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Abstract

Vision–language models (VLMs) often process001
visual inputs through a pretrained vision en-002
coder, followed by a projection into the lan-003
guage model’s embedding space via a connec-004
tor component. While crucial for modality fu-005
sion, the potential information loss induced by006
this projection step and its direct impact on007
model capabilities remain understudied. We008
propose two novel approaches to quantify such009
visual information loss in the projection by an-010
alyzing the latent representation space. First,011
we evaluate semantic information preservation012
by analyzing changes in k-nearest neighbor re-013
lationships between image representations, be-014
fore and after projection. Second, we directly015
measure information loss by reconstructing vi-016
sual embeddings from the projected represen-017
tation, localizing loss at an image patch level.018
Our experiments reveal that connectors funda-019
mentally alter visual semantic relationships—020
k-nearest neighbors of the visual embeddings021
diverge by 40-60% post-projection, correlat-022
ing highly with degradation in retrieval perfor-023
mance. The patch-level embedding reconstruc-024
tion provides interpretable insights for model025
behavior on visual question-answering tasks,026
finding that areas of high information loss reli-027
ably predict instances where models struggle.028

1 Introduction029

Vision–language models (VLMs) have bolstered030

performance on many tasks, e.g., visual question031

answering and image captioning by combining pre-032

trained vision encoders with pre-trained language033

models. Many of these models employ small neural034

network modules, known as connectors, to bridge035

the gap between the visual and textual embedding036

spaces. The connectors project visual representa-037

tions into embedding sequences that language mod-038

els can process (Chen et al., 2024a; Liu et al., 2023;039

Deitke et al., 2024; Laurençon et al., 2024; Chen040

et al., 2024b; Zhang et al., 2025; Sun et al., 2024).041

Common connector architectures include multi- 042

layer perceptrons (MLPs) or transformer-based ap- 043

proaches such as the perceiver sampler (Jaegle 044

et al., 2021) in Idefics (Laurençon et al., 2024), 045

which converts image embedding sequences into 046

shorter, fixed-length latent representations. While 047

these connector modules enable efficient cross- 048

modal integration (Li and Tang, 2024), projecting 049

rich visual features into embeddings compatible 050

with language models typically involves dimen- 051

sional conversion and representation restructuring. 052

This raises fundamental questions about the nature 053

and extent of potential information loss during pro- 054

jection, and to what degree it negatively impacts 055

performance on downstream tasks. 056

As shown in Figure 1, high information loss 057

occurs among the image patches most relevant to 058

answering the question. Losing such critical vi- 059

sual details could impose inherent limitations on 060

the model’s reasoning capabilities, as the language 061

model’s performance is bounded by the quality 062

and completeness of the visual information it re- 063

ceives. Despite the growing research on VLM 064

connector architectures and their impact on down- 065

stream performance (Lin et al., 2024; Zhu et al., 066

2025), there has been limited systematic inves- 067

tigation into how they affect visual information 068

preservation in the latent space. Quantifying this 069

information loss presents substantial challenges, 070

traditional methods like canonical correlation anal- 071

ysis (Hotelling, 1936) struggle with variable-length, 072

high-dimensional visual features processed through 073

diverse connector architectures in vision-language 074

models. Performance degradation can also take 075

more than one form, adding to the complexity of 076

its study. For instance, it can take the form of di- 077

rect loss of fine-grained visual details due to an 078

inherently lossy connector, or a geometric collapse 079

where distinct concepts become less separated in 080

the projected embedding space. 081

To bridge this gap in the literature, we present 082
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(a) Input image with red answer mask
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(b) Embedding norm signed difference
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(c) Image overlay with norm difference

Figure 1: Visualization of patch-wise information loss in the embeddings explains the incorrect predicted answer in
VizWiz Grounding VQA. For the question “What is the fifth number?", LLaVA incorrectly predicted “18". Figure 1b
display the difference between the L2 norm of the original and the reconstructed patch embeddings. Blue regions
indicate where original embeddings have larger norms than predicted embeddings, while red regions show where
predicted embeddings have larger norms. The top 10 high-loss patches are marked by yellow squares. Figure 1c
shows high loss occurring in several answer-relevant patches contribute to the incorrect prediction.

