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Abstract

Vision—language models (VLMs) often process
visual inputs through a pretrained vision en-
coder, followed by a projection into the lan-
guage model’s embedding space via a connec-
tor component. While crucial for modality fu-
sion, the potential information loss induced by
this projection step and its direct impact on
model capabilities remain understudied. We
propose two novel approaches to quantify such
visual information loss in the projection by an-
alyzing the latent representation space. First,
we evaluate semantic information preservation
by analyzing changes in k-nearest neighbor re-
lationships between image representations, be-
fore and after projection. Second, we directly
measure information loss by reconstructing vi-
sual embeddings from the projected represen-
tation, localizing loss at an image patch level.
Our experiments reveal that connectors funda-
mentally alter visual semantic relationships—
k-nearest neighbors of the visual embeddings
diverge by 40-60% post-projection, correlat-
ing highly with degradation in retrieval perfor-
mance. The patch-level embedding reconstruc-
tion provides interpretable insights for model
behavior on visual question-answering tasks,
finding that areas of high information loss reli-
ably predict instances where models struggle.

1 Introduction

Vision—language models (VLMs) have bolstered
performance on many tasks, e.g., visual question
answering and image captioning by combining pre-
trained vision encoders with pre-trained language
models. Many of these models employ small neural
network modules, known as connectors, to bridge
the gap between the visual and textual embedding
spaces. The connectors project visual representa-
tions into embedding sequences that language mod-
els can process (Chen et al., 2024a; Liu et al., 2023;
Deitke et al., 2024; Laurencgon et al., 2024; Chen
et al., 2024b; Zhang et al., 2025; Sun et al., 2024).

Common connector architectures include multi-
layer perceptrons (MLPs) or transformer-based ap-
proaches such as the perceiver sampler (Jaegle
et al., 2021) in Idefics (Laurencon et al., 2024),
which converts image embedding sequences into
shorter, fixed-length latent representations. While
these connector modules enable efficient cross-
modal integration (Li and Tang, 2024), projecting
rich visual features into embeddings compatible
with language models typically involves dimen-
sional conversion and representation restructuring.
This raises fundamental questions about the nature
and extent of potential information loss during pro-
jection, and to what degree it negatively impacts
performance on downstream tasks.

As shown in Figure 1, high information loss
occurs among the image patches most relevant to
answering the question. Losing such critical vi-
sual details could impose inherent limitations on
the model’s reasoning capabilities, as the language
model’s performance is bounded by the quality
and completeness of the visual information it re-
ceives. Despite the growing research on VLM
connector architectures and their impact on down-
stream performance (Lin et al., 2024; Zhu et al.,
2025), there has been limited systematic inves-
tigation into how they affect visual information
preservation in the latent space. Quantifying this
information loss presents substantial challenges,
traditional methods like canonical correlation anal-
ysis (Hotelling, 1936) struggle with variable-length,
high-dimensional visual features processed through
diverse connector architectures in vision-language
models. Performance degradation can also take
more than one form, adding to the complexity of
its study. For instance, it can take the form of di-
rect loss of fine-grained visual details due to an
inherently lossy connector, or a geometric collapse
where distinct concepts become less separated in
the projected embedding space.

To bridge this gap in the literature, we present
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Figure 1: Visualization of patch-wise information loss in the embeddings explains the incorrect predicted answer in
VizWiz Grounding VQA. For the question “What is the fifth number?", LLaVA incorrectly predicted “18". Figure 1b
display the difference between the L2 norm of the original and the reconstructed patch embeddings. Blue regions
indicate where original embeddings have larger norms than predicted embeddings, while red regions show where
predicted embeddings have larger norms. The top 10 high-loss patches are marked by yellow squares. Figure 1c
shows high loss occurring in several answer-relevant patches contribute to the incorrect prediction.

an evaluation framework to quantify information
loss in VLM connector modules from both the ge-
ometric perspective and that of localized informa-
tion loss. We first measure geometric information
loss through careful examination of the structure
of latent visual representations. By introducing
k-nearest neighbors overlap ratio, we can mea-
sure how much the neighborhoods of image embed-
dings change before and after the projection in the
latent representation space, thereby estimating how
well geometric and semantic relationships are pre-
served. Second, to measure localized information
loss, we train a model to reconstruct the original
visual embeddings from the projected embeddings.
This patch-level visual embedding reconstruc-
tion allows us to pinpoint the high-loss regions in
the image—areas where visual features are hard to
recover after projection (Figure 1). This two-step
approach provides both quantitative metrics and
interpretable visualizations, offering insights into
the nature of information transformation during
vision-text integration.

2 VLMs and Connectors

Integrating visual and textual inputs is fundamen-
tal for VLMs to process multimodal information
effectively. Existing VLMs typically employ two
main approaches (Li and Tang, 2024): models like
LLama3.2 (gra, 2024) and BLIP (Li et al., 2023)
leverage cross-modal attention mechanisms, while
others such as LLaVA (Liu et al., 2023) and Qwen-
2-VL (Bai et al., 2025) adopt connectors to project
visual representations into latent vectors compati-

ble with large language models (LLMs).!

