
Sublinear Time Algorithms for Greedy Selection in High Dimensions

Qi Chen*1 Kai Liu∗2 Ruilong Yao2 Hu Ding†2

1School of Data Science, University of Science and Technology of China, Anhui, China
2School of Computer Science and Technology, University of Science and Technology of China, Anhui, China

Abstract

Greedy selection is a widely used idea for solv-
ing many machine learning problems. But greedy
selection algorithms often have high complexi-
ties and thus may be prohibitive for large-scale
data. In this paper, we consider two fundamen-
tal optimization problems in machine learning: k-
center clustering and convex hull approximation,
where they both can be solved via greedy selection.
We propose sublinear time algorithms for them
through combining the strategies of randomiza-
tion and greedy selection. Our results are similar
in spirit to the linear time stochastic greedy se-
lection algorithms for submodular maximization
[Mirzasoleiman et al., AAAI 2015, Hassidim and
Singer, ICML 2017], but with several important
differences. Our runtimes are independent of the
number of input data items n. In particular, our run-
time for k-center clustering significantly improves
upon that of the uniform sampling approach, espe-
cially when the dimensionality is high. Our sublin-
ear algorithms can also reduce the computational
complexities for various applications, such as data
selection and compression, active learning, and
topic modeling, etc.

1 INTRODUCTION

Greedy algorithm is one of the most fundamental tools for
algorithm design [Cormen et al., 2009]. In particular, many
optimization problems in machine learning can be solved
through greedy selection method. The method iteratively se-
lects a subset of data items from input based on some greedy
strategy. One representative example is the Gonzalez’s al-
gorithm for k-center clustering [Gonzalez, 1985]. Given a

*The first two authors contributed equally to this work.
†Corresponding author.

set of data items (e.g., a point set in Rd), the algorithm is
to iteratively select k items from the input; if one draws k
equal-sized balls centered at these k items, the whole input
data set can be covered by these balls and the radius is no
larger than two times the optimal one (the formal definition
for k-center clustering is shown in Section 2).

The algorithm is simple but has many important applications
in real world. One natural application is constructing core-
set for compressing a large-scale data, especially when we
want to maximize diversity or coverage [Indyk et al., 2014].
Another closely related application is batch active learn-
ing [Sener and Savarese, 2018, Coleman et al., 2020]. Most
machine learning models heavily depend on high-quality
labeled training datasets. However, because it is expensive
to acquire a large number of labeled data, we may only be
able to select a small number of data items (via k-center
clustering) to label in each round (as an active learning
process).

Another high dimensional optimization problem that de-
pends on greedy selection is convex hull approxima-
tion [Blum et al., 2019, Awasthi et al., 2020], where the
goal is to find a convex hull so that each data item can be
approximately represented by the vertices. The problem
has a number of applications in machine learning, such as
topic modeling, sparse approximation, and non-negative
matrix factorization [Ge and Moitra, 2020]. Though the
convex hull algorithms have been well studied in low dimen-
sions [de Berg et al., 2008], the problem in high dimensions
is much more challenging. Similar with the k-center cluster-
ing, a common idea for convex hull approximation is using
greedy selection to find the vertices iteratively.

Although these greedy selection methods enjoy promising
performances in practice, they often suffer from high com-
plexities when data sizes are extremely large. For instance,
the vanilla Gonzalez’s algorithm needs to run k iterations
and each iteration needs to scan the whole dataset in one
pass (a detailed introduction on the previous work is shown
in Section 1.1). Similarly, the greedy selection method for

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:huding@ustc.edu.cn

convex hull approximation also needs to repeatedly scan the
whole dataset and thus yields large runtime. So a natural
question is:

Can we modify these greedy selection algorithms to
achieve lower time complexities, e.g., sublinear time com-
plexities that are independent of input data size, and mean-
while preserve their quality guarantees?

1.1 RELATED WORK

We introduce several important existing results related to
this paper in this section.

k-center clustering. As mentioned before, the greedy selec-
tion based k-center clustering algorithm [Gonzalez, 1985]
can yield a 2-approximation result; moreover, it was proved
that any approximation ratio lower than 2 implies P =
NP [Hochbaum and Shmoys, 1985]. To speed up the Gon-
zalez’s algorithm, several improvements have been proposed
before [Feder and Greene, 1988, Har-Peled and Mendel,
2006]; however, they usually require some additional as-
sumptions (e.g., the dimensionality or intrinsic dimensional-
ity should be small). To deal with large-scale data, a number
of streaming algorithms which only need to read the data
in one-pass were introduced in Charikar et al. [2004], Mc-
Cutchen and Khuller [2008], Guha [2009], Ceccarello et al.
[2019]. The well known “coreset” technique is also applied
to compress data size for k-center clustering Bādoiu et al.
[2002], Aghamolaei and Ghodsi [2019], but their coreset
construction algorithms already take at least linear time.
Furthermore, several uniform sampling based ideas were
presented for achieving sublinear complexity for k-center
clustering (with outliers) [Charikar et al., 2003, Huang et al.,
2018].

Convex hull approximation. Several elegant convex hull al-
gorithms for low-dimensional space have been introduced in
the community of computational geometry before [de Berg
et al., 2008]. The high-dimensional convex hull approxi-
mation problem is closely related to non-negative matrix
factorization and topic modeling [Ge and Moitra, 2020].
Roughly speaking, the vertices of the obtained convex hull
can help us to generate the low rank non-negative matrices
and discover the hidden topics. In general, this problem is
intractable but it is possible to achieve an efficient solution
under the separability assumption [Donoho and Stodden,
2003, Arora et al., 2012]. Recently, several practical algo-
rithms with provable guarantees were also proposed, such
as Blum et al. [2019], Awasthi et al. [2020], Arora et al.
[2013].

Other applications of greedy selection in machine learn-
ing. Besides the aforementioned two problems, greedy se-
lection also has several other applications in machine learn-
ing. To name a few: submodular maximization [Nemhauser
et al., 1978], column subset selection [Farahat et al., 2015],

reinforcement learning [Painter-Wakefield and Parr, 2012],
sparse approximation [Tropp, 2004], and SVM Gärtner and
Jaggi [2009].

1.2 OUR CONTRIBUTIONS

In this paper, we aim to develop sublinear time algorithms
for the k-center clustering and convex hull approximation
problems. We assume the input data size and the dimension-
ality are both large. We combine the strategies of greedy
selection and randomization, and show that the random-
ized greedy selection methods can achieve almost the same
approximation guarantees, and meanwhile, the time com-
plexities can be reduced to be sublinear.