an evaluation framework to quantify information083

loss in VLM connector modules from both the ge-084

ometric perspective and that of localized informa-085

tion loss. We first measure geometric information086

loss through careful examination of the structure087

of latent visual representations. By introducing088

k-nearest neighbors overlap ratio, we can mea-089

sure how much the neighborhoods of image embed-090

dings change before and after the projection in the091

latent representation space, thereby estimating how092

well geometric and semantic relationships are pre-093

served. Second, to measure localized information094

loss, we train a model to reconstruct the original095

visual embeddings from the projected embeddings.096

This patch-level visual embedding reconstruc-097

tion allows us to pinpoint the high-loss regions in098

the image—areas where visual features are hard to099

recover after projection (Figure 1). This two-step100

approach provides both quantitative metrics and101

interpretable visualizations, offering insights into102

the nature of information transformation during103

vision-text integration.104

2 VLMs and Connectors105

Integrating visual and textual inputs is fundamen-106

tal for VLMs to process multimodal information107

effectively. Existing VLMs typically employ two108

main approaches (Li and Tang, 2024): models like109

LLama3.2 (gra, 2024) and BLIP (Li et al., 2023)110

leverage cross-modal attention mechanisms, while111

others such as LLaVA (Liu et al., 2023) and Qwen-112

2-VL (Bai et al., 2025) adopt connectors to project113

visual representations into latent vectors compati-114

ble with large language models (LLMs).1 115

Lin et al. (2024) categorize connectors into two 116

types: feature-preserving and feature-compressing 117

connectors. Feature-preserving connectors pre- 118

serve the number of patch embeddings, such as 119

the two-layer MLP connector in LLaVA. In con- 120

trast, feature compressing connectors project image 121

patch embeddings to a shorter sequence, including 122

the perceiver sampler in Idefics2 (Laurençon et al., 123

2024) and the patch merger in Qwen-2-VL (Bai 124

et al., 2025). In this paper, we estimate information 125

loss in both types of connectors. 126

2.1 Formalizing Encoders and Connectors 127

We now define connector-based vision-language 128

models using dependent types. First, we consider 129

the textual input. Let Σ be an alphabet of symbols. 130

A string encoder, ϕ, is a function with a dependent 131

type, mapping a string σ to a sequence of real- 132

valued embedding vectors. Formally, 133

ϕ : ΣN → (RD)N , (1) 134

where N ∈ N is a parameter in the dependent type 135

that denotes the length of the input string, and D is 136

the dimensionality of the embedding vectors. This 137

represents a family of functions, one for each N , 138

mapping sequences of N symbols to sequences of 139

N vectors in RD. 140

We now turn to the visual input. Let ∆ be a set 141

of image patches. Each patch δ ∈ RH·W×C is a 142

3-dimensional array where H and W represent the 143

1In this paper, we do not consider VQ-VAE (van den Oord
et al., 2017) based VLMs, which are more often used for
text-to-image generation.
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height and width dimensions, and C is the number144

of color channels per pixel. A two-dimensional145

image of patch dimensions M1 ×M2 can thus be146

represented as an element of ∆M1×M2 . Where147

∆M1×M2 denotes the set of all possible M1 ×M2148

grids of patches. The vision encoder is formalized149

as a dependent type:150

ψ : ∆M1×M2 → (RD
′
)M1×M2 , (2)151

where M1 and M2 are parameters in the dependent152

type, representing the grid dimensions of the image153

patches, and D′ is the visual embedding dimension.154

This maps a grid of image patches to a grid of155

embedding vectors.156

A connector module transforms the vision en-157

coder’s output to match the dimensionality of the158

text encoder—projecting visual embeddings of di-159

mension D′ to text-compatible dimension D. We160

define the connector as a function of type:161

CONN : (RD
′
)M1×M2 → (RD)MC , (3)162

where we typically have MC ≤ M1M2. We also163

use C as shorthand for CONN.164

For combining the output of the string encoder165

and the vision encoder, we define a flattener that166

combines visual and textual embeddings into a uni-167

fied sequence:168

FLAT : (RD)MC × (RD)N → (RD)MC+N (4)169

This creates a sequence of length MC +N by con-170

catenating the flattened grid of visual embeddings171

with the sequence of text embeddings.172

The complete vision–language models we con-173

sider can then be expressed as the a composition of174

these functions:175

VLM(x, σ) = LM(FLAT(CONN(ψ(x)), ϕ(σ)))
(5)176

where x ∈ ∆M1×M2 is an input image, σ ∈ ΣN177

is an input text sequence, and LM is an auto-178

regressive language model that predicts probability179

of next tokens.180

We focus on quantifying the information loss at181

the connector module defined in Equation 3. For-182

mally, the information loss over the connector is183

a function µ : (ψ(x), CONN(ψ(x))) → R≥0. We184

explore how such measure correlate and explain185

model performance.186

(a) Before projection (b) After projection

Figure 2: The k-nearest neighbors overlap ratio mea-
sures the overlap of an image’s neighbors before and
after projection. In this example, with k = 3, the over-
lap ratio is 0.67 because two out of the three nearest
neighbors are identical in both representation spaces.

3 Quantifying Information Loss 187

We propose two methods for quantifying informa- 188

tion loss over the projection step described above. 189

The first method quantifies structural preservation 190

of semantic embeddings by measuring the over- 191

lap between each image representation’s k-Nearest 192

Neighbors (k-NN, Fix and Hodges (1951)) before 193

and after projection. Figure 2 gives an example 194

where the nearest neighbors overlap but differ in 195

ranking. The second method evaluates patch-level 196

representation (Figure 1) distortion by training an 197

ad hoc neural network to reconstruct the original 198

image embedding from its projected representation, 199

detailed in Section 3.2. 200

3.1 k-Nearest Neighbors Overlap Ratio 201

To quantify geometric information loss during pro- 202

jection in visual representation spaces, we propose 203

the k-nearest neighbors overlap ratio (KNOR), 204

a measure grounded in the preservation of the k- 205

NN relationship between embedded images before 206

and after projection through the connector. Let I 207

be a finite set of images, ψ a vision encoder, and 208

CONN (C for short) a connector as described in §2.1. 209

We use Iψ = {ψ(x)}x∈I to indicate the family of 210

embedded images, and IC = {CONN(ψ(x))}x∈I 211

for the projection of the embedded images. The 212

k-NN overlap ratio for an image x is defined as 213

R(x, k)
def
=

∣∣NIψ(ψ(x), k) ∩NIC(C(ψ(x)), k)
∣∣

k
(6) 214

Where NIψ(ψ(x), k) is the set of k-nearest neigh- 215

bors of ψ(x) among the pre-projected embeddings, 216

and NIC(C(ψ(x)), k) is the set of k-nearest neigh- 217

bors of C(ψ(x)) among the projected embeddings. 218
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The average overlap ratio is given by219