Lin et al. (2024) categorize connectors into two
types: feature-preserving and feature-compressing
connectors. Feature-preserving connectors pre-
serve the number of patch embeddings, such as
the two-layer MLP connector in LLaVA. In con-
trast, feature compressing connectors project image
patch embeddings to a shorter sequence, including
the perceiver sampler in Idefics2 (Laurencgon et al.,
2024) and the patch merger in Qwen-2-VL (Bai
et al., 2025). In this paper, we estimate information
loss in both types of connectors.

2.1 Formalizing Encoders and Connectors

We now define connector-based vision-language
models using dependent types. First, we consider
the textual input. Let 3 be an alphabet of symbols.
A string encoder, ¢, is a function with a dependent
type, mapping a string o to a sequence of real-
valued embedding vectors. Formally,
¢: =NV — (RPN, €))
where N € N is a parameter in the dependent type
that denotes the length of the input string, and D is
the dimensionality of the embedding vectors. This
represents a family of functions, one for each N,
mapping sequences of N symbols to sequences of
N vectors in RP.
We now turn to the visual input. Let A be a set
of image patches. Each patch § € R7W*C js 3
3-dimensional array where H and W represent the

'In this paper, we do not consider VQ-VAE (van den Oord
et al., 2017) based VLMs, which are more often used for
text-to-image generation.



height and width dimensions, and C' is the number
of color channels per pixel. A two-dimensional
image of patch dimensions M; X Ms can thus be
represented as an element of AM1XM2  Where
AMIXM2 denotes the set of all possible M; x My
grids of patches. The vision encoder is formalized
as a dependent type:

'l/]: AM1><M2 N (RD/)M1XM27 (2)

where M and M are parameters in the dependent
type, representing the grid dimensions of the image
patches, and D’ is the visual embedding dimension.
This maps a grid of image patches to a grid of
embedding vectors.

A connector module transforms the vision en-
coder’s output to match the dimensionality of the
text encoder—projecting visual embeddings of di-
mension D’ to text-compatible dimension D. We
define the connector as a function of type:

CONN: (RP)MixMe _y (gDYMe — (3)

where we typically have Mo < M M. We also
use C as shorthand for CONN.

For combining the output of the string encoder
and the vision encoder, we define a flattener that
combines visual and textual embeddings into a uni-
fied sequence:

FLAT: (RPYMe » (RP)N — (RPYMetN  (4)

This creates a sequence of length Mc + N by con-
catenating the flattened grid of visual embeddings
with the sequence of text embeddings.

The complete vision—-language models we con-
sider can then be expressed as the a composition of
these functions:

VLM(z, o) = LM(FLAT(CONN(%(z)), ¢(0)))
(&)
where € AM1XMz jg ap input image, 0 € BV
is an input text sequence, and LM is an auto-
regressive language model that predicts probability
of next tokens.

We focus on quantifying the information loss at
the connector module defined in Equation 3. For-
mally, the information loss over the connector is
a function p : (¢(x), CONN(¢)(x))) — R>o. We
explore how such measure correlate and explain
model performance.

(b) After projection

(a) Before projection

Figure 2: The k-nearest neighbors overlap ratio mea-
sures the overlap of an image’s neighbors before and
after projection. In this example, with k£ = 3, the over-
lap ratio is 0.67 because two out of the three nearest
neighbors are identical in both representation spaces.

3 Quantifying Information Loss

We propose two methods for quantifying informa-
tion loss over the projection step described above.
The first method quantifies structural preservation
of semantic embeddings by measuring the over-
lap between each image representation’s k-Nearest
Neighbors (k-NN, Fix and Hodges (1951)) before
and after projection. Figure 2 gives an example
where the nearest neighbors overlap but differ in
ranking. The second method evaluates patch-level
representation (Figure 1) distortion by training an
ad hoc neural network to reconstruct the original
image embedding from its projected representation,
detailed in Section 3.2.

3.1 k-Nearest Neighbors Overlap Ratio

To quantify geometric information loss during pro-
jection in visual representation spaces, we propose
the k-nearest neighbors overlap ratio (KNOR),
a measure grounded in the preservation of the k-
NN relationship between embedded images before
and after projection through the connector. Let
be a finite set of images, v a vision encoder, and
CONN (C for short) a connector as described in §2.1.
We use I, = {1()}.er to indicate the family of
embedded images, and I = {CONN(¢(x))}zer
for the projection of the embedded images. The
k-NN overlap ratio for an image « is defined as

N1, (4 (@), k) N Np(c(y (@), k)]

k
(0)
Where N7, (¢(z), k) is the set of k-nearest neigh-
bors of 1) (x) among the pre-projected embeddings,
and N7, (c(¢(x)), k) is the set of k-nearest neigh-
bors of C(¢(x)) among the projected embeddings.

