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ABSTRACT

With the growing diversity of large-scale data, learning from multi-modality has
attained notable progress in language and 2D vision. However, in 3D domains,
how to develop an all-purpose multi-modal framework is still under-explored. To
this end, we introduce Point-Bind, a 3D multi-modality model aligning point
clouds with 2D image, language, audio, and video. Guided by ImageBind, we
construct a joint embedding space between 3D and multi-modalities, enabling
many promising applications, e.g., 3D embedding arithmetic, any-to-3D gener-
ation, and 3D open-world understanding. On top of this joint embedding space,
we further present Point-LLM, a 3D large language model extending ImageBind-
LLM to follow 3D and multi-modal instructions. Without any 3D instruction data,
our Point-LLM injects the semantics of Point-Bind into pre-trained LLMs, e.g.,
LLaMA, and exhibits superior 3D and multi-modal question-answering capacity.
We have conducted extensive experiments to demonstrate the effectiveness and
generalizability of our approach for aligning 3D and multi-modality.

1 INTRODUCTION
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Figure 1: Overview of Point-Bind. We
propose a unified and general framework to
align 3D with multiple modalities.

In these years, 3D vision has gained significant at-
tention and development, driven by the rising popu-
larity of autonomous driving (Chen et al., 2020b; Shi
et al., 2020), navigation (Tan et al., 2001; Wang et al.,
2019), 3D scene understanding (Armeni et al., 2016;
Liu et al., 2021b), and robotics (Huang et al., 2023;
Savva et al., 2019). To extend its application sce-
narios, numerous efforts have been made to incorpo-
rate 3D point clouds with other modalities, allowing
for improved 3D understanding (Guo et al., 2023a;
Afham et al., 2022), text-to-3D generation (Nichol
et al., 2022; Poole et al., 2022), and 3D question an-
swering (Azuma et al., 2022; Hong et al., 2023a).

For 3D geometry understanding, previous works ei-
ther leverage 2D-language embeddings to guide 3D
open-world recognition (Zhang et al., 2022b), or harness visual and textual semantics to assist 3D
representation learning (Xue et al., 2022). However, their perception capabilities are mostly con-
strained by limited modalities provided in the training phase. Inspired by 2D generative models, a
collection of methods (Lin et al., 2023; Nichol et al., 2022) has achieved text-to-3D synthesis with
high quality and efficiency. Despite this, they lack the ability to generate 3D shapes conditioned
on multi-modal input, e.g., a sound and an image. Another series of works connects descriptive
natural language with 3D data, applying to 3D captioning (Yuan et al., 2022; Chen et al., 2023b)
and question answering (Wijmans et al., 2019; Azuma et al., 2022). Yet, they fail to utilize the
pre-trained linguistic knowledge within large language models (LLMs) to better reason 3D geome-
tries. Therefore, how to develop a unified 3D framework aligning with multi-modality for general
3D learning still remains an open question. Very recently, ImageBind (Girdhar et al., 2023) is pro-
posed to learn a shared representation space across six different modalities, i.e., image, text, audio,
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Point-LLM for 3D Q&A

Describe the 3D object in detail.

The 3D object is a small 
airplane, specifically a 
private jet. and black 
color scheme, and it 
appears to be a small-
sized aircraft. It is …...

[ Audio of
Pouring Water ]

What’s happening?

The scene shows a 
person pouring a clear 
liquid, likely water, into a 
glass. The glass is placed 
on a table, filled to the 
brim, indicating that a 
significant amount of 
liquid has been poured 
into it.

3D Embedding Arithmetic

[ Audio of
Sea Wave ]

+

Cross-modal Retrieval

3D Point Cloud

3D Zero-shot Understanding

Text-referred:

Point-Bind

airplane, piano, guitar

airplane

CLASSA  model  of  a

piano
guitar

🔊 [ Airplane Engine ]
🎶 [ Piano Music ]
🎶 [ Guitar Sound ]

Audio-referred:

Point-Bind

airplane
piano

guitar

Ø No Need for 3D Instruction Data

Ø 3D and Multi-modal Reasoning

Any-to-3D Generation

Audio-to-3D:

[ Car Horn ]

3D Editing by Instructions:

“Color the 
airplane in red.”

Point-to-3D:

“Change the material 
to wooden.”

Figure 2: 3D Multi-modal Applications of Point-Bind. With a joint 3D multi-modal embedding
space, Point-Bind enables many promising application scenarios, e.g., Point-LLM for 3D instruction
following, 3D generation conditioned on any modalities, embedding-space arithmetic with 3D, and
multi-modal 3D zero-shot understanding.

depth, thermal, and IMU data. Motivated by this, we ask the following question: can we construct
a joint embedding space between 3D and multi-modality for unified 3D understanding, generation,
and instruction following?

In this paper, we introduce Point-Bind, a 3D multi-modality framework that aligns point cloud with
multiple modalities for general 3D analysis, as shown in Figure 1. Specifically, we first collect
3D-image-text-audio pairs as the training data, and learn a joint embedding space guided by Image-
Bind, or other multi-modal large models (Zhu et al., 2023a). Based on the pre-training paragdim
of previous works (Xue et al., 2022; Zeng et al., 2023), we adopt a contrastive loss between the
extracted features from a trainable 3D encoder, e.g., I2P-MAE (Zhang et al., 2023a), and the pre-
trained multi-modal encoders. In this way, we efficiently integrate different modalities into a unified
representation space, which also includes modalities that are absent during training, such as video,
depth, and infrared data. The joint space of Point-Bind is expected to expand the scope of 3D models
to wider cross-modal scenarios.

On top of this, Point-Bind naturally motivates several emergent 3D-centric multi-modal applications,
as shown in Figure 2. Note that, such emergent characteristics can alleviate the need for expensive
task-specific training, significantly lowering the bar to efficiently achieve new 3D cross-modal tasks,
summarized as follows:

• 3D Embedding-space Arithmetic. We observe the encoded 3D features from Point-Bind
can be added with other modalities to incorporate their semantics, achieving favorable com-
posed cross-modal retrieval performance.

• Any-to-3D Generation. Based on existing text-to-3D generative models, Point-Bind en-
ables 3D shape synthesis conditioned on any input modalities and their composition, e.g.,
text/image/audio/point-to-mesh, or editing 3D shapes with multi-modal instructions.

• 3D Open-world Understanding. Benefiting from multi-modal semantics, Point-Bind at-
tains leading performance for 3D zero-shot classification, referred to by text. Also, our
approach supports audio-referred 3D open-world understanding with satisfactory results.
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Describe the 3D object in detail.

The 3D object is a grand piano, 
which is a musical instrument with 
a keyboard and a set of strings. 
The piano has a piano keyboard, 
which consists of white and black 
keys arranged in a grid-like 
pattern ……

请描述这个三维物体的细节。

这个三维物体是⼀架⻜机，有
着明显的机翼和尾部。⻜机的
机⾝呈⽩⾊，机翼和尾部的颜
⾊为⿊⾊。⻜机的机翼呈圆形，
位于⻜机的中间部分。⻜机的
尾部有⼀个圆形的尾巴，位于
⻜机的底部 ……

In English In Chinese Describe the scene in detail.

Please elaborate on the details of this scene.

This scene features a bathhub
with a faucet turned on, and a
person's hand is submerged in the
water. The water is splashing up and
creating a soapy bubble, which is
visible in the bathhub. The person
appears to be washing their hands or
taking a bath. The bathhub is
located towards the left side, and
the faucet is positioned towards the
right, dripping water.