R(k)
def
=

1

|I|
∑
x∈I

R(x, k) (7)220

The average overlap ratio measures how well221

the local geometric structure is preserved after pro-222

jection. Lower overlap ratio corresponds to more223

geometric information loss due to projection, while224

higher overlap suggests faithful retention.225

3.2 Embedding Reconstruction226

While KNOR quantifies the loss of geometric rela-227

tionships between image embeddings, it cannot de-228

tect loss of patch-level visual features. To address229

this, we further quantify and localize patch-level230

information loss by attempting to reconstruct the231

original vision embeddings from their projected232

representations.233

Specifically, given a connector CONN defined in234

Equation 3 and set of images I ⊂ ∆M1×M2 , we235

train a reconstruction model fθ : (RD)MC →236

(RD′
)M1×M2 to minimize reconstruction loss. For237

each patch index (i, j) ∈M1 ×M2, we define the238

per-patch loss as239

Lpatch(x, i, j)
def
= ∥ψ(x)(i,j) − fθ(C(ψ(x)))(i,j)∥22

(8)240

which measures the squared Euclidean distance be-241

tween the original vision embedding and its recon-242

struction for each patch. The total reconstruction243

loss is therefore the sum of the patch-wise losses244

across all patches and images:245

Lrecon(I)
def
=

∑
x∈I

∑
(i,j)∈
M1×M2

Lpatch(x, i, j) (9)246

This patch-wise reconstruction enables us to247

identify and visualize the spatial distribution of248

information loss across the image.249

4 Experimental Setup250

We quantify information loss using both methods251

across three open-weights connector-based vision-252

language models on six datasets spanning ques-253

tion answering, captioning, and retrieval tasks.254

We assume that greater structural and semantic255

information loss during projection through the256

connector leads to reduced neighborhood overlap,257

while greater patch-wise information loss results in258

higher reconstruction error.259

4.1 Pretrained VLMs 260

We consider three VLMs including LLaVA (Liu 261

et al., 2023), Idefics2 (Laurençon et al., 2024), and 262

Qwen2.5-VL (Bai et al., 2025). LLaVA uses a two- 263

layer MLP as the connector, preserving total num- 264

ber of patches for each image. In contrast, Idefics2 265

uses an attention-based perceiver resampler (Jaegle 266

et al., 2021) that projects image embeddings to a 267

fixed-length sequence of embeddings. Qwen2.5- 268

VL uses a MLP-based patch merger which merges 269

every four neighboring patch representations into 270

one. We use the 7B-instruct model variants for 271

LLaVA and Qwen2.5-VL, and the Idefics2-8B- 272

instruct model. 273

4.2 Evaluation Datasets 274

We evaluate on six diverse datasets, each of which 275

probes different aspects of visual understanding. 276

SEED-Bench (Li et al., 2024) provides catego- 277

rized multiple-choice questions spanning cog- 278

nitive tasks from basic scene understanding to 279

complex visual reasoning. 280

VizWiz Grounding VQA (Chen et al., 2022) 281

includes real-world visual assistance scenarios 282

with grounding-based question answering. 283

VQAv2 (Antol et al., 2015) covers open-ended 284

questions that test general visual comprehension. 285

CUB-200-2011 (Wah et al., 2011) is a commonly 286

used dataset for fine-grained image retrieval that 287

covers 200 species of birds. 288

Flickr30k (Young et al., 2014) and COCO (Lin 289

et al., 2014) Karpathy test set (Karpathy and 290

Fei-Fei, 2017) are used for image captioning 291

evaluation. 292

Together, these datasets offer complementary per- 293

spectives on how different types of visual informa- 294

tion are preserved during projection and how infor- 295

mation loss impacts various downstream tasks. 296

4.3 Embedding Reconstruction Models 297

We build models to reconstruct image patch em- 298

beddings from connector outputs. These recon- 299

struction models are intentionally designed with 300

larger capacity than the original connectors, includ- 301

ing expanded hidden dimensions and additional 302

hidden layers. This controlled setup ensures our 303

models are trained to recover the original visual 304

representations without creating new bottlenecks 305

in the reconstruction process. 306

Architecture We tailor our reconstruction mod- 307

els to each VLM’s connector architecture. For 308
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Figure 3: Neighborhood overlap ratios across three datasets: SeedBench validation, a 10,000-sample subset of
VQAv2 validation, and Vizwiz grounding VQA validation. Analysis using 10, 50, and 100 nearest neighbors
shows overlap ratios below 0.62 for all models, suggesting connectors poorly preserve geometric relationships and
neighbor rankings for the visual representations.

Model M1M2 ×D′ MC ×D |CONN| |fθ|

LLaVA 576× 1024 576× 4096 21M 27M
Idefics2 576× 1152 64× 4096 743M 844M
Qwen2.5-VL 576× 1280 144× 3584 45M 843M

Table 1: Model parameters and embedding dimensions.
|CONN| denotes number of parameters in the connector
and |fθ| represents number of parameters of the recon-
struction model. Pre- and post-projection embedding
dimensions are listed as M1M2 ×D′ and MC ×D.

