
Augmenting Language Models with
Long-Term Memory

Weizhi Wang†, Li Dong‡, Hao Cheng‡, Xiaodong Liu‡,
Xifeng Yan†, Jianfeng Gao‡, Furu Wei‡

†University of California, Santa Barbara ‡Microsoft Research
weizhiwang@ucsb.edu, {lidong1, chehao, xiaodl}@microsoft.com

Abstract

Existing large language models (LLMs) can only afford fix-sized inputs due to the
input length limit, preventing them from utilizing rich long-context information
from past inputs. To address this, we propose a framework, Language Models
Augmented with Long-Term Memory (LONGMEM), which enables LLMs to
memorize long history. We design a novel decoupled network architecture with
the original backbone LLM frozen as a memory encoder and an adaptive residual
side-network as a memory retriever and reader. Such a decoupled memory design
can easily cache and update long-term past contexts for memory retrieval without
suffering from memory staleness. Enhanced with memory-augmented adaptation
training, LONGMEM can thus memorize long past context and use long-term
memory for language modeling. The proposed memory retrieval module can
handle unlimited-length context in its memory bank to benefit various downstream
tasks. Typically, LONGMEM can enlarge the long-form memory to 65k tokens
and thus cache many-shot extra demonstration examples as long-form memory for
in-context learning. Experiments show that our method outperforms strong long-
context models on ChapterBreak, a challenging long-context modeling benchmark,
and achieves remarkable improvements on memory-augmented in-context learning
over LLMs. The results demonstrate that the proposed method is effective in
helping language models to memorize and utilize long-form contents. Our code is
open-sourced at https://aka.ms/LongMem.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing with great successes
in advancing the state-of-the-art on various understanding and generation tasks [DCLT19, RWC+19,
LOG+19, YDY+19, BMR+20, RSR+20]. Most LLMs benefit from self-supervised training over
large corpora via harvesting knowledge from fix-sized local context, showing emergent abilities,
e.g., zero-shot prompting [RWC+19], in-context learning [BMR+20], and Chain-of-Thought (CoT)
reasoning [WWS+22]. Nevertheless, the input length limit of existing LLMs prevents them from
generalizing to real-world scenarios where the capability of processing long-form information beyond
a fix-sized session is critical, e.g., long horizontal planning.

To address the length limit issue, the most straightforward method is to simply scale up the in-
put context length. For instance, GPT-3 [BMR+20] increases the input length from 1k tokens
in GPT-2 [RWC+19] to 2k tokens, thereby allowing for better capture of long-range dependen-
cies. However, this approach typically incurs computation-intensive training from scratch and the
in-context dense attention is still heavily constrained by the quadratic computation complexity of
Transformer self-attention [VSP+17]. Another recent line of work [BPC20, ZGD+20] instead fo-
cuses on developing in-context sparse attention to avoid the quadratic cost of self-attention, which

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://aka.ms/LongMem

A B C D ... Y Z
Long Sequence Inputs

Large Language Model
(Frozen)

Long-Memory Retrieval
Cached Memory Bank with Key, Value Pairs

Residual SideNet
(Trainable)

Attn Keys
and Values

(Seg A)

Attn Keys
and Values

(Seg B)

Attn Keys
and Values

(Seg Z)
Attention Query
of Current Inputs

Search

Memory Fusion

Retrieved Attn
Keys and Values

Residual

Connections

Figure 1: Overview of the memory caching and retrieval flow of LONGMEM. The long text sequence
is divided into fix-length segments with each previous segment processed through a frozen backbone
LLM and the corresponding attention key and value vectors of m-th layer are cached into the memory
bank. Given current inputs, the corresponding attention query vectors are used to retrieve the top-K
attention key-value pairs from previous segments stored in the memory bank, which will be then
fused with local context for language modeling.

still largely requires training from scratch. In contrast, the prominent work, Memorizing Transformer
(MemTRM) [WRHS22], approximates in-context sparse attention via dense attention over both in-
context tokens and memorized tokens retrieved from a non-differentiable memory for Transformers.
Thus, MemTRM scales up the resulting language model to handle up to 65k tokens and achieves
substantial perplexity gains in modeling full-length books or long papers. However, MemTRM faces
the memory staleness challenge during training due to its coupled memory design, which uses a
single model for encoding memory and fusing memory for language modeling. In other words, as the
model parameters are updated, cached older representations in memory may have distributional shifts
from those from the latest model, thereby limiting the effectiveness of the memory augmentation.

In this paper, we present a framework for Language Models Augmented with Long-Term Memory
(LONGMEM). This framework enables language models to cache lengthy previous context or
knowledge into a non-differentiable memory bank, and then utilize them via a decoupled memory
module to mitigate the issue of memory staleness. To achieve decoupled memory, we design a
novel residual side-network (SideNet) in conjunction with a frozen backbone LLM. Paired attention
keys and values of the previous context are extracted using the frozen backbone LLM, which are
subsequently stored in the memory bank. In the memory-augmented layer of SideNet, the generated
attention query of the current input is used to retrieve cached key-value pairs of previous contexts
from the memory, and the corresponding memory augmentations are then fused into adaptable
hidden states via a joint-attention mechanism. Furthermore, newly designed cross-network residual
connections between the SideNet and the frozen backbone LLM facilitate better knowledge transfer
from the pretrained backbone LLM. Through continuous training of the residual SideNet to retrieve
and fuse memory augmentations, the pre-trained LLM can be adapted to effectively leverage long-
contextual memory for enhanced modeling. The detailed memory cache, retrieval and fusion process
is illustrated in Figure 1.