Comparison with the algorithms of Mirzasoleiman et al.
[2015], Hassidim and Singer [2017]. Actually, the high
complexity issue of greedy selection has been discussed
in Mirzasoleiman et al. [2015], Hassidim and Singer [2017]
for the submodular maximization problem. They showed
that if the greedy selection step is replaced by random sam-
pling, a quality guarantee still holds but the complexity (i.e.,
the number of function evaluations) can be reduced to be
linear. Our proposed algorithms are inspired by the similar
stochastic intuition but with several important differences.
(i) First, both k-center clustering and convex hull approxima-
tion are geometric optimizations in high dimensions which
have different objective functions other than submodular
maximization. (ii) Second, our framework yields the sublin-
ear time complexities that are independent of the number
of input data items; this property is particularly important
when we cannot access the input data and can only take a
small sample via an oracle each time (e.g., due to privacy
preserving or the challenge of data acquisition). (iii) Finally,
we also consider the scenario that the number of iterations
for greedy selection is unknown. For example, the number
of clusters “k” of the k-center clustering may not be given;
instead, we may just run the Gonzalez’s algorithm iteratively
until the obtained radius is no larger than a pre-specified
threshold r0 > 0. We need to emphasize that designing
the sublinear time algorithm becomes much more challeng-
ing with such a change, since it will be difficult to set the
sample size in each iteration and determine when the algo-
rithm should terminate. To remedy these issues, we propose
a novel stratified sampling method and design a sampling
based stopping condition for the greedy selection.

Comparison with the streaming and uniform sampling
algorithms. As mentioned in Section 1.1, the one-pass
streaming algorithms [Charikar et al., 2004, McCutchen
and Khuller, 2008, Guha, 2009, Ceccarello et al., 2019] can
avoid repeatedly reading the input data, however, they still
suffer from high time complexities (e.g., the “doubling algo-
rithm” [Charikar et al., 2004] takes a total O

(
k(log k)nd

)
time that is even higher than the complexity of the vanilla
Gonzalez’s algorithm, where n is the number of input

points). On the other hand, our proposed sublinear time
algorithms have the complexities independent of n.

It is also worth to compare our results with the uniform
sampling algorithms for k-center clustering [Charikar et al.,
2003, Huang et al., 2018]. For example, a simple uniform
sample S of size Õ(kdϵ2)

1 can approximately represent the
whole input data P based on the theory of VC dimen-
sion [Huang et al., 2018], where ϵ ∈ (0, 1) indicates the
small fraction of uncovered points; that is, if one runs the
2-approximate Gonzalez’s algorithm on the sample S, the
obtained k balls still form a 2-approximate solution in terms
of the whole input P but except for ϵn uncovered points
of P . The running time of the Gonzalez’s algorithm on S

should be Õ(k|S|d) = Õ(k
2d2

ϵ2). In Section 3.1, we show
that our algorithm takes Õ(k

3d
ϵ) time (also with ϵn uncov-

ered points). Usually, k is much smaller than the dimension-
ality d, and thus our improvement is significant. In particular,
if k is assumed to be constant, we improve their complexity
by a factor up to d

ϵ .

The reader may wonder that whether dimension reduc-
tion technique (e.g., the JL-transform Dasgupta and Gupta
[2003]) can be applied. Actually the complexities of both
our method and the uniform sampling can be reduced by
the JL-transform, and our improvement is still significant
(just replace the dimension d by the new dimension d′ for
both the two complexities). Also, even we apply the JL-
transform, the reduced dimensionality could be still high
(which is O(log |S|/µ2), if supposing |S| is the total sample
size and “µ” is the pairwise distance distortion error). For
example, if we let µ = 0.01, the new dimension is still high.

Not only the runtime, another benefit comparing with the
uniform sampling is that we have smaller sample size. Our
algorithm takes Õ(k2/ϵ) samples in total after k iterations,
which is much lower than Õ(kd/ϵ2) if assuming k is not
large. In particular, our sample size is independent of the
dimension d. The dimension can be very high or even infin-
ity if using kernel. The smaller sample size is also important
in some specific setting like relational database [Schleich
et al., 2019]. It is very expensive to materialize the whole
data matrix for a relational database, and a smaller sam-
ple size can significantly reduce the total computational
complexity [Zhao et al., 2018].

2 PRELIMINARIES

In this section, we introduce several important definitions
that will be used throughout this paper. Let c ∈ Rd and r ≥
0; we use B(c, r) to denote the ball centered at c with radius
r. Also, given a set S of points in Rd, we use conv(S) to
denote the convex hull of S. We use the function dist(p, U)

1The asymptotic notation Õ(f) = O
(
f · polylog(kd

ηϵ
)
)
,

where η ∈ (0, 1) is the parameter controlling the success probabil-
ity of sampling.

to measure the shortest distance from a point p to a set U ,
i.e., dist(q, U) := minq∈U ||p− q||.

Definition 1 (k-center clustering). Given a set P of n
points in Rd and k ∈ Z+, the goal of k-center clustering
is to find k balls B(c1, r), · · · ,B(ck, r) with the smallest
radius r to cover the set P , that is, P is partitioned into k
clusters with each cluster being covered by an individual
ball, and the radius r is minimized.

Remark 1. The k-center clustering problem can be also
defined for any abstract metric, where the only difference
is that the Euclidean distance is replaced by the distance
defined in the metric. In fact, our proposed sublinear algo-
rithms for k-center clustering in this paper can be applied
to any abstract metric with the same quality guarantees.

Let ropt be the radius of the optimal solution for the k-center
clustering on P . For any solution having a radius r ≤ λropt
with some λ ≥ 1, we call it a “λ-approximation”.

Definition 2 (convex hull approximation). Given a set P
of n points in Rd and an integer k ≥ 1, the goal of convex
hull approximation is to find a subset Pc ⊂ P with |Pc| =
k, such that the error, i.e., maxp∈P dist

(
p, conv(Pc)

)
is

minimized (so if all the points of P are covered by conv(Pc),
the error is 0).

Remark 2. In general, we can remove the requirement
“Pc ⊂ P”, i.e., Pc can contain any points in the space.
But we often want Pc to be meaningful or interpretable
in practice, and thus it is natural to require it to be a subset
of the original input data.