[ Audio of
Dripping Water ]

I would like a comprehensive 
explanation of this scene.

The image depicts a woman 
standing in a clothing store, 
surrounded by various racks of clothing. 
She is wearing a black shirt and appears 
to be looking at the items displayed on 
the racks. The store is well-stocked 
with numerous shirts, some of which are 
hanging on the racks, while others are 
placed on the floor. The woman seems 
to be browsing the selection of clothing 
available in the store.

Please provide a detailed
interpretation of the scene.

[ Audio of
Keyboard Typing]

The image features a close-up of a 
laptop keyboard with a mouse placed on 
top of it. The laptop screen is turned 
on, displaying the word "Laptop" on the 
screen. The keyboard is fully visible, 
with each key neatly arranged. The 
mouse is positioned on the right side of 
the keyboard, slightly above the middle 
row of keys. The scene gives an 
impression of a user working on 
their laptop, possibly typing on 
the keyboard.

The scene features a woman sitting
in a window seat on an airplane,
looking out the window as the
airplane takes off. She appears to be
enjoying the view outside. The airplane's
wing is visible in the background, and
the scene captures the excitement and
anticipation of a journey about to begin.

Figure 3: 3D Question-answering Examples of Point-LLM. Given 3D and multi-modal instruc-
tions, our Point-LLM can effectively generate detailed responses and conduct superior cross-modal
reasoning. Notably, we do not need any 3D instruction data for training.

Furthermore, with the joint embedding space, we propose to incorporate Point-Bind with the pre-
trained ImageBind-LLM (Han et al., 2023) to develop a 3D large language model, termed as Point-
LLM. As shown in Figure 3, our Point-LLM can respond to language instructions with 3D point
cloud conditions, and effectively capture spatial geometry characteristics with bilingual competence.
Referring to ImageBind-LLM, we connect our Point-Bind with its pre-trained bind network and
visual cache model to bridge our 3D embedding space with LLaMA (Touvron et al., 2023). In such
a training-free manner, our Point-LLM enables LLaMA to understand the 3D world with superior
question-answering capacity, while requiring no 3D instruction data. Notably, our approach can
generate descriptive responses conditioned on a combination of 3D and multi-modal input, e.g., a
point cloud with an image/audio, indicating strong cross-modal reasoning capacity.

2 POINT-BIND

The overall pipeline of Point-Bind is shown in Figure 4. In Section 2.1, we first provide a preliminary
of ImageBind (Girdhar et al., 2023). Then, in Section 2.2 and 2.3, we elaborate on the training data
and multi-modal alignment for Point-Bind, respectively. Finally, in Section 2.4, we introduce several
3D-centric applications derived from our approach.

2.1 PRELIMINARY OF IMAGEBIND

ImageBind proposes an approach to combine multiple modalities together, which utilizes only
image-paired data to learn a joint embedding space of six modalities, i.e., images, text, audio, depth,
thermal, and IMU data. It does not need training dataset pairing all six modalities, but leverages the
binding property of 2D images, i.e., aligning every single modality to image independently. Specif-
ically, ImageBind feeds multi-modal input into corresponding encoders, and adopts for cross-modal
contrastive learning. After training on large-scale image-paired data, ImageBind effectively aligns
six modalities into a single representation space, enabling emergent cross-modal capabilities.
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3D Encoder
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Cross-modal
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Describe the 3D object.

The 3D object is a 
grand piano, which is a 
musical instrument …

3D Point Cloud:

Image:

Text: ”A model of a piano.”

o Audio:

o Text:    

o Image:

[Piano Music]

Images of Piano

”A piano in the …”

score

Figure 4: Overall Pipeline of Point-Bind. We collect 3D-image-audio-text data pairs for con-
trastive learning, which aligns 3D with other modalities guided ImageBind (Girdhar et al., 2023).
With a joint embedding space, Point-Bind can be utilized for 3D cross-modal retrieval, any-to-3D
generation, 3D zero-shot understanding, and developing a 3D large language model, Point-LLM.

Inspired by this, we propose to develop a 3D multi-modal framework, Point-Bind, which leverages
ImageBind, or its follow-up work (Zhu et al., 2023a), as guidance to incorporate 3D point cloud
with other modalities for general 3D understanding, generation, and instruction following.

2.2 TRAINING DATA

To align 3D with multi-modalities, we leverage the pre-trained joint embedding space of Image-
Bind (Girdhar et al., 2023) and adopt contrastive loss (Zhang et al., 2022c; Radford et al., 2021) to
simultaneously align 3D point clouds with the other three modalities: image, text, and audio. To
obtain the contrastive training data, we collect a cross-modal dataset of 3D-image-audio-text pairs.
There are three steps for dataset collection as follows.

3D-image-text Pairs. We adopt the data pairs of 3D, images, and text from ULIP (Xue et al.,
2022), which includes 3D-image-text triplets built from ShapeNet (Chang et al., 2015), a common-
used dataset containing abundant 3D CAD models. Each 3D point cloud is paired with a correspond-
ing text describing the semantic information of its spatial shape, and a 2D counterpart generated by
multi-view image rendering. The text description is constructed by a synset of category names and
64 pre-defined templates.

3D-audio Pairs. To provide more contrastive signals from a fourth modality, we collect the data
pairs of 3D and audio from ESC-50 (Piczak, 2015) and ShapeNet datasets. Specifically, we first
select the categories whose objects can make a sound in the real world from the 55 categories of
ShapeNet, such as ‘airplane’, ‘clock’, ‘washing machine’, and ‘keyboard’. Then, we preserve only
the categories that are also within ESC-50. By this standard, we obtain 9 categories of 3D point
clouds paired with extensive audio clips, i.e., ‘airplane’, ‘chirping birds’, ‘can opening’, ‘car horn’,
‘clock tick’, ‘keyboard typing’, ‘crackling fire’, and ‘train’. Each category contains 40 audio sam-
ples, with a total number of 360. During training, for a point cloud within the nine categories, we
randomly sample an audio sample and adopt data augmentation, e.g., random cropping and volume
perturbation, for more robust training.

3D-image-audio-text Pairs Construction. Finally, we match each 3D-audio pair with its cor-
responding 3D-image-text data, resulting in a unified 3D-image-audio-text dataset with extensive
cross-modal pairs. During training, we simultaneously feed point clouds and their paired data of
three modalities for contrastive learning.
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Figure 5: Inference Paradigm of Point-LLM. Due to our 3D joint embedding space, we can di-
rectly connect Point-Bind with a pre-trained bind network of ImageBind-LLM (Han et al., 2023)
to enable LLaMA (Touvron et al., 2023) to follow 3D instructions. Optionally, our Point-LLM can
also take as input multi-modality data, and conduct cross-modal reasoning for language response.

2.3 ALIGNING 3D WITH MULTI-MODALITY

After collecting the 3D paired data, we conduct contrastive training to learn a joint embedding space
aligning 3D and multi-modalities. Each data sample contains a point cloud P , along with the paired
2D image I , text description T s, and audio A, where T s represents a set of 64 pre-defined templates.
For the point cloud, we adopt I2P-MAE (Zhang et al., 2023a) as the learnable 3D encoder, denoted
as Encoder3D(·), and append a projection network Proj(·) of two linear layers, which transforms
the encoded 3D feature into ImageBind’s multi-modal embedding space. We formulate it as

F3D = Proj(Encoder3D(P )), (1)

where F3D ∈ R1×C denotes the projected 3D embedding, and C equals the feature dimension of
ImageBind. For the paired image-text-audio data, we leverage their corresponding encoders from
ImageBind for feature extraction, which are frozen during training, formulated as

F2D, F s
T , FA = ImageBind(I, T s, A), (2)

where F2D, FA ∈ R1×C denote the image and audio embeddings, and F s
T ∈ R64×C denotes the

text embedding for a set of 64 descriptions. Then, we conduct an average pooling as

FT = Average(F s
T ) ∈ R1×C , (3)

which represents the aggregated text embedding with more robustness. After that, we adopt con-
trastive loss (Zhang et al., 2022c) between 3D and other modalities, which effectively enforces 3D
embeddings to align with the joint representation space, formulated as

Ltotal = L(F3D, F2D) + L(F3D, FT ) + L(F3D, FA).