Rz, k) =



The average overlap ratio is given by

RS 23 Rz, k) )

- ’I’ zel

The average overlap ratio measures how well
the local geometric structure is preserved after pro-
jection. Lower overlap ratio corresponds to more
geometric information loss due to projection, while
higher overlap suggests faithful retention.

3.2 Embedding Reconstruction

While KNOR quantifies the loss of geometric rela-
tionships between image embeddings, it cannot de-
tect loss of patch-level visual features. To address
this, we further quantify and localize patch-level
information loss by attempting to reconstruct the
original vision embeddings from their projected
representations.

Specifically, given a connector CONN defined in
Equation 3 and set of images I C AMixM2 ye
train a reconstruction model f, : (RP)Mc —
(RP"YM1xMz o minimize reconstruction loss. For
each patch index (4, j) € M; x Mo, we define the
per-patch loss as

Lpaen (.7, ) = 90(2) 1) = (@ (@))) 1|15

®)
which measures the squared Euclidean distance be-
tween the original vision embedding and its recon-
struction for each patch. The total reconstruction
loss is therefore the sum of the patch-wise losses
across all patches and images:

Erecon(I) = E E Epatch(xaiyj) (9)
z€l (i,5)€
M1 ><M2

This patch-wise reconstruction enables us to
identify and visualize the spatial distribution of
information loss across the image.

4 Experimental Setup

We quantify information loss using both methods
across three open-weights connector-based vision-
language models on six datasets spanning ques-
tion answering, captioning, and retrieval tasks.
We assume that greater structural and semantic
information loss during projection through the
connector leads to reduced neighborhood overlap,
while greater patch-wise information loss results in
higher reconstruction error.

4.1 Pretrained VLMs

We consider three VLMs including LLaVA (Liu
et al., 2023), Idefics2 (Laurengon et al., 2024), and
Qwen2.5-VL (Bai et al., 2025). LLaVA uses a two-
layer MLP as the connector, preserving total num-
ber of patches for each image. In contrast, Idefics2
uses an attention-based perceiver resampler (Jaegle
et al., 2021) that projects image embeddings to a
fixed-length sequence of embeddings. Qwen2.5-
VL uses a MLP-based patch merger which merges
every four neighboring patch representations into
one. We use the 7B-instruct model variants for
LLaVA and Qwen2.5-VL, and the Idefics2-8B-
instruct model.

4.2 Evaluation Datasets

We evaluate on six diverse datasets, each of which
probes different aspects of visual understanding.

SEED-Bench (Li et al., 2024) provides catego-
rized multiple-choice questions spanning cog-
nitive tasks from basic scene understanding to
complex visual reasoning.

VizWiz Grounding VQA (Chen et al., 2022)
includes real-world visual assistance scenarios
with grounding-based question answering.

VQAV2 (Antol et al., 2015) covers open-ended
questions that test general visual comprehension.

CUB-200-2011 (Wah et al., 2011) is a commonly
used dataset for fine-grained image retrieval that
covers 200 species of birds.

Flickr30k (Young et al., 2014) and COCO (Lin
et al., 2014) Karpathy test set (Karpathy and
Fei-Fei, 2017) are used for image captioning
evaluation.

Together, these datasets offer complementary per-
spectives on how different types of visual informa-
tion are preserved during projection and how infor-
mation loss impacts various downstream tasks.

4.3 Embedding Reconstruction Models

We build models to reconstruct image patch em-
beddings from connector outputs. These recon-
struction models are intentionally designed with
larger capacity than the original connectors, includ-
ing expanded hidden dimensions and additional
hidden layers. This controlled setup ensures our
models are trained to recover the original visual
representations without creating new bottlenecks
in the reconstruction process.

Architecture We tailor our reconstruction mod-
els to each VLM’s connector architecture. For
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Figure 3: Neighborhood overlap ratios across three datasets: SeedBench validation, a 10,000-sample subset of
VQAV2 validation, and Vizwiz grounding VQA validation. Analysis using 10, 50, and 100 nearest neighbors
shows overlap ratios below 0.62 for all models, suggesting connectors poorly preserve geometric relationships and

neighbor rankings for the visual representations.

Model MMy, x D' McxD |CONN|  |fy]
LLaVA 576 x 1024 576 x 4096 2IM  27M
Idefics2 576 x 1152 64 x 4096  743M  844M
Qwen2.5-VL 576 x 1280 144 x 3584  45M  843M

Table 1: Model parameters and embedding dimensions.
|CONN| denotes number of parameters in the connector
and | fy| represents number of parameters of the recon-
struction model. Pre- and post-projection embedding
dimensions are listed as MM, x D' and M¢ x D.

LLaVA, which preserves the number of image
patches during projection, we use a simple three-
layer MLP with a 2048-dimension hidden layer.
For Idefics2 and Qwen2.5-VL, which compress
sequence length from M; x My to M¢, we im-
plement transformer-based models to handle the
differences in sequence length. The reconstruction
model projects connector outputs to hidden embed-
dings with positional encodings before processing
them through a 16-layer, 16-head transformer en-
coder with 2048-dimensional vectors. Table 1 sum-
marizes the parameters of the reconstruction mod-
els and their input and output dimensions. Please
see Appendix C for ablation analysis on the recon-
struction model structure.