Our decoupled memory design offers two key advantages. First, our proposed architecture effectively
separates the process of encoding previous inputs into memory and the process of memory retrieval
and fusion, thanks to the decoupled frozen backbone LLM and SideNet. In this way, the backbone
LLM only works as the long-context knowledge encoder, while the residual SideNet works as the
memory retriever and reader, which effectively resolves the issue of memory staleness. Second,
directly adapting the entire LLM with memory augmentations is computationally inefficient and
also prone to catastrophic forgetting. As the backbone LLM is frozen during the efficient memory-
augmented adaptation stage, LONGMEM can not only tap into the pretrained knowledge but also
avoid catastrophic forgetting.

LONGMEM is capable of taking various types of long-form text and knowledge into the memory bank
based on downstream tasks. Here, we consider two representative cases, language modeling with
full-length book contexts, and memory-augmented in-context learning with thousands of task-relevant

2

LLM Decoder Layer

LLM Decoder Layer

Cache Attn
 Keys and Values

LLM Decoder Layer

SideNet Layer

SideNet
MemAug Layer

Embedding Layer

Memory Retrieval and Fusion

Memory
Fusion

Language Model Head

LLM Decoder Layer

Cached Memory Bank with Key, Value Pairs

Token-to-Chunk
Retrieval

e f g h

f g h i

Current Inputs

Cached Memory Bank with Key, Value Pairs

Frozen Layer

Trainable Layer

Residual

Figure 2: Overview of LONGMEM architecture. “MemAug” represents Memory-Augmented Layer.

demonstration examples. Specifically, we evaluate the effectiveness of the proposed LONGMEM
on various long-text language modeling, and memory-augmented in-context learning for natural
language understanding (NLU) tasks. Experimental results demonstrate that our model consistently
outperforms the strong baselines in terms of long-text modeling and in-context learning abilities. Our
method substantially improves LLM’s long-context language modeling capabilities, with a reduction
in perplexity of 1.38∼1.62 over different length splits of Gutenberg-2022 corpus. Notably, our
model achieves state-of-the-art performance of 40.5% identification accuracy on ChapterBreak, a
challenging long-context modeling benchmark, significantly surpassing existing strong x-former
baselines. Finally, with 2k demonstration examples in memory, LONGMEM shows pronounced
improvements in in-context learning on popular NLU tasks, compared with prominent memory-
augmented and non-memory-augmented baselines.

2 Methods

To enable LLMs to harvest relevant information from the past long context in memory, we propose to
augment the frozen backbone LLM with a decoupled memory module. To fuse the memory context
information, we design a novel lightweight residual SideNet, which can be continually trained in
an efficient way. In the following, we first discuss the problem formulation of language modeling
with memory augmentations. Then, we formally introduce our efficient residual SideNet for adapting
the frozen pretrained LLM to jointly attend over local input context and retrieved memory context.
Lastly, we provide our designed processes of how past memory is encoded, stored, recalled and fused
for language modeling.

2.1 Language Models Augmented with Long-Term Memory

Here, we focus on the high-level problem setup and defer more component details to later sections.
Given its wide adoption for pretrained LLMs, our LONGMEM model is built on the Transformer
architecture [VSP+17]. For LONGMEM, there are three key components: the frozen backbone LLM,
SideNet, and Cache Memory Bank. As most existing pretrained LLMs can only take a fix-sized input,
only the input segment of a long sequence (e.g., a book) that can fit in the length limit is denoted as
the current input as done for most existing autoregressive language models. Those previous segments
that can not fit are denoted as previous inputs, which are used for memory augmentations. To tap into
the learned knowledge of the pretrained LLM, both previous and current inputs are encoded using the
frozen backbone LLM but different representations are extracted. For previous inputs, the key-value
pairs from the Transformer self-attention at m-th layer are stored in Cache Memory Bank, whereas
the hidden states from each LLM decoder layer for the current inputs are retained and transferred to
SideNet. For each current input token, top relevant key-value vector pairs are retrieved as memory
augmentations for language modeling. The SideNet module can be viewed as an efficient adaption
model that is trained to fuse the current input context and relevant cached previous contexts in the
decoupled memory.

3

Formally, for a fix-sized input text sequence {xi}|x|i=1 (the current input), LONGMEM first performs
a forward pass using the backbone LLM (indicated in blue in Figure 2) without any gradient
calculation. The embedding layer of the backbone LLM first encodes the input {xi}|x|i=1 into
embedding space and outputs the initial hidden states, H0

LLM ∈ R|x|×E , where E is the hidden
dimension. Then each successive Transformer decoder layer of the frozen backbone LLM computes
the new hidden states using the hidden states from the previous layer, Hl′

LLM = fθl′
LLM

(Hl′−1
LLM),∀l′ ∈

[1, L′] and L′ is the total # layers for the backbone LLM. During the forward pass with the backbone
LLM for all previous inputs, the key-value pairs used for self-attention at the m-th Transformer
decoder layer are stored in Cached Memory Bank (highlighted in orange in upper-left of Figure 2).
These pairs are subsequently recalled as memory augmentations for future inputs.

Cached Memory Bank is a head-wise vector queue Zk,Zv ∈ RH×M×d, which maintains attention
key-value pairs of latest M previous inputs K̃, Ṽ ∈ RH×|x|×d, where H, d denotes the number of
attention heads and per-head dimension respectively. After memory retrieval and fusion (§2.3), the
memory bank removes the key-value pairs of the oldest sequences and appends the current sequences
to the cached vector bank. This update mechanism ensures the language modeling causality at the
sequences level and enables the memory bank to consistently maintain records of the most recent
previous context for the current inputs.

After the forward pass with the backbone LLM, the SideNet module then takes all current input hidden
states from the backbone LLM {Hl′

LLM}L′

l′=1 and the past key-value pairs in the Cached Memory Bank
for computing memory-augmented representations. Specifically, our SideNet of LONGMEM consists
of (L−1) normal Transformer decoder layers and one special memory-augmented decoder layer. For
efficient purposes, we mainly consider the case where #layers L of the SideNet is smaller than that
of the backbone LLM, i.e., L < L′. Our SideNet encodes H0 into memory-augmented contextual
representation via (L− 1) normal Transformer decoder layers and a special memory-augmented
layer.