Note that some training categories do not include the paired audio A, since they inherently cannot
make any sound, e.g., bottle, planter, and couch, for which we ignore their audio features and loss.

2.4 MULTI-MODAL APPLICATIONS

Starting from the joint embedding space of Point-Bind, we introduce several emergent application
scenarios concerning 3D and multi-modalities. Importantly, these new tasks are naturally emergent
from Point-Bind, which means we do not need to spend many resources on task-specific training.
Such characteristics significantly lower the bar for efficiently achieving new 3D cross-modal tasks.

3D Embedding-space Arithmetic. We observe that 3D features encoded by Point-Bind can be
directly added with other modalities to incorporate their semantics, further achieving composed
cross-modal retrieval. For instance, the combined embeddings of a 3D car and audio of sea waves
can accurately retrieve an image showing a car parking by a beach, while the composition of a 3D
laptop and audio of keyboard typing can retrieve an image of someone who is working with a laptop.
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Figure 6: Quantitative Evaluation of
Point-LLM evaluated by GPT-4 (Ope-
nAI, 2023) and Bard (Google, 2023).

Point-LLM v.s. ImageBind-LLM

with v.s. without Visual Cache

Bard

GPT-4

Bard

GPT-4

Table 1: Performance on 3D Cross-modal Retrieval,
including 3D-to-3D, 2D-to-3D, 3D-to-2D, and text-to-
3D retrieval. We report the mAP scores on the Model-
Net40 dataset.

Method 3D → 3D 2D → 3D 3D → 2D Text → 3D

PointCLIP 37.63 13.12 5.28 10.86
PointCLIP-V2 47.94 20.48 9.22 52.73
ULIP 60.58 20.30 29.75 50.51
ULIP-2 64.35 19.21 31.63 57.05
Point-Bind 63.23 34.59 42.83 64.50

Any-to-3D Generation. Existing 3D generation methods can only achieve text-to-3D synthesis.
In contrast, with the joint embedding space of Point-Bind, we can generate the 3D mesh conditioned
on any modalities, and also modify the appearance of existing 3D shapes with multi-modal instruc-
tions. In detail, we simply utilize a learnable projection layer to align our joint embedding space
with the pre-trained decoder of existing 3D generation methods, e.g., ISS (Liu et al., 2022) by single
view reconstruction (SVR). We only tune the projection layer while keeping other networks frozen.
After this, we directly connect the multi-modal encoders of Point-Bind with the decoders of ISS,
which is capable of synthesizing a 3D car mesh based on an input car horn. Also, we can feed an
existing 3D shape using Point-Bind’s 3D encoder, and provide multi-modal instruction signals to
modify its appearance, e.g., coloring an airplane in red or changing a chair’s material to wooden.

3D Zero-shot Understanding. For traditional text-inferred 3D zero-shot classification, Point-
Bind attains state-of-the-art performance guided by additional multi-modal supervision. Besides,
Point-Bind can also achieve audio-referred 3D open-world understanding, i.e., recognizing 3D
shapes of novel categories indicated by the corresponding audio data (Piczak, 2015).

3 POINT-LLM

In this section, we illustrate how to leverage the emergent characteristic of Point-Bind to develop
3D large language models (LLMs), termed as Point-LLM, which enables a pre-trained ImageBind-
LLM (Han et al., 2023) to achieve 3D question answering and multi-modal reasoning in a training-
free manner. The overall pipeline of Point-LLM is shown in Figure 3.

3D Instruction-following Capacity. Our Point-LLM is developed on top of a pre-trained
ImageBind-LLM (Han et al., 2023), which conducts multi-modality instruction tuning by inject-
ing the semantics of ImageBind into LLaMA. By vision-language pre-training, ImageBind-LLM
has already aligned the joint embedding space of ImageBind with LLaMA using a bind network,
which shares the same space with our Point-Bind. Considering this, we can directly bridge Point-
Bind with LLaMA using the pre-trained bind network. Therefore, our Point-LLM does not require
any 3D instruction data for training, and efficiently endows LLaMA with 3D understanding capabil-
ity, which also inherits the pre-trained bilingual ability of ImageBind-LLM. This significantly saves
the resources for annotating 3D instruction data and large-scale training,

Inference with Visual Cache. For a given language instruction and a 3D point cloud, we input
them into LLaMA and our Point-Bind, respectively. Then, before feeding the encoded 3D feature
into the bind network, we adopt a visual cache model for 3D feature enhancement. As ImageBind-
LLM adopts the image encoder of ImageBind for training, but we switch to Point-Bind’s 3D encoder
for inference, the cache model is designed to alleviate such 2D-3D modality discrepancy for better
3D geometry understanding. Specifically, the cache model stores three million ImageBind-encoded
image features from the training data, which are regarded as both keys and values for knowledge
retrieval. We regard the input 3D feature as the query, and retrieve the top-k similar visual keys from
the cache. Then, according to the cosine similarity, we aggregate the corresponding cached values
(top-k similar image features), and add the result to the original 3D feature via a residual connection.
The enhanced 3D feature can adaptively incorporate similar 2D semantics from the cache model.
Such a strategy mitigates the semantic gap of 2D-3D encoders, and boosts the representation qual-
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3D Embedding-space Arithmetic
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Figure 7: Embedding-space Arithmetic of 3D and Audio. To demonstrate our semantic composi-
tion ability, we retrieve 2D images with a combination of 3D point cloud and audio embeddings.

ity of 3D shapes in Point-LLM. After this, the enhanced feature is fed into the bind network for
transformation and LLaMA for response generation.

3D and Multi-modal Reasoning. In addition to point clouds, considering the joint embedding
space of Point-Bind, our Point-LLM can also conduct cross-modal reasoning and generate responses
conditioned on multiple modalities. For an additional input image or audio, we utilize the image
or audio encoder of ImageBind to extract the features, and directly add them with the 3D feature
encoded by Point-Bind. By injecting such integrated features into LLaMA, Point-LLM can reason
cross-modal semantics, and respond with the information of all input modalities. This demonstrates
the promising significance of aligning multi-modality with 3D LLMs.

4 EXPERIMENTS

In this section, we respectively illustrate the emergent multi-modal applications of Point-Bind, i.e.,
Point-LLM for 3D instruction following, composed 3D cross-modal retrieval, any-to-3D generation,
and 3D zero-shot understanding. Then, we conduct ablation studies to verify the effectiveness of
our designs. Please refer to Supplementary Material for training details of Point-Bind.