Similar with k-center clustering, we can also define the ap-
proximation solution for convex hull approximation. But
since the convex hull approximation is much more challeng-
ing, we often obtain bi-criteria approximations. Suppose
α, β ≥ 1. If letting δopt be the optimal error, a bi-criteria
(α, β)-approximation means that the obtained convex hull
has the error δ ≤ αδopt and the number of vertices k′ ≤ βk.

The rest of this paper is organized as follows. In Section 3,
we propose our sublinear time algorithm for k-center clus-
tering. In particular, we also consider the practical case that
the number of clusters k is not given (Section 3.2). Further,
in Section 4 we consider developing sublinear time algo-
rithm for convex hull approximation by extending the idea
from Section 3.2. Finally, we present our experiments in
Section 5.

3 k-CENTER CLUSTERING

In this section, we focus on the k-center clustering problem.
For the sake of completeness, we briefly introduce the afore-
mentioned 2-approximate Gonzalez’s algorithm [Gonzalez,
1985] first.

Gonzalez’s algorithm. It selects an arbitrary point, say
c1, from the input P and lets C = {c1}. In each of the
following k − 1 iterations, it selects a new point that has
the largest distance to C among the points of P and adds
it to C. Suppose C = {c1, · · · , ck}, and then P is covered
by the k balls B(c1, r), · · · ,B(ck, r) with r ≤ min{||ci −
cj || | 1 ≤ i ̸= j ≤ k}. It is not difficult to prove that the
obtained radius r ≤ 2ropt. It is also easy to know that the
running time of the Gonzalez’s algorithm is O(knd). As
mentioned before, a major drawback of the algorithm is the
high complexity, especially when n and d are large.

3.1 OUR SUBLINEAR ALGORITHM

Our proposed algorithm can be viewed as a randomized
version of the Gonzalez’s algorithm. The key change is
that we randomly select the next point for C in each round,
instead of always picking the furthest one. Below we prove
that this strategy can achieve the same 2-approximation
except for a small error on the number of covering points.

Algorithm 1 SUBLINEAR k-CENTER CLUSTERING

Input: A set P of n points in Rd, k ∈ Z+, and two
parameters η, ϵ ∈ (0, 1).

1. Initially, let C = {c1}, where c1 is an arbitrary point
picked from P ; i = 1.

2. Repeat the following steps k − 1 times:
(a) Sample a set Q of k

ϵ log
k
η points from P uni-

formly at random.

(b) Select the furthest point, say q0, from Q to C,
i.e., q0 = argq∈Q max dist(q, C).

(c) Let ci+1 = q0, C = C ∪ {ci+1}, and i = i+ 1.
3. Return C.

Theorem 1. Let C = {c1, · · · , ck} be the output from
Algorithm 1. With probability at least 1 − η, there exists
a subset P̃ ⊂ P with size |P̃ | ≥ (1 − ϵ)n, such that P̃ is
covered by ∪k

i=1B(ci, 2ropt).

To prove Theorem 1, we need the following claim first.

Claim 1. Let U be a set of elements and V ⊆ U with
|V |
|U | = τ > 0. Given η ∈ (0, 1), we uniformly select a set S
of elements from U at random. Then if |S| ≥ 1

τ log 1
η , with

probability at least 1− η, S contains at least one element
from V .

Actually, the above claim is a folklore result that has been
presented in several papers before (such as Ding and Xu
[2014]). Since each sampled element falls in V with prob-
ability τ , we know that the sample S contains at least one
element from V with probability 1− (1− τ)|S|. If we want
to guarantee 1− (1− τ)|S| ≥ 1− η, |S| should be at least

log 1/η
log 1/(1−τ) ≤

1
τ log 1

η .

Proof. (of Theorem 1]) To help our analysis, we define
C1 := ∅, and Ci := {c1, c2, · · · , ci−1} for each i =
2, · · · , k of Algorithm 1. Further, we define

Pi :=
{
p ∈ P | dist(p, Ci) > dist(ci, Ci)

}
(1)

for 2 ≤ i ≤ k. We also define Fi to be the farthest ϵ
k |P |

points from P to Ci. Claim 1 implies that the sample Q
should contain at least one point from Fi with probability at
least 1− η

k . If this is true, the selected ci should come from
Fi and thus |Pi| ≤ |Fi|. Therefore, we have |Pi| ≤ ϵ

k |P |
with probability at least 1 − η

k . Through taking the union
bound over all the Pis, we have: with probability at least
(1− η

k)
k−1 > 1− η,

∀i = 2, 3, · · · , k, |Pi| <
ϵ

k
|P |. (2)

Let P̃ := P \ ∪k
i=2Pi. It is easy to know the size

|P̃ | ≥ (1− ϵ

k
× (k − 1))|P | > (1− ϵ)n. (3)

Next, we only need to prove that P̃ is covered by
∪k
i=1B(ci, 2ropt). We present the following lemma first.

Lemma 1. For any point p ∈ P̃ , dist(p, C) ≤
min1≤i ̸=i′≤k ||ci − ci′ ||.

Let O1, O2, · · · , Ok be the k clusters obtained from the
optimal solution, i.e., P = ∪k

i=1Oi and each cluster Oi

can be covered by a ball with radius ropt. We consider
two cases. Case (i): {c1, · · · , ck} fall into the k clusters
O1, O2, · · · , Ok separately. Without loss of generality, we
assume ci ∈ Oi for i = 1, 2, · · · , k. By using the tri-
angle inequality, we know the input set P is covered
by ∪k

i=1B(ci, 2ropt). Consequently, P̃ is also covered by
∪k
i=1B(ci, 2ropt).

Case (ii): there exist two points, say cia and cib , of C that
belong to one optimal cluster, say Ol. Thus ||cia − cib || ≤
2ropt. From Lemma 1, we know

∀p ∈ P̃ , dist(p, C) ≤ min
1≤i̸=i′≤k

||ci − ci′ ||

≤ ||cia − cib || ≤ 2ropt. (4)

Hence P̃ is covered by ∪k
i=1B(ci, 2ropt).

Proof. (of Lemma 1]) Suppose Lemma 1 is not true. Then
there exist some p0 ∈ P̃ and two points ci1 and ci2 ∈ C,
such that

dist(p0, C) > ||ci1 − ci2 ||. (5)

Without loss of generality, we assume i1 < i2. Since ||ci1 −
ci2 || ≥ dist(ci2 , Ci2), the inequality (5) implies

dist(p0, C) > dist(ci2 , Ci2). (6)

So from (1) we know p0 ∈ Pi2 , which is in contradiction
with the assumption p0 ∈ P̃ = P \ ∪k

i=2Pi.

