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Abstract

In modern deep neural networks, the learning dynamics of the individual neurons
is often obscure, as the networks are trained via global optimization. Conversely,
biological systems build on self-organized, local learning, achieving robustness
and efficiency with limited global information. We here show how to enhance
the interpretability of the individual artificial neurons’ function by developing a
local learning framework similar to that of biological neurons. The local objective
function is parameterized using a recent extension of information theory – Partial
Information Decomposition (PID) – which decomposes the information that a set of
information sources holds about an outcome into unique, redundant and synergistic
contributions. Our framework enables neurons to locally shape the integration of
information from various input classes by selecting which of the inputs should
contribute uniquely, redundantly or synergistically to the output. This selection is
expressed as a learning goal for an individual neuron, which can be directly derived
from intuitive reasoning or via numerical optimization, offering a window into
task-relevant local information processing. Achieving performance on par with
backpropagation while preserving neuron-level interpretability, our work advances
a principled information-theoretic foundation for local learning strategies.

1 Introduction

Most artificial neural networks (ANNs) optimize a single global objective function through algorithms
like backpropagation, orchestrating parameters across all computational elements of the network
as a unified computational structure. While this global objective approach has proven effective
across a large variety of tasks, the role of the individual neuron often remains elusive, hindering
the understanding of how local computation contributes to global task performance. In contrast,
biological neural networks exhibit a markedly different approach to learning, relying strongly on
self-organization between neurons and locally available information only [1]. Interestingly, these
limitations come with the advantage that their computation can also be interpreted locally, at least in
principle. Combining this local interpretability with the observation that biological neural networks
achieve high levels of efficiency and robustness even in the absence of a centrally coordinated
objective raises the question: Could ANNs benefit from similar local learning mechanisms to enhance
the local interpretability of their computations, while maintaining performance?
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Neuroscience models have indeed shown that local learning rules [2–4] can solve a variety of tasks,
such as sequence learning, unsupervised clustering, and classification tasks [2, 5, 6]. They are
formulated on the basis of temporal coincidence (spike-timing) and thus do not offer direct insights
into the actual information processing at each neuron. To facilitate such functional insight, more
recently information theory has been used to formulate more abstract, but interpretable frameworks
for local learning rules (e.g., [7, 8]). Information theory [9] allows one to abstractly prescribe how
much of the information from different inputs should be conveyed to the output of a neuron [7].
Moreover, it provides a general and flexible mathematical framework, which captures the information
processing at an abstract and interpretable level free of details of the exact implementation. As
such, information theory has been employed to define general optimization goals, including global
objectives like cross-entropy loss [10] and more localized ones such as local greedy infomax [11],
and early attempts at passing only information that is coherent between multiple inputs [12].

Nevertheless, classical information theory falls short of describing how multiple sources work
together to produce an output. In particular, it lacks the capacity to describe how the information
from different sources is integrated in redundant, synergistic or unique ways in the output. These
different ways, or information atoms, however, contribute very differently to a neuron’s function:
Redundant information represents coherent information from multiple sources, unique information
reflects what a single source adds, and synergy arises from considering sources together. This
complexity can be quantified by using the recent framework of Partial Information Decomposition
(PID) [13–15]. Through the decomposition of the total information into information atoms, one can
paint a comprehensive, yet interpretable picture of how the different input variables contribute to the
local computation of an individual neuron. PID has already been utilized to analyze the information
representation and flows in DNNs [16, 17]. We turn around that approach, and employ PID to
directly formulate goal functions on the individual neuron level. These “infomorphic neurons” then
have the ability to optimize for encoding specific parts of the information they receive from their
inputs, allowing for an application to tasks from supervised, unsupervised and memory learning, as
demonstrated explicitly in [18].

The main contributions of this work are as follows: (1) We use information theory and PID to
formulate interpretable, per-neuron goal functions for neurons with three input classes (“trivariate”),
overcoming the limitations of previous approaches with only two classes (“bivariate”), (2) We
systematically optimize the goal function parameters for these “infomorphic” neurons, provide an
intuitive interpretation, and thereby we provide insights into the local computational goals of typical
classification tasks, and (3) For classification tasks we show that PID-based local learning can achieve
performance comparable to backpropagation, while being interpretable on a per-neuron basis.

2 Infomorphic neurons

Neurons can be viewed as information processors that receive a number of input signals and process
them to produce their own output signal. The output Y of a neuron can be considered a random
variable, and the total output information can be quantified using the Shannon entropy H(Y ). This
output information consists of two parts: the mutual information I(Y : X) coming from the inputs
X and the residual entropy H(Y |X) arising from stochastic processes within the neuron.