LLaVA, which preserves the number of image309

patches during projection, we use a simple three-310

layer MLP with a 2048-dimension hidden layer.311

For Idefics2 and Qwen2.5-VL, which compress312

sequence length from M1 × M2 to MC , we im-313

plement transformer-based models to handle the314

differences in sequence length. The reconstruction315

model projects connector outputs to hidden embed-316

dings with positional encodings before processing317

them through a 16-layer, 16-head transformer en-318

coder with 2048-dimensional vectors. Table 1 sum-319

marizes the parameters of the reconstruction mod-320

els and their input and output dimensions. Please321

see Appendix C for ablation analysis on the recon-322

struction model structure.323

Training We train each of the embedding recon-324

struction models on the COCO 2017 train set (Lin325

et al., 2014) for 30 epochs with early stopping. We326

apply a learning rate of 1e−4, dropout of 0.1, and a327

total batch size of 128. For training stability, we ap-328

ply normalization to both pre- and post-projection329

embeddings using mean and standard deviation of330

the dataset.331

5 Neighbor Rankings and Semantic 332

Information are Not Preserved 333

We calculate KNOR (Section 3.1) for images in the 334

SeedBench validation set, a subset of the VQAv2 335

validation set with 10, 000 images, and the vali- 336

dation set of Vizwiz grounding VQA dataset. It 337

is intuitive that higher neighborhood overlap ra- 338

tios suggest that the projection better preserves 339

the relationships between image embeddings. As 340

the neighborhood rankings directly impact image 341

retrieval tasks, we also evaluate retrieval perfor- 342

mance on the CUB dataset using both pre- and 343

post-connector visual embeddings. 344

5.1 Low Overlap Ratio for All Models 345

In Figure 3, we show the neighborhood overlap 346

ratio across k = 10, 50, and 100 nearest neigh- 347

bors, averaging through all unique images in the 348

evaluation datasets.2 We can observe that the neigh- 349

borhood overlap ratios are around 50% for all three 350

models, with LLaVA achieving 61.6% overlap as 351

the maximum when considering 100 nearest neigh- 352

bors. This suggests a significant reordering of near- 353

est neighbors post-projection across all models. 354

Specifically, LLaVA maintains higher structural 355

preservation compared to Qwen2.5-VL and Idefics- 356

2, whereas Qwen2.5-VL lost almost 90% of the 357

neighborhood ranking information. However, even 358

LLaVA shows notable neighbor reshuffling, espe- 359

cially at smaller neighborhood sizes (k=10). 360

2Visual embeddings pre- and post-connector projection
have a 1-1 mapping to the input image, and these visual em-
beddings are not impacted by the language model prompts.
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Before Projection
Query
Image

After Projection

(a) Five nearest neighbors of LLaVA image embeddings

Before Projection
Query
Image

After Projection

(b) Five nearest neighbors of Idefics2 image embeddings

Query
Image

After Projection

Before Projection

(c) Five nearest neighbors of Qwen2.5-VL image embeddings

Figure 4: Comparison of five nearest neighbors searched
with pre-projection (top) and post-projection (bottom)
embeddings using different models. The first image in
each row is the query image, followed by its nearest
neighbors. For Qwen2.5-VL, despite a low neighbor-
hood overlap ratio, post-projection embeddings retrieve
more semantically similar images.

In Figure 4, we visualize the nearest neighbors361

of a given query image, revealing significant neigh-362

bor reordering across all models. However, for363

Qwen2.5-VL, the neighbors obtained with post-364

projection embeddings are more semantically sim-365

ilar to the query image. We suspect that this phe-366

nomenon could stem from its continuous training367

of the image encoder in the pretraining stage and368

the patch merging, which yields more semantically369

meaningful post-projection embeddings. Other370

VLMs such as LLaVA use a frozen vision encoder,371

where the connector is updated to inherit features372

from the pretrained encoder. However, in Qwen2.5-373

VL, continued pretraining with an unfrozen vision374

encoder produces fundamentally different learned375

visual embeddings. This indicates that the pre-376

and post-projection visual representations are not377

equivalent, but may not necessarily lead to worse378

semantic representations of the image.379

Model Emb Recall Correlation

R@1 R@5 R@1 R@5

LLaVA
Pre 8.34 21.82 0.05 0.08
Post 6.16 17.22 0.11 0.11

Idefics2
Pre 13.10 30.81 0.19 0.23
Post 10.87 25.28 0.22 0.28

Qwen-2.5-VL
Pre 4.23 11.74 0.10 0.13
Post 10.65 26.44 0.16 0.21

Table 2: Zero-shot retrieval performance on CUB test
set using L2 for similarity measure. R@k denotes Re-
call at rank k. We calculate the Spearman correlation
scores with R@k and the average overlap ratio consid-
ering 100 nearest neighbors. p values are smaller than
1e−5 for all correlation scores.

5.2 Image Retrieval Evaluation 380

To verify if structural information loss correlates 381

with a degradation in the semantic representation 382

of images, we evaluate on the CUB-200-2011 im- 383

age retrieval test set (Wah et al., 2011). We per- 384

form zero-shot image retrieval with pre- and post- 385

connector embeddings for each query image, ex- 386

cluding the query image itself from the gallery. The 387

pre-and post-projection embeddings are indexed 388

with FAISS (Douze et al., 2024), and we experi- 389

ment with retrieving similar images based on both 390

the L2 distance and the inner product similarity (Ta- 391

ble 8 in Appendix) of the image representations. 392

We report the recall scores at rank 1 (R@1) and 393

rank 5 (R@5) in Table 2. Consistent with our ob- 394

servations from the neighborhood overlap visual- 395

ization (Figure 4), we observe semantic degrada- 396

tion of 41.4% and 18.8% of R@5 for LLaVA and 397

Idefics model, respectively. In contrast, for the 398

Qwen2.5-VL model, the improved image retrieval 399

performance with post-projection embeddings sug- 400

gests that the low overlap ratio stems from the sub- 401

stantial differences between the two sets of visual 402

embeddings, with the post-projection embeddings 403

capturing more semantic features. We also observe 404

positive correlation between the k-NN overlap ratio 405

and the retrieval R@1 and R@5 scores for all mod- 406

els. The correlation is more significant especially 407

when using post-projection embeddings. This sug- 408

gests that our proposed k-NN measure correlates 409

with performance on tasks requiring fine-grained 410

visual discrimination. 411
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Model COCO Flickr30k