Time complexity. It is easy to see that the time complex-
ity of Algorithm 1 is independent of n. It takes k rounds,
and each round needs to compute the distances from the
sampled k

ϵ log
k
η points to C. So the total complexity is

O(k × k
ϵ log

k
η × kd) = O(k

3

ϵ d log
k
η).

In some scenarios, we may not be able to access the whole
data, e.g., due to privacy preserving or the challenge of
data acquisition. Instead, we may be only allowed to take
a small sample each time. Specifically, we assume the
data is a (continuous or discrete) probability distribution
with the probability density function f in Ω ⊂ Rd, where∫
p∈Ω

f(p)dp = 1; the function f can be hid and we only
assume that there is an oracle to sample data based on f .
Obviously, it is prohibitive to directly run the Gonzalez’s
algorithm in such scenario. On the other hand, our proposed
Algorithm 1 can be naturally applied to solve this problem
because it only takes a random sample in each round. The
following result is a straightforward extension of Theorem 1.

Corollary 1. We run Algorithm 1 on a (continuous or dis-
crete) probability distribution over Ω; each sampled point
is taken by an oracle based on the probability density func-
tion f . With probability at least 1− η, there exists a subset
Ω̃ ⊂ Ω with the integral

∫
p∈Ω̃

f(p)dp ≥ 1− ϵ, such that Ω̃
is covered by ∪k

i=1B(ci, 2ropt).

3.2 WHEN k IS NOT GIVEN

In many real scenarios, the number of clusters k is often not
given. For instance, we may only have a threshold r0 > 0
for the radius; so we just try to perform the k-center clus-
tering algorithm for different values of k until the obtained
radius is no larger than r0. The reader may realize that
this problem is related to the well known geometric set
cover problem [Brönnimann and Goodrich, 1995, Agarwal
and Pan, 2020]; however, existing geometric set cover algo-
rithms often have large (super linear) running time and can
only handle low dimensional case. Actually, the geometric
set cover problem is NP-hard and has only constant factor
approximation in 2D plane (the problem is even harder in
high dimensions).

In this paper, we simplify the problem and consider a practi-
cal approach: using the Gonzalez’s algorithm to achieve our
goal. Suppose the given set P can be covered by k̃ ∈ Z+

balls with radius r0/2 (i.e., k̃ is the value that the optimal
radius of k̃-center clustering on P is no larger than r0/2).
Then, if we just run the Gonzalez’s algorithm iteratively, the
resulting radius will reach r0 within at most k̃ rounds (be-
cause it is a 2-approximation algorithm). Now we discuss
how to implement this procedure in sublinear time. We
cannot directly adapt this procedure to our sublinear Algo-
rithm 1, due to the following two issues. (1) The sample
size k

ϵ log
k
η in step 2(a) depends on a given k (also note

that Algorithm 1 is a randomized algorithm and its success

probability depends on the sample size); (2) we do not know
when to terminate if k is not given.

To resolve these two issues, we introduce a stratified sam-
pling method. Let k0 ≥ 1 be any fixed constant. Imagine
we run step 2(a)-2(c) of Algorithm 1 iteratively. We partition
the process into different phases and modify the sample size
in step 2(a) for each phase accordingly:

• Phase t = 0: for i = 1, 2, · · · , k0, we set |Q| =
2k0

ϵ log k0

η .

• Phase t ≥ 1: for i =
∑t−1

s=0 2
sk0 + 1,

∑t−1
s=0 2

sk0 +

2, · · · ,
∑t

s=0 2
sk0, we set |Q| = 22t 2k0

ϵ log 22tk0

η .

So phase t contains 2tk0 iterations. The sample size also
increases from phase t to phase t+ 1.

For completeness, we also need to set the stopping condition.
Suppose r0 > 0 is the given threshold. At the end of each
i-th iteration, we take a sample S from P uniformly at
random, and compute the ratio

τ =

∣∣∣S \
(
∪i
l=1 B(cl, r0)

)∣∣∣
|S|

. (7)

The following lemma introduces an oracle that can help us
to decide when to terminate.

Lemma 2. Suppose η0 ∈ (0, 1). We set the sample size
|S| ≥ 12

η0ϵ
log 2

η0
. With probability at least 1 − η0, the

following oracle returns the correct answer: if τ ≤ 3
2ϵ,

return “
∣∣∣P \

(
∪i
l=1 B(cl, r0)

)∣∣∣ ≤ 3ϵn”; else, return

“
∣∣∣P \

(
∪i
l=1 B(cl, r0)

)∣∣∣ > ϵn”.

Proof. For convenience, we use ϵ̃ to denote the ratio∣∣P\
(
∪i

l=1B(cl,r0)
)∣∣

n . We consider two cases: (i) ϵ̃ ≤ η0ϵ and

(ii) ϵ̃ > η0ϵ. For case (i),
∣∣∣P \

(
∪i
l=1 B(cl, r0)

)∣∣∣ = ϵ̃n ≤
η0ϵn < 3ϵn. Due to the Markov’s inequality, we know that
τ ≤ 1

η0
× η0ϵ = ϵ < 3

2ϵ with probability at least 1 − η0.

Thus, it returns “
∣∣∣P \

(
∪i
l=1 B(cl, r0)

)∣∣∣ ≤ 3ϵn” which is a
correct answer, with probability at least 1− η0. So we focus
on the second case below.

We use the Chernoff bound [Alon and Spencer, 2004]. De-
fine |S| random variables {y1, · · · , y|S|}: for each 1 ≤
j ≤ |S|, yj = 1 if the j-th sampled element falls in
P \

(
∪i
l=1 B(cl, r0)

)
, otherwise, yj = 0. So E[yj] = ϵ̃

for each yj . As a consequence, we have

Pr
(∣∣ |S|∑

j=1

yj − ϵ̃|S|
∣∣ ≤ 1

2
ϵ̃|S|

)
≥ 1− 2e−

ϵ̃
12 |S|. (8)

Since we assume ϵ̃ > η0ϵ, if |S| ≥ 12
η0ϵ

log 2
η0

, the above (8)

implies that with probability at least 1 − η0,
∣∣∑|S|

j=1 yj −

ϵ̃|S|
∣∣ ≤ 1

2 ϵ̃|S|, i.e.,

τ =

∑|S|
j=1 yj

|S|
∈ [

1

2
ϵ̃,
3

2
ϵ̃]. (9)

Therefore, if τ ≤ 3
2ϵ, we know 1

2 ϵ̃ ≤ 3
2ϵ from (9), and it

implies ϵ̃ ≤ 3ϵ. Otherwise, we know 3
2 ϵ̃ >

3
2ϵ and it implies

ϵ̃ > ϵ.

