since the function is

strongly-concave w.r.t. λ, the maximizing λ is unique. Specifically we denote

λ⋆(x) := argmax
λ∈Λ(x)

{
r(x)⊤λ− ν

2
∥λ∥2

}
. (10)

Now we are ready to show an important lemma regarding to λ⋆(x).

Lemma C.8 (Continuity of the max. of reg. functions). For any adversarial Markov game Γ, λ⋆(x)
defined in (10) is (1/2, L⋆)-Hölder continuous, specifically

∥λ∗(x1)− λ∗(x2)∥ ≤ L⋆ ∥x1 − x2∥1/2 ,

where L⋆ := 2(n)1/4

ν(1−γ)3/2
|S|1/2 (

∑n
k=1 |Ak|+ |B|)

3
4 .

Proof. Consider team policies, x1,x2. It holds true for the unique maximizers λ⋆(x1),λ
⋆(x2) of

the adversary’s regularized value function that,(
r(x1)− νλ⋆(x1)

)⊤
(λ1 − λ⋆(x1)) ≤ 0, ∀λ1 ∈ Λ(x1); (11)(

r(x2)− νλ⋆(x2)
)⊤

(λ2 − λ⋆(x2)) ≤ 0, ∀λ2 ∈ Λ(x2),

where Λ(x) is the set of feasible state-action visitation measures of the adversary given team’s policy
x. To bound the distance between the two vectors λ⋆(x1),λ

⋆(x2), we observe that for any measure
λ ∈ Λ(x1) ∪ Λ(x2), there exist a measure λ1 ∈ Λ(x1) that shares the same adversary’s policy y as
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in λ. It then follows from Lemma C.2 that
∥∥λ1 − λ

∥∥ ≤ Lλ ∥x1 − x2∥. Therefore we have for all
λ ∈ Λ(x1),

(r(x1)− νλ⋆(x1))
⊤ (

λ− λ⋆(x1)
)
= (r(x1)− νλ⋆(x1))

⊤ (
λ− λ1

)
+ (r(x1)− νλ⋆(x1))

⊤ (
λ1 − λ⋆(x1)

)
≤ Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥. (12)

Where the last inequality follows from (11) and the fact that ∥r(x)− νλ⋆(x)∥ ≤√
|S||B|

(
1 + ν

1−γ

)
for any x ∈ X . Similarly, it also holds that for all λ ∈ Λ(x1),(

r(x2)− νλ⋆(x2)
)⊤ (

λ− λ⋆(x2)
)
≤ Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥. (13)

Plugging in λ← λ⋆(x2) and λ← λ⋆(x1) into (12) and (13) respectively(
r(x1)− νλ⋆(x1)

)⊤
(λ⋆(x2)− λ⋆(x1)) ≤ Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥,(

r(x2)− νλ⋆(x2)
)⊤

(λ⋆(x1)− λ⋆(x2)) ≤ Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥.

Adding the two inequalities results in(
(r(x1)− νλ⋆(x1))− (r(x2)− νλ⋆(x2))

)⊤
(λ⋆(x1)− λ⋆(x2))

≤ 2Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥. (14)

On the other hand, since r(x)⊤λ− ν
2∥λ∥

2 is ν-strongly concave in λ, we have for all λ1 ∈ Λ(x1).

(λ1 − λ⋆(x1))
⊤
(
(r(x1)− νλ1)− (r(x1)− νλ⋆(x1))

)
+ ν∥λ1 − λ⋆(x1)∥2 ≤ 0.

We again use the fact that for every λ ∈ Λ, it holds that there exists λ1 ∈ Λ(x1) s.t. ∥λ − λ1∥ ≤
Lλ∥x1 − x2∥. Therefore it holds that for any λ ∈ Λ,

0 ≥
(
λ1 + (λ− λ)− λ⋆(x1)

)⊤ ( (
r(x1)− νλ1 + (λ− λ)

)
− (r(x1)− νλ⋆(x1))

)
+ ν∥λ1 + (λ− λ)− λ⋆(x1)∥2

=
(
(λ− λ⋆(x1)) + (λ1 − λ)

)⊤ ( (
r(x1)− νλ1 + (λ− λ)

)
− (r(x1)− νλ⋆(x1))

)
+ ν∥λ1 − λ∥2 + ν∥λ− λ⋆(x1)∥2 + 2ν

〈
λ1 − λ,λ− λ⋆(x1)

〉
=
(
λ− λ⋆(x1)

)⊤ ( (
r(x1)− νλ1 + (λ− λ)

)
− (r(x1)− νλ⋆(x1))

)
+ ν∥λ1 − λ∥2 + ν∥λ− λ⋆(x1)∥2 + 2ν

〈
λ1 − λ,λ− λ⋆(x1)

〉
+
(
λ1 − λ

)⊤ ( (
r(x1)− νλ1 + (λ− λ)

)
− (r(x1)− νλ⋆(x1))

)
.

Rearranging, we have(
λ− λ⋆(x1)

)⊤ ( (
r(x1)− νλ

)
− (r(x1)− νλ⋆(x1))

)
+ ν∥λ− λ⋆(x1)∥2

≤ −ν
(
λ− λ⋆(x1)

)⊤ (
λ− λ1

)︸ ︷︷ ︸
Ω1

−ν∥λ1 − λ∥2 − 2ν
〈
λ1 − λ,λ− λ⋆(x1)

〉︸ ︷︷ ︸
Ω2

−(λ1 − λ)⊤
( (

r(x1)− νλ1 + ν(λ− λ)
)
− (r(x1)− νλ⋆(x1))

)
︸ ︷︷ ︸

Ω3

.

We bound Ω1,Ω2, and Ω3 separately.
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• For Ω1, since ∥λ− λ1∥ ≤ Lλ∥x1 − x2∥, we have

Ω1 ≤
∣∣∣ν (λ− λ⋆(x1)

)⊤ (
λ− λ1

)∣∣∣ ≤ ν
∥∥λ− λ⋆(x1)

∥∥∥∥λ− λ1

∥∥
≤ 2ν

1− γ

√
|S||B| · Lλ∥x1 − x2∥.

Where we use the fact that
∥∥λ− λ⋆(x1)

∥∥ ≤ ∥∥λ∥∥+ ∥λ⋆(x1)∥ and ∥λ∥ ≤ ∥λ∥1 = 1
1−γ .

• For Ω2, only the second term is possibly non-negative, it holds that∣∣〈λ1 − λ,λ− λ⋆(x1)
〉∣∣ ≤ Lλ∥x1 − x2∥

2

1− γ

√
|S||B|.

Resulting in

Ω2 ≤
4ν

1− γ

√
|S||B|Lλ∥x1 − x2∥.

• For Ω3:

Ω3 ≤
∣∣∣(λ1 − λ)⊤

(
− νλ1 + νλ⋆(x1)

)∣∣∣ ≤ 2ν

1− γ

√
|S||B|Lλ∥x1 − x2∥.

Finally, by putting the bounds of Ω1,Ω2,Ω3 and setting L′ := 8ν
1−γ

√
|S||B|Lλ, we have for all

λ ∈ Λ,(
λ− λ⋆(x1)

)⊤ ((
r(x1)− νλ

)
−
(
r(x1)− νλ⋆(x1)

))
+ ν∥λ− λ⋆(x1)∥2 ≤ L′∥x1 − x2∥,

(15)

Concluding, we plug λ← λ⋆(x2) in (15), resulting

(λ⋆(x2)− λ⋆(x1))
⊤ ((

r(x1)− νλ⋆(x2)
)
−
(
r(x1)− νλ⋆(x1)

))
+ ν∥λ⋆(x2)− λ⋆(x1)∥2

≤ L′∥x1 − x2∥.
(16)

Adding (14) and (16), we have

2Lλ

√
|S||B|

(
1 +

ν

1− γ

)
∥x1 − x2∥+ L′∥x1 − x2∥

≥ (λ⋆(x2)− λ⋆(x1))
⊤
((r(x1)− νλ⋆(x1))− (r(x2)− νλ⋆(x2)))

+ (λ⋆(x2)− λ⋆(x1))
⊤ ((

r(x1)− νλ⋆(x2)
)
−
(
r(x1)− νλ⋆(x1)

))
+ ν∥λ⋆(x2)− λ⋆(x1)∥2

= (λ⋆(x2)− λ⋆(x1))
⊤
(
(r(x1)− νλ⋆(x2))− (r(x2)− νλ⋆(x2))

)
+ ν∥λ⋆(x2)− λ⋆(x1)∥2.

Rearranging we get

ν∥λ⋆(x2)− λ⋆(x1)∥2 ≤ (λ⋆(x2)− λ⋆(x1))
⊤
(
(r(x2)− νλ⋆(x2))− (r(x1)− νλ⋆(x2))

)
+ L′′∥x1 − x2∥
≤ Lr∥λ⋆(x2)− λ⋆(x1)∥∥x1 − x2∥+ L′′∥x1 − x2∥,

where L′′ := 2
(
1 + ν

1−γ

)√
|S||B|Lλ + L′ =

(
2 + 10ν

1−γ

)√
|S||B|Lλ.