Reconstruction loss (avg / std)
LLaVA 0.087 / 0.016 0.097 / 0.019
Idefics2 0.796 / 0.082 0.854 / 0.074
Qwen-2.5-VL 1.069 / 0.117 1.069 / 0.115

Overall CIDEr Scores
LLaVA 81.28 56.79
Idefics2 53.64 39.22
Qwen-2.5-VL 13.04 12.85

Table 3: Reconstruction loss on COCO and Flickr30k
test sets. Top: reconstruction loss averaged over all sam-
ples, where LLaVA achieves lowest reconstruction er-
ror. Bottom: CIDEr scores of zero-shot captioning.3For
both datasets, we observe better overall captioning per-
formance with lower average reconstruction loss.

6 Reconstruction and Model Behavior412

Beyond KNOR reflecting semantic and geomet-413

ric losses, we examine patch-level information414

loss by reconstructing visual representations ψ(x)415

from their projections CONN(ψ(x)) (Equation 8).416

Higher reconstruction loss indicates greater infor-417

mation loss. This patch-level loss measure enables418

precise localization of visual feature degradation.419

6.1 Reconstruction Loss Impacts Captioning420

Our embedding reconstruction evaluation follows421

two steps: 1) we train a reconstruction model for422

each VLM using paired pre- and post-projection423

embeddings from images in the COCO 2017 train424

set (as described in Section 4.3); 2) we apply these425

reconstruction models to predict the original image426

representations from their projected counterparts.427

For image captioning, we measure the recon-428

struction loss for images in the Flickr30k validation429

set and COCO Karpathy test split. We use CIDEr430

score (Vedantam et al., 2015) to evaluate the qual-431

ity of the generated captions. Table 3 summarizes432

the overall average reconstruction loss of the three433

models on the captioning test datasets. For both434

datasets, we observe lower average reconstruction435

loss yields better captioning performance. We also436

investigate how reconstruction loss impacts cap-437

tioning for each individual image by calculating438

the correlation between per-sample CIDEr score439

and reconstruction loss per-image. In Table 4, the440

spearman correlation indicates higher reconstruc-441

tion loss for a given image corresponds to worse442

3We notice Qwen-2.5-VL is particularly sensitive to the
task prompt; here we use the prompt suggested in the original
paper (Bai et al., 2025).

Model COCO Flickr30k

CIDEr Scores for High Loss / Low Loss samples
LLaVA 73.98 / 86.96 51.79 / 61.74
Idefics2 40.84 / 66.13 29.24 / 53.22
Qwen-2.5-VL 12.45 / 13.56 13.15 / 12.35

Spearman Correlation (ρ / p)
LLaVA −0.077 / 0.000 −0.096 / 0.000
Idefics2 −0.214 / 0.000 −0.226 / 0.000
Qwen-2.5-VL 0.001 / 0.975 0.027 / 0.403

Table 4: Top: The comparison of CIDEr scores for
top 25% highest and 25% lowest reconstruction loss
samples, reported as "High Loss / Low Loss" Bottom:
Spearman correlations (ρ) of per-sample reconstruction
loss and captioning CIDEr scores.

captioning for Idefics and LLaVA, indicating by 443

the negative correlation with p values smaller than 444

1e−5. Please see more visualization in Figure 11. 445

For Qwen-VL, we did not observe obvious correla- 446

tion for individual images. The large gap of CIDEr 447

scores between the highest and lowest reconstruc- 448

tion loss samples for LLaVA and Idefics2 suggests 449

substantial impact on downstream tasks. 450

6.2 Loss at Patch-level Visual Features 451

Explains Question Answering Behaviors 452

To further distinguish whether the reconstruction 453

loss stems from selective feature preservation or ac- 454

tual information loss, we visualize the patch-level 455

loss for images in the VizWiz grounding VQA val- 456

idation dataset. This dataset is particularly suit- 457

able for our analysis as it provides answer ground- 458

ing—binary masks indicating image regions rele- 459

vant to each question. By examining the relation- 460

ship between the reconstruction loss for the answer- 461

relevant image patches and question-answering ac- 462

curacy, we can assess whether the projection pre- 463

serves task-relevant visual information. 464

We report the Spearman correlation between the 465

reconstruction loss and the question answering ac- 466

curacy in Figure 5. For LLaVA, we observe a 467

negative correlation between prediction accuracy 468

and reconstruction loss in answer-relevant patches, 469

while a positive correlation is found in irrelevant 470

patches. This indicates that information loss in 471

answer-relevant patches negatively impacts model 472

performance, whereas loss in irrelevant patches has 473

a less significant effect. For Idefics2, we can see 474

that information loss in any patches would hurt 475

question answering accuracy. We do not observe 476

significant correlation for Qwen-2.5-VL, which is 477
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Figure 5: Correlation between reconstruction loss and question-answering accuracy on the VizWiz grounding
VQA task. For LLaVA and Idefics2, all correlations have a p-value < 5e−5, indicating statistically significant
relationships, whereas no clear correlation is observed for Qwen2.5-VL. The reconstruction loss occurs in both
answer-relevant and irrelevant patches. Loss in relevant patches negatively affects performance of LLaVA and
Idefics2. “Norm” represents differences between the L2 norm of the embeddings.