Now, we are ready to present our algorithm for the case with-
out knowing k̃. Let iter be the size of C when Algorithm 2
terminates. To evaluate the performance of the algorithm,
we need to compare iter with k̃ and investigate the number
of points that are covered by ∪iter

j=1B(cj , r0).

Algorithm 2 SUBLINEAR k-CENTER CLUSTERING II

Input: A set P of n points in Rd, a threshold r0 > 0, an
arbitrary constant integer k0 ∈ Z+, and two parameters
η, ϵ ∈ (0, 1).

1. Initially, let C = {c1}, where c1 is an arbitrary point
picked from P ; t = i = 0.

2. Repeat the following steps as the stratified sampling
procedure:
(a) Take a sample S from P uniformly at random,

where |S| = 12
η0ϵ

log 2
η0

and η0 = η
22tk0

.

(b) Repeat the following steps 2tk0 times (i.e., phase
t):

i. Randomly pick a set Q from P , where |Q| =
22t 2k0

ϵ log 22tk0

η .

ii. Let q0 be the furthest point from Q to C, i.e.,
q0 = argq∈Q max dist(q, C).

iii. Let ci+1 = q0, C = C∪{ci+1}, and i = i+1.

iv. Apply Lemma 2 as the oracle (using the sam-
ple S from step 2(a)) to determine whether
to terminate: if it returns “

∣∣∣P \
(
∪i
l=1

B(cl, r0)
)∣∣∣ ≤ 3ϵn”, stop the algorithm, set

iter = i, and return C.

(c) t = t+ 1.

Theorem 2. Let C = {c1, · · · , citer} be the output from
Algorithm 2. With probability at least 1− 4η, iter ≤ k̃, and
there exists a subset P̃ ⊂ P with size |P̃ | ≥ (1−3ϵ)n, such
that P̃ is covered by ∪iter

j=1B(cj , r0).

Proof. To prove Theorem 2, we first imagine the “fancied”
scenario that k̃ is given: we just run Algorithm 1 with k = k̃

and |Q| = k̃
ϵ log

k̃
η . Recall the proof of Theorem 1, where

we define a sequence of subsets P2, P3, · · · , Pk̃ and define
P̃ = P \ ∪k̃

i=2Pi. To guarantee |P̃ | ≥ (1− ϵ)n, we prove

that each Pi contains at most ϵ
k̃
n points. For Algorithm 2,

we also define a sequence of subsets P2, P3, · · · , Pk̃ (by
using (1)), but we need to modify their sizes. At each t-th
phase, since we have the sample size 22t 2k0

ϵ log 22tk0

η , by
using the similar idea from the proof of Theorem 1 we know
that the size

|Pi| ≤
ϵ

22t × 2k0
n,with probability ≥ 1− η

22tk0
. (10)

Suppose we run Algorithm 2 until i = k̃. Let t0 be the total
number of phases that the algorithm takes. Consequently,
we have∣∣ ∪k̃

i=2 Pi

∣∣
n

≤ ϵ
2k0

× k0 +
ϵ

22×2k0
× 2k0

+ · · ·+ ϵ
22t0×2k0

× 2t0k0

= ϵ
2 (1 +

1
2 + · · ·+ 1

2t0) ≤ ϵ. (11)

So we can still guarantee |P̃ | = |P \ ∪k̃
i=2Pi| ≥ (1− ϵ)n.

Furthermore, the total success probability is at least

(1− η
k0
)k0 × (1− η

22k0
)2k0

× · · · × (1− η
22(t0−1)k0

)2
t0−1k0

> (1− η)× (1− η
2)× · · · × (1− η

2t0−1)

> 1− (1 + 1
2 + · · ·+ 1

2t0−1)η > 1− 2η. (12)

The remaining issue is that we do not know the value of k̃ in
reality (in other words, we do not know when to terminate
the algorithm). Therefore, we apply Lemma 2 as an oracle in
step 2(b)(iv), where the success probability for each time is
1−η0 = 1− η

22tk0
. When it returns “

∣∣∣P\
(
∪i
l=1B(cl, r0)

)∣∣∣ >
ϵn”, we know that the algorithm needs to continue. We stop
the algorithm when it returns “

∣∣∣P \
(
∪i
l=1 B(cl, r0)

)∣∣∣ ≤
3ϵn”. Since we relax the error of covering number to be
3ϵ > ϵ, we know that iter should be no larger than k̃. By
using the similar idea of (12), we can obtain the overall
success probability of the oracle that is at least

1− 2η. (13)

Combining (12) and (13), the overall success probability of
Algorithm 2 is at least 1− 4η.

The time complexity of Algorithm 2. We analyze the run-
time for each phase. We set k0 ≥ 2 to be a constant integer.
At the t-th phase, step (b)(i)-(iii) take O(2

3t

ϵ log 22t

η d) time;

step (b)(iv) takes O(2
2t

ηϵ log 22t

η d) time. Also, the phase re-
peats step (b)(i)-(iv) O(2t) times. Thus, the t-th phase takes
O((2t + 1

η)
23t

ϵ log 22t

η d) time. Let t0 be the total number of

phases. Then we can calculate the bounds for k̃:

t0−1∑
s=0

2sk0 < k̃ ≤
t0∑
s=0

2sk0, (14)

which implies t0 ≤ log k̃
k0

+ 1 ≤ log k̃. So the total time

complexity of Algorithm 2 is O((k̃ + 1
η)

k̃3

ϵ log k̃
ηd). Com-

pared with the case that k̃ is given, the runtime is increased
by only a factor (k̃ + 1

η) (the runtime of Algorithm 1 is

O(k̃
3

ϵ log k̃
ηd)).

We also have the following result for Algorithm 2 which is
similar with Corollary 1.

Corollary 2. We run Algorithm 2 on a (continuous or dis-
crete) probability distribution over Ω; each sampled point is
taken by an oracle based on the probability density function
f . With probability at least 1−4η, iter ≤ k̃, and there exists
a subset Ω̃ ⊂ Ω with the integral

∫
p∈Ω̃

f(p)dp ≥ 1 − 3ϵ,

such that Ω̃ is covered by ∪iter
i=1B(ci, r0).