By setting λ = ∥λ⋆(x2)− λ⋆(x1)∥ and χ = ∥x1 − x2∥, we consider the inequality νλ2 ≤
Lrλχ+ L′′χ with coefficients ν, Lr, L

′′ ≥ 0 and variables λ and χ. Choosing α← ν, β ← Lr, and
γ ← L′′ , then Proposition C.2 implies that λ⋆(x) is not Lipschitz-continuous w.r.t the team policy

x. Hence, we consider a solution of the form 0 ≤ λ ≤ βχ+
√

χ(4αγ+β2χ)

2α ≤ cχp, where 1
2 − p ≥ 0.

We choose p = 1
2 since it yields the best convergence rate from Theorem B.1. Solving the above

inequality with p = 1
2 gives that
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• if χ = 0, the inequality holds trivially;

• if χ > 0, we have

c ≥
βχ+

√
χ(4αγ + β2χ)

2α
√
χ

=
β
√
χ

2α
+

√
4αγ + β2χ

2α
.

Since χ = ∥x1 − x2∥ ≤
√
n|S|DiamXi =

√
2n|S|, by plugging in the coefficients, we have

c =
1

ν

√
2L2

rX + 4νL′′ ≤ 2(n)1/4

ν(1− γ)3/2
|S|1/2

(
n∑

k=1

|Ak|+ |B|

) 3
4

.

By setting L⋆ = c, we conclude that

∥λ∗(x1)− λ∗(x2)∥ ≤ L⋆ ∥x1 − x2∥1/2 .

We are now ready to show that Φν(x) is weakly-smooth.
Theorem C.2 (Hölder Continuous Max Value Func.). Let function Φν(x) be the maximum function
of the regularized value function, Φν(x) := maxy∈Y V ν

ρ (x,y). It is the case that,

• Φν is differentiable,

• ∇xΦ
ν is (1/2, ℓ1/2)-Hölder continuous, i.e,

∥∇xΦ
ν(x)−∇xΦ

ν(x′)∥ ≤ ℓ1/2 ∥x− x′∥1/2 ,

with ℓ1/2 :=
30n

1
4 |S|

5
4 (

∑
i |Ai|+|B|)

2

ν mins ρ(s)(1−γ)
13
2

.

Proof. Since Φν(x) has a unique maximizer λ ∈ Λ(x), by applying Danskin’s Theorem [8] and the
“1–1” correspondence between λ and y (Theorem C.1), we have

∥∇xΦ
ν(x)−∇xΦ

ν(x′)∥ =
∥∥∇xV

ν
ρ (x,y(λ⋆(x)))−∇xV

ν
ρ (x′,y(λ⋆(x′)))

∥∥
≤ ℓν (∥x− x′∥+ ∥y(λ⋆(x))− y(λ⋆(x′))∥)
≤ ℓν(∥x− x′∥+ Lλinv

∥λ⋆(x)− λ⋆(x′)∥)

≤ ℓν

(
(2n|S|) 1

4 + Lλinv
L⋆

)
· ∥x− x′∥

1
2 .

Where in the last inequality we used Lemma C.8 and the fact that ∥x− x′∥ ≤
√
2n|S|. Plugging in

the coefficients in Lemma C.8, Lemma C.3, and Lemma C.4, it yields that

∥∇xΦ
ν(x)−∇xΦ

ν(x′)∥ ≤
30n

1
4 |S| 54 (

∑
i |Ai|+ |B|)2

νmins ρ(s)(1− γ)
13
2

· ∥x− x′∥
1
2 .

C.4 Analysis of ISPNG: Proof of Theorem 3.3

In this part we show that Algorithm 1 converges to an ϵ-NE. Essentially, Algorithm 1 implements
projected gradient descent on the regularized maximum function Φν : X → R with a stochastic
ϑ-inexact gradient oracle. Function Φν is Hölder-continuous (see Theorem C.2) and as such we can
invoke Theorem C.3 to prove convergence to an ϵ-FOSP.

The inexactness of the gradient oracle, ϑ, is the sum of two error sources:

1. the fact that the adversary can only approximately maximize the regularized value function
V ν
ρ (x,y) — the iteration and sample complexity of maximizing V ν

ρ (x, ·) is provided in Theo-
rem C.4;
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2. the exact estimation of ∇Φν requires estimation of the adversary’s policy y — as we assume that
the agents do not observe each other’s actions this is impossible. Nevertheless, in Lemma C.9 it is
proven that the inexactness error is bounded and controlled through the regularizer’s coefficient ν.

After quantifying ϑ as the function of the latter two terms, the optimality gap of Algorithm 2 and a
term that scales with O(ν), we can tune the rest of the parameters accordingly.

The resulting ϵ-FOSP, thanks to the gradient domination property (Lemma C.7), corresponds to an
ϵ-NE.

Bounding the error of the inexact gradient. Following, we prove that the inexactness error of the
gradient oracle is bounded by a function of the controllable parameter ν.
Lemma C.9 (Inexact gradient). Let V ν

ρ (x,y) := Vρ(x,y) − ν
2

∑
s ∥dx,y(s)y(s)∥2, yν(x) :=

argmaxy{V ν
ρ (x,y)}, and g(x) := ∇xV (x,yν(x)). Then, it holds that

∥g(x)−∇xV
ν
ρ (x,y)∥2 ≤

ν|S| 12 (
∑n

i=1 |Ai|+ |B|)
(1− γ)3

.

Proof. We observe that

∥g(x)−∇xV
ν
ρ (x,y)∥ =

∥∥∥∇x

(
−ν

2
∥λ(y;x)∥2

)∥∥∥
= ν ∥λ(y;x)∥ ∥∇xλ(y;x)∥

≤ ν

1− γ
Lλ.

Where in the last inequality we use the fact that ∥λ∥ ≤ 1
1−γ and ∇xλ(y;x) ≤ Lλ.

Learning an ϵ-NE. We can now compile the intermediate statements to guarantee that ISPNG
computes an ϵ-NE for any desired accuracy ϵ > 0 within a finite number of iterations and samples.
Theorem C.3. Consider an adversarial team Markov game Γ and Algorithm 1, ISPNG, with an
outer-loop parameter tuning of:

• T =
1061683200D5

mn
1
2 |S|

9
2 (

∑n
i=1 |Ai|+|B|)

6

(1−γ)24(mins ρ(s))2ϵ5 ;

• ηx = (mins ρ(s))2(1−γ)22ϵ3

33177600D3
mn

1
2 |S|

9
2 (

∑n
i=1 |Ai|+|B|)

6 ;

• ζx = (1−γ)3ϵ

6Dm|S|(
∑n

i=1 |Ai|+|B|)
3
2
;

• M =
2034D3

m|S|(
∑n

i=1 |Ai|+|B|)
7
2

(1−γ)10(mins ρ(s))4ϵ3 max

{
(1−γ)4(mins ρ(s))4(

∑n
i=1 |Ai|+|B|)

|S| , 9
2

}
.

Also, let the tuning of the inner-loop subroutine Algorithm 2 (VIS-REG-PG) be:

• ν = (1−γ)4ϵ

48Dm|S|(
∑n

i=1 |Ai|+|B|)
;

• Ty = Õ
(

D5
m|S|6(

∑n
i=1 |Ai|+|B|)9

(1−γ)21(mins ρ(s))4ϵ5

)
;

• ηy = (1−γ)28(mins ρ(s))4ϵ4

978447237120D4
m|S|5(

∑n
i=1 |Ai|+|B|)8 ;

• ζy = (1−γ)15(mins ρ(s))2ϵ3

18432D2
m|S|

7
2 (

∑n
i=1 |Ai|+|B|)6

;

• K =
19365101568D4

m|S|7(
∑n

i=1 |Ai|+|B|)
12

(1−γ)36(mins ρ(s))4ϵ6 ;
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• H = 2
1−γ log

(
2293235712D4

m|S|4(
∑n

i=1 |Ai|+|B|)6
(1−γ)22(mins ρ(s))2ϵ4

)
.

It is the case that the output of the algorithm, (x∗,y∗), will be an ϵ-NE in expectation. Specifically,
we have

E
[
Vρ(x

∗,y∗)− min
x′

i∈Xi

Vρ(x
′
i,x

∗
−i,y

∗)

]
≤ ϵ, ∀i ∈ [n]

and

E
[
max
y′∈Y

Vρ(x
∗,y′)− Vρ(x

∗,y∗)

]
≤ ϵ.