Training We train each of the embedding recon-
struction models on the COCO 2017 train set (Lin
et al., 2014) for 30 epochs with early stopping. We
apply a learning rate of 1e—4, dropout of 0.1, and a
total batch size of 128. For training stability, we ap-
ply normalization to both pre- and post-projection
embeddings using mean and standard deviation of
the dataset.

S Neighbor Rankings and Semantic
Information are Not Preserved

We calculate KNOR (Section 3.1) for images in the
SeedBench validation set, a subset of the VQAv2
validation set with 10, 000 images, and the vali-
dation set of Vizwiz grounding VQA dataset. It
is intuitive that higher neighborhood overlap ra-
tios suggest that the projection better preserves
the relationships between image embeddings. As
the neighborhood rankings directly impact image
retrieval tasks, we also evaluate retrieval perfor-
mance on the CUB dataset using both pre- and
post-connector visual embeddings.

5.1 Low Overlap Ratio for All Models

In Figure 3, we show the neighborhood overlap
ratio across k = 10, 50, and 100 nearest neigh-
bors, averaging through all unique images in the
evaluation datasets.> We can observe that the neigh-
borhood overlap ratios are around 50% for all three
models, with LLaVA achieving 61.6% overlap as
the maximum when considering 100 nearest neigh-
bors. This suggests a significant reordering of near-
est neighbors post-projection across all models.
Specifically, LLaVA maintains higher structural
preservation compared to Qwen2.5-VL and Idefics-
2, whereas Qwen2.5-VL lost almost 90% of the
neighborhood ranking information. However, even
LLaVA shows notable neighbor reshuffling, espe-
cially at smaller neighborhood sizes (k=10).

%Visual embeddings pre- and post-connector projection
have a 1-1 mapping to the input image, and these visual em-
beddings are not impacted by the language model prompts.
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Figure 4: Comparison of five nearest neighbors searched
with pre-projection (top) and post-projection (bottom)
embeddings using different models. The first image in
each row is the query image, followed by its nearest
neighbors. For Qwen2.5-VL, despite a low neighbor-
hood overlap ratio, post-projection embeddings retrieve
more semantically similar images.

In Figure 4, we visualize the nearest neighbors
of a given query image, revealing significant neigh-
bor reordering across all models. However, for
Qwen2.5-VL, the neighbors obtained with post-
projection embeddings are more semantically sim-
ilar to the query image. We suspect that this phe-
nomenon could stem from its continuous training
of the image encoder in the pretraining stage and
the patch merging, which yields more semantically
meaningful post-projection embeddings. Other
VLMs such as LLaVA use a frozen vision encoder,
where the connector is updated to inherit features
from the pretrained encoder. However, in Qwen2.5-
VL, continued pretraining with an unfrozen vision
encoder produces fundamentally different learned
visual embeddings. This indicates that the pre-
and post-projection visual representations are not
equivalent, but may not necessarily lead to worse
semantic representations of the image.

Model Emb Recall Correlation
R@1 R@5 R@1 R@5

Pre 834 2182 005 008

LLaVA Post 6.6 1722 0.11 0.11
defic? Pre 1310 3081 019 023
cnes Post 10.87 2528 022 0.28
Pre 423 1174 010 0.13
Qwen-25-VL - pit 1065 2644 016 021

Table 2: Zero-shot retrieval performance on CUB test
set using L? for similarity measure. R@k denotes Re-
call at rank k. We calculate the Spearman correlation
scores with R@k and the average overlap ratio consid-
ering 100 nearest neighbors. p values are smaller than
le—5 for all correlation scores.

5.2 Image Retrieval Evaluation

To verify if structural information loss correlates
with a degradation in the semantic representation
of images, we evaluate on the CUB-200-2011 im-
age retrieval test set (Wah et al., 2011). We per-
form zero-shot image retrieval with pre- and post-
connector embeddings for each query image, ex-
cluding the query image itself from the gallery. The
pre-and post-projection embeddings are indexed
with FAISS (Douze et al., 2024), and we experi-
ment with retrieving similar images based on both
the L? distance and the inner product similarity (Ta-
ble 8 in Appendix) of the image representations.

We report the recall scores at rank 1 (R@1) and
rank 5 (R@5) in Table 2. Consistent with our ob-
servations from the neighborhood overlap visual-
ization (Figure 4), we observe semantic degrada-
tion of 41.4% and 18.8% of R@5 for LLaVA and
Idefics model, respectively. In contrast, for the
Qwen2.5-VL model, the improved image retrieval
performance with post-projection embeddings sug-
gests that the low overlap ratio stems from the sub-
stantial differences between the two sets of visual
embeddings, with the post-projection embeddings
capturing more semantic features. We also observe
positive correlation between the k-NN overlap ratio
and the retrieval R@1 and R@5 scores for all mod-
els. The correlation is more significant especially
when using post-projection embeddings. This sug-
gests that our proposed k-NN measure correlates
with performance on tasks requiring fine-grained
visual discrimination.