4.1 POINT-LLM FOR 3D Q&A

Settings. Our method is built on a pre-trained ImageBind-LLM (Han et al., 2023), which adopts
LLaMA 7B (Touvron et al., 2023) as the foundation LLM and ImageBind with a ViT-H image
encoder. Note that we do not conduct any training for Point-LLM, thanks to the instruction tun-
ing of ImageBind-LLM. As there is no existing benchmark for 3D instruction models, referring to
Vicuna (Vicuna, 2023), we adopt two powerful LLMs, GPT-4 (OpenAI, 2023) and Bard (Google,
2023), for evaluation, and sample 1,000 3D-caption pairs from Cap3D (Luo et al., 2023) as the test
set, which is a large-scale 3D object captioning dataset built upon Objaverse (Deitke et al., 2023).
Specifically, for two generated responses to compare, we feed them into the evaluator LLM to ask
which one is closer to the ground-truth caption, and count the number of ‘Win’, ‘Tie’, and ‘Lost’ for
comparison. We regard ImageBind-LLM as a baseline, which takes one rendered image of the point
cloud as input for 3D Q&A.

Analysis. In Figure 6, we present the results evaluated by GPT-4 and Bard. Compared to the base-
line ImageBind-LLM, by using our Point-Bind for 3D encoding, Point-LLM achieves significantly
more ‘Win’. This fully indicates our Point-Bind aligned with multi-modality can better extract 3D
spatial geometries than ImageBind’s 2D encoder. If we do not adopt the visual cache model, the
3D question-answering performance would be severely harmed, due to the 2D-3D modality discrep-
ancy between training and inference. In Figure 3, we provide the question-answering examples of
Point-LLM, which shows favorable 3D instruction-following and multi-modal reasoning capacity.
As shown, for either English or Chinese instructions, Point-LLM can effectively incorporate the
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Table 2: Performance of Text-to-3D Gener-
ation. We report the Fréchet Inception Dis-
tance (FID), Fréchet Point Distance (FPD),
and CLIP R-Precision (RP) scores.

Method FID (↓) FPD (↓) RP (↑)

CLIP-Forge 162.87 37.43 3.85
GLIDE + DVR 212.41 41.33 7.69
LAFITE + DVR 135.01 37.55 3.85
ISS 124.42 35.67 7.69
Point-Bind 112.25 23.06 15.39

Table 3: Performance of 3D Zero-shot
Classification. We report the classification
accuracy (%) on ModelNet40 (MN40) and
ScanObjectNN (ScanObj) datasets.

Method Encoder MN40 ScanObj

PointCLIP CLIP 20.2 21.3
ULIP Point-BERT 60.4 49.9
PointCLIP V2 CLIP 64.2 50.1
Point-Bind Point-BERT 76.3 61.3

I2P-MAE 78.0 56.8

spatial geometry of input point clouds and generate detailed language responses. It obtains a com-
prehensive 3D understanding for both global and local characteristics, e.g., recognizing the pattern
of the piano keyboard and the shape of the airplane’s wing and tail. Then, our Point-LLM can also
respond with cross-modal understanding. For an input 3D model with a 2D image or audio, Point-
LLM can enable LLaMA to take both two conditions into understanding and reasoning, which thus
incorporates multi-modal semantics in the output language response.

4.2 COMPOSED 3D CROSS-MODAL RETRIEVAL

3D Cross-modal Retrieval. To evaluate the multi-modal alignment of Point-Bind, we first exper-
iment with several cross-modal retrieval tasks between 3D and another modality, i.e., 2D and text.
We evaluate our method on the multi-modal ModelNet40 (Wu et al., 2015) dataset, and obtain the
retrieved results by ranking feature similarities. As shown in Table 1, our Point-Bind attains leading
performance on all benchmarks compared with prior works (Zhang et al., 2022b; Zhu et al., 2022;
Xue et al., 2022; 2023). In particular, for 2D-to-3D and text-to-3D retrieval, Point-Bind surpasses
the ULIP (Xue et al., 2022) significantly by +14.29% and +13.99%, respectively. This indicates the
superior cross-modal understanding capacity of our approach.

Embedding-space Arithmetic. With the multi-modal alignment, we further explore the capability
of embedding composition, i.e., the embedding-space arithmetic of 3D and other modalities, e.g., au-
dio. We utilize 3D objects from ShapeNet (Chang et al., 2015) and TextANIMAR 2023 (Challenge,
2023), and audio clips from ESC-50 (Piczak, 2015). We simply add the 3D and audio embeddings
respectively from Point-Bind and ImageBind, and retrieve 2D images from ImageNet (Deng et al.,
2009). In Figure 7, we show the results of 2D image retrieval with the composed embeddings be-
tween 3D and audio. As shown in the first row, with the combined embeddings of a 3D dog and
sea-wave audio, we effectively retrieve 2D images of dogs by the sea. Similarly, with the combi-
nation of a 3D laptop and keyboard-typing audio, the obtained images show someone is working
with a laptop, or a cat inadvertently presses on the keyboard. Likewise, the last row retrieves images
of bears hunting by the water by using embeddings of a 3D bear and audio of flowing water. The
examples demonstrate the 3D features from Point-Bind can be directly added with other aligned
modalities, and incorporate their semantics, achieving favorable composed cross-modal retrieval.

4.3 ANY-TO-3D GENERATION

Settings. We adopt a learnable projection layer to connect the decoder of ISS (Liu et al., 2022) with
the embedding space of Point-Bind by single view reconstruction (SVR). For quantitative evaluation,
we compare several existing methods (Sanghi et al., 2021; Jain et al., 2022b; Liu et al., 2022) for
text-to-3D generation, and adopt three criteria, Fréchet Inception Distance (FID) (Heusel et al.,
2017), Fréchet Point Distance (FPD) (Shu et al., 2019), and CLIP R-Precision (RP) (Park et al.,
2021). Please refer to Supplementary Material for 3D generation with other modalities and their
composition.

Analysis. In Table 2, the quantitative comparison shows our approach achieves lower FID/FPD
values, outperforming other methods for both 3D generation quality and shape correspondence.
The competitive CLIP R-Precision score also suggests a higher consistency between text and 3D
shapes of our method. In Figure 2, we also show several qualitative results of any-to-3D generation
and instruction-based editing powered by Point-Bind, e.g., generating 3D meshes from audio and
point clouds, along with 3D shape editing by input language instructions (More visualizations are
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shown in Supplementary Material). This demonstrates the well-aligned embedding space of 3D and
multiple modalities in Point-Bind.

4.4 3D ZERO-SHOT UNDERSTANDING

We investigate our open-word understanding ability, i.e., recognizing novel classes, by 3D zero-shot
classification on ModelNet40 (Wu et al., 2015) and ScanObjectNN (Uy et al., 2019) datasets.

Settings. Following previous CLIP-based works, we utilize the text embeddings from Image-
Bind’s (Girdhar et al., 2023) text encoder to construct the zero-shot classifier. Specifically, we apply
a simple template of ‘a [CLASS]’ for the 40/15 categories of ModelNet40/ScanObjectNN, and cal-
culate the cosine similarity between 3D and all textual embeddings, selecting the most similar one as
the final prediction. Moreover, as our 3D embeddings are also aligned with the audio modality, our
approach also supports the audio-referred 3D zero-shot recognition by regarding audio embeddings
of different categories as the classifier.

Analysis. We report the 3D zero-shot classification accuracy in Table 3, where our Point-Bind can
surpass existing methods (Zhang et al., 2022b; Zhu et al., 2022; Xue et al., 2022; 2023) on both
benchmarks. With the same encoder as Point-BERT (Yu et al., 2022), our approach outperforms
ULIP by significant margins, +15.9% and +11.4% accuracy on the two datasets. For audio-referred
3D classification, we select six categories that can make a sound in ModelNet40 for evaluation
(airplane, car, guitar, keyboard, piano, toilet), for which our Point-Bind attains 89.3% accuracy, a
little worse than the text-referred 91.8%. This indicates the unified representation space of Point-
Bind leads to strong emergent 3D open-world recognition.