Proof. Let x∗,y∗ be the final output of the algorithm, from Lemma C.7, we have

E
[
Vρ(x

∗,y∗)− min
x′

i∈Xi

Vρ(x
′
i,x

∗
−i,y

∗)

]
≤ 1

1− γ
DmE

[
max
x′

i

(−∇Vρ(x
∗,y∗))

⊤
(x′

i − x∗
i )

]
+

2Dmζ|S| (
∑n

i=1 |Ai|+ |B|)L
1− γ

≤ 1

1− γ
DmE

[
max
x′

i

(
−∇V ν

ρ (x∗,y∗)
)⊤

(x′
i − x∗

i )

]
+

ν

1− γ
LλDiamXi

+
2Dmζ|S| (

∑n
i=1 |Ai|+ |B|)L
1− γ

. (17)

Where (17) follows from Lemma C.9. As for the first term of (17), let us define y⋆(x) =
argmaxy∈Y V ν

ρ (x,y) and x+ = ProjX
(
xt∗−1 − ηx∇Vρ(x

t∗−1,y⋆(xt∗−1))
)
. Then it holds that,

E
[
max
x′

i

{(
−∇V ν

ρ (x∗,y∗)
)⊤

(x′
i − x∗

i )
}]

= E
[
max
x′

i

{(
−∇V ν

ρ (x+
i ,x

∗
−i,y

⋆(x+))
)⊤

(x′
i − x∗

i )

+
(
∇V ν

ρ (x+
i ,x

∗
−iy

⋆(x+))−∇V ν
ρ (x∗,y∗)

)⊤
(x′

i − x∗
i )
}]

≤ E
[
max
x′

i

{(
−∇V ν

ρ (x+
i x

∗
−i,y

⋆(x+))
)⊤

(x′
i − x+

i )
}]

+ LνE
[∥∥x+

i − x∗
i

∥∥]
+ E

[∥∥∇V ν
ρ (x+

i ,x
∗
−i,y

⋆(x+))−∇V ν
ρ (x∗,y∗)

∥∥] ·DiamXi
(18)

≤ E
[
max
x′

i

{(
−∇V ν

ρ (x+
i ,x

∗
−i,y

⋆(x+))
)⊤

(x′
i − x+

i )
}]

+ LνE
[∥∥x+

i − x∗
i

∥∥]
+ ℓν

(
E
[∥∥x+ − x∗∥∥]+ E

[∥∥y⋆(x+)− y∗∥∥]) ·DiamXi
(19)

≤ E
[
max
x′

i

{(
−∇V ν

ρ (x+
i ,x

∗
−i,y

⋆(x+))
)⊤

(x′
i − x+

i )
}]

+ LνE
[∥∥x+

i − x∗
i

∥∥]
+ ℓν

(
E
[∥∥x+ − x∗∥∥]+ E

[∥∥y⋆(x+)− y⋆(x∗)
∥∥]+ E [∥y⋆(x∗)− y∗∥]

)
·DiamXi

.

Where

• Equation (18) is due to
∥∥∇V ν

ρ (x,y)
∥∥ ≤ Lν ;

• Equation (19) follows from the fact that V ν
ρ (x,y) is ℓν-smooth.
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By choosing parameters specified above and combining Corollaries B.1 and B.2, Theorem C.4,
Lemma C.12, and Claim B.1, we have the desired result. On the other hand, since

E
[
max
y′∈Y

Vρ(x
∗,y′)− Vρ(x

∗,y∗)

]
≤ E

[
max
y′∈Y

V ν
ρ (x∗,y′)− V ν

ρ (x∗,y∗)

]
+

ν

(1− γ)2

= E
[
V ν
ρ (x∗,y⋆(x∗))− V ν

ρ (x∗,y∗)
]
+

ν

(1− γ)2
(20)

≤ LνE [∥y⋆(x∗)− y∗∥] + ν

(1− γ)2
.

Where in (20) we use the fact that ∥λ∥2 ≤ 1
(1−γ)2 . Combining Theorem C.4, Lemma C.12, and

choosing parameters specified above gives the desired result.

C.5 Visitation-Regularized Policy Gradient Analysis

In this section, we consider the direct parameterization for the policy of the adversary. For any policy
y ∈ Y , for any state s ∈ S and any action b ∈ B, we have

y(b|s) = ys,b.

Where ys,b denotes (s, b)th entry of the policy vector y. In this section, we mainly focus on solving
the following policy optimization problem:

max
y∈yζ

V ν
ρ (x,y) := max

y∈Yζ

{
r(x)⊤λ(y;x)− ν

2
∥λ(y;x)∥2

}
. (21)

Where λ(y;x) is the state-action visitation measure under policy y as in Definition 2.4. r(x) is the
induced pay-off vector for the adversary when the team is playing according to strategy x and ν is the
regularization coefficient. Then by policy gradient theorem [113], denote F ν(λ(y;x)) = V ν

ρ (x,y)
we have
∇yF

ν(λ(y;x)) = [∇yλ(y;x)]
⊤
(r(x)− νλ(y;x))

= Eρ,y

[ ∞∑
h=0

γh · (r(x)− νλ(y;x))sh,bh ·

(
h∑

h′=0

∇y log y(b′h|sh′)

)]
.

Given the direct parameterization, we can show the following lemmas:
Lemma C.10. For any adversarial policy y and state-action pair (s, b), we have ||∇y log y(b|s)|| ≤ 1

ζ ,
||∇2

y log y(b|s)|| ≤ 1
ζ2 , and ||∇yF

ν(λ(y;x))|| ≤ 1
(1−γ)2ζ + ν

(1−γ)3ζ for any fixed x.

Proof. By direct parameterization y(b|s) = ys,b, we have

∥∇y log y(b|s)∥ = ∥∇y log ys,b∥ =
∥∥∥∥ 1

ys,b
es,b

∥∥∥∥ ≤ 1

ζ
. (22)

Where es,b denotes the standard basis for the (s, b)th entry. Similarly, we have

∥∇2
y log y(b|s)∥ =

∥∥∥∥∥diag
(

1

y2s,b

)∥∥∥∥∥ ≤ 1

ζ2
. (23)

Where diag(·) denotes the standard diagonal matrix. For the policy gradient, we show that

∥∇yF
ν(λ(y;x))∥ =

∥∥∥[∇yλ(y;x)]
⊤
(r(x)− νλ(y;x))

∥∥∥
=
∥∥∥E[ ∞∑

h=0

γh · (r(x)shbh − νλ(y;x)shbh) ·

(
h∑

h′=0

∇y log y(bh′ |sh′)

)]∥∥∥
≤

∞∑
h=0

γh · (1 + ν

1− γ
) · (h+ 1) · 1

ζ
(24)

≤ 1

(1− γ)2ζ
+

ν

(1− γ)3ζ
.

Where (24) is due to (22).
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Before we proceed to show the convergence towards global optimality for (21), we first define the
notion of Moreau envelope and the proximal point.

Definition C.3 (Moreau Envelope and Proximal Point). For any y ∈ Yζ , we use F ν
1/β(λ(y;x))to

denote the Moreau envelope of function F ν(λ(y;x)) such that

F ν
1/β(λ(y;x)) := max

z∈Yζ

{
F ν(λ(z;x))− β

2
∥λ(z;x)− λ(y;x)∥2

}
.

Moreover, we define the proximal point ŷ1/β of Moreau envelope as following:

ŷ := argmax
z∈Yζ

{
F ν(λ(y;x))− β

2
∥λ(z;x)− λ(y;x)∥2

}
.

Now we proceed to show the following lemma:

Lemma C.11. When running Algorithm 2, for any t ≥ 0, we have

E
[∥∥∥y(t+1) − ŷ(t)

∥∥∥2 ∣∣∣y(t)

]
≤(1− ηyβ)

∥∥∥y(t) − ŷ(t)
∥∥∥2 + 2(1− ηyβ)ηy(1 + ηyℓν) · C3γH

+ η2yE
[∥∥∥∇yF

ν(λ(y(t);x))− ĝ(t)
y )
∥∥∥2 ∣∣∣y(t)

]
.

Where C3 =
√
|S||B| 6H

(1−γ)3ζ .

Proof.

E
[
∥yt+1−ŷ(t)∥2|y(t)

]
=E

[
∥ProjY(y(t)+ηy ĝ

(t)
y )−ProjY((1−ηyβ)ŷ

(t)+ηyβy
(t)+ηy∇yF

ν(λ(ŷ(t);x)))∥2|y(t)
]

(25)

≤E
[
∥y(t)+ηy ĝ

(t)
y −((1−ηyβ)ŷ

(t)+ηyβy
(t)+ηy∇yF

ν(λ(ŷ(t);x)))∥2|y(t)
]

=E
[
∥(1−ηyβ)(y

(t)−ŷ(t))+ηy(∇yF
ν(λ(ŷ(t);x))−ĝ(t)

y )∥2|y(t)
]

=E
[
∥(1−ηyβ)(y

(t)−ŷ(t))+ηy(∇yF
ν(λ(ŷ(t);x))−∇yF

ν(λ(y(t);x)))+ηy(∇yF
ν(λ(y(t);x))−ĝ(t)

y )∥2|y(t)
]

=∥(1−ηyβ)(y
(t)−ŷ(t))+ηy(∇yF

ν(λ(ŷ(t);x))−∇yF
ν(λ(y(t);x)))∥2

+2(1−ηyβ)ηyE[⟨(y(t)−ŷ(t))−ηy(∇yF
ν(λ(ŷ(t);x))−∇yF

ν(λ(y(t);x))),∇yF
ν(λ(y(t);x))−ĝ(t)

y )⟩|y(t) ]

+η2
yE

[
∥∇yF

ν(λ(y(t);x))−ĝ(t)
y )∥2|y(t)

]
. (26)

Where (25) follows from Lemma 3.2 in [34]. For the first part of (26), we have∥∥∥(1− ηyβ)(y
(t) − ŷ(t)) + ηy

(
∇yF

ν(λ(ŷ(t);x))−∇yF
ν(λ(y(t);x))

)∥∥∥2
=(1− ηyβ)

2
∥∥∥y(t) − ŷ(t)

∥∥∥2 + η2y

∥∥∥∇yF
ν(λ(ŷ(t);x))−∇yF

ν(λ(y(t);x))
∥∥∥2

+ 2(1− ηyβ)ηy

〈
y(t) − ŷ(t),∇yF

ν(λ(ŷ(t);x))−∇yF
ν(λ(y(t);x))

〉
≤(1− ηyβ)

2
∥∥∥y(t) − ŷ(t)

∥∥∥2 + η2yℓ
2
ν

∥∥∥y(t) − ŷ(t)
∥∥∥2 + 2(1− ηyβ)ηyℓν

∥∥∥y(t) − ŷ(t)
∥∥∥2 (27)

=(1− ηyβ)

(
1− ηyβ + 2ηyℓν +

η2yℓ
2
ν

1− ηyβ

)∥∥∥y(t) − ŷ(t)
∥∥∥2 .