4 CONVEX HULL APPROXIMATION IN
HIGH DIMENSIONS

Blum et al. [2019] introduced a simple greedy convex hull
approximation algorithm that is similar in spirit to the Gon-
zalez’s algorithm for k-center clustering. Given an instance
P ⊂ Rd, it also maintains a set C that contains an arbi-
trarily selected p ∈ P at the beginning. In each round,
the algorithm always selects the farthest point to conv(C)
and adds it to C, until some specified stopping condition
is satisfied. For ease of presentation, we assume that P
is contained in a unit ball of Rd. The algorithm yields a
bi-criteria approximate result: given an error parameter
δ ∈ (0, 1), suppose kopt = min

{
k | Q ⊂ P, |Q| =

k,maxp∈P dist(p, conv(Q)) ≤ δ
}

; the algorithm can
yield a subset C ⊂ P such that

|C| = O(kopt/δ
2/3)

dist(p, conv(C)) ≤ 8δ1/3 + δ, ∀p ∈ P. (15)

We consider applying our previous sampling idea to imple-
ment this convex hull approximation algorithm in sublinear
time. Here, we have the same issue as Section 3.2, that is,
we do not know the exact value of kopt so that we cannot
determine the sample size in each iteration and when to ter-
minate. Thus we apply the same stratified sampling method.
We also use Lemma 2 as the oracle to determine whether
the stopping condition is satisfied.

A minor technical issue for implementation is that it is costly
to compute the distance from a given point to a convex hull
(it needs to solve a quadratic programming for achieving
the exact result); instead we can apply the Gilbert’s algo-
rithm [Gilbert, 1966, Gärtner and Jaggi, 2009] or some other
variants like the Triangle algorithm [Awasthi et al., 2020] to
compute an approximate solution efficiently. Thus, we need
another small parameter ξ ∈ (0, 1) to indicate the approxi-
mation error induced by this step. Compared with the ratio

“τ” for k-center clustering, we add an extra factor (1+ ξ) to
τ below.

Let r0 = 8δ1/3 + δ. We use Ci to denote the set of selected
vertices {c1, · · · , ci} at the first i rounds. For convenience,
we use conv(U, r) to denote the set{

p | p ∈ Rd, dist
(
p, conv(U)

)
≤ r

}
for any given set U and r ≥ 0. Then, we compute the ratio

τ =

∣∣∣S \ conv(Ci, (1 + ξ)r0)
∣∣∣

|S|
. (16)

Similar to the case of k-center clustering, the following
lemma introduces an oracle that can help us to decide
when to terminate (the proof is almost identical to that of
Lemma 2).

Algorithm 3 SUBLINEAR CONVEX HULL APPROXIMA-
TION

Input: A set P of n points in Rd, a threshold r0 > 0, an
arbitrary constant integer k0 ∈ Z+, and three parameters
η, ϵ, ξ ∈ (0, 1).

1. Initially, let C = {c1}, where c1 is an arbitrary point
picked from P ; t = i = 0.

2. Repeat the following steps as the stratified sampling
procedure:
(a) Take a sample S from P uniformly at random,

where |S| = 12
η0ϵ

log 2
η0

and η0 = η
22tk0

.

(b) Repeat the following steps 2tk0 times (i.e., phase
t):

i. Randomly pick a set Q from P , where |Q| =
22t 2k0

ϵ log 22tk0

η .

ii. Select the (1 + ξ)-approximate furthest point,
say q0, from Q to conv(C) via the algorithm
of Gärtner and Jaggi [2009].

iii. Let ci+1 = q0, C = C∪{ci+1}, and i = i+1.

iv. Apply Lemma 3 as the oracle (using the sam-
ple S from step 2(a)) to determine whether
to terminate: if it returns “

∣∣∣P \ conv(Ci, (1 +

ξ)r0)
∣∣∣ ≤ 3ϵn”, stop the algorithm, set iter =

i, and return C.

(c) t = t+ 1.

Lemma 3. Suppose η0 ∈ (0, 1). We set the sample size
|S| ≥ 12

η0ϵ
log 2

η0
. With probability at least 1 − η0, the

following oracle returns the correct answer: if τ ≤ 3
2ϵ,

return “
∣∣∣P \ conv(Ci, (1 + ξ)r0)

∣∣∣ ≤ 3ϵn”; else, return

“
∣∣∣P \ conv(Ci, (1 + ξ)r0)

∣∣∣ > ϵn”.

Theorem 3. Let C = {c1, · · · , citer} be the output from
Algorithm 3. Let k̃ be the number of vertices returned by the
greedy selection algorithm [Blum et al., 2019] (see (15)).
With probability at least 1− 4η, iter ≤ k̃, and there exists
a subset P̃ ⊂ P with size |P̃ | ≥ (1− 3ϵ)n, such that P̃ is
covered by conv(C, (1 + ξ)r0).

Time complexity. The computation for the time complexity
is similar with that for k-center clustering in Section 3.2,
where the only difference is that we have to compute the
(1 + ξ)-approximate polytope distance from each sampled
point to C in each iteration. From the analysis of Gärtner
and Jaggi [2009], we know it takes O(1

ξδ2 |C|d) time. The

total complexity of our convex hull algorithm is O((k̃ +
1
η)

k̃3

ϵξδ2 log
k̃
ηd).

5 EXPERIMENTAL RESULTS

All the experiments were conducted on an Ubuntu work-
station with 2.40GHz Intel(R) Xeon(R) CPU E5-2680 and
256GB main memory. The algorithms were implemented
in MATLAB R2019b. For each instance, we repeat the ex-
periment 10 times and report the average results with their
standard deviations.

We consider several baseline methods including the 2-
approximate GONZALEZ [Gonzalez, 1985] and the recently
proposed streaming k-center clustering algorithm CPP
[Ceccarello et al., 2019]; we also compare our algorithms
with the uniform sampling method Huang et al. [2018] that
is denoted as UNIFORM-r, where r denotes the sampling
rate (e.g., UNIFORM-0.1 means we take 10% points from
the input uniformly at random).

We run our proposed Algorithm 1 and Algorithm 2 on the
real image dataset CIFAR-10 [Krizhevsky, 2009] which
consists of 60, 000 color images with each image being
represented by a 3072-dimensional vector. In Figure 1, we
can see that our Algorithm 1 runs significantly faster than
the other methods. Also it is worth emphasizing that in
our evaluation, we compute the radius for covering all the
input points, rather than excluding the farthest ϵn points
as the theoretical analysis in Theorem 1. We can see that
our algorithm and GONZALEZ can achieve very close radii,
even though we did not exclude the farthest ϵn points.