consistent with our findings in the captioning tasks.478

As shown in Figure 1, identifying distorted fea-479

tures allows us to pinpoint visual information that480

becomes inaccessible or less reliable for the lan-481

guage model. For instance, reconstruction loss in482

the patches of the fifth number "8" rank among483

the top ten of all image patches, suggesting that484

the model may have struggled to answer the ques-485

tion due to lost details necessary for identifying486

the number. This analysis introduces a new visu-487

alization approach to examine VLM limitations,488

particularly in scenarios requiring reasoning or rec-489

ognizing fine-grained viusal features. Please see490

more visualization examples in Appendix E.491

7 Related Work492

A series of analyses has been conducted to inves-493

tigate the modality gap and representation limita-494

tions of contrastive-based VLMs (Schrodi et al.,495

2024; Liang et al., 2022; Tong et al., 2024). These496

studies reveal that the representational shortcom-497

ings in CLIP embeddings subsequently impact the498

visual perception capabilities of VLMs relying on499

such vision encoders. For connector-based VLMs,500

Zhang et al. (2024) demonstrates that the latent501

space sufficiently retains the information necessary502

for classification through probing across different503

layers, and Lin et al. (2024) demonstrates the im-504

pact of different connectors on VLMs’ downstream505

performance. However, there remains a significant506

gap in understanding whether fine-grained visual507

information, crucial for tasks such as visual ground-508

ing (Krishna et al.) and question answering (Chen509

et al., 2022), is lost in the process. In this paper, we510

focus on the connector-based models to understand511

the information transformation. To the best of our 512

knowledge, our paper is the first to directly quan- 513

tify information loss of the connectors from the 514

representation perspective, offering deeper insights 515

into where and what specific information is lost 516

from the visual features. 517

8 Conclusion and Future Work 518

Our study systematically evaluates information loss 519

during visual-to-language projection in VLM con- 520

nectors through two key metrics: neighborhood 521

overlap ratios and embedding reconstruction. Our 522

quantitative framework captures two critical as- 523

pects of the information loss 1) significant struc- 524

tural shifts in global semantic relationships shown 525

by 40-60% divergence in nearest-neighbor rank- 526

ings, and 2) patch-level reconstruction loss that cor- 527

relates with degraded performance in captioning 528

and fine-grained visual QA tasks. Our patch-level 529

reconstruction also enables visualization of local in- 530

formation loss, offering interpretable explanations 531

for model behaviors. 532

Our findings suggest two key properties of an 533

effective connector: 1) preserving or improving se- 534

mantic representation of images, and 2) preserving 535

visual information most relevant to the text context. 536

These findings could guide further improvements in 537

VLM connectors. For example, the reconstruction 538

loss at the embedding level could potentially be 539

incorporated during model pretraining as regular- 540

ization. Future work could also explore designing 541

dynamic projection layers or better visual feature 542

selection mechanisms for modality fusion. 543
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Ethics Statement544

We foresee no ethical concerns with our research545

project. In particular, ours is merely a scientific546

study of VLMs and provides no artifacts that can547

be used in a real-world scenario.548

Limitations549

In this study, we evaluate the information loss intro-550

duced by connectors in VLMs. However, several551

limitations should be noted. First, due to variations552

in model architectures and pretraining strategies,553

our findings may be specific to the connector-based554

VLMs analyzed and may not generalize to archi-555

tectures that employ cross-attention for modality556

fusion. Second, our experiments focus on connec-557

tors in VLMs within the 7B–8B parameter range.558

Expanding the analysis to models of different sizes559

could provide deeper insights into the relation-560

ship between model scale and information loss.561

Third, our pixel-level reconstruction experiments562

(Appendix F) yielded inconclusive results in quan-563

tifying information loss, possibly due to limitations564

in our chosen image generation model and training565

dataset size. Additionally, while we empirically566

validate our k-NN overlap ratio and embedding567

reconstruction metrics, a formal theoretical char-568

acterization would further strengthen their reliabil-569

ity. Finally, our reconstruction experiments cannot570

conclusively determine whether the observed infor-571

mation loss stems from the connector layer itself572

or from potential learning limitations of the trained573

reconstruction network.574
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A Connectors in Autoregressive Vision-Language Models 744

Idefics2 Idefics2 leverages a perceiver resampler (Jaegle et al., 2021) as the connector. The perceiver 745

resampler forms an attention bottleneck that encourages the latent representations to attend to the most 746

relevant inputs in a high-dimensional input array through iterative cross-attention layers. In other words, 747

the cross-attention module projects the high-dimensional inputs into a fixed-dimensional learned represen- 748

tation. Please refer to Laurençon et al. (2024) for more details. 749

LLaVA LLaVA (Liu et al., 2023) uses a two layer MLP to project the image embeddings to the language 750

model’s embeddings space. The MLP projector preserves the image feature length – number of patches 751

extracted by the image encoder. 752

Qwen2.5-VL Qwen2.5-VL (Bai et al., 2025) uses a patch merger (two-layer MLP) to reduces the length 753

of the input image features. The image representations of the neighboring four patches in the image are 754

first merged, and then passed through a two-layer MLP to project the image representation to the LM 755

embedding dimension. 756

B Procrustes analysis 757

We also attempt to find the optimal geometrical transformation from the post-projection embedding space 758

to the pre-projection one through Procrustes analysis (Gower, 1975) – a method often used for supervised 759

alignment of embeddings (Artetxe et al., 2018). The alignment error reflects the degree of structural 760

similarity of the two embedding spaces. 761

We use mean-pooled image embeddings from LLaVA, Idefics2, and Qwen2.5-VL. As the pre- and post- 762

projection embeddings have different embedding dimensions and sequence lengths, our analysis follows 763

three steps to complete the embedding alignment. We first take the mean-pooled image representation 764

by averaging over the sequence length, producing fixed-size vectors of size D′ and D. We then use 765