The memory-augmented layer is an extension of the vanilla Transformer decoder layer that takes a
memory-augmented input, including both top relevant key-value pairs in memory and the hidden states
from the current input. Here, the cached key-value pairs are recalled using a token-based memory
retrieval module (§2.3). For each current input token, the memory retrieval module srt(:) retrieves
top-K relevant key-value pairs in the memory bank {k̃ij , ṽij}Kj=1 = srt(xi). Then SideNet computes

the output using the memory-augmented input, Hms

Side = fθMem(H
ms−1
Side , {{k̃ij , ṽij}Kj=1}

|x|
i=1), where

ms is the layer index where we inject the memory-augmentation layer.

Finally, the token probability is computed using the last SideNet hidden states P (xi|x1, · · · ,xi−1) =
softmax(WHL), where W is the frozen output embedding weight shared by both the backbone
LLM and SideNet. We perform a memory-augmented adaptation training for LONGMEM to utilize
the decoupled memory. Following the generative unsupervised pre-training [RNSS18], the training
objective of LONGMEM is the standard left-to-right language modeling objective, which maximizes
the likelihood of the next token based on the left context: max

∑
x∈D

∑|x|
i=1 logP (xi|x1, · · · ,xi−1),

where x is a randomly sampled sentence from the pre-training text corpus D.

2.2 Residual SideNet

SideNet Architecture and Initialization. Here, we implement SideNet based on Trans-
former [VSP+17]. Specifically, the number of decoder layers L in SideNet is equal to the number
of layers L′ in the backbone LLM divided by a reduction factor (a layer reduction factor of 2 is
used throughout this work, i.e., L′ = 2L). The weights of each decoder layer in SideNet are ini-
tialized from the corresponding pre-trained decoder layer of the backbone LLM at the same depth:
Θl

Side = Θ2l
LLM. As illustrated in Figure 2, the SideNet model takes the output of backbone LLM’s

embedding layer and reuses the language modeling head of the backbone LLM, which remains frozen
during the continual adaption stage. Throughout the memory-augmented adaptation stage, all other
parameters of SideNet are updated based on the training signal. In this way, the lightweight SideNet
adaptation achieves fast convergence with knowledge transferred from pre-trained parameters.

Cross-Network Residual Connections. To tap into knowledge from the pretrained backbone LLM,
we utilize our proposed cross-network residual connections to fuse representations from the backbone

4

LLM into SideNet. Specifically, we add the difference between output hidden states at 2l-th and
(2l − 2)-th layers of the backbone LLM as the residual connections to the output hidden states
at l-th layer of SideNet. Then, the input to the next (l + 1)-th layer of SideNet is the sum of
the original hidden state forwarded through the previous layer fΘl

Side
(Hl−1

Side) and the cross-network
residual connection of the hidden state difference from the backbone LLM

Hl
Side = fΘl

Side
(Hl−1

Side) + (H2l
LLM −H2l−2

LLM),∀l ∈ [1, L], (1)

where H0 is the output of embedding layer. It is worth noting that the residual connections after the
self-attention and feed-forward network of a decoder layer [VSP+17] will be performed as normal in
fΘl

Side
(Hl−1

Side) and parallel to the proposed cross-network residual connections.

2.3 Memory Retrieval and Fusion

The long-term memory capability of LONGMEM is achieved via a memory-augmentation module for
retrieval and fusion.

Token-to-Chunk Memory Retrieval. Instead of performing token-to-token retrieval, we focus on
token-to-chunk retrieval for acceleration and integrity. A text-chunk refers to an n-gram structure of
chunk-size csz number of contiguous tokens. The memory bank stores cached key-value pairs at the
level of token chunks. We divide the memory bank into M/csz attention key-value paired chunks
and use the mean-pooled vector on the chunk-size dimension to get the key vector for retrieval. Then
we retrieve the top-(K/csz) attention key-value chunks w.r.t the dot product between the attention
query of the current input token and the mean-pooled attention key of a candidate chunk. Finally,
we squeeze the chunk-size dimension for retrieved key-value paired chunks and flatten them into
K key-value pairs at token-level {K̃j , Ṽj}Kj=1. Adopting token-to-chunk retrieval reduces the size
of the retrieval index and accelerates the process. Meanwhile, the retrieval accuracy can be further
improved, which is also observed in [LGW+23] and [BMH+21]. The hyperparameter chunk-size csz
controls the granularity of retrieved contexts, which can be empirically adjusted based on downstream
tasks. For instance, in-context learning requires more fine-grained label tokens from demonstration
examples cached in memory, where a smaller csz is helpful.

Memory Fusion. The memory fusion is performed within a special memory-augmented layer.
As the conventional Transformer decoder layer uses the multi-head self-attention [VSP+17], we
follow [WRHS22] to extend it to a joint-attention mechanism and propose a long-term memory
fusion process to enable each token to attend on both local contexts and retrieved memory contexts.
With the head-wise hidden state output from previous layer Hl−1 ∈ R|x|×d and the corresponding
retrieved attention key-value pairs are {K̃i, Ṽi}|x|i=1 ∈ R|x|×K×d, the output hidden state for the l-th
memory-augmented layer Hl is computed as:

A = softmax(
QKT

√
d

)V, M = Concat{softmax(
QiK̃

T
i√

d
)Ṽi}|x|i=1, (2)

Hl = sigmoid(g) ·A+ (1− sigmoid(g)) ·M, (3)

where Q,K,V,A,M ∈ R|x|×d, K is the number of retrieved attention key-value pairs in cached
memory for each token, and g is a trainable head-wise gating vector. The hidden state output from
previous layer H(l−1) is linearly projected into attention queries, keys, and values Q,K,V separately
via three matrices WQ,WK ,WV ∈ Rd×d. It is worth noting that the retrieved attention key-value
pairs in cached memory are distinct to each token.