Model COCO Flickr30k Model COCO Flickr30k
Reconstruction loss (avg / std) CIDETr Scores for High Loss / Low Loss samples
LLaVA 0.087 / 0.016 0.097 / 0.019 LLaVA 73.98 / 86.96 51.79 /61.74
Idefics2 0.796 / 0.082 0.854 / 0.074 Idefics2 40.84 / 66.13 29.24 / 53.22
Qwen-2.5-VL  1.069 /0.117  1.069 / 0.115 Qwen25-VL  12.45/13.56  13.15/12.35
Overall CIDEr Scores Spearman Correlation (p / p)

LLaVA 81.28 56.79 LLaVA —0.077 / 0.000 —0.096 / 0.000
Idefics2 53.64 39.22 Idefics2 —0.214 / 0.000 —0.226 / 0.000
Qwen-2.5-VL 13.04 12.85 Qwen-2.5-VL  0.001 /0.975  0.027 / 0.403

Table 3: Reconstruction loss on COCO and Flickr30k
test sets. Top: reconstruction loss averaged over all sam-
ples, where LLaVA achieves lowest reconstruction er-
ror. Bottom: CIDETr scores of zero-shot captioning.>For
both datasets, we observe better overall captioning per-
formance with lower average reconstruction loss.

6 Reconstruction and Model Behavior

Beyond KNOR reflecting semantic and geomet-
ric losses, we examine patch-level information
loss by reconstructing visual representations ()
from their projections CONN(¢(z)) (Equation 8).
Higher reconstruction loss indicates greater infor-
mation loss. This patch-level loss measure enables
precise localization of visual feature degradation.

6.1 Reconstruction Loss Impacts Captioning

Our embedding reconstruction evaluation follows
two steps: 1) we train a reconstruction model for
each VLM using paired pre- and post-projection
embeddings from images in the COCO 2017 train
set (as described in Section 4.3); 2) we apply these
reconstruction models to predict the original image
representations from their projected counterparts.
For image captioning, we measure the recon-
struction loss for images in the Flickr30k validation
set and COCO Karpathy test split. We use CIDEr
score (Vedantam et al., 2015) to evaluate the qual-
ity of the generated captions. Table 3 summarizes
the overall average reconstruction loss of the three
models on the captioning test datasets. For both
datasets, we observe lower average reconstruction
loss yields better captioning performance. We also
investigate how reconstruction loss impacts cap-
tioning for each individual image by calculating
the correlation between per-sample CIDEr score
and reconstruction loss per-image. In Table 4, the
spearman correlation indicates higher reconstruc-
tion loss for a given image corresponds to worse
3We notice Qwen-2.5-VL is particularly sensitive to the

task prompt; here we use the prompt suggested in the original
paper (Bai et al., 2025).

Table 4: Top: The comparison of CIDEr scores for
top 25% highest and 25% lowest reconstruction loss
samples, reported as "High Loss / Low Loss" Bottom:
Spearman correlations (p) of per-sample reconstruction
loss and captioning CIDEr scores.

captioning for Idefics and LLaVA, indicating by
the negative correlation with p values smaller than
le—5. Please see more visualization in Figure 11.
For Qwen-VL, we did not observe obvious correla-
tion for individual images. The large gap of CIDEr
scores between the highest and lowest reconstruc-
tion loss samples for LLaVA and Idefics2 suggests
substantial impact on downstream tasks.

6.2 Loss at Patch-level Visual Features
Explains Question Answering Behaviors

To further distinguish whether the reconstruction
loss stems from selective feature preservation or ac-
tual information loss, we visualize the patch-level
loss for images in the VizWiz grounding VQA val-
idation dataset. This dataset is particularly suit-
able for our analysis as it provides answer ground-
ing—binary masks indicating image regions rele-
vant to each question. By examining the relation-
ship between the reconstruction loss for the answer-
relevant image patches and question-answering ac-
curacy, we can assess whether the projection pre-
serves task-relevant visual information.

We report the Spearman correlation between the
reconstruction loss and the question answering ac-
curacy in Figure 5. For LLaVA, we observe a
negative correlation between prediction accuracy
and reconstruction loss in answer-relevant patches,
while a positive correlation is found in irrelevant
patches. This indicates that information loss in
answer-relevant patches negatively impacts model
performance, whereas loss in irrelevant patches has
a less significant effect. For Idefics2, we can see
that information loss in any patches would hurt
question answering accuracy. We do not observe
significant correlation for Qwen-2.5-VL, which is
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Figure 5: Correlation between reconstruction loss and question-answering accuracy on the VizWiz grounding
VQA task. For LLaVA and Idefics2, all correlations have a p-value < 5e—5, indicating statistically significant
relationships, whereas no clear correlation is observed for Qwen2.5-VL. The reconstruction loss occurs in both
answer-relevant and irrelevant patches. Loss in relevant patches negatively affects performance of LLaVA and
Idefics2. “Norm” represents differences between the L2 norm of the embeddings.

consistent with our findings in the captioning tasks.