4.5 ABLATION STUDY

Table 4: Ablation Study investigating different training
data modality and 3D encoders. We report the zero-shot
classification on ModelNet40 dataset.

Modality of Training Data Acc. 3D
Encoder

Acc.
Text 3D Image Audio

✓ ✓ - - 70.43 PointNeXt 67.96
- ✓ ✓ - 68.72 Point-BERT 76.30
✓ ✓ ✓ - 76.96 Point-M2AE 77.47
✓ ✓ ✓ ✓ 78.00 I2P-MAE 78.00

In Table 4, we conduct two ablation
studies to verify the effectiveness of
the multi-modal training and 3D en-
coder selection in Point-Bind. We re-
port the zero-shot classification accu-
racy on ModelNet40. In the left part
of the table, we progressively add the
modality in training data, and observe
the performance increasing. This indi-
cates the contrastive supervision from
more modalities contributes to a better
3D joint embedding space. In the right
part, we utilize different 3D encoders in Point-Bind, i.e., Point-BERT (Yu et al., 2022), Point-
NeXt (Qian et al., 2022a), and I2P-MAE (Zhang et al., 2023a). As reported, the pre-trained Point-
BERT and I2P-MAE can achieve much better performance, indicating the importance of 3D pre-
training to boost the multi-modal alignment.

5 CONCLUSION

In this paper, we propose Point-Bind, a general 3D multi-modality model that aligns 3D point
clouds with multi-modalities, guided by ImageBind. By aligning 3D objects with their correspond-
ing image-audio-text pairs, Point-Bind obtains a joint embedding space, and exhibits promising
3D multi-modal tasks, such as any-to-3D generation, 3D embedding arithmetic, and 3D open-world
understanding. The emergent ability of Point-Bind significantly lowers the bar for efficiently achiev-
ing many new cross-modal applications. Upon that, we further introduce Point-LLM, a 3D large
language model (LLM) with superior instruction-following and multi-modal reasoning capabilities.
Extensive experiments have demonstrated the effectiveness and significance of our 3D multi-modal
framework. Future work will focus on aligning multi-modality with more diverse 3D data, such as
indoor and outdoor scenes, which allows for a wider range of 3D-centric scenarios.
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A OVERVIEW

• Section B: Additional experiments.

• Section C: Related work.

• Section D: Additional implementation details.

B ADDITIONAL EXPERIMENTS

Cross-modal Retrieval on More Modalities. To verify the potential of Point-Bind to align multi-
modalities, we conduct cross-modal retrieval between 3D and more modalities, i.e., video, depth,
and infrared data. We utilize the following work of ImageBind (Girdhar et al., 2023), Language-
Bind (Zhu et al., 2023a), as guidance, and pre-train Point-Bind under the same paradigm. By align-
ing 3D with the image space of LanguageBind, Point-Bind achieves a unified space with multi-
modalities including video, depth, and infrared data. As shown in Figure 8, with the 3D car/person
as input, Point-Bind effectively retrieves corresponding video, depth, and infrared data with the same
semantics. This indicates the superior cross-modal understanding capacity of our approach.

𝐃𝐞𝐩𝐭𝐡

𝐈𝐧𝐟𝐫𝐚𝐫𝐞𝐝

𝐕𝐢𝐝𝐞𝐨

Input 3D Point Cloud

𝐃𝐞𝐩𝐭𝐡

𝐈𝐧𝐟𝐫𝐚𝐫𝐞𝐝

𝐕𝐢𝐝𝐞𝐨

Input 3D Point Cloud

Figure 8: Additional Visualization of Cross-modal Retrieval. We visualize the cross-modal re-
trieval between 3D and three new modalities, i.e., video, depth, and infrared data. Note that, for these
modalities, we utilize LanguageBind (Zhu et al., 2023a) as the guidance for pre-training Point-Bind.

Quantitative Results of Any-to-3D Genration. Besides text-to-3D generation, we quantitatively
demonstrate the efficacy of Point-Bind on any-to-3D generation in Table 5. We generate the 3D
mesh conditioned on multi-modalities and their embedding-space arithmetic, i.e., directly combin-
ing embeddings from different modalities to guide 3D generation. We adopt different settings for
different modalities. For audio-to-mesh generation, we only generate objects of the car, airplane,

Table 5: Quantitative Results of Any-to-
3D Generation. We report the Fréchet In-
ception Distance (FID) and Fréchet Point
Distance (FPD) scores for comparison.

Source Modality FID (↓) FPD (↓)

Audio 166.97 30.46
Image 95.77 19.41
Point Cloud 86.14 20.13
Image + Text 86.79 26.13
Point Cloud + Text 88.78 26.39
Point Cloud + Image 87.03 21.19

and boat categories considering the limited class num-
ber. We sample 10 audio clips per category from ESC-
50 dataset (Piczak, 2015) as input. The airplane take-
off sound, car horn, and sea wave sound are selected
to generate the airplane, car, and boat categories, re-
spectively. For image-to-mesh generation, we sam-
ple 10 images corresponding to ShapNet’s 13 cate-
gories from ImageNet dataset (Deng et al., 2009) as
the 2D prompt. For point-to-mesh synthesis, we sam-
ple 10 point clouds per category from the ShapeNet
dataset (Chang et al., 2015) as prompt. Compared to
text-to-3D generation, the results in Table 5 suggest
that Point-Bind can also achieve satisfactory genera-
tion quality with other modalities as conditions.
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[Truck Sound]
“A Chair”

[Car Horn]
“An Airplane”

Text-to-3D: Audio-to-3D: Image-to-3D: Point-to-3D:

Figure 9: Any-to-3D Generation based on CLIP-Forge (Sanghi et al., 2021). Besides ISS (Liu et al.,
2022), our Point-Bind is generalized to combine any text-to-3D models for any-to-3D generation.

“Color the 
airplane in red.”

“Change the material 
to wooden.”

[Pure Yellow Image]

Figure 10: 3D Editing with Multi-modal Instructions. Within the joint 3D embedding space
of Point-Bind, we can effectively edit input 3D point clouds with multi-modal instructions, e.g.,
language or image.

Any-to-3D Generation with CLIP-Forge (Sanghi et al., 2021). Besides ISS (Liu et al., 2022),
we also adopt the decoder of CLIP-Forge and show the examples of any-to-3D generation powered
by Point-Bind in Figure 9. For text, audio, and point cloud prompts, our approach can all produce
satisfactory 3D meshes. This demonstrates that Point-Bind generalizes well and can guide other 3D
generation models conditioned on multi-modalities.

3D Editing with Multi-modal Instructions. Besides the any-to-3D generation, our approach can
further enable 3D editing with multi-modal instructions, as visualized in Figure 10. For example,
given a 3D airplane, we can provide a language instruction, “Color the 3D shape in red”, or a
pure yellow picture as the visual instruction. Then, we respectively feed them into Point-Bind’s 3D
encoder and ImageBind’s text or image encoder. Due to the joint embedding space, the generative
decoder can incorporate their semantics and output the airplane in red/yellow. Likewise, given an
ordinary 3D bench, we can provide instructions like “Modify the material to wooden”. The model
can correspondingly generate a wooden chair. Therefore, benefiting from the emergent capacity of
Point-Bind, we can simply achieve any-to-3D generation and editing, exhibiting favorable training
efficiency and generalization capability.