PCA (Hotelling, 1933) on the mean-pooled post-projection embeddings to project them to the same 766

dimension of the mean-pooled pre-projection embeddings. 767

Orthogonal transformation matrix R was derived through singular value decomposition of the cross- 768

covariance matrix X̄⊤T̄ , where X̄ ∈ RD′
represents mean-pooled pre-projection embeddings and 769

T̄ ∈ RD′
the PCA-transformed post-projection embeddings. Then the orthogonal transformation matrix 770

is learned to best align these two sets of embeddings by minimizing the Euclidean distance. The 771

reconstruction error are reported in Table 5. Figure 6 visualizes the alignment of LLaVA embeddings 772

through procrustes analysis. 773

Model Mean Std Min Max

LLaVA 16.62 3.16 8.76 23.65
Idefics2 4.93 0.08 4.78 5.70
Qwen2.5-VL 4.41 0.09 4.24 5.05

Table 5: Procrustes analysis results. We report the alignment error on SeedBench image representations before and
after connector projection.

Our analysis reveals fundamental limitations in linear alignment of the image embeddings. The 774

high alignment errors of 16.62 for LLaVA and 4.41 for Qwen2.5-VL indicate the inherent difficulty of 775

preserving geometric relationships through rigid transformations. While serving as a critical baseline 776

for structural fidelity assessment, this constrained linear approach explains why our proposed non-linear 777

embedding reconstruction approach achieves significantly lower errors. 778

In Figure 6, we visualize the alignment for LLaVA pre- and post-projection embeddings, as well as the 779

embeddings learned through the linear transformation learned. From the visualization we can observe that 780

the linear transformation is not able to align the pre- and post-projection embeddings well. 781
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Figure 6: Alignment visualization for LLaVA pre- and post-projection embeddings through PCA.

Model Size VizWiz SeedBench FoodieQA

MLP 27M
Avg 0.050 0.056 0.051
Std 0.013 0.011 0.007

MLP 39M
Avg 0.064 0.070 0.065
Std 0.015 0.013 0.0075

Transformer 40M
Avg 0.237 0.231 0.228
Std 0.019 0.025 0.014

Table 6: Reconstruction loss with different architectures across VizWiz, SeedBench, and FoodieQA datasets.
Reported values include average loss (Avg) and standard deviation (Std).

C Ablation Studies782

C.1 Ablation on Reconstruction Model Size and Structure783

We train three reconstruction models of different sizes for LLaVA: a 27M three-layer MLP, a 39M784

five-layer MLP, and a 40M Transformer. In Table 6, we observe that the 27M model is sufficient for785

reconstructing LLaVA visual embeddings, and a larger model does not yield better validation loss.786

C.2 Ablation on Index Method for k-NN Overlap Ratio787

We evaluated k-NN overlap ratio using three different embedding types as search indices: original embed-788

dings, mean-pooled image embeddings, and normalized embeddings (Table 7). Since the performance789

differences were minimal, we selected mean-pooled embeddings for both pre- and post-projection image790

representations in calculating k-NN overlap ratios.791

D Additional Evaluation Results792

D.1 CUB image retrieval performance793

In Table 8, we show the complete image retrieval performance on CUB test set using L2 and inner product794

for similarity measure. The performance are consistent regardless of the index method used.795

D.2 Reconstruction loss on VQA datasets796

For visual question answering tasks, we measure the reconstruction loss for images in the validation set797

of VizWiz grounding VQA, Seed-Bench, and FoodieQA. Table 9 presents overall reconstruction loss.798
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Overlap Ratio
Index Type

IndexFlatL2 IndexFlatL2
(mean pooling)

IndexFlatIP
(normalized vectors)

mean std mean std mean std

top100 0.466 0.122 0.563 0.107 0.504 0.129
top50 0.488 0.128 0.556 0.120 0.425 0.142
top10 0.490 0.149 0.551 0.160 0.377 0.161

Vector Size
Before projection 576×1024 1×1024 576×1024
After projection 576×4096 1×4096 576×4096

Table 7: Ablation on KNN results when using original embeddings, mean pooled image embeddings, and normalized
embeddings. We chose to use the mean-pooled embeddings for efficiency due to large embeddings size.

Among all tested models, LLaVA’s projected embeddings maintain the highest reconstruction fidelity. The 799

overall reconstruction loss reflects the overall difficulty of recovering information encoded in the visual 800

representations. 801

Model L2 IP

R@1 R@5 R@1 R@5

Pre-projection
LLaVA 8.34 21.82 9.46 24.78
Idefics2 13.10 30.81 13.38 30.98
Qwen-2.5-VL 4.23 11.74 6.83 24.23

Post-projection
LLaVA 6.16 ↓ 17.22 ↓ 5.54 ↓ 20.49 ↓
Idefics2 10.87 ↓ 25.28 ↓ 10.99 ↓ 25.15 ↓
Qwen-2.5-VL 10.65 ↑ 26.44 ↑ 8.26 ↑ 26.70 ↑

Table 8: Zero-shot retrieval performance on CUB test
set using L2 distance and inner product for similarity
measure. R@k denotes Recall at rank k. Arrows indi-
cate performance change direction after projection.