3 Experiments

We evaluate our proposed LONGMEM model on different tasks that require long-context modeling:
a) long-text language modeling and language understanding when loading the past long-context into
cached memory; b) infinite-length in-context learning when loading a large number of demonstration
examples into cached memory.

5

Document 1

Document 2

Document 3

Document 4

Document Z

S11 S12 S13 S14

S15 S16 S1N

S41 S42 S43 S44

S45 S46 S4N

S21 S22 S23 S24

S25 S26 S2N

Document Grouping Truncated SegmentsLong Documents

S11

S21

S31

S41

S12

S22

S32

S42

S13

S23

S33

S43

S1N

S2N

S3N

S4N

S31 S32 S33 S34

S35 S36 S3N
Document 5

Cached Memory Update during 5-th Iteration

Batch 1 Batch 2 Batch 3 Batch N

Remove Oldest Append Lastest

S11

S21

S31

S41

S12

S22

S32

S42

S13

S23

S33

S43

S14

S24

S34

S44

S12

S22

S32

S42

S13

S23

S33

S43

S14

S24

S34

S44

S15

S25

S35

S45

Batchfying

Figure 3: Batchfying the large text corpora into batches to ensure that each consecutive segments
within each document is distributed in consecutive batches.

3.1 Training Setup

Batchfying the training corpora. The conventional batchyfing process for large corpora truncates
the whole corpora into consecutive fix-length text segments without padding and shuffles all segments
to construct mini-batches [RWC+19]. In contrast, LONGMEM must disable global shuffling and
ensure the global causality at the segment level. Firstly, we divide all long documents in training
corpora into batch-size number of document groups with equivalent length and then perform a
document-level shuffling within each group. Then, we concatenate shuffled documents within one
group and truncate them into ordered segments. In order to ensure that two consecutive segments
of one long document are distributed in two consecutive input batches after batchfying, we select
one segment from batch-size number of document groups with the same inner-group index. Thus a
mini-batch with batch-size number of segments are constructed from exactly the batch-size number
of document groups. In this way, as the training iteration steps, the cached attention key-value pairs
in the memory bank are previous context of current inputs within the same document. The batchfying
process is illustrated in Figure 3.

Training Corpus, Backbone LLM and Hyperparameter. We sample a subset of the Pile [GBB+20]
as the training corpus, including BookCorpus2, Books3, OpenWebText2, Stack Exchange, Wikipedia,
Gutenberg (PG-19), NIH ExPorter, and Pile-CC datasets. We reproduce GPT-2* (407M-params)
as the pre-trained backbone LLM with Alibi [PSL21] position embedding because original GPT-
2 [RWC+19] adopts absolute position embedding, which is found to perform poorly to enable LLM to
learn long-distance dependencies [DYY+19]. The backbone LLM holds a L′ = 24, H = 16, d = 64
architecture. The SideNet holds a L = 12, H = 16, d = 64 architecture. The training for memory-
augmented adaptation iterates on 26B tokens, with a global 256 batch-size and 1024 sequence length.
The chunk-size csz is 4 tokens and the memory size M is 65k key-value pairs of tokens. For each
token, we retrieve K=64 attention key-value pairs for augmentation, which are K/csz=16 text chunks.
The memory-augmentation layer is the 9-th layer of SideNet. The attention keys and values from
18-th layer of backbone LLM is cached into memory and used for future retrieval. Other training
details are presented in Appendix C.

Memory Retrieval Module. The fixed memory-size of cached memory bank in one GPU is 65536
key-value pairs of tokens. We enable each GPU to construct and update their own memory retrieval
module for efficiency. For the implementation of the efficient token-to-chunk retrieval, we use the
faiss [JDJ21] toolkit to construct an exact-search index on GPU to store the mean-pooled attention
keys of text chunks and perform efficient retrieval. The faiss index maintains a fixed M/csz keys
and provides the efficient exact search w.r.t. inner product. The retrieval takes about 15ms per 1k
tokens, which is 55% timecost of backbone LLM forwarding pass. We can easily adapt the exact
search index to approximate search index to gain more retrieval efficiency.

Baselines. In addition to the baseline of our pre-trained GPT-2* variant, we consider Memorizing
Transformer (MemTRM) [WRHS22] and TRIME [ZLC22] as two memory-augmented baselines.
The MemTRM model can be easily adapted to tune a pre-trained LLM to use external memory. We
insert the KNN-augmented layer proposed by MemTRM as the same 18-th layer in the LLM decoder.

6

Dataset PG-22 ArXivSplits S1 S2 S3 S4 S5

Len. Range 5K-10K 10K-100K 100K-500K 500K-1M >1M <60K
#Documents 500 100 30 8 1 100
Avg. #tokens 7.6K 47.6K 140K 640K 1.2M 15.4K

Table 1: Dataset Statistics of five splits of PG-22 based on length range and ArXiv.

To adapt TRIME for our experiments, we replace the batchfying function and loss function of training
GPT-2* with those proposed by TRIME, which enables a memory-augmented adaptation tuning
method for LLMs. The two reproduced baselines are trained for the same number of tokens under the
same hyperparameter setting as LONGMEM.

3.2 Long-Context Language Modeling

The long-context language modeling can potentially benefit from the augmented memory of past long-
contexts. The knowledge stored in retrieved attention key-values can provide valuable background
and contextual information, helping models perform better in long-context language modeling. For
instance, when trying to model a long-text book, acquiring knowledge from previous background and
character relationships can be helpful in modeling the subsequent stories.