Where (27) follows from Lemma C.4. By setting ηy, β such that 2ηyℓν ≤ ηyβ
2 , and

η2
yℓ

2
ν

1−ηyβ
≤ ηyβ

2 ,

we have ∥∥∥(1− ηyβ)(y
(t) − ŷ(t)) + ηy(∇yF

ν(λ(ŷ(t);x))−∇yF
ν(λ(y(t);x)))

∥∥∥2
≤ (1− ηyβ)

∥∥∥y(t) − ŷ(t)
∥∥∥2 . (28)
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For the third part in (26), we have

2(1−ηyβ)ηyE[⟨(y(t)−ŷ(t))−ηy(∇yF
ν(λ(ŷ(t);x))−∇yF

ν(λ(y(t);x))),∇yF
ν(λ(y(t);x))−ĝ(t)

y )⟩|y(t) ]

≤2(1−ηyβ)ηy∥(y(t)−ŷ(t))−ηy(∇yF
ν(λ(ŷ(t);x))−∇yF

ν(λ(y(t);x)))∥·E[∥∇yF
ν(λ(y(t);x))−ĝ(t)

y )∥|y(t) ]

≤2(1−ηyβ)ηy(1+ηyℓν)·∥y(t)−ŷ(t)∥·E[∥∇yF
ν(λ(y(t);x))−ĝ(t)

y )∥] (29)
≤2(1−ηyβ)ηy(1+ηyℓν)·C3γ

H . (30)

Where

• C3 =
√
|S||B| 6H

(1−γ)3ζ ;

• (29) follows from Lemma C.4;

• (30) is due to Lemma C.14.

Combine (26), (28), and (30), we have

E
[∥∥∥yt+1 − ŷ(t)

∥∥∥2 ∣∣∣y(t)

]
≤(1− ηyβ)

∥∥∥y(t) − ŷ(t)
∥∥∥2 + 2(1− ηyβ)ηy(1 + ηyℓν) · C3γH

+ η2yE
[∥∥∥∇yF

ν(λ(y(t);x))− ĝ(t)
y )
∥∥∥2 ∣∣∣y(t)

]
.

We then show the result for convergence to optimality for (21).

Theorem C.4. By setting ηy = νϵ
10ℓνσ2L2

λinv

and H = 2 log(1/νϵ)
1−γ . After running Algorithm 2 for

T = O
(

ℓνL
2
λinv

ν log
(
1
ϵ

)
+

ℓνσ
2L4

λinv

ν2ϵ log
(
1
ϵ

))
iterations, we have

E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y(T );x))
]
≤ ϵ.

Where y⋆
ζ is the unique maximizer for the optimization problem (21).

Proof. From Theorem 1 in [43], by setting β = 4ℓν , α ≤ 2ηyℓν , and ηy ≤ 2
9ℓν

. Then for any
z ∈ Yζ , we have

E
[
F ν
1/β(λ(y

(t+1);x))
]

≥E
[
F ν(λ(z;x))− (1 + s)

β

2

∥∥∥ŷ(t) − y(t+1)
∥∥∥2 − (1 + 1

s

)
β

2

∥∥∥ŷ(t) − z
∥∥∥2]

≥E
[
F ν(λ(z;x))− (1 + s)(1− ηyβ)

β

2

∥∥∥y(t) − ŷ(t)
∥∥∥2]

−
(
1 +

1

s

)
β

2
E[
∥∥∥ŷ(t) − z

∥∥∥2]− 2ηy(1 + s)(1− ηyβ)(1 + ηyℓν) · C3γH

− (1 + s)
β

2
η2yE

[∥∥∥∇yF
ν(λ(y(t);x))− ĝ(t)

y )
∥∥∥2 ∣∣∣y(t)

]
. (31)

Where (31) is due to Lemma C.11. By setting s =
ηyβ
2 , we have (1 + s)(1 − ηyβ) ≤ 1 − ηyβ

2 ,
1 + s ≤ 2, and 1 + 1

s ≤
3

ηyβ
. From Theorem 1 in [43], we get

E
[
F ν
1/β(λ(y

(t+1);x))
]

≥(1− α)E
[
F ν
1/β(λ(y

(t);x))
]
+ αF ν(λ(y⋆

ζ ;x))− βη2yE
[∥∥∥∇yF

ν(λ(y(t);x))− ĝ(t)
y )
∥∥∥2 ∣∣∣y(t)

]
−

(
3L2

λinv
α2

2ηy
− (1− α)αν

2

)
E
[∥∥∥λ(ŷ(t);x)− λ(y⋆

ζ ;x)
∥∥∥2]− 2ηy(1− α)(1 + ηyℓν) · C3γH .
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Define Λt := E
[
F ν(λ(y⋆

ζ ;x))− F ν
1/β(λ(y

(t);x))
]
, by setting

(
3L2

λinv
α2

2ηy
− (1−α)αν

2

)
≤ 0, we

have

Λt+1 ≤ (1− α)Λt + βη2yE
[∥∥∥∇yF

ν(λ(y(t);x))− ĝ(t)
y )
∥∥∥2 ∣∣∣y(t)

]
+ 2ηy(1− α)(1 + ηyℓν) · C3γH .

Summing over T iterations, and denote E
[∥∥∥∇yF

ν(λ(y(t);x))− ĝ
(t)
y )
∥∥∥2 ∣∣y(t)

]
= σ2, we get

ΛT ≤ (1− α)TΛ0 +
4ℓνη

2
y

α
σ2 +

2ηy(1− α)(1 + ηyℓν)

α
· C3γH .

By setting H = 2 log(1/νϵ)
1−γ , α ≤ min

{
2ηyℓν ,

νηy

2L2
λinv

}
, and ηy = 2

9ℓν
, νϵ
10ℓνσ2L2

λinv

, after

T = O

(
ℓνL

2
λinv

ν
log

(
1

ϵ

)
+

ℓνσ
2L4

λinv

ν2ϵ
log

(
1

ϵ

))
.

iterations, we get ΛT ≤ ϵ. Where σ2 = C1

K + C2 · γ2H , C1 = 57
(1−γ)6ζ2 , C2 = 126H2

(1−γ)6ζ2 , C3 =√
|S||B| 6H

(1−γ)3ζ . Since F ν(λ(y;x)) is smooth with respect to the state-action visitation measure
λ(y;x). We have

ΛT = E
[
F ν(λ(y⋆

ζ ;x))− F ν
1/β(λ(y

(T );x))
]

= E
[
F ν(λ(y⋆

ζ ;x))−max
z∈Y

{
F ν(λ(z;x))− β

2

∥∥∥λ(z;x)− λ(y(T );x)
∥∥∥2}]

≥ E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y(T );x)) +
β

2

∥∥∥λ(y(T );x)− λ(y(T );x)
∥∥∥2]

= E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y(T );x))
]
.

Therefore

E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y(T );x))
]
≤ ΛT ≤ ϵ.

Define y⋆ ∈ Y such that y⋆ = argmaxy∈Y
{
r(x)⊤λ(y;x)− ν

2∥λ(y;x)∥
2
}

. We bound the
distance between the the optimal y⋆ and y(T ) from Algorithm 2.

Lemma C.12. For any y ∈ Yζ , if E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y;x))
]
≤ ϵ, then we have

E [∥y⋆ − y∥] ≤ Lλinv

(√
8Lλ|B|ζ
(1− γ)ν

+

√
2ϵ

ν

)
.

Proof. Since F ν(λ(y;x)) is ν-strongly concave with respect to λ(y;x), we have

F ν(λ(y⋆
ζ ;x)) ≥ F ν(λ(y;x)) +

〈
∇λF

ν(λ(y⋆
ζ ;x)),λ(y

⋆
ζ ;x)− λ(y;x)

〉
+

ν

2

∥∥λ(y⋆
ζ ;x)− λ(y;x)

∥∥2 (32)

= F ν(λ(y;x)) +
ν

2

∥∥λ(y⋆
ζ ;x)− λ(y;x)

∥∥2 .
Where (32) holds because λ(y⋆

ζ ;x) is the optimal solution for F ν(λ(y;x)) for any y ∈ Y. Therefore

E
[∥∥λ(y⋆

ζ ;x)− λ(y;x)
∥∥] ≤√2

ν
· E
[
F ν(λ(y⋆

ζ ;x))− F ν(λ(y;x))
]
≤
√

2ϵ

ν
.
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From the definition of λ(y⋆
ζ ;x), it holds that for all yζ ∈ Yζ , we have〈

−∇λF
ν(λ(y⋆

ζ ;x)),λ(y
⋆
ζ ;x)− λ(yζ ;x)

〉
≤ 0. Combine with Lemma C.6 and consider

y⋆ ∈ Y, we have〈
−∇λF

ν(λ(y⋆
ζ ;x)),λ(y

⋆
ζ ;x)− λ(y⋆;x)

〉
=
〈
−∇λF

ν(λ(y⋆
ζ ;x)),λ(y

⋆
ζ ;x)− λ(yζ ;x) + λ(yζ ;x)− λ(y⋆;x)

〉
(33)

=
〈
−∇λF

ν(λ(y⋆
ζ ;x)),λ(y

⋆
ζ ;x)− λ(yζ ;x)

〉
+
〈
−∇λF

ν(λ(y⋆
ζ ;x)),λ(yζ ;x)− λ(y⋆;x)

〉
≤
〈
−∇λF

ν(λ(y⋆
ζ ;x)),λ(yζ ;x)− λ(y⋆;x)

〉
≤
∥∥∇λF

ν(λ(y⋆
ζ ;x))

∥∥ · ∥λ(yζ ;x)− λ(y⋆;x)∥

≤ 4Lλ|B|ζ
1− γ

. (34)

Where

• in (33) yζ ∈ Yζ is chosen such that ∥y⋆ − yζ∥ ≤ 2ζ|B| according to C.6;

• (34) holds because ∥∇λF
ν(λ)∥ ≤ 2

1−γ and λ(y;x) is Lλ-continuous.