In Figure 2, we illustrate the results of Algorithm 2. Similar
with Figure 1, we can see that our algorithm runs much
faster than GONZALEZ. An interesting observation is that
our algorithm returns much less centers than GONZALEZ
for a fixed radius threshold r0 (Figure 2 (c)). We believe
one possible reason is that our random sampling approach
is more likely to select a point closer to the optimal ball
center, and thus the obtained radius can decrease faster,
while the greedy selection of GONZALEZ always selects the
most “extreme” point which could be far to the optimal ball

center.

We also run the algorithms on another real dataset
MNIST [LeCun et al., 1998]; it contains n = 60, 000
handwritten digit images from 0 to 9, where each image
is represented by a 784-dimensional vector. To illustrate the
scalability of our algorithms for large-scale data, we enlarge
MNIST by 6 times; namely, for each image vector, we gen-
erate 5 copies and add small Gaussian noises to them. The
results are shown in Figure 3 and 4.

Due to the space limit, we place the experimental results for
convex hull approximation to our full version.

6 CONCLUSION

In this paper, we propose the sublinear algorithms for greedy
selection methods. Following this work, there are also sev-
eral interesting problems deserving to study in future. For
example, in our experiments we observe that our random
sampling based approach can achieve very close radii with
the vanilla greedy selection approach GONZALEZ (even
without excluding the farthest ϵn points). So we expect to
have a strict analysis on this phenomenon in theory, e.g.,
adding some reasonable assumption to the data distribution
from the perspective of beyond worst-case analysis [Rough-
garden, 2019].

7 ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their helpful discussions and suggestions on improving
this paper. This work was supported in part by National Key
R & D Program of China No. 2021YFA1000900.

References

Pankaj K. Agarwal and Jiangwei Pan. Near-linear algo-
rithms for geometric hitting sets and set covers. Discret.
Comput. Geom., 63(2):460–482, 2020.

Sepideh Aghamolaei and Mohammad Ghodsi. A com-
posable coreset for k-center in doubling metrics. arXiv
preprint arXiv:1902.01896, 2019.

Noga Alon and Joel H Spencer. The probabilistic method.
John Wiley & Sons, 2004.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning
topic models - going beyond SVD. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012,
pages 1–10. IEEE Computer Society, 2012.

Sanjeev Arora, Rong Ge, Yonatan Halpern, David M.
Mimno, Ankur Moitra, David A. Sontag, Yichen Wu,

5 6 7 8 9 10 11 12 13 14 15
k

0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125

No
rm

al
ize

d
ra
di
us

5 6 7 8 9 10 11 12 13 14 15
k

0

1

2

3

4

No
rm

al
ize

d
ru
nn

in
g
tim

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Normalized running time

0.98

1.00

1.02

1.04

No
rm

al
ize

d
ra
di
us UNIFORM-0.1

UNIFORM-0.3
UNIFORM-0.5
CPP
Algorithm 1 ε=0.1, η=0.1
Algorithm 1 ε=0.1, η=0.3
Algorithm 1 ε=0.1, η=0.5

(a) (b) (c)

Figure 1: The experimental performances on CIFAR-10 for the case that k is given. All the results (radius and runtime) are
respectively normalized over the results obtained by GONZALEZ. In (c), we show the radius obtained versus runtime for
different values of k.

5.2
5 5.3 5.3

5 5.4 5.4
5 5.5 5.5

5 5.6

r0 (×103)

1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

No
rm

al
ize

d
ra
di
us

5.2
5 5.3 5.3

5 5.4 5.4
5 5.5 5.5

5 5.6

r0 (×103)

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
m
al
ize

d
ru
nn

in
g
tim

e

5.2
5 5.3 5.3

5 5.4 5.4
5 5.5 5.5

5 5.6

r0 (×103)

0.00

0.05

0.10

0.15

0.20

No
rm

al
ize

d
nu

m
be

r o
f c

en
te
rs

Algorithm 2 ε=0.01, η=0.1, k0=2
Algorithm 2 ε=0.01, η=0.1, k0=4
Algorithm 2 ε=0.01, η=0.1, k0=6
Algorithm 2 ε=0.01, η=0.15, k0=2
Algorithm 2 ε=0.01, η=0.15, k0=4
Algorithm 2 ε=0.01, η=0.15, k0=6

(a) (b) (c)

Figure 2: The experimental performances on CIFAR-10 for the case that a radius threshold r0 is given. All the results
(radius, runtime, and the number of returned centers) are respectively normalized over the results obtained by GONZALEZ.

5 6 7 8 9 10 11 12 13 14 15
k

0.98
1.00
1.02
1.04
1.06
1.08
1.10

No
rm

al
ize

d
ra
di
us

5 6 7 8 9 10 11 12 13 14 15
k

0

2

4

6

8

No
rm

al
ize

d
ru
nn

in
g
tim

e

0 1 2 3 4 5 6 7
Normalized running time

0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06

No
rm

al
ize

d
ra
di
us UNIFORM-0.1

UNIFORM-0.3
UNIFORM-0.5
CPP
Algorithm 1 ε=0.1, η=0.1
Algorithm 1 ε=0.1, η=0.3
Algorithm 1 ε=0.1, η=0.5

(a) (b) (c)

Figure 3: The experimental performances on MNIST for the case that k is given. All the results (radius and runtime) are
respectively normalized over the results obtained by GONZALEZ. In (c), we show the radius obtained versus runtime for
different values of k.

2.4
2
2.4
45 2.4

7
2.4
95 2.5

2
2.5
45 2.5

7
2.5
95

r0 (×103)

1.10

1.15

1.20

1.25

1.30

No
rm

al
ize

d
ra
di
us

2.4
2
2.4
45 2.4

7
2.4
95 2.5

2
2.5
45 2.5

7
2.5
95

r0 (×103)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
m
al
ize

d
ru
nn

in
g
tim

e

2.4
2
2.4

45 2.4
7
2.4

95 2.5
2
2.5

45 2.5
7
2.5

95

r0 (×103)

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
nu

m
be

r o
f c

en
te

rs

Algorithm 2 ε=0.01, η=0.1, k0 =2
Algorithm 2 ε=0.01, η=0.1, k0 =4
Algorithm 2 ε=0.01, η=0.1, k0 =6
Algorithm 2 ε=0.01, η=0.15, k0 =2
Algorithm 2 ε=0.01, η=0.15, k0 =4
Algorithm 2 ε=0.01, η=0.15, k0 =6

(a) (b) (c)

Figure 4: The experimental performances on MNIST for the case that a radius threshold r0 is given. All the results (radius,
runtime, and the number of returned centers) are respectively normalized over the results obtained by GONZALEZ.

and Michael Zhu. A practical algorithm for topic model-
ing with provable guarantees. In Proceedings of the 30th
International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28
of JMLR Workshop and Conference Proceedings, pages
280–288. JMLR.org, 2013.