Evaluation Setting. We first compare LONGMEM and baselines on three long-context modeling
datasets, Project Gutenberg 2020-2022, ArXiv, and ChapterBreak. The majority of included books or
papers in these datasets have the length of at least 16k tokens. All listed datasets are evaluated in
a zero-shot manner without any task-specific tuning. The detailed evaluation settings on the three
datasets are as follows:

• Project Gutenberg 2020-2022 Language Modeling Dataset. We crawled and cleaned the books
published between 2020 and 2022 under Project Gutenberg Library1 to build up a completely new
long-text modeling dataset, named PG-22. It is significantly different from our training subset
PG-19 in terms of domains and writing styles, because books in PG-19 [RPJL19] are published
before 1919. We provide different validation splits of PG-22 based on length range, and the data
statistics are presented in Table 1.

• ArXiv Dataset. The ArXiv dataset includes papers in the areas of Math, Computer Science,
and Physics. We select a validation split of ArXiv paper subset in the Pile corpus [GBB+20].
The ArXiv subset of Pile is excluded from our training and serves an out-of-distribution dataset.
We report the token-level language modeling perplexity on the long-context language modeling
benchmarks of PG-22 and ArXiv.

• ChapterBreak Benchmark. ChapterBreak [STI22] is a challenging suffix identification dataset
that requires LLMs to distinguish the beginning of the ground-truth next chapter from a set of
hard negative segments sampled from the same book, given the long context of previous chapters.
ChapterBreak requires processing global long-context to comprehend and identify the correct
suffix. [STI22] demonstrated that even state-of-the-art x-formers for long-text processing fail to
effectively leverage long-range context to perform well on ChapterBreak. ChapterBreak has
two subsets, the PG-19 subset and the Archive of Our Own (AO3) subset. As the PG-19 corpus has
been included in the pre-training corpus of LONGMEM, it cannot be further used for evaluation.
Thus, we select AO3 subset, which contains fan-fictions extracted from AO3. ChapterBreak
provides 8 splits based on the prefix length from 0.5k to 8k tokens to fit the length limit of different
models. The splits of 4k, 6k, and 8k prefix are selected for evaluation. For LLMs that cannot
process over 4k tokens, we abandon the front prefix to fulfill the maximum input length of LLMs.
For memory-augmented models (MemTRM and LONGMEM), we load the given 4k/6k/8k prefix
contexts into the cached memory and then do the scoring. we use the perplexity as the scorer for
each candidate suffix segment in a zero-shot manner. Then the suffix segment with lower perplexity
is selected as the label. The suffix identification accuracy is used as the evaluation metric.

Results. The main results on evaluated long-context datasets are summarized in Table 2. The proposed
LONGMEM model significantly outperforms all considered baselines on long-text language modeling

1https://www.gutenberg.org/

7

Model In-Context In-Memory PG-22 ArXivLen. Len. 5K-10K 10K-100K 100K-500K 500K-1M >1M

GPT-2* 1k N/A 22.78 24.39 24.12 24.97 18.07 11.05
MemTRM 1k 65K 21.77 23.56 23.23 24.16 17.39 10.81
TRIME 1k 65K 22.21 23.50 23.74 24.32 17.80 10.95

LONGMEM 1k 65K 21.29 23.01 22.55 23.35 16.71 10.05

Table 2: Evaluation results on long-context language modeling datasets. We report token-level
perplexity (PPL) (lower the better) on all datasets.

Model #Params In-Context In-Memory ChapterBreakao3
Len. Len. ctx-4k ctx-6k ctx-8k

GPT-2-XL† [RWC+19] 1.5B 1K N/A 24% 24% 24%
GPT-3† [BMR+20] 175B 2K N/A 28% 28% 28%
LocalTRM† [RSVG21] 516M 8K N/A 24% 24% 24%
RoutTRM† [RSVG21] 490M 8K N/A 25% 24% 24%
Bigbird† [ZGD+20] 128M 4K N/A 26% 26% 26%

GPT-2* 407M 1K N/A 18.4% 18.4% 18.4%
MemTRM 407M 1K ∞ 28.3% 28.7% 28.7%

LONGMEM 558M 1K ∞ 37.7% 39.4% 40.5%

Table 3: Zero-shot Suffix Identification Accuracy on AO3 subset of ChapterBreak. Baselines
marked with † are directly cited from [STI22]. The MemTRM and LONGMEM loads the given
4k/6k/8k prefix contexts into cached memory, while the input length to local context is still 1k tokens.

datasets, with improvements of 1.38 to 1.62 perplexity on different length splits of PG-22, and 1.0
on ARXIV datasets. Surprisingly, the proposed method achieves the state-of-the-art performance
of 40.5% accuracy on ChapterBreakAO3 suffix identification benchmark and outperforms both
the strong long-context transformers and GPT-3 with 313x larger parameters. The substantial
improvements on these datasets demonstrate that LONGMEM can comprehend past long-context in
cached memory well for predicting future inputs.

3.3 Memory-Augmented In-Context Learning

LLMs have the emerging capability of in-context learning (ICL) via learning knowledge non-
parametrically from few-shot demonstration examples in the local context. However, conventional
in-context learning is heavily restricted by input context length, rendering it ineffective to absorb super-
vision from sufficient demonstration examples in the training set. With the proposed unlimited-length
memory augmentation, LONGMEM can overcome the limitation of the number of demonstration
examples in the local context and even attend on the whole training set by loading it into the cached
memory. In this way, LONGMEM generalizes the conventional few-shot in-context learning to
memory-augmented in-context learning with thousands of auxiliary demonstration examples.