Additional Comparison and Analysis with ULIP. The teacher model of Point-Bind, Image-
Bind (Girdhar et al., 2023), has different pre-training settings with ULIP’s (Xue et al., 2022) teacher
model, SLIP (Mu et al., 2021). In this paragraph, we compare Point-Bind and ULIP with the same
pre-trained teacher models. We first reproduce a ULIP model also pre-trained by CLIP’s ViT-H
image encoder, which is the same as ImageBind’s image encoder. Note that, ImageBind freezes the
ViT-H image encoder and text encoder of OpenCLIP during its pre-training. That is, ImageBind
and OpenCLIP share the same weights in their image and text encoders. As shown in Table 6, for
zero-shot classification on ModelNet40 (Wu et al., 2015), although the ULIP’s performance can be
improved by the ViT-H image encoder, our approach still performs better via a joint multi-modal
embedding space.

Generalizability of Point-Bind with Techniques from JM3D (Wang et al., 2023a).
JM3D (Wang et al., 2023a) proposes two delicate approaches to enhance the multi-modal pre-
training of 3D models: Structured Multimodal Organizer (SMO) and Joint Multi-modal Alignment
(JMA). SMC adopts multi-view rendered images and hierarchical text for more comprehensive rep-
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What do you know about this scene 
with the provided materials?

In this scene , a person is 
sitting on a couch with a 
guitar in hands. The person is 
also wearing a necklace, which adds 
to the overall aesthetic of the 
scene. The scene suggests that 
the person might be a 
musician or a performer, 
possibly preparing to play 
the guitar or simply posing 
for a photo. 

Please give me a detailed 
explanation of this scene.

[ Audio of Rain]

The image shows a scene of a tree 
with a large leafy plant 
growing on it, surrounded by 
a downpour of rain. The tree 
appears to be covered in a dense 
layer of leaves, which are being 
soaked by the rain. The leaves are 
falling from the tree, creating a 
waterfall-like effect. The presence 
of the rain and the falling leaves 
adds a sense of tranquility and 
beauty to the scene.

[ Audio of Guitar]

Please elaborate on the details of this scene.

The scene features a large bowl filled
with a delicious meal, which appears to
be a rice and vegetable dish. The
bowl is placed on a dining
table, and there are several
pieces of broccoli scattered
around the table. The table is
also adorned with a fork and a spoon,
suggesting that the meal is ready to
be enjoyed. The combination of rice,
vegetables, and utensils indicates that
this is a well-prepared meal, perfect
for a satisfying dining experience.

What do you know about this scene 
with the provided materials?

The image features a person's
hand reaching out to open a
door, possibly a wooden
door, with a key. The person is
positioned on the left side of the
door, and their hand is close to
the doorknob. The scene appears
to be a close-up view of the
person's hand and the key,
emphasizing the action of
unlocking the door.

[ Audio of
Wood Door Creak ]

Can you explain this scene in detail?

It features a young boy standing in a
library, surrounded by numerous books.
He is holding a book in his hands,
possibly reading or looking at it. The
books are arranged in various positions,
with some placed on shelves and others
on the floor. The bookshelf setting
suggests a learning environment, like
library, where the boy is engaged
in reading or exploring the vast
collection of books available.

Please give me a detailed 
explanation of this scene.

The image depicts a room with a fireplace 
and a ladder leaning against the wall.  
The ladder is positioned near the fireplace, 
which has a chimney.  The room appears 
to be in a state of disrepair, with a 
broken window and a collapsed ceiling.  The 
fireplace is surrounded by debris, including 
books and papers scattered around the floor.  
The overall atmosphere of the room 
suggests that it has been abandoned or 
neglected for a long time.

Figure 11: Additional 3D Question-answering Examples of Point-LLM. Point-LLM can effec-
tively generate detailed responses and conduct superior cross-modal reasoning, based on the given
multi-modal instructions.

Table 6: Comparison to ULIP by Teacher Models with The Same Image Encoder: ViT-H.

Method Teacher Model Image Encoder Accuracy

ULIP OpenCLIP (Ilharco et al., 2021) ViT-L 60.4%
ULIP OpenCLIP (Ilharco et al., 2021) ViT-H 73.2%
Point-Bind ImageBind (Girdhar et al., 2023) ViT-H 76.3%

resentation, and JMA aims to achieve better mult-modal synergy by generating joint vision-language
features. We also add the two techniques in JM3D into our Point-Bind for the image and text modal-
ities within ImageBind (Girdhar et al., 2023), and evaluate on two benchmarks: 3D zero-shot clas-
sification and cross-modal retrieval on ModelNet40 (Wu et al., 2015). As shown in Table 7, the
capabilities of Point-Bind are well enhanced by integrating SMO and JMA, indicating the impor-
tance of more comprehensive vision-language guidance.

Generalizability of Point-Bind with Techniques from CG3D (Hegde et al., 2023).
CG3D (Hegde et al., 2023) shares a similar contrastive learning paradigm with ULIP, and introduces
learnable visual prompts for CLIP’s image encoder for better adaption of 2D rendered images. For
our Point-Bind, we also add learnable visual prompts to the image encoder of ImageBind, and re-
port the results in Table 7. On both benchmarks, the prompting approach from CG3D can improve
the performance of Point-Bind, which demonstrates the effectiveness of fine-tuning the pre-trained
image embeddings.

Additional 3D Question-answering Examples. We provide more 3D question-answering exam-
ples in Figure 11, showing the 3D instruction-following and multi-modal reasoning capacity of
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Table 7: Performance(%) of Point-Bind with JM3D (Wang et al., 2023a) and CG3D (Wang
et al., 2023a) on 3D Zero-shot Classification and Cross-modal Retrieval Tasks.

Method Zero-shot Cls. 3D → 3D 2D → 3D 3D → 2D Text → 3D

Point-Bind 78.0 63.2 34.6 42.8 64.5
Point-Bind w JM3D 78.4 64.1 35.5 43.9 64.7
Point-Bind w CG3D 78.2 63.5 34.3 43.2 64.8

Point-LLM. As shown, given a 3D shape with a 2D image or audio, Point-LLM effectively enables
LLaMA (Touvron et al., 2023) injected with multi-modal semantics, and responds with cross-modal
understanding and reasoning. Additionally, as shown in Figure 12, we show more examples of
Point-LLM for straightforward question answering, e.g., “How to start it?”, “What is the purpose of
this thing?”. Our model can respond with precise answers that correspond to the input point cloud.

Examples of Indoor Scene Understanding. We further implement a scene-level variant of our
model, termed Point-LLMScene. We focus on the understanding of indoor scenes on ScanNet (Dai
et al., 2017), and show the qualitative examples in Figure 13. Specifically, to obtain the scene-
level understanding capacity, we fine-tune our object-level Point-LLM by an existing 3D question-
answering dataset (Wang et al., 2023c) constructed from ScanRefer (Chen et al., 2020a). We add
three MLP layers with residual connections between Point-Bind’s 3D encoder and the LLM, which
is responsible for learning the scene-level 3D geometries. We only enable the new MLP layers
to be trainable, while keeping other components frozen to preserve the pre-trained cross-modal
knowledge. As shown, our model can respond with detailed and reasonable answers that correspond
to the input 3D scene and target object.