Dataset MSE LLaVA Idefics2 Qwen2.5-VL

VizWiz
Avg 0.115 0.907 1.069
Std 0.086 0.298 0.684

SeedBench
Avg 0.106 0.872 1.069
Std 0.071 0.307 0.610

FoodieQA
Avg 0.113 0.918 1.069
Std 0.057 0.283 0.673

Table 9: Embedding reconstruction loss of images in
the VizWiz, SeedBench, and FoodieQA datasets. We
report both average loss (avg) and standard deviation
(std). LLaVA’s visual embeddings exhibit lowest recon-
struction error among all models. The reconstruction
performance is consistent to what we have observed for
the images in COCO and Flickr30k.

E Visualization 802

E.1 Patch-level Loss Visualization for Vizwiz Grounding VQA 803

In Figure 7, we visualize additional examples of high reconstruction loss patches that contributes to 804

model’s failure on answering questions that requires recognizing text in the objects. 805

E.2 Visualization of Neighborhood Reordering 806

In Figure 10, we present more k-NN examples on comparison of searching with pre-projection (top) v.s. 807

post-projection (bottom) embeddings. 808

E.3 Visualization of reconstruction loss and captioning performance 809

In Figure 11 we show visualization of captioning where details in the high-loss patches are missed or 810

inaccurate in the generated caption. 811

F Image Reconstruction with Different Embeddings 812

Beyond neighbor-overlapping and embedding reconstruction, we aim to investigate how information loss 813

manifests in the reconstructed images themselves. To explore this, we project different representations of 814

visual features onto the input embedding space of a powerful image decoder to assess their reconstruction 815
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Figure 7: Additional visualization of high reconstruction loss patches that contributes to model’s failure on answering
questions that requires recognizing text in the objects. Left: input images with answer-relevant regions in red masks.
Middle: signed difference between post-projection embeddings norms and pre-projection embedding norms. Right:
normalized norm differences overlay with the input image, with highest loss patches marked in yellow.

quality. However, image reconstruction performance depends on various factors, including the expressive-816

ness of the image decoder. As such, this section serves as a preliminary exploration, and we encourage817

future work in this direction.818

For our experiments, we use a fine-tuned VAE decoder4, trained on the original VAE checkpoint from819

Stable Diffusion, trying to alleviate the influence of the decoder as a limiting factor in reconstruction820

quality. To align the sequence length between the vision encoder in the VLM and the expected input821

length of the VAE decoder, we employ a 6-layer Transformer encoder-decoder module with 4 attention822

heads. We train the aligner module on the COCO 2017 training set for 100 epochs with three objectives:823

1) Embedding loss minimizing the difference between the VAE encoder embeddings and the aligned824

embeddings from the VLM’s visual encoder; 2) Reconstruction loss measuring the mean squared error825

(MSE) between the original and reconstructed images; 3) Latent loss quantifying the divergence between826

the mean and variance of the Gaussian distribution for diffusion.827

For the VLM, we use the LLaVA model in our experiments. We evaluate reconstruction performance on828

both an in-distribution image from the COCO 2017 dev split and an out-of-distribution image, as shown in829

Figure 12. When using embeddings before projection, the overall pixel-wise MSE reconstruction loss is830

0.2128, compared to 0.2443 after projection. Figure 12 illustrates the reconstructed images for both cases,831

where pre-projection embeddings yield similar contour preservation with post-projection embeddings.832

4https://huggingface.co/stabilityai/sd-vae-ft-mse
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Query Image Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Query Image Neighbor 1
Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 8: Idefics high kNN overlap ratio example, where we can observe the reordering among semantically similar
vision embeddings.

Query Image Neighbor 1 Neighbor 2 Neighbor 3

Neighbor 4

Neighbor 5

Query Image
Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 9: Qwen kNN example where the post-projection embeddings are better at retrieving semantically similar
images (bottom).

Query Image
Neighbor 1 Neighbor 2

Neighbor 3
Neighbor 4 Neighbor 5

Query Image
Neighbor 1

Neighbor 2 Neighbor 3
Neighbor 4

Neighbor 5

Figure 10: LLaVA low kNN overlap ratio example. We can observe the degradation in post-projection embedding.
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Reference Captions
• People in navy uniforms and one person talking 

on a walkie- talkie. 
• Group of sailors in command center with one 

talking on walkie talkie. 

Generated Caption
• A group of men in uniforms are sitting at a table.

Reference Captions
• A book about understanding and maintaining a 

ten-speed bicycle. 
• A sign explaining the components of a 10 

speed bike. 

Generated Caption
• A man and a woman are working on a bicycle.

Reference Captions
• Various angle shots of the Nokia Windows cell phone. 
• A pink smartphone with Windows 8 on the screen.

Generated Caption
• A pink cell phone is displayed next to a red screen. 

Reference Captions
• The Halloween display includes a spiderweb and lots 

of pumpkins. 
• Multiple pumpkins and a skeleton on the wall.

Generated Caption
• A spooky Halloween display features a witch figure and 

a bunch of pumpkins.

Figure 11: Visualization of low CIDEr score captioning samples and the reconstruction loss overlay with the input
image. We can observe that details regarding the high loss patches are missing from the generated captions. High
loss patches are marked in yellow squares.
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    (b) Reconstruction with 
Pre-projection Embeddings

(a) Original (c) Reconstruction with 
Post-projection Embeddings

Figure 12: Image reconstruction with LLaVA pre-and post-projection embeddings on out-of-distribution (top) and
in-distribution (bottom) examples.
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