Since F ν(λ) is ν-strongly concave w.r.t λ, we have
ν

2

∥∥λ(y⋆
ζ ;x)− λ(y⋆;x)

∥∥2
≤F ν(λ(y⋆

ζ ;x))− F ν(λ(y⋆;x) +
〈
∇λF

ν((λ(y⋆
ζ ;x)),λ(y

⋆;x)− λ(y⋆
ζ ;x)

〉
≤4Lλ|B|ζ

1− γ
.

Thus we conclude that

E [∥y⋆ − y∥] ≤ Lλinv
E [∥λ(y⋆;x)− λ(y;x)∥]

≤ Lλinv

(∥∥λ(y⋆;x)− λ(y⋆
ζ ;x)

∥∥+ E
[∥∥λ(y⋆

ζ ;x)− λ(y;x)
∥∥])

≤ Lλinv

(√
8Lλ|B|ζ
(1− γ)ν

+

√
2ϵ

ν

)
.
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C.6 Regarding the Gradient and Visitation Estimators

In this subsection we will quantify the bias and variance of the gradient and state-action visitation
estimators used in Algorithms 1 and 2. In particular, REINFORCE:

• the gradient estimator for team agents is implemented by sampling a trajectory with horizon
length, H , that is drawn from a geometric distribution for the team, and

• while, the state-action visitation estimators that the adversary uses come from sampled
trajectories of a fixed horizon length H .

In the former case, the estimator is unbiased while in the second case the bias decays exponentially in
H .

C.6.1 REINFORCE for Vanilla Policy Gradient

In the present work, the team agents only need to implement a batch version of REINFORCE [104].
That is, they get estimates ĝ(t)

k = 1
M

∑M
j=1 g̃

(t)
k , where:

g̃
(t)
i,j =

Hj∑
hj=1

r
(hj)
i

Hj∑
h=1

∇ log xi

(
a(hj)|s(hj)

)
, (REINFORCE)

with each Hj is a random variable following a geometric distribution with parameter (1− γ).

Although the authors of [27] use ζ-greedy parametrization in order to bound the variance of the
estimator, policies drawn from the ζ-truncated simplex imply the same inequality needed to bound
the variance. Hence, we invoke the corresponding lemma.
Lemma C.13 ([27, Lemma 2]). When Equation (REINFORCE) is implemented with H following
a geometric distribution with a parameter 1− γ, and agent k selects policies from the ζ-truncated
simplex on each state, it is the case that the gradient estimates satisfy:

E
[
ĝ
(t)
k

]
−∇xk

Vρ(x
t,yt) = 0;

E
[∥∥∥ĝ(t)

k −∇xk
Vρ(x

t,yt)
∥∥∥2] ≤ 24

|A2
k|

ζ(1− γ)
.

C.6.2 Gradient Estimation for Visitation-Regularized Policy Gradient

In this subsection we will describe (i) a state-action visitation estimator with bounded bias and
variance and (ii) a gradient estimator of the regularized value function whose bias and variance are
also bounded.

Bounding the variance of the a gradient estimator with a deterministic choice of H was significantly
less demanding than doing so with a randomized choice. This comes at the cost with a non-zero bias
that nevertheless decays exponentially in H . For any policy of the adversary y ∈ Y , we introduce the
H-horizon truncated state-action visitation measure

λH,s,b(y;x)s,b :=

H−1∑
h=0

γh P(sh = s, bh = b|y, s0 ∼ ρ). (35)

Where λH,s,b(y;x) denotes the (s, b)th entry of λH(y;x). For any reward vector r, we have

[∇yλH(y;x)]
⊤
r = E

[
H−1∑
h=0

γh · r(sh, bh) ·

(
h∑

h′=0

∇y log y(bh′ |sh′)

)∣∣∣∣y, s0 ∼ ρ

]
.

C.6.3 Controlling the Estimation Bias and Variance

In this subsection we will present a detailed analysis regarding estimators defined in Definition 2.6,
Definition 2.7, and the ones used in Algorithm 2. Particularly, in Lemma C.14 we bound the
bias of aforementioned estimators. This bias is inevitable for our analysis due to the fact we are
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sampling trajectories of a finite length H over an infinite horizon. Proceeding to Lemma C.16 and
Lemma C.17, we bound the variance of the state-action distribution measure estimator λ̂(t) and the
gradient estimator ĝ(t)

y w.r.t their biased means. Finally, in Lemma C.18, we bound the distance
between the gradient estimator ĝ(t)

y and the actual gradient ∇yF
ν(λ(y(t);x)).

Lemma C.14 (Bounded Bias of the Estimators). For any adversary’s policy y ∈ Y . We let τ =
(s0, b0, s1, b1, · · · , sH−1, bH−1) be an H-length trajectory sampled from y, then we have
Eτ∼y

[
λ̃(τ |y)

]
= λH(y;x) and Eτ∼y [g̃(τ |y; r)] = [∇yλH(y;x)]

⊤
r. This implies that in Algo-

rithm 2, E
[
λ̂(t)

]
= λH(y(t);x) and E

[
ĝ
(t)
y

]
=
[
∇yλH(y(t);x)

]⊤
r(t). Moreover, we have:

•
∥∥∥E [λ̂(t)

]
− λ(y(t);x)

∥∥∥ ≤ γH

1−γ , and

•
∥∥∥E [ĝ(t)

y

]
−∇yF

ν(λ(y(t);x))
∥∥∥ ≤ ( H+1

(1−γ)ζ + νH+ν+1
(1−γ)2ζ + ν

(1−γ)3ζ

)
· γH .

Proof. From the definition, we have

Eτ∼y

[
λ̃(τ |y)

]
= λH(y;x), Eτ∼y [g̃(τ |y; r)] = [∇yλH(y;x)]

⊤
r.

Therefore,

E
[
λ̂(t)

]
= λH(y(t);x), E

[
ĝ(t)
y

]
=
[
∇yλH(y(t);x)

]⊤
r(t).

Then it holds that∥∥∥E [λ̂(t)
]
− λ(y(t);x)

∥∥∥ =
∥∥∥λH(y(t);x)− λ(y(t);x)

∥∥∥
=

∥∥∥∥∥
∞∑

h=H

γh · P(sh = s, bh = b|y(t), s0 ∼ ρ) · esh,bh

∥∥∥∥∥
≤ γH ·

∞∑
h=0

(γh · 1)

=
γH

1− γ
.

Similarly, we have∥∥∥E [ĝ(t)
y

]
−∇yF

ν(λ(y(t);x))
∥∥∥

=

∥∥∥∥[∇yλH(y(t);x)
]⊤

r(t) −∇yF
ν(λ(y(t);x))

∥∥∥∥
=

∥∥∥∥[∇yλH(y(t);x)
]⊤
∇λF

ν(λH(y(t);x))−
[
∇yλ(y

(t);x)
]⊤
∇λF

ν(λ(y(t);x))

∥∥∥∥
≤
∥∥∥∥[∇yλH(y(t);x)

]⊤ (
∇λF

ν(λH(y(t);x))−∇λF (λ(y(t);x))
)∥∥∥∥

+

∥∥∥∥([∇yλH(y(t);x)
]⊤
−
[
∇yλ(y

(t);x)
]⊤)

∇λF
ν(λ(y(t);x))

∥∥∥∥ . (36)
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For the first part in the above inequality, we have∥∥∥∥[∇yλH(y(t);x)
]⊤ (
∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

)∥∥∥∥
=

∥∥∥∥∥
H−1∑
h=0

γh ·
(
∂F ν(λH(y(t);x))

∂λsh,bh

− ∂F ν(λ(y(t);x))

∂λsh,bh

)
·

(
h∑

h′=0

∇y log y(t)(bh′ |sh′)

)∥∥∥∥∥
≤

∞∑
h=0

γh ·
∥∥∥∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

∥∥∥
∞
·

∥∥∥∥∥
( ∞∑

h′=0

∇y log y(t)(bh′ |sh′)

)∥∥∥∥∥
≤

∞∑
h=0

γh ·
∥∥∥νλH(y(t);x)− νλ(y(t);x)

∥∥∥
∞
·

∥∥∥∥∥
( ∞∑

h′=0

∇y log y(t)(bh′ |sh′)