As shown in Figure 1, identifying distorted fea-
tures allows us to pinpoint visual information that
becomes inaccessible or less reliable for the lan-
guage model. For instance, reconstruction loss in
the patches of the fifth number "8" rank among
the top ten of all image patches, suggesting that
the model may have struggled to answer the ques-
tion due to lost details necessary for identifying
the number. This analysis introduces a new visu-
alization approach to examine VLM limitations,
particularly in scenarios requiring reasoning or rec-
ognizing fine-grained viusal features. Please see
more visualization examples in Appendix E.

7 Related Work

A series of analyses has been conducted to inves-
tigate the modality gap and representation limita-
tions of contrastive-based VLMs (Schrodi et al.,
2024; Liang et al., 2022; Tong et al., 2024). These
studies reveal that the representational shortcom-
ings in CLIP embeddings subsequently impact the
visual perception capabilities of VLMs relying on
such vision encoders. For connector-based VLMs,
Zhang et al. (2024) demonstrates that the latent
space sufficiently retains the information necessary
for classification through probing across different
layers, and Lin et al. (2024) demonstrates the im-
pact of different connectors on VLMs’ downstream
performance. However, there remains a significant
gap in understanding whether fine-grained visual
information, crucial for tasks such as visual ground-
ing (Krishna et al.) and question answering (Chen
et al., 2022), is lost in the process. In this paper, we
focus on the connector-based models to understand

the information transformation. To the best of our
knowledge, our paper is the first to directly quan-
tify information loss of the connectors from the
representation perspective, offering deeper insights
into where and what specific information is lost
from the visual features.

8 Conclusion and Future Work

Our study systematically evaluates information loss
during visual-to-language projection in VLM con-
nectors through two key metrics: neighborhood
overlap ratios and embedding reconstruction. Our
quantitative framework captures two critical as-
pects of the information loss 1) significant struc-
tural shifts in global semantic relationships shown
by 40-60% divergence in nearest-neighbor rank-
ings, and 2) patch-level reconstruction loss that cor-
relates with degraded performance in captioning
and fine-grained visual QA tasks. Our patch-level
reconstruction also enables visualization of local in-
formation loss, offering interpretable explanations
for model behaviors.

Our findings suggest two key properties of an
effective connector: 1) preserving or improving se-
mantic representation of images, and 2) preserving
visual information most relevant to the text context.
These findings could guide further improvements in
VLM connectors. For example, the reconstruction
loss at the embedding level could potentially be
incorporated during model pretraining as regular-
ization. Future work could also explore designing
dynamic projection layers or better visual feature
selection mechanisms for modality fusion.



Ethics Statement

We foresee no ethical concerns with our research
project. In particular, ours is merely a scientific
study of VLMs and provides no artifacts that can
be used in a real-world scenario.

Limitations

In this study, we evaluate the information loss intro-
duced by connectors in VLMs. However, several
limitations should be noted. First, due to variations
in model architectures and pretraining strategies,
our findings may be specific to the connector-based
VLMs analyzed and may not generalize to archi-
tectures that employ cross-attention for modality
fusion. Second, our experiments focus on connec-
tors in VLMs within the 7B—8B parameter range.
Expanding the analysis to models of different sizes
could provide deeper insights into the relation-
ship between model scale and information loss.
Third, our pixel-level reconstruction experiments
(Appendix F) yielded inconclusive results in quan-
tifying information loss, possibly due to limitations
in our chosen image generation model and training
dataset size. Additionally, while we empirically
validate our k-NN overlap ratio and embedding
reconstruction metrics, a formal theoretical char-
acterization would further strengthen their reliabil-
ity. Finally, our reconstruction experiments cannot
conclusively determine whether the observed infor-
mation loss stems from the connector layer itself
or from potential learning limitations of the trained
reconstruction network.
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A Connectors in Autoregressive Vision-Language Models

Idefics2 Idefics2 leverages a perceiver resampler (Jaegle et al., 2021) as the connector. The perceiver
resampler forms an attention bottleneck that encourages the latent representations to attend to the most
relevant inputs in a high-dimensional input array through iterative cross-attention layers. In other words,
the cross-attention module projects the high-dimensional inputs into a fixed-dimensional learned represen-
tation. Please refer to Laurengon et al. (2024) for more details.

LLaVA LLaVA (Liu et al., 2023) uses a two layer MLP to project the image embeddings to the language
model’s embeddings space. The MLP projector preserves the image feature length — number of patches
extracted by the image encoder.

Qwen2.5-VL. Qwen2.5-VL (Bai et al., 2025) uses a patch merger (two-layer MLP) to reduces the length
of the input image features. The image representations of the neighboring four patches in the image are
first merged, and then passed through a two-layer MLP to project the image representation to the LM
embedding dimension.