Evaluation Setting. Here, we evaluate the in-context learning capability of baselines and the proposed
LONGMEM model on five NLU datasets, SST-2 [SPW+13], MPQA [WWC05], MR [ABK+07],
Subj [PL04] and SST-5 [SPW+13]. We evaluate models on two few-shot settings, 4-shot and 20-
shot. The 4-shot case is the data-insufficient scenario, while the 20-shot demonstrations can almost
fulfill the 1k input length and provide sufficient contextual self-supervisions. We transform the
k-shot examples to semantically meaningful demonstration examples via fixed text template, i.e.,
di="Review: xi Sentiment: yi",∀{(xi, yi)}ki=1 ∈ Dtrain for sentiment analysis tasks. Additionally,
we evaluate the 3-shot ICL on question-answering using SQuAD [RZLL16] under an open-ended
generation setting. The details of all prompt templates are presented in Appendix D. Then we
concatenate the demonstration examples with newlines to delimit them. The prediction label is
directly generated using greedy decoding given the demonstration examples and test cases in context.
The prediction accuracy is used as the evaluation metric. We report the mean and standard deviation
of 6 runs with different random seeds to assess the randomness in selecting k-shot demonstration
examples. As mentioned previously, the chunk size controls the granularity of retrieved text chunks.
Since the considered NLU datasets require more fine-grained labels from cached memory, we perform

8

Model In-Context In-Memory SST-2 MR Subj SST-5 MPQA Avg.#Demons. #Demons. ACC↑ ACC↑ ACC↑ ACC↑ ACC↑
Majority N/A N/A 50.9 50.0 50.0 20.0 50.0 44.2

GPT-2* 4 N/A 68.311.6 64.712.5 51.94.2 31.44.4 61.511.8 55.6
MemTRM 4 2000 67.512.4 64.611.3 53.26.0 29.64.4 63.012.1 55.6
TRIME 4 2000 69.514.5 63.89.8 51.51.5 31.86.7 63.612.9 56.0
LONGMEM 4 2000 71.814.0 65.111.0 53.83.7 36.06.8 65.412.8 58.4

GPT-2* 20 N/A 68.211.5 63.45.2 57.610.2 33.66.0 70.87.6 58.7
MemTRM 20 2000 65.19.6 65.19.3 58.210.6 31.96.3 72.77.4 58.6
TRIME 20 2000 74.313.9 71.52.5 57.511.4 33.04.6 69.87.8 61.1
LONGMEM 20 2000 78.014.1 78.63.3 65.68.5 36.57.5 74.67.3 66.7

Table 5: Accuracy [%] of 4-shot and 20-shot ICL on 5 NLU tasks (SST-2, mr, subj, SST-5, mpqa).
We sample 2000 extra demonstration examples and load them into cached memory. The subscript is
the standard deviation across 6 runs. Avg. refers to the average accuracy on 5 datasets.

a hyperparameter selection on the validation set of SST-2, and the best chunk-size 2 is used to report
the results for MemTRM, TRIME and our model.

Results. The results on in-context learning are summarized in Table 5 and Table 4. LONGMEM
achieves remarkable improvements on all NLU tasks under the 20-shot sufficient in-context
setting, with +5.6 average scores increase over pretrained GPT-2*, MemTRM, and TRIME.

Model EM F1

GPT-2* 22.282.3 30.782.0

MemTRM 22.843.5 32.652.8

LONGMEM 26.772.3 35.702.0

Table 4: Exact match (EM) and
F1 scores of 3-shot (about 1k to-
kens) in-context learning on SQuAD.
LONGMEM loads 200 extra demonstra-
tion examples into cached memory.

Meanwhile, LONGMEM also brings performance improve-
ments on the 4-shot case. Additionally, LONGMEM im-
proves the in-context learning capabilities of LLMs on
open-ended generation tasks, with +4.5 EM score in-
crease on SQuAD. The results indicate that having more
demonstration examples loaded in cached memory can
provide additional contextual cues to assist in-context
learning. LONGMEM can utilize task-relevant knowledge
from both local contextual demonstrations and in-memory
augmented demonstrations, thereby achieving superior in-
context learning capabilities.

3.4 Ablation Studies

So far, we empirically verify the effectiveness and superiority of LONGMEM in utilizing cached
memory for long-context modeling, long-context understanding, and many-shot in-context learning.
Furthermore, we would like to investigate the extend to which the cached memory contributes to
the long-context understanding capability of LONGMEM through an ablation study of removing
memory augmentations. Besides, since the design of the cached memory bank involves several
hyperparameters, such as memory size msz and chunk-size csz, we conduct a series of ablation
studies to evaluate the effects of those choices.

Effects of Long-Term Memory Augmentation. To evaluate the effects and contributions of memory
augmentations, we set the memory-size to 0 and maintain the SideNet parameters during inference.
The results of LONGMEM without memory augmentation are shown in Table 6 of Appendix. As
expected, without augmented long-term memory, the vanilla model with only backbone LLM and
SideNet only gains 59.4 average scores on ICL NLU tasks, which is a 7.3 average accuracy decrease
due to the removal of memory augmentation.

Effects of Chunk-Size. As analyzed before, the chunk-size csz controls the granularity of retrieval
and thus it may make a difference to tasks with requirements of fine-grained retrieval. We perform an
ablation study on the effects of various chunk-size choices csz ∈ {2, 4, 8} for in-context learning
and the results are presented in 4(a). The chunk size of 2 yields the best performance on in-context
learning tasks on five NLU datasets, which is consistent with the property of NLU tasks with the
requirement of fine-grained retrieval and fusion towards classification label tokens.