)∥∥∥∥∥
≤

∞∑
h=0

γh · ν∥λH(y(t);x)− λ(y(t);x)∥1 · (h+ 1) · 1
ζ

(37)

≤ ν

(1− γ)2ζ
· ∥λH(y(t);x)− λ(y(t);x)∥1

≤ ν

(1− γ)2ζ
·

∑
s,b

∞∑
h=H

γh · P(sh = s, bh = b|y, s0 ∼ ρ)


≤ ν

(1− γ)3ζ
· γH . (38)

For the second part in (36), we have∥∥∥∥([∇yλH(y(t);x)
]⊤
−
[
∇yλ(y

(t);x)
]⊤)

∇λF
ν(λ(y(t);x))

∥∥∥∥
=

∥∥∥∥∥E
[ ∞∑
h=H

γh · ∂F
ν(λ(y(t);x))

∂λsh,bh

·

(
h∑

h′=0

∇y log y(t)(bh′ |sh′)

)]∥∥∥∥∥
≤

∞∑
h=H

γh ·
(
1 +

ν

1− γ

)
· (h+ 1) · 1

ζ

≤
(
1 +

ν

1− γ

)
·
(
H + 1

1− γ
+

1

(1− γ2)

)
· 1
ζ
· γH

=

(
H + 1

(1− γ)ζ
+

νH + ν + 1

(1− γ)2ζ
+

ν

(1− γ)3ζ

)
· γH . (39)

Combining (36), (38), and (39), we get the result.

Before we proceed to analyze the variance of the estimators, we first show the Lipschitz continuity of
the gradient estimator.

Lemma C.15. Let τ = {s0, b0, s1, b1, · · · , sH−1, bH−1} be an arbitrary H-length trajectory. The
gradient estimator satisfies

• For any policy y, for any reward vectors r1 and r2,

∥g̃(τ |y; r1)− g̃(τ |y; r2)∥ ≤
1

(1− γ)2ζ
· ∥r1 − r2∥∞.

• For any policies y1 and y2, for any reward vectors r,

∥g̃(τ |y1; r)− g̃(τ |y2; r)∥ ≤
(

1

(1− γ)2ζ2
+

ν

(1− γ)3 ζ2

)
· ∥y1 − y2∥.
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Proof.

∥g̃(τ |y; r1)− g̃(τ |y; r2)∥ =

∥∥∥∥∥
H−1∑
h=0

γh · (r1(sh, bh)− r2(sh, bh)) ·

(
h∑

h′=0

∇y log y(bh′ |sh′)

)∥∥∥∥∥
≤

H−1∑
h=0

γh · ∥r1 − r2∥∞ · (h+ 1) · 1
ζ

(40)

≤ 1

(1− γ)2ζ
· ∥r1 − r2∥∞.

∥g̃(τ |y1, r)− g̃(τ |y2, r)∥

≤

∥∥∥∥∥
H−1∑
h=0

γh · r(sh, bh) ·

(
h∑

h′=0

(∇y log y1(bh′ |sh′)−∇y log y2(bh′ |sh′))

)∥∥∥∥∥
≤

H−1∑
h=0

γh · r(sh, bh) · (h+ 1) · 1
ζ2
· ∥y1 − y2∥ (41)

≤
(1 + ν

1−γ )

(1− γ)2ζ2
· ∥y1 − y2∥

=

(
1

(1− γ)2ζ2
+

ν

(1− γ)3ζ2

)
· ∥y1 − y2∥.

Where

• (40) follows from (22);

• (41) is because of (23).

Now we analyze the variance of the estimators in the algorithm, we start with showing the following
lemma.

Lemma C.16 (Bounded Var. of Visit. Estimator). For λ̂(t) in Algorithm 2, the variance is bounded.
It holds that

E
[
∥λ̂(t) − λH(y(t);x)∥2

]
≤ 1

K(1− γ)2
.

Where λH(y(t);x) is the truncated state-action visitation measure for λ(y(t);x) defined in (35)

Proof. It holds that

E
[∥∥∥λ̂(t) − λH(y(t);x)

∥∥∥2] = E

∥∥∥∥∥ 1

K

∑
τ∈Ki

λ̃(τ |y(t))− λH(y(t);x)

∥∥∥∥∥
2


=
1

K
· E
[∥∥∥λ̃(τ |y(t))− λH(y(t);x)

∥∥∥2] (42)

≤ 1

K
· E
[∥∥∥λ̃(τ |y(t))

∥∥∥2] (43)

≤ 1

K(1− γ)2
. (44)

Where:

• (42) is due to E
[
λ̂(t)

]
= λH(y(t);x) and the fact that trajectories τ ∈ K(t) are indepen-

dently sampled;
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• (43) is because the variance is bounded by the second moment;

• (44) is because ∥λ̃(τ |y(t)∥ ≤ 1
1−γ .

Now we analyze the variance of gradient estimator ĝ(t)
y by providing the following lemma:

Lemma C.17 (Bounded Var. of Grad. Estimator). For ĝ(t)
y in Algorithm 2, we have

E

[∥∥∥∥ĝ(t)
y −

[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]
≤ 3

K(1− γ)4ζ2
+

6ν

K(1− γ)5ζ2
+

9ν2

K(1− γ)6ζ2
.

Proof. We denote r⋆ = ∇λF
ν
(
λH(y(t);x)

)
= r(x)− νλH(y(t);x). Then we have

E

[∥∥∥∥ĝ(t)
y −

[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]

=E

∥∥∥∥∥∥ 1

K

∑
τ∈K(t)

g̃(τ |y(t); r(t))− 1

K

∑
τ∈K(t)

g̃(τ |y(t); r⋆) +
1

K

∑
τ∈K(t)

g̃(τ |y(t); r⋆)

−
[
∇yλH(y(t);x)

]⊤
r⋆ +

[
∇yλH(y(t);x)

]⊤
r⋆ −

[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]

≤3E


∥∥∥∥∥∥ 1

K

∑
τ∈K(t)

(
g̃(τ |y(t); r(t))− g̃(τ |y(t); r⋆)

)∥∥∥∥∥∥
2


+ 3E


∥∥∥∥∥∥ 1

K

∑
τ∈K(t)

g̃(τ |y(t); r⋆)−
[
∇yλH(y(t);x)

]⊤
r⋆

∥∥∥∥∥∥
2


+ 3E

[∥∥∥∥[∇yλH(y(t);x)
]⊤

r⋆ −
[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]
. (45)

Where (45) is due to Cauchy-Schwarz inequality. For the first part in (45), we have

E


∥∥∥∥∥∥ 1

K

∑
τ∈K(t)

(
g̃(τ |y(t); r(t))− g̃(τ |y(t); r⋆)

)∥∥∥∥∥∥
2


≤ 1

K

∑
τ∈K(t)

E
[∥∥∥g̃(τ |y(t); r(t))− g̃(τ |y(t); r⋆)

∥∥∥2] (46)

≤ 1

(1− γ)4ζ2
· E
[∥∥∥r(t) − r⋆

∥∥∥2
∞

]
(47)

≤ ν2

(1− γ)4ζ2
· E
[∥∥∥λ̂(t) − λH(y(t);x)

∥∥∥] (48)

≤ ν2

K(1− γ)6ζ2
. (49)

Where:

• (46) is due to Cauchy-Schwarz inequality;

• (47) follows from Lemma C.15;

• (48) follows the same proof as in (37);
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• (49) is because of Lemma C.16.

For the second part in (45), it holds that,

E


∥∥∥∥∥∥ 1

K

∑
τ∈K(t)

g̃(τ |y(t); r⋆)−
[
∇yλH(y(t);x)

]⊤
r⋆

∥∥∥∥∥∥
2


=
1

K
E

[∥∥∥∥g̃(τ |y(t); r⋆)−
[
∇yλH(y(t);x)

]⊤
r⋆
∥∥∥∥2
]

(50)

≤ 1

K
E
[∥∥∥g̃(τ |y(t); r⋆)

∥∥∥2] (51)

=
1

K
E

∥∥∥∥∥
H−1∑
h=0

γh · r⋆(sh, bh) ·

(
h∑

h′=0

∇y log y(t)(bh′ |sh′)

)∥∥∥∥∥
2


≤ 1

K

(
H−1∑
h=0

γh ·
(
1 +

ν

1− γ

)
· 1
ζ
· (h+ 1)

)2

(52)

≤ 1

K(1− γ)4ζ2
+

2ν

K(1− γ)5ζ2
+

ν2

K(1− γ)6ζ2
. (53)

Where

• (50) is due to Lemma C.14 and the fact that trajectories τ are independently sampled;

• (51) is because variance is bounded by second moment;

• (52) follows from (22).

Finally for the last part in (45), we have

E

[∥∥∥∥[∇yλH(y(t);x)
]⊤

r⋆ −
[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]

=E

[∥∥∥∥[∇yλH(y(t);x)
]⊤

(r⋆ − r(t))

∥∥∥∥2
]

≤E

∥∥∥∥∥
H−1∑
h=0

γh · ∥r⋆ − r(t)∥∞ ·

(
h∑

h′=0

∇y log y(t)(bh′ |sh′)

)∥∥∥∥∥
2


≤

(
H−1∑
h=0

γh · ν · (h+ 1) · 1
ζ

)2

· E
[∥∥∥λ̂(t) − λH(y(t);x)

∥∥∥2] (54)

≤ ν2

(1− γ)4ζ2
· 1

K(1− γ)2
(55)

=
ν2

K(1− γ)6ζ2
. (56)

Where

• (54) is due to (22) and (37);

• (55) is because of Lemma C.16.
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Combine (45), (49), (53) and (56), we get

E

[∥∥∥∥ĝ(t)
y −

[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]

≤ 3ν2

K(1− γ)6ζ2
+ 3

(
1

K(1− γ)4ζ2
+

2ν

K(1− γ)5ζ2
+

ν2

K(1− γ)6ζ2

)
+

3ν2

K(1− γ)6ζ2

=
3

K(1− γ)4ζ2
+

6ν

K(1− γ)5ζ2
+

9ν2

K(1− γ)6ζ2
.