B Procrustes analysis

We also attempt to find the optimal geometrical transformation from the post-projection embedding space
to the pre-projection one through Procrustes analysis (Gower, 1975) — a method often used for supervised
alignment of embeddings (Artetxe et al., 2018). The alignment error reflects the degree of structural
similarity of the two embedding spaces.

We use mean-pooled image embeddings from LLaVA, Idefics2, and Qwen2.5-VL. As the pre- and post-
projection embeddings have different embedding dimensions and sequence lengths, our analysis follows
three steps to complete the embedding alignment. We first take the mean-pooled image representation
by averaging over the sequence length, producing fixed-size vectors of size D' and D. We then use
PCA (Hotelling, 1933) on the mean-pooled post-projection embeddings to project them to the same
dimension of the mean-pooled pre-projection embeddings.

Orthogonal transformation matrix R was derived through singular value decomposition of the cross-
covariance matrix X ' T, where X € R’ represents mean-pooled pre-projection embeddings and
T € R the PCA-transformed post-projection embeddings. Then the orthogonal transformation matrix
is learned to best align these two sets of embeddings by minimizing the Euclidean distance. The
reconstruction error are reported in Table 5. Figure 6 visualizes the alignment of LLaVA embeddings
through procrustes analysis.

Model Mean Std Min Max
LLaVA 16.62 3.16 8.76 23.65
Idefics2 493 0.08 478 5.70

Qwen2.5-VL 441 0.09 424 5.05

Table 5: Procrustes analysis results. We report the alignment error on SeedBench image representations before and
after connector projection.

Our analysis reveals fundamental limitations in linear alignment of the image embeddings. The
high alignment errors of 16.62 for LLaVA and 4.41 for Qwen2.5-VL indicate the inherent difficulty of
preserving geometric relationships through rigid transformations. While serving as a critical baseline
for structural fidelity assessment, this constrained linear approach explains why our proposed non-linear
embedding reconstruction approach achieves significantly lower errors.

In Figure 6, we visualize the alignment for LLaVA pre- and post-projection embeddings, as well as the
embeddings learned through the linear transformation learned. From the visualization we can observe that
the linear transformation is not able to align the pre- and post-projection embeddings well.
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Figure 6: Alignment visualization for LLaVA pre- and post-projection embeddings through PCA.

Model Size VizWiz SeedBench FoodieQA
Avg 0.050 0.056 0.051
MLP 2™ Std 0.013 0.011 0.007
Avg 0.064 0.070 0.065
MLP 3IM Std 0.015 0.013 0.0075
Avg 0.237 0.231 0.228

Transformer 40M Std 0.019 0.025 0.014

Table 6: Reconstruction loss with different architectures across VizWiz, SeedBench, and FoodieQA datasets.
Reported values include average loss (Avg) and standard deviation (Std).

C Ablation Studies

C.1 Ablation on Reconstruction Model Size and Structure

We train three reconstruction models of different sizes for LLaVA: a 27M three-layer MLP, a 39M
five-layer MLP, and a 40M Transformer. In Table 6, we observe that the 27M model is sufficient for
reconstructing LLaVA visual embeddings, and a larger model does not yield better validation loss.

C.2 Ablation on Index Method for £-NN Overlap Ratio

We evaluated k-NN overlap ratio using three different embedding types as search indices: original embed-
dings, mean-pooled image embeddings, and normalized embeddings (Table 7). Since the performance
differences were minimal, we selected mean-pooled embeddings for both pre- and post-projection image
representations in calculating k-NN overlap ratios.

D Additional Evaluation Results

D.1 CUB image retrieval performance

In Table 8, we show the complete image retrieval performance on CUB test set using L? and inner product
for similarity measure. The performance are consistent regardless of the index method used.

D.2 Reconstruction loss on VQA datasets

For visual question answering tasks, we measure the reconstruction loss for images in the validation set
of VizWiz grounding VQA, Seed-Bench, and FoodieQA. Table 9 presents overall reconstruction loss.
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Index Type

Overlap Ratio IndexFlatL.2 IndexFlatIP
IndexFlatlL.2 . .
(mean pooling)  (normalized vectors)

mean std mean std mean std
top100 0.466 0.122 0.563 0.107 0.504 0.129
top50 0.488 0.128 0.556 0.120 0.425 0.142
top10 0.490 0.149 0.551 0.160 0.377 0.161
Vector Size
Before projection 576x1024 1x1024 576x1024
After projection 576 <4096 1x4096 576x4096

Table 7: Ablation on KNN results when using original embeddings, mean pooled image embeddings, and normalized
embeddings. We chose to use the mean-pooled embeddings for efficiency due to large embeddings size.

Among all tested models, LLaVA’s projected embeddings maintain the highest reconstruction fidelity. The
overall reconstruction loss reflects the overall difficulty of recovering information encoded in the visual
representations.