C RELATED WORK

Multi-modality Learning. Compared to single-modal approaches, multi-modal learning aims to
learn from multiple modalities simultaneously, achieving more robust and diverse representation
learning. Numerous studies have proved its efficacy, involving 2D images, videos, texts, and au-
dio (Desai & Johnson, 2021; Fang et al., 2021; Nagrani et al., 2022), and enhance the cross-modal
performance for downstream tasks (Lin et al., 2021b; Ramesh et al., 2021; Botach et al., 2022; Guo
et al., 2023c), and video-text-audio integration for text generation (Lin et al., 2021a). The represen-
tative vision-language pre-training, CLIP (Radford et al., 2021), effectively bridges the gap between
2D images and texts, which encourages further exploration of cross-modality learning. Recently,
ImageBind (Girdhar et al., 2023) successfully aligns six modalities in a joint embedding space, un-
leashing the power for emergent zero-shot cross-modal capabilities. However, ImageBind fails to
investigate its efficacy on 3D point clouds. In the 3D domain, most existing cross-modal works
introduce vision-language alignment (Zhang et al., 2022b; Xue et al., 2022; Afham et al., 2022; Guo
et al., 2023a; Chen et al., 2023a) into 3D point clouds, and mainly focus on open-world recognition
tasks, which ignore the potential of multi-modal semantics for wider 3D applications. In this paper,
our Point-Bind develops a general 3D multi-modality model that aligns 3D point clouds with six
other modalities guided by ImageBind, allowing for more diverse 3D cross-modal understanding.

Large Models in 3D. Large-scale pre-trained models have achieved remarkable downstream per-
formance in language and 2D image processing. Inspired by this, many efforts have introduced
2D and language large models, to assist in 3D learning. The prior PointCLIP series (Zhang et al.,
2022b; Zhu et al., 2022; Huang et al., 2022) project 3D point clouds into depth maps, and utilize
CLIP (Radford et al., 2021) for zero-shot recognition. Image2Point (Xu et al., 2022) instead con-
verts 2D pre-trained models into 3D space as a good network initialization. By contrastive learning,
ULIP series (Xue et al., 2022; 2023) and other works (Liu et al., 2023a; Hegde et al., 2023) pre-train
3D networks guided by the vision-language embedding space of CLIP. Another branch of work
employs CLIP to guide the text-conditioned generation of 3D objects (Jain et al., 2022a; Sanghi
et al., 2021; Xu et al., 2023a; Liu et al., 2023b) or stylized meshes (Mohammad Khalid et al., 2022;
Michel et al., 2021) by encoding descriptive textual input. Some works also adopt GPT-3 (Brown
et al., 2020) to enhance the language-based understanding of 3D spatial geometry, such as Point-
CLIP V2 (Zhu et al., 2022) and ViewRefer (Guo et al., 2023b). Different from them, we utilize
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How to start it?

To start the car, you would typically press the accelerator 
pedal down while holding the brake pedal down 
simultaneously. This will engage the car's starter motor, which 
will turn the engine over, and the car will start to move.

What is the purpose of this thing?

The purpose of this thing is to transport passengers from 
one location to another. In this scene, a white and black jet 
airplane is on the runway, preparing to take off. It is a large 
commercial airplane, which means it is designed to carry a 
significant number of passengers and their luggage. The airplane 
serves as a mode of transportation for people to travel 
long distances quickly and efficiently, connecting various 
cities and countries around the world.

How to use it?

To use the bathtub, you would first fill it with water to the 
desired level. Once the tub is filled, you can sit or lay 
down in it, taking care to avoid splashing water outside 
the tub. The bathtub is designed to provide a comfortable and 
relaxing experience, allowing you to soak in the warm water and 
enjoy the hydrotherapy benefits. It is essential to ensure that 
the water level is not too high, as it can pose a risk of slipping or 
falling. Additionally, it is important to keep the area around the 
bathtub clean and dry to prevent any potential damage or 
accidents.

What thing in real life is shaped like this? 

Please give me some examples.

There are several examples of real-life objects that are shaped 
like a cone or pyramid. Some examples include: 1. Pyramids: 
The most famous example is the Pyramids of Giza, which are 
triangular pyramids built by the ancient Egyptians as tombs for 
their pharaohs. 2. Volcanoes: Volcanoes, especially those that 
have recently erupted, can have a cone-like shape. The cone is 
formed as lava or pyroclastic cone material is ejected from the 
volcano's vent. 3. Mountains: Many mountains have a pyramid-
like shape, with a wide base and a narrow peak. Examples 
include Mount Fuji in Japan, Mount Kilimanjaro in 
Tanzania, and the Pyramidion on the Pyramid of Giza.

What is this?

What do people usually put on it?

How to decorate it?

This is a small side table or nightstand, typically used to 
hold items such as a bedside lamp, a phone, a glass of 
water, or a small book. You can decorate it by placing a small 
tray or a decorative plate on top of it to hold items. You can also 
use a decorative box or a small shelf to store additional items. In 
the image, the nightstand is currently empty, so you could add 
a decorative lamp, a small vase with flowers, or other 
decorative items to enhance its appearance.

One famous classical work involving a grand piano is 
Sergei Rachmaninoff's "Piano Concerto No. 2 in C minor, 
Op. 18." This piece is considered a masterpiece of the Romantic 
era, widely recognized for its emotional depth, technical 
challenges, and the piano's prominent role in the composition. 
Another famous work is Maurice Ravel's "Gaspard de la 
nuit," a piano suite that features three movements, each with its 
own unique character and musical style. The suite is based on a 
story by French writer Aloysius Bertrand and is known for its 
imaginative nature, with the third movement, "Ballade," being 
particularly well-known for its haunting melody and harmonies.

Provide some famous classic works 

concerning this object.

𝐀𝐧𝐬𝐰𝐞𝐫	𝐨𝐟	𝐏𝐨𝐢𝐧𝐭-𝐋𝐋𝐌𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐈𝐧𝐩𝐮𝐭	𝟑𝐃	𝐎𝐛𝐣𝐞𝐜𝐭

Figure 12: Examples of Point-LLM for Straightforward Question Answering.

ImageBind (Girdhar et al., 2023) to construct a joint embedding space between 3D point clouds and
multiple modalities. The derived Point-Bind can well leverage the multi-modal semantics for gen-
eral 3D cross-modal understanding, generation, and question answering. There are a couple of very
recent efforts that introduce LLMs into 3D, concurrent to our Point-LLM. Different from us, they
either project 3D data into multi-view images for encoding (Hong et al., 2023b), or require large-
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Instruction: 
What is the target object? Where is its exact location?

Share your thoughts on the room's overall design and ambiance.

Response: 
The object in question is a white monitor placed on top of a desk. It is located 
on the left of another monitor and to the right of a telephone. The monitor has a 
rectangular shape and is positioned on the left side of the desk.
The fact that the monitor is placed on top of a desk indicates its intended use as a 
workspace or study area. The presence of a telephone nearby suggests that the 
monitor may be used for communication or multitasking, allowing the user to easily 
access both the monitor and phone while working.
The surrounding objects, such as the keyboard, monitor, desk, cabinet, pillow, wall, 
bookshelf, and other miscellaneous objects, contribute to the overall functionality 
and organization of the workspace. The fact that the monitor is placed on the 
left of another monitor and to the right of the telephone suggests that 
the area is specifically designed for multitasking or work-related 
activities that require a combination of visual and auditory input.
Overall, the white monitor on the desk plays an important role in the functionality 
and productivity of the workspace, providing a reliable and efficient means of 
accessing information, data, or communication tools.

Instruction: 
Inspect the target object thoroughly and describe its details.