After bounding the variance of ĝ(t)
y in Algorithm 2, we can prove the following lemma

Lemma C.18 (Bounded Dist. with Actual Grad.). Consider y(t) and ĝ
(t)
y in Algorithm 2, it holds

that

E
[∥∥∥ĝ(t)

y −∇yF
ν(λ(y(t);x))

∥∥∥2] ≤ C1
K

+ C2 · γ2H .

Where

C1 =
57

(1− γ)6ζ2
, C2 =

126H2

(1− γ)6ζ2
.

Proof. Let r⋆ = ∇λF
ν
(
λH(y(t);x)

)
= r(x)− νλH(y(t);x).

E
[∥∥∥ĝ(t)

y −∇yF
ν(λ(y(t);x))

∥∥∥2]
=E

[∥∥∥ĝ(t)
y −

[
∇yλH(y(t);x)

]⊤
r(t) +

[
∇yλH(y(t);x)

]⊤
r(t) −

[
∇yλH(y(t);x)

]⊤
r⋆

+
[
∇yλH(y(t);x)

]⊤
r⋆ −∇yF

ν(λ(y(t);x))
∥∥∥2]

≤3E

[∥∥∥∥ĝ(t)
y −

[
∇yλH(y(t);x)

]⊤
r(t)
∥∥∥∥2
]

+ 3E

[∥∥∥∥[∇yλH(y(t);x)
]⊤

r(t) −
[
∇yλH(y(t);x)

]⊤
r⋆
∥∥∥∥2
]

+ 3E

[∥∥∥∥[∇yλH(y(t);x)
]⊤

r⋆ −∇yF
ν(λ(y(t);x))

∥∥∥∥2
]
. (57)

Notice that the first part in (57) is bounded in Lemma C.17 and the second part is bounded in (56).
For the last part, observe that
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∥∥∥∥[∇yλH(y(t);x)
]⊤

r⋆ −∇yF
ν(λ(y(t);x))

∥∥∥∥2
=

∥∥∥∥[∇yλH(y(t);x)
]⊤
∇λF

ν(λH(y(t);x))−
[
∇yλ(y

(t);x)
]⊤
∇λF

ν(λ(y(t);x))

∥∥∥∥2
=

∥∥∥∥∥ [∇yλH(y(t);x)
]⊤ (
∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

)

+

([
∇yλH(y(t);x)

]⊤
−
[
∇yλ(y

(t);x)
]⊤)

∇λF
ν(λ(y(t);x))

∥∥∥∥∥
2

≤2
∥∥∥∥[∇yλH(y(t);x)

]⊤ (
∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

)∥∥∥∥2
+ 2

∥∥∥∥([∇yλH(y(t);x)
]⊤
−
[
∇yλ(y

(t);x)
]⊤)

∇λF
ν(λ(y(t);x))

∥∥∥∥2 . (58)

Where (58) is follows from Cauchy-Schwarz inequality. For the first part, we have∥∥∥∥[∇yλH(y(t);x)
]⊤ (
∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

)∥∥∥∥2
≤

( ∞∑
h=0

γh · ν∥λH(y(t);x)− λ(y(t);x)∥1 · (h+ 1) · 1
ζ

)2

(59)

≤ ν2

(1− γ)4ζ2
· ∥λH(y(t);x)− λ(y(t);x)∥21.

Where (59) is because of (37). Since∥∥∥λH(y(t);x)− λ(y(t);x)
∥∥∥2
1
=

 ∞∑
h=H

∑
s,b

γt P(sh = s, bh = b|y(t), s0 ∼ ρ)

2

=

(
γH

∞∑
h=0

γh · 1

)2

≤ γ2H

(1− γ)2
.

We have∥∥∥∥[∇yλH(y(t);x)
]⊤ (
∇λF

ν(λH(y(t);x))−∇λF
ν(λ(y(t);x))

)∥∥∥∥2 ≤ ν2

(1− γ)6ζ2
· γ2H . (60)

For the second part in (58), it holds that∥∥∥∥([∇yλH(y(t);x)
]⊤
−
[
∇yλ(y

(t);x)
]⊤)

∇λF
ν(λ(y(t);x))

∥∥∥∥2
=

∥∥∥∥∥E
[ ∞∑
h=H

γh · ∇λF
ν(λ(y(t);x))sh,bh ·

(
h∑

h′=0

∇y log y(t)(bh′ |sh′)

)]∥∥∥∥∥
2

≤

( ∞∑
h=H

γh ·
(
1 +

ν

1− γ

)
· (h+ 1) · 1

ζ

)2

≤
(
1 +

ν

1− γ

)2

· 1
ζ2
·
(
(H + 1)2

(1− γ)2
+

1

(1− γ)4

)
· γ2H

=

(
(H + 1)2

(1− γ)2ζ2
+

2ν(H + 1)2

(1− γ)3ζ2
+

ν2(H + 1)2 + 1

(1− γ)4ζ2
+

2ν

(1− γ)5ζ2
+

ν2

(1− γ)6

)
· γ2H . (61)
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Combine (58), (60), and (61) we get∥∥∥∥[∇yλH(y(t);x)
]⊤

r⋆ −∇yF
ν(λ(y(t);x))

∥∥∥∥2
≤2
(

(H + 1)2

(1− γ)2ζ2
+

2ν(H + 1)2

(1− γ)3ζ2
+

ν2(H + 1)2 + 1

(1− γ)4ζ2
+

2ν

(1− γ)5ζ2
+

2ν2

(1− γ)6ζ2

)
· γ2H . (62)

Now combine Lemma C.17, (56), (57), and (62), we get

E
[∥∥∥ĝ(t)

y −∇yF
ν(λ(y(t);x))

∥∥∥2] ≤ C1
K

+ C2 · γ2H .
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D Nonconvex–Hidden-Strongly-Concave Optimization

In this section we generalize our results to the more general setting of any constrained min-max
optimization problem of the form minx∈X maxy∈Y when f is nonconvex–hidden-strongly-concave.
In particular:

• In Theorem D.2 we prove the differentiability and Hölder continuity of the max function
Φ(x) = maxy∈Y f(x,y) by utilizing the Hölder continuity of the maximizers w.r.t. to x
(Theorem D.1).

• Finally, in Theorem D.3 we prove that Algorithm 3 (SGDMAX) [70, Algorithm 4] with an
appropriate tuning converges to an ϵ-SP for nonconvex–hidden-concave functions.

We begin by stating the assumptions we make.
Assumption D.1. Let f be a function defined on X × Y where X and Y are compact convex sets.
L-Lipschitz continuous and ℓ-smooth.
Assumption D.2. Let c be a “1–1” mapping between Y and a compact convex set U parameterized
by x ∈ X . Further, we assume that c and its inverse c−1 are Lc- and Lc−1 -Lipschitz continuous.
Assumption D.3. Let H be a nonconvex–strongly-concave reformulation of f (as in Assumption D.1)
for a mapping c (as in Assumption D.2). We assume H to be LH -Lipschitz continuous and ℓH -smooth.

Moving on, we can show that the maximizers u⋆(·) are Hölder continuous w.r.t. to x.
Theorem D.1 (Continuity of the maximizers). Let a function nonconvex–nonconcave function f, c,H
as in Assumptions D.1 to D.3. We define u⋆(x) := argmaxu∈U(x) H(x,u), then it is the case that

∥u⋆(x1)− u⋆(x2)∥ ≤ L⋆ ∥x1 − x2∥1/2 .

Where L⋆ = 1
2ν

(
2ℓH
√
DiamX + 2

√
ν(1 + 2ℓH)LcDiamU + 2νLcLH

)
.

Proof. Consider any x1,x2 ∈ X , since u⋆ is the maximizer, it holds that

∇H (x1,u
⋆(x1))

⊤
(u1 − u⋆(x1)) ≤ 0, ∀u1 ∈ U(x1);

∇H (x2,u
⋆(x2))

⊤
(u2 − u⋆(x2)) ≤ 0, ∀u2 ∈ U(x2).

We now consider u that belong to the set U = U(x1) ∪ U(x2). We observe that due to the Lipschitz
mapping, for every u ∈ U , there exist a u1 ∈ U(x1) such that ∥u− u1∥ ≤ Lc∥x1 − x2∥. Similar
argument holds for u2 ∈ U(x2). Therefore, from previous two inequalities, we have

∇H (x1,u
⋆(x1))

⊤
(u− u⋆(x1)) ≤ LcLH∥x1 − x2∥ ∀u ∈ U ;

∇H (x2,u
⋆(x2))

⊤
(u− u⋆(x2)) ≤ LcLH∥x1 − x2∥ ∀u ∈ U .