Model L2 1P Dataset MSE LLaVA Idefics2 Qwen2.5-VL
R@1 R@5 R@1 R@5 VizWi Avg 0.115 0.907 1.069

— S Std 0086  0.298 0.684

Pre-projection

LLaVA 8.34 21.82 9.46 24.78 SeedBench Ave 0106 0872 1.069

Idefics2 13.10 3081 13.38  30.98 Std 0071 0.307 0.610

Qwen-2.5-VL 4.23 11.74 6.83 24.23 Avg 0.113 0918 1.069

FoodieQA

Post-projection Std 0057  0.283 0.673

LLaVA 6.16 ] 1722 554 2049

Idefics2 10.87 ] 2528 10.99] 25.15] Table 9: Embedding reconstruction loss of images in

Qwen-2.5-VL 10.651 26.441 8267 26.707 the VizWiz, SeedBench, and FoodieQA datasets. We
report both average loss (avg) and standard deviation
Table 8: Zero-shot retrieval performance on CUB test ~ (std). LLaVA’s visual embeddings exhibit lowest recon-
set using L? distance and inner product for similarity ~ struction error among all models. The reconstruction
measure. R@Fk denotes Recall at rank k. Arrows indi- performance is consistent to what we have observed for
cate performance change direction after projection. the images in COCO and Flickr30k.

E Visualization

E.1 Patch-level Loss Visualization for Vizwiz Grounding VQA

In Figure 7, we visualize additional examples of high reconstruction loss patches that contributes to
model’s failure on answering questions that requires recognizing text in the objects.

E.2 Visualization of Neighborhood Reordering

In Figure 10, we present more k-NN examples on comparison of searching with pre-projection (top) v.s.
post-projection (bottom) embeddings.

E.3 Visualization of reconstruction loss and captioning performance

In Figure 11 we show visualization of captioning where details in the high-loss patches are missed or
inaccurate in the generated caption.

F Image Reconstruction with Different Embeddings

Beyond neighbor-overlapping and embedding reconstruction, we aim to investigate how information loss
manifests in the reconstructed images themselves. To explore this, we project different representations of
visual features onto the input embedding space of a powerful image decoder to assess their reconstruction
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Figure 7: Additional visualization of high reconstruction loss patches that contributes to model’s failure on answering
questions that requires recognizing text in the objects. Left: input images with answer-relevant regions in red masks.
Middle: signed difference between post-projection embeddings norms and pre-projection embedding norms. Right:
normalized norm differences overlay with the input image, with highest loss patches marked in yellow.

quality. However, image reconstruction performance depends on various factors, including the expressive-
ness of the image decoder. As such, this section serves as a preliminary exploration, and we encourage
future work in this direction.

For our experiments, we use a fine-tuned VAE decoder*, trained on the original VAE checkpoint from
Stable Diffusion, trying to alleviate the influence of the decoder as a limiting factor in reconstruction
quality. To align the sequence length between the vision encoder in the VLM and the expected input
length of the VAE decoder, we employ a 6-layer Transformer encoder-decoder module with 4 attention
heads. We train the aligner module on the COCO 2017 training set for 100 epochs with three objectives:
1) Embedding loss minimizing the difference between the VAE encoder embeddings and the aligned
embeddings from the VLM’s visual encoder; 2) Reconstruction loss measuring the mean squared error
(MSE) between the original and reconstructed images; 3) Latent loss quantifying the divergence between
the mean and variance of the Gaussian distribution for diffusion.

For the VLM, we use the LLaVA model in our experiments. We evaluate reconstruction performance on
both an in-distribution image from the COCO 2017 dev split and an out-of-distribution image, as shown in
Figure 12. When using embeddings before projection, the overall pixel-wise MSE reconstruction loss is
0.2128, compared to 0.2443 after projection. Figure 12 illustrates the reconstructed images for both cases,
where pre-projection embeddings yield similar contour preservation with post-projection embeddings.

*https://huggingface.co/stabilityai/sd-vae-ft-mse
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Query Image Neighbor 1 Neighbor 2 Neighbor 3

Neighbor 4 - Neighbor 5

Figure 8: Idefics high kNN overlap ratio example, where we can observe the reordering among semantically similar
vision embeddings.
Neighbor 4

Neighbor 5

Query Image Neighbor 1 Neighbor 2 Neighbor 3
e

Query Image Neighbor 1 Neighbor 3 Neighbor 5

Figure 9: Qwen kNN example where the post-projection embeddings are better at retrieving semantically similar
images (bottom).

Query Image Neighbor 3

Neighbor 1 Neighbor 2 Neighbor 4 Neighbor 5

Neighbor 3

Figure 10: LLaVA low ENN overlap ratio example. We can observe the degradation in post-projection embedding.
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Figure 11: Visualization of low CIDEr score captioning samples and the reconstruction loss overlay with the input
image. We can observe that details regarding the high loss patches are missing from the generated captions. High
loss patches are marked in yellow squares.
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(a) Original (b) Reconstruction with (c) Reconstruction with
Pre-projection Embeddings Post-projection Embeddings

Figure 12: Image reconstruction with LLaVA pre-and post-projection embeddings on out-of-distribution (top) and
in-distribution (bottom) examples.

17