Pranjal Awasthi, Bahman Kalantari, and Yikai Zhang. Ro-
bust vertex enumeration for convex hulls in high dimen-
sions. Ann. Oper. Res., 295(1):37–73, 2020.

Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approxi-
mate clustering via core-sets. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing,
pages 250–257, 2002.

Avrim Blum, Sariel Har-Peled, and Benjamin Raichel.
Sparse approximation via generating point sets. ACM
Transactions on Algorithms, 15(3):32, 2019.

Hervé Brönnimann and Michael T. Goodrich. Almost opti-
mal set covers in finite vc-dimension. Discret. Comput.
Geom., 14(4):463–479, 1995.

Matteo Ceccarello, Andrea Pietracaprina, and Geppino
Pucci. Solving k-center clustering (with outliers) in
mapreduce and streaming, almost as accurately as se-
quentially. PVLDB, 12(7):766–778, 2019.

Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy.
Better streaming algorithms for clustering problems. In
Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 30–39. ACM, 2003.

Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev
Motwani. Incremental clustering and dynamic informa-
tion retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Ba-
haran Mirzasoleiman, Peter Bailis, Percy Liang, Jure
Leskovec, and Matei Zaharia. Selection via proxy: Effi-
cient data selection for deep learning. In 8th International
Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009. ISBN
0262033844, 9780262033848.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof
of a theorem of johnson and lindenstrauss. Random Struc-
tures & Algorithms, 22(1):60–65, 2003.

M. de Berg, O. Cheong, M. van Kreveld, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications, (Third Edition). Springer-Verlag, USA,
2008. ISBN 978-3-540-77973-5.

Hu Ding and Jinhui Xu. Sub-linear time hybrid approxi-
mations for least trimmed squares estimator and related
problems. In Proceedings of the International Symposium
on Computational geometry (SoCG), page 110, 2014.

David L. Donoho and Victoria Stodden. When does non-
negative matrix factorization give a correct decomposition
into parts? In Sebastian Thrun, Lawrence K. Saul, and
Bernhard Schölkopf, editors, Advances in Neural Infor-
mation Processing Systems 16 [Neural Information Pro-
cessing Systems, NIPS 2003, December 8-13, 2003, Van-
couver and Whistler, British Columbia, Canada], pages
1141–1148. MIT Press, 2003.

Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mo-
hamed S. Kamel. Greedy column subset selection for
large-scale data sets. Knowl. Inf. Syst., 45(1):1–34, 2015.

Tomás Feder and Daniel H. Greene. Optimal algorithms for
approximate clustering. In Janos Simon, editor, Proceed-
ings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages
434–444. ACM, 1988.

Bernd Gärtner and Martin Jaggi. Coresets for polytope
distance. In Proceedings of the twenty-fifth annual sym-
posium on Computational geometry, pages 33–42, 2009.

Rong Ge and Ankur Moitra. Topic models and nonnegative
matrix factorization. In Tim Roughgarden, editor, Beyond
the Worst-Case Analysis of Algorithms, pages 445–464.
Cambridge University Press, 2020.

Elmer G. Gilbert. An iterative procedure for computing
the minimum of a quadratic form on a convex set. SIAM
Journal on Control, 4(1):61–80, 1966.

Teofilo F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science, 38:
293–306, 1985. ISSN 0304-3975.

Sudipto Guha. Tight results for clustering and summarizing
data streams. In Ronald Fagin, editor, Database Theory -
ICDT 2009, 12th International Conference, St. Petersburg,
Russia, March 23-25, 2009, Proceedings, volume 361 of
ACM International Conference Proceeding Series, pages
268–275. ACM, 2009.

Sariel Har-Peled and Manor Mendel. Fast construction of
nets in low-dimensional metrics and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

Avinatan Hassidim and Yaron Singer. Robust guarantees
of stochastic greedy algorithms. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pages
1424–1432. PMLR, 2017.

Dorit S Hochbaum and David B Shmoys. A best possi-
ble heuristic for the k-center problem. Mathematics of
operations research, 10(2):180–184, 1985.

Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu.
Epsilon-coresets for clustering (with outliers) in doubling
metrics. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 814–825.
IEEE, 2018.

Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and
Vahab S. Mirrokni. Composable core-sets for diver-
sity and coverage maximization. In Richard Hull and
Martin Grohe, editors, Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS’14, Snowbird, UT, USA, June
22-27, 2014, pages 100–108. ACM, 2014.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Richard Matthew McCutchen and Samir Khuller. Stream-
ing algorithms for k-center clustering with outliers and
with anonymity. In Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques,
pages 165–178. Springer, 2008.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier
than lazy greedy. In Blai Bonet and Sven Koenig, editors,
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 1812–1818. AAAI Press, 2015.

George L Nemhauser, Laurence A Wolsey, and Marshall L
Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical program-
ming, 14(1):265–294, 1978.

Christopher Painter-Wakefield and Ronald Parr. Greedy
algorithms for sparse reinforcement learning. In Proceed-
ings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26
- July 1, 2012. icml.cc / Omnipress, 2012.

Tim Roughgarden. Beyond worst-case analysis. Commun.
ACM, 62(3):88–96, 2019.

Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis,
Hung Q. Ngo, and XuanLong Nguyen. Learning
models over relational data: A brief tutorial. CoRR,
abs/1911.06577, 2019.

Ozan Sener and Silvio Savarese. Active learning for convo-
lutional neural networks: A core-set approach. In Inter-
national Conference on Learning Representations, 2018.

Joel A. Tropp. Greed is good: algorithmic results for sparse
approximation. IEEE Trans. Inf. Theory, 50(10):2231–
2242, 2004.

Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and
Ke Yi. Random sampling over joins revisited. In Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein,
editors, Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 1525–1539.
ACM, 2018.

	INTRODUCTION
	Related Work
	Our Contributions

	PRELIMINARIES
	k-CENTER CLUSTERING
	Our Sublinear Algorithm
	When k Is Not Given

	CONVEX HULL APPROXIMATION IN HIGH DIMENSIONS
	EXPERIMENTAL RESULTS
	CONCLUSION
	ACKNOWLEDGEMENTS