Where in the above inequalities we used the fact that ∇H(x,u) ≤ LH . We plug in u ← u⋆(x2)
and u← u⋆(x1) accordingly,

∇H (x1,u
⋆(x1))

⊤
(u⋆(x1)− u⋆(x1)) ≤ LcLH∥x1 − x2∥,

∇H (x2,u
⋆(x2))

⊤
(u⋆(x1)− u⋆(x2)) ≤ LcLH∥x1 − x2∥.

Adding the two inequalities results in,(
∇H (x1,u

⋆(x1))−∇H (x2,u
⋆(x2))

)⊤
(u⋆(x1)− u⋆(x1)) ≤ 2LcLH∥x1 − x2∥. (63)

Since H(x, ·) is ν-strongly concave in u for all x, it holds that

(u1 − u⋆(x1))
⊤
(
∇H (x1,u1)−∇H (x1,u

⋆(x1))
)
+ ν∥u1 − u⋆(x1)∥2 ≤ 0 ∀u1 ∈ U(x1).

We again consider feasibility set u ∈ U . Since for every u ∈ U , there exists u1 ∈ U(x1) s.t.
∥u− u1∥ ≤ Lc∥x1 − x2∥. We have

(u1 + (u− u)− u⋆(x1))
⊤
(
∇H(x1,u1) + (∇H(x1,u)−∇H(x1,u))−∇H (x1,u

⋆(x1))
)

+ ν∥u1 + (u− u)− u⋆(x1)∥2 ≤ 0, ∀u1 ∈ U(x1).
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We rearrange the latter display into

(u− u⋆(x1))
⊤
(
∇H(x1,u)−∇H(x1,u

⋆(x1))
)
+ ν∥u− u⋆(x1)∥2

≤ − (u− u⋆(x1))
⊤
(
∇H(x1,u1)−∇H(x1,u)

)
︸ ︷︷ ︸

Ω1

− (u1 − u)
⊤
(
∇H(x1,u1)−∇H(x1,u

⋆(x1))
)

︸ ︷︷ ︸
Ω2

−ν ∥u1 − u∥2 − 2ν ⟨u1 − u,u− u⋆(x1)⟩︸ ︷︷ ︸
Ω3

.

We bound Ω1,Ω2, and Ω3 separately.

• For Ω1, we have

− (u− u⋆(x1))
⊤
(
∇H(x1,u1)−∇H(x1,u)

)
≤ DiamU · ℓH∥u1 − u∥

≤ DiamUℓHLc ∥x1 − x2∥ .

• For Ω2, it holds that

−(u1 − u)⊤ (∇H(x1,u1)−∇H(x1,u
⋆(x1))) ≤ Lc ∥x1 − x2∥ · ℓHDiamU .

• For Ω3, since the first term is always non-positive, we only need to bound the second term:

−⟨u1 − u,u− u⋆(x1)⟩ ≤ ∥u1 − u∥ ∥u− u⋆(x1)∥
≤ Lc ∥x1 − x2∥ ·DiamU .

Combining Ω1,Ω2, and Ω3, we conclude that

(u− u⋆(x1))
⊤
(
∇H(x1,u)−∇H(x1,u

⋆(x1))
)
+ ν∥u− u⋆(x1)∥2

≤ (1 + 2ℓH)LcDiamU ∥x1 − x2∥ . (64)

Plugging in u← u⋆(x2) in (64) and combine it with (63), we get

ν∥u⋆(x2)− u⋆(x1)∥2 ≤ (u⋆(x2)− u⋆(x1))
⊤
(
∇H (x2,u

⋆(x2))−∇H (x1,u
⋆(x2))

)
+ L′′∥x1 − x2∥
≤ ℓH∥u⋆(x2)− u⋆(x1)∥∥x1 − x2∥+ L′′∥x1 − x2∥.

Where L′′ = (1 + 2ℓH)LcDiamU + 2LcLH .

Similarly to Lemma C.8, we can set λ = ∥u⋆(x2)− u⋆(x1)∥ and χ = ∥x1 − x2∥ and consider the

inequality νλ2 ≤ ℓHλχ+L′′χ. We aim to find the solution of the form
ℓHχ+

√
χ(4νL′′+ℓ2Hχ)

2ν ≤ c
√
χ.

By setting L⋆ = c and solve for c gives

L⋆ =
1

2ν

(
2ℓH

√
DiamX + 2

√
ν(1 + 2ℓH)LcDiamU + 2νLcLH

)
.

Finally, we show that Φ is differentiable and Hölder-continuous.
Theorem D.2. Let function Φ be Φ(x) := maxu∈U(x) {H(x,u)}. Its gradient ∇Φ is (1/2, ℓ1/2)-
Hölder continuous,

∥∇Φ(x)−∇Φ(x′)∥ ≤ ℓ1/2 ∥x− x′∥
1
2 ,

where ℓ1/2 :=
(
(1 + Lc−1)

√
DiamX + Lc−1L⋆

)
ℓ.
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Proof.

∥∇Φ(x)−∇Φ(x′)∥ =
∥∥∇f (x, c−1(u⋆(x);x)

)
−∇f

(
x′, c−1(u⋆(x′);x′)

)∥∥
≤ ℓ ∥x− x′∥+ ℓ

∥∥c−1(u⋆(x);x)− c−1(u⋆(x′);x′)
∥∥

≤ ℓ ∥x− x′∥+ ℓLc−1 (∥u⋆(x)− u⋆(x′)∥+ ∥x− x′∥) (65)

≤ (1 + Lc−1)ℓ ∥x− x′∥+ Lc−1L⋆ℓ ∥x− x′∥
1
2 (66)

≤
(
(1 + Lc−1)

√
DiamX + Lc−1L⋆

)
ℓ ∥x− x′∥

1
2 .

Where

• in (65) we invoke the Lipschitz continuity of function c−1(·);
• (66) follows from Theorem D.1.

Following, SGDMAX is presented where we assume a stochastic gradient oracle G = (Gx, Gy) :
X × Y × Ξ→ Rd that is unbiased and has a bounded variance:

Algorithm 3 SGDMAX

Input: Initialization x(0), stepsize ηx, Tx iterations, batch size M , oracle accuracy ζ.
1: for t← 1, 2, . . . , T do
2: y(t) ← max-oracle

(
f(x(t), ·); ζ

)
3: ĝ(t) ← 1

M

∑M
j=1 Gx

(
x(t−1),y(t), ξ

(t)
j

)
4: x(t) ← ProjX

(
x
(t−1)
i − ηxĝ

(t)
)

5: end for
6: y(T+1) ← max-oracle

(
f(x(T ), ·); ζ

)

Finally, we can state the theorem of convergence to an ϵ-approximate saddle-point.
Theorem D.3. Let a function f as the one in Theorem D.1. For a desired accuracy ϵ > 0, Algorithm 3,

(SGDMAX) with a tuning of Tx = O

(
ℓ21/2
ϵ3

)
, ηx, a max-oracle accuracy ζ = O

(
νϵ2

ℓ2

)
, and a batch

size of M = max
{
1, 9σ2

2ϵ2

}
guarantees that there exists a t∗ ∈ [T ], such that,

−∇xf
(
x(t⋆),y(t⋆+1)

)⊤ (
x′ − x(t⋆)

)
≤ ϵ, ∀x′ ∈ X ;

∇yf
(
x(t⋆),y(t⋆+1)

)⊤ (
y′ − y(t⋆)

)
≤ ϵ, ∀y′ ∈ Y.

Further, the max-oracle, of accuracy ζ, can be implemented by Ty = Õ
(

L
L2

cν
+ Lσ2

L4
c+ν2

1
ζ

)
iterations

of stochastic projected gradient ascent with a step size ηy = min
{

2
9L ,

L2
cνζ

10Lσ2

}
.

Proof. The proof follows easily from the proof of projected gradient ascent in hidden-strongly-
concave function found [43, Theorem 6] and Theorems B.1 and D.2.

Remark 2. It has been shown that when a function f enjoys a hidden-strongly-concave reformulation,
it satisfies global the Proximal-PŁ condition (or equivalently, global KŁ condition) [43, 67]. While
the equivalence between global KŁ condition and quadratic growth condition has been proven
[10, 38] when f is concave, to the authors’ best knowledge, this equivalence still remains unclear
when f is nonconcave. This means that we cannot use [83] to prove the smoothness of the maximum
function when the feasibility set of the maximizing variable is constrained.
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Answer: [Yes]
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and analysis of a learning algorithm for Adversarial Team Markov Games with polynomial
iteration and sample complexity (in the parameters of the underlying Markov Game); this is
captured by Theorem 3.3.
Guidelines:
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this question will not be perceived well by the reviewers.
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the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are captured in conclusion and future work for investiga-
tion. Moreover, all necessary assumptions have been properly cited.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.
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tested on a few datasets or with a few runs. In general, empirical results often depend on
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• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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appendix and are properly referenced. All the assumptions have been properly defined in the
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is of theoretical nature about learning Nash equilibria in Markov Games.
The authors believe that the paper is aligned with NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The paper is of theoretical nature about learning Nash equilibria in Markov Games.
The authors do not foresee any societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
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11. Safeguards
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data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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• The answer NA means that the paper does not use existing assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
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include the full text of instructions given to participants and screenshots, if applicable, as well as
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
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• We recognize that the procedures for this may vary significantly between institutions and
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for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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