Effects of Memory Size. The memory size (msz) controls the capacity of the memory bank. In
general, the memory size should be compatible with the average length of documents or contexts,

9

72 72.5

59.8

34.4

71.8
78 78.6

65.6

36.5

74.677.8 75.6

61.1

34.8

72.7

0

10

20

30

40

50

60

70

80

90

SST-2 MR Subj sst-5 MPQA

Ac
cu

ra
cy csz=1

csz=2

csz=4

(a)

5-10K 10-100K 0.1-0.5M 0.5-1M
Splits of PG-22

0.1

0.0

0.1

PP
L

msz=65k
msz=32k
msz=16k
msz=8k

(b)
Figure 4: (a) Accuracy on 5 NLU datasets given different chunk size during inference; (b) ∆Perplexity
on 4 splits of PG-22 given different memory size during inference, in which the perplexity when
msz=65k is used as baseline.

i.e., a set of books with average 16k tokens should deploy the memory size of 16k tokens in cached
memory. The training msz of 65 tokens is excessive for downstream tasks such as ChapterBreak
as the whole prefix context length does not exceed 65k tokens. Thus, we perform an ablation study
on the effects of memory size msz ∈ {8k, 16k, 32k, 65k} during the inference stage on the PG-22
language modeling datasets and the results are shown in 4(b). To model the books with lengths of
8k-50k, the smaller memory size 16k which is consistent with the average length of target books
yields the best perplexity.

4 Related Work

Large Language Models. Large Language Models, i.e., GPT-3 [BMR+20], LLAMA [TMS+23],
GPT-4 [Ope23], significantly revolutionized NLP research and promoted the state-of-the-art of various
language understanding, language generation [WZG+22], and even vision-language tasks [WDC+22].
Additionally, enabled by multi-task instruction tuning [WBZ+21, OWJ+22], LLMs exhibit “emergent
abilities“ [WTB+22] like mathematical reasoning [WWS+22], code completion [CTJ+21], etc.

x-formers. To enable transformers to attend on longer context, many variants of “x-formers“ are pro-
posed. Transformer-XL [DYY+19] proposes to cache attention keys and values of past segment and
reuse them in recurrent manner. Recent seminal works of x-formers, including LinFormer [WLK+20],
LongFormer [BPC20], Routing Transformer [RSVG21], proposed various sparse attention mecha-
nisms for decreasing O(n2) complexity to O(n log n) or even O(n). BigBird [ZGD+20] achieves a
4k sequence length via attending on a subset of context tokens. Although these x-formers achieve
substantial efficiency improvements, such efficiency gains are not remarkable when modeling se-
quences that spans book-level length. Moreover, the largest sequence length of these methods is
still upper-bounded by 16k tokens, making them invalid in modeling long-sequences at the book or
wikipedia-page level (i.e., average 70k tokens for full-length books in PG19 dataset [RPJL19]).

Side-Tuning. The method of Side-Tuning [ZSZ+20, SCB22] is a task-specific tuning method for
pre-trained models via training a lightweight side-network that is fused with the fixed pre-trained
network via summation. Our method inherits the idea of adopting a side-network but distinguishes
the side-tuning method in terms of learning objective and cross-network fusion ways. LONGMEM
proposes to augment LLMs with decoupled memory to retrain information from long past inputs
without any task-specific tuning. The cross-network residual connections introduced here are novel
and distinct from the vanilla summation used in Side-Tuning.

5 Conclusion

In this paper, we propose to augment LLMs with long-term memory for enabling them to memorize
long-form context and gain long-form memory. The designed decoupled memory module can cache
attention key and value pairs of past inputs for future retrieval and fusion. A decoupled residual
SideNet is introduced as the memory retriever and reader, meanwhile the LLM itself is frozen
and works as knowledge and memory encoder. Experiments on various long-contextual language
modeling datasets demonstrate the effectiveness of our model over other memory-augmentation
baselines. The proposed method can also enable in-context learning of LLMs to overcome the limited
number of demonstration examples in context, which is constrained by the contextual length, via
caching thousands of auxiliary demonstration examples in memory.

10

Acknowledgement

This work is done during the first author’s internship at Microsoft Research. We would like to
thank the anonymous reviewers for the helpful comments. We appreciate Yutao Sun and Yaru Hao
for helpful suggestions on implementation and evaluation benchmarks. The first author was partly
sponsored by the DARPA PTG program (HR001122C0009). Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the
views of funding agencies.

References
[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary

Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

[BMH+21] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, T. W. Hennigan, Saffron Huang, Lorenzo
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre. Improving
language models by retrieving from trillions of tokens. ArXiv, abs/2112.04426, 2021.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.

[BPC20] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[CTJ+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

[DYY+19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

[GBB+20] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[JDJ21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7:535–547, 2021.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[LGW+23] Rui Lv, Junliang Guo, Rui Wang, Xu Tan, Qi Liu, and Tao Qin. N-gram nearest neighbor machine
translation. arXiv preprint arXiv:2301.12866, 2023.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

[Ope23] OpenAI. Gpt-4. https://openai.com/research/gpt-4, 2023. Accessed on March 14, 2023.

[OWJ+22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

11

https://openai.com/research/gpt-4

[PL04] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. arXiv preprint cs/0409058, 2004.

[PSL21] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding with unsupervised learning. 2018.

[RPJL19] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

[RSR+20] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. ArXiv, abs/1910.10683, 2020.

[RSVG21] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. Transactions of the Association for Computational
Linguistics, 9:53–68, 2021.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[RZLL16] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. arXiv e-prints, page arXiv:1606.05250, 2016.

[SCB22] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. arXiv preprint arXiv:2206.06522, 2022.

[SPW+13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

[STI22] Simeng Sun, Katherine Thai, and Mohit Iyyer. Chapterbreak: A challenge dataset for long-range
language models. arXiv preprint arXiv:2204.10878, 2022.

[TMS+23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[VSP+17] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[WBZ+21] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

[WDC+22] Weizhi Wang, Li Dong, Hao Cheng, Haoyu Song, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and
Furu Wei. Visually-augmented language modeling. arXiv preprint arXiv:2205.10178, 2022.

[WLK+20] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[WRHS22] Yuhuai Wu, Markus N. Rabe, DeLesley S. Hutchins, and Christian Szegedy. Memorizing trans-
formers. ArXiv, abs/2203.08913, 2022.