Response: 
The object in question is a black metal chair placed at the center of the 
room. Its placement in the middle suggests a central location within the 
space. Positioned next to a desk with a monitor, the chair serves as a seating 
option for someone working or studying at the desk. Its proximity to the desk also 
implies that it is likely used for a work or study purpose.
The presence of multiple other chairs in the room suggests that this is a shared 
space where multiple individuals may work or study. The chairs are arranged in a 
symmetrical pattern, creating a balanced and organized seating arrangement.
The presence of other objects, such as a desk, keyboard, computer, and 
wall, further indicates that this area serves as an office or workspace. The 
placement of the chair in front of the monitor and its proximity to the 
table indicate that it is likely used for computer work.
Overall, this setup suggests a well-organized and functional space for work or study. 
The arrangement of the chairs and other objects creates a comfortable and visually 
pleasing environment for individuals working or studying in the area. 

Instruction: 
Elaborate on the displayed target object with great details. 

What items are around this object?

Response: 
The described object is a rectangular white pillow placed on a bed. 
Positioned on the left side of a bookshelf, the pillow adds visual appeal and 
comfort to the surrounding area. The placement on the bed is appropriate, allowing 
the pillow to be used to rest people, and complement the overall interior design of 
the room or space.
In the 3D scene, the described pillow is surrounded by multiple other objects, 
such as books, a radiator, a backpack, a desk, and a chair. These items 
suggest that the scene is a living or working space, where books and desk-
related objects are commonly found.
The pillow provides a comfortable seating option for users, and as a decorative 
element, adding character and warmth to the area while complementing the 
surrounding objects in the room. It creates a cozy and inviting atmosphere for 
people who interact with the space, whether for relaxation or work purposes.

𝐈𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧	 &	 𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞	𝐨𝐟	𝐏𝐨𝐢𝐧𝐭-𝐋𝐋𝐌𝐈𝐧𝐩𝐮𝐭	𝟑𝐃	𝐒𝐜𝐞𝐧𝐞

Figure 13: 3D Scene Understanding Capability of Point-LLMScene.

scale 3D instruction data for fine-tuning (Xu et al., 2023b; Wang et al., 2023b). More importantly,
they cannot generate responses conditioned on both 3D and multi-modal input. Thanks to the joint
embedding space of Point-Bind, our Point-LLM can discard the expensive 3D instruction tuning,
and respond via 3D multi-modal reasoning.

Pre-training in 3D. In recent years, significant progress has been made in supervised learning
for 3D vision tasks (Qi et al., 2016; 2017; Qian et al., 2022a; Zhang et al., 2023b; Zhu et al.,
2023b). However, these approaches lack satisfactory generalization capabilities for out-of-domain
data. To address this, self-supervised learning has emerged as a promising solution to enhance
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3D transfer learning (Chen et al., 2023a; Yu et al., 2022; Li et al., 2019; Poursaeed et al., 2020).
Most self-supervised pre-training methods employ an encoder-decoder framework to encode point
clouds into latent representations and then reconstruct the original data form (Sauder & Sievers,
2019; Wang et al., 2021; Rao et al., 2020). Therein, Point-MAE (Pang et al., 2022) and Point-
M2AE (Zhang et al., 2022a) introduce masked autoencoders (He et al., 2021) into 3D point clouds
pre-training, achieving competitive results on different 3D tasks. Alternatively, cross-modal pre-
training approaches are also leveraged to enhance the 3D generalization ability (Wang et al., 2022;
Qian et al., 2022b; Liu et al., 2021a; Qi et al., 2023). For example, ACT (Dong et al., 2022) and
I2P-MAE (Zhang et al., 2023a) utilize pre-trained 2D transformers as teachers to guide 3D repre-
sentation learning. Inspired by previous works, we adopt collected 3D-image-text-audio pairs for
self-supervised pre-training, and regard ImageBind’s encoders as guidance for contrastive learn-
ing. In this way, the Point-Bind is pre-trained to obtain a joint embedding space between 3D and
multi-modality, allowing for superior performance on different 3D downstream tasks.

D ADDITIONAL IMPLEMENTATION DETAILS

Multi-modal Training of Point-Bind. To align 3D with multi-modalities, we adopt a pre-trained
I2P-MAE (Zhang et al., 2023a) as the 3D encoder of Point-Bind by default, and utilize the collected
3D-image-text-audio pairs for pre-training. We utilize a pre-trained ImageBind (Girdhar et al., 2023)
with a ViT-H (Dosovitskiy et al., 2020) image encoder. We only update the 3D encoder with the
newly added projection network, and freeze the encoders of other modalities in ImageBind. The
projection network is composed of two linear layers with an intermediate LayerNorm (Ba et al.,
2016). We train Point-Bind for 300 epochs with a batch size of 64, and adopt AdamW (Loshchilov
& Hutter, 2017) as the optimizer with a learning rate of 0.003.

3D Cross-modal Retrieval. We utilize ModelNet40 (Wu et al., 2015) to evaluate Point-Bind on
cross-modal retrieval tasks without training. The test set of ModelNet40 provides 2,468 samples
with two modalities, i.e., 2D images rendered from 3D meshes and corresponding 3D point clouds.
We adopt the Mean Average Precision (mAP) score as the criterion, which measures whether the
retrieved data belongs to the same class as the query data. We encode 3D point clouds with Point-
Bind and conduct four cross-modal retrieval tasks, i.e., 3D-to-3D, 2D-to-3D, 3D-to-2D, and text-to-
3D retrieval. For the text prompt, we adopt and separately encoder 64 prompt templates in ULIP
(Xue et al., 2022) on each category, and average them as the text embeddings. For the 2D image
prompt, we follow (Jing et al., 2021) to utilize multi-view images where the view number is ∈
{1, 2, 4}. We average the performance under the three view settings as the final result.

Any-to-3D Generation. We adopt Image as Stepping Stone (ISS) (Liu et al., 2022) to verify Point-
Bind’s ability of multi-modal feature alignment. We first optimize a projection layer that transfers
Point-Bind image features to ISS 3D shape space. Then, we generate 3D shapes from text fea-
tures based on the pre-trained projection layer and ISS decoder. The ShapeNet (V2) dataset(Chang
et al., 2015) with 13 object categories is utilized to train the model. We follow ISS and adopt a
text description set with four texts per category. To demonstrate 3D generation quality, we adopt
FID, FPD, and CLIP R-precision as criteria. FID reflects the quality of rendered 2D images from
generated 3D shapes. FPD measures the quality of point clouds extracted from generated shapes
based on a pre-trained PointNet model (Qi et al., 2016) following ISS. Additionally, we further
adopt CLIP R-precision to evaluate the consistency between the text inputs and generated shapes.
We build a text description set, which contains our description prompts and 234 additional texts
from CLIP-Forge (Sanghi et al., 2021). Then, we perform per-shape CLIP-R-Precision to retrieve
the right description for each generated shape and calculate the retrieval accuracy. To give a com-
prehensive comparison, we mainly compare our approach to three text-to-mesh generation models,
CLIP-Forge (Sanghi et al., 2021), Dream Fields (Jain et al., 2022b), and ISS. Note that Dream Fields
can not synthesize 3D shapes directly, so we do not need to evaluate its FPD metric. In addition, two
baselines, GLIDE/LAFITE+DVR, which first create images and then generate 3D meshes are also
included. Following ISS, we first use GLIDE (Nichol et al., 2021) or LAFITE (Zhou et al., 2022) to
create 2D images and then generate 3D shapes via DVR (Niemeyer et al., 2020).
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