[WTB+22] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[WWC05] Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language resources and evaluation, 39(2):165–210, 2005.

[WWS+22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

12

[WZG+22] Weizhi Wang, Zhirui Zhang, Junliang Guo, Yinpei Dai, Boxing Chen, and Weihua Luo. Task-
oriented dialogue system as natural language generation. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2698–2703,
2022.

[YDY+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. XLNet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.

[ZGD+20] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

[ZLC22] Zexuan Zhong, Tao Lei, and Danqi Chen. Training language models with memory augmentation.
arXiv preprint arXiv:2205.12674, 2022.

[ZSZ+20] Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning:
a baseline for network adaptation via additive side networks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages
698–714. Springer, 2020.

A Ablation Study on the Effect of Memory Augmentation

Model In-Context In-Memory SST-2 MR Subj SST-5 MPQA Avg.#Demons. #Demons. ACC↑ ACC↑ ACC↑ ACC↑ ACC↑
Majority N/A N/A 50.9 50.0 50.0 20.0 50.0 44.2

GPT-2* 4 N/A 68.311.6 64.712.5 51.94.2 31.44.4 61.511.8 55.6
MemTRM 4 2000 67.512.4 64.611.3 53.26.0 29.64.4 63.012.1 55.6
TRIME 4 2000 69.514.5 63.89.8 51.51.5 31.86.7 63.612.9 56.0
LONGMEM 4 2000 71.814.0 65.111.0 53.83.7 36.06.8 65.412.8 58.4

w/o Memory 4 0 69.412.4 64.312.1 53.47.7 29.05.2 62.512.3 55.7

GPT-2* 20 N/A 68.211.5 63.45.2 57.610.2 33.66.0 70.87.6 58.7
MemTRM 20 2000 65.19.6 65.19.3 58.210.6 31.96.3 72.77.4 58.6
TRIME 20 2000 74.313.9 71.52.5 57.511.4 33.04.6 69.87.8 61.1
LONGMEM 20 2000 78.014.1 78.63.3 65.68.5 36.57.5 74.67.3 66.7

w/o Memory 20 0 70.012.8 70.86.2 52.94.6 30.96.4 72.57.5 59.4

Table 6: Ablation study results on the effect of memory augmentation of 4-shot and 20-shot ICL on 5
NLU tasks (SST-2, mr, subj, SST-5, mpqa). We sample 2000 extra demonstration examples and load
them into cached memory. The subscript is the standard deviation across 6 runs. Avg. refers to the
average accuracy on 5 datasets. "w/o" is short for "without".

B Inference Efficiency and GPU-Memory Efficiency

When the model is required to comprehend long sequences, the proposed method LONGMEM can
load the out-of-boundary inputs into the cached memory as previous context. Thus, the memory
usage and inference speed can be significantly improved compared with vanilla self-attention-based
models. The detailed statistics in terms of the efficiency is presented in Table 7.

Model In-Context In-Memory Inference Speed GPU-Memory Usage
Len. Len. (tokens/s)↑ (MBs)↓

GPT-2* 4k N/A 14666 20671
LONGMEM 1k 3k 22638 13335

GPT-2* 8k N/A 8417 54195
LONGMEM 1k 7k 21343 13437

Table 7: The superiority of our method over fully dense self-attention (GPT-2*) in terms of inference
speed and GPU-memory utilization.

13

C Training Details

The pre-training of reproduced GPT-2* iterates on 117B tokens in total, with 512 batch-size and
1024-token fixed segment-length. The Adam optimizer [KB15] is adopted in memory-augmented
adaptation training. The pre-training and adaptation are trained on 16 32GB-Tesla-V100 GPUs. Other
detailed training hypperparamters and settings are presented in Table 8.

Hyperparameter LONGMEM

Reproduced GPT-2* Backbone LLM Hyperparameters
Parameters 407M
Precision float16
Layers 24
Hidden dim. 1024
Attention heads 16
Head Dim 64
Vocab size 52k
Sequence length 1024
Position emb. Alibi
Tied embedding False

SideNet Hyperparameters
Parameters 151M
Precision float16
Layers 12
Hidden dim. 1024
Attention heads 16
Head Dim 64
Sequence length 1024

Memory-Augmented Adaptation Hyperparameters
Global Batch Size 256
Learning rate 2.0e-4
Total tokens 26B
Warmup tokens 0
LR Decay style polynomial
Adam (β1, β2) (0.9, 0.98)
Adam eps 1e-06
Weight decay 0.01
Gradient clipping 2.0

Table 8: Memory-Augmented Adaptation and Architectural Hyperparameters.

D Prompting Templates

We present all hand-crafted in-context learning prompting templates and labels for 5 NLU datasets
and Squad QA dataset in Tabel 9.

Task Prompt Labels

SST-2 Review: [Sentence] Sentiment: [Label] {positive, negative}

MR Review: [Sentence] Sentiment: [Label] {positive, negative}

MPQA Review: [Sentence] Sentiment: [Label] {positive, negative}

SST-5 input: [Sentence] type: [Label] {terrible,bad,okay,good,great}

Subj input: [Sentence] type: [Label] {objective, subjective}

Squad Passage: [Passage]\n Question: [Question] Answer: [Answer]

Table 9: The hand-crafted prompts used to query the model predictions on the zero-shot evaluation of
5 NLU datasets and one question-answering dataset Squad.

14

	Introduction
	Methods
	Language Models Augmented with Long-Term Memory
	Residual SideNet
	Memory Retrieval and Fusion

	Experiments
	Training Setup
	Long-Context Language Modeling
	Memory-Augmented In-Context Learning
	Ablation Studies

	Related Work
	Conclusion
	Ablation Study on the Effect of Memory Augmentation
	Inference Efficiency and GPU-Memory Efficiency
	Training Details
	Prompting Templates