Mutual information can be used to quantify the amount of information that is carried by different
input classes about the neuron’s output. Inspired by the dendritic compartments of pyramidal neurons,
we consider the aggregated feedforward (F ), contextual (C) and lateral inputs (L) as sources X
individually (see Fig. 1). Using PID, the total mutual information I(Y : F,C, L) between the
output of the neuron Y and the three aggregated inputs F , C and L is dissected into 18 PID atoms
with intuitive interpretations (see Fig. 1.C and Table 2): For instance, the unique information of the
feedforward connection about the output Y , Π{F}, is the information which can only be obtained
from the feedforward, but neither from the contextual or lateral inputs, with the terms Π{C} and
Π{L} being defined analogously. The redundant information Π{F}{C}{L} is the information which
can be equivalently obtained from either feedforward, contextual or lateral inputs about Y , while
the synergistic information Π{F,C,L} can only be obtained from all three inputs considered jointly.
In general, the atoms Πα describe redundancies between synergies and can be addressed by their
antichains α, which are sets of sets of variables, with the inner sets describing synergies and the outer
set redundancies between them [13].
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However, these atoms remain underdetermined since there are 18 unknown atoms and only seven
classical mutual information terms I(Y : X) with X ⊆ {F,C, L} providing constraints through
the so-called consistency equations [13]. For this reason, an additional quantity needs to be defined,
which is usually a measure for redundancy [13, 15]. Such a definition for redundancy, based on the
concept of shared exclusions in probability space, is given by the shared-exclusion PID, Isx∩ [15] (see
Appendix A.1).

Depending on the task the network is set to solve, different PID atoms become relevant to the
information processing. We focus here on the application to supervised learning tasks, in which the
ground-truth label is provided as the context C during training. The intuitive goal for the neuron is
to maximize the redundant information between F and C which is unique with respect to L, given
by the atom Π{F}{C}, to capture only the feedforward signal that agrees with the label and to avoid
encoding the same information in multiple neurons.

Quantitatively, such general PID goals can be formulated as an objective function comprising a
linear combination of PID atoms as G =

∑
α γαΠα + γresHres = γTΠ, where the residual entropy

Hres = H(Y |F,C, L) is included in the vector Π for brevity of notation. Due to the differentiability
of the Isx∩ redundancy measure, G can be optimized by adjusting the weights of F , C and L using
gradient ascent.

In a concrete implementation, an infomorphic neuron first aggregates its input into the three input
signals F , C and L as weighted sums, which are then passed into an activation function to stochasti-
cally produce a firing signal. In the learning step, the aggregation weights are updated to improve the
PID goal function. For more detail on the concrete implementation including pseudocode, refer to
Appendix A.4.

3 Experiments and Results

Experiments We demonstrate how an infomorphic network with one hidden layer can be set
up using either intuitive or optimized goal function parameters to solve the MNIST supervised
handwritten image classification task [19]. We devised a network architecture consisting of an input
layer, a hidden layer made up from Nhid trivariate infomorphic neurons and an output layer consisting
of 10 bivariate infomorphic neurons. We explored three slightly different approaches to how the
hidden layer can be set up using trivariate infomorphic neurons (see Appendix A.3), illustrated in
Fig. 2.A. Each neuron has an activation function, which in principle can be chosen arbitrarily (For
more details, see Appendix A.4), that takes the weighted aggregation of the inputs F , C and L to
produce a value used as a probability to stochastically output “1” (firing) or “-1” (non-firing). The
parameters γ for a PID goal function can be obtained in two distinct ways: Firstly, they can be
derived from intuitive notions about the nature of the computations necessary to solve the problem, as
explained before. Secondly, they can also be optimized using a suitable hyperparameter optimization
procedure (see Appendix A.5). The learning of the goal function is explained in Appendix A.6.

Performance The performance of all major setups over hidden layer size is shown in Fig. 2.B. The
three trivariate infomorphic setups use the same set of optimized goal parameters (see Appendix A.10)
for all hidden layer sizes and significantly outperform the random baseline as well as the networks
with a bivariate setup for the hidden layer (see appendix Fig. 8). Setup 1 matches the performance
of backpropagation for up to 100 neurons, and reaches its maximum test accuracy for 500 neurons
before its performance starts decreasing with larger layer sizes. This decrease in accuracy can be
attributed to a lack of convergence of the neurons (appendix Fig. 4), likely arising through the
interaction of too many neurons. To alleviate the convergence problem, we performed additional
experiments (setup 2) with the number of lateral connections reduced to maximally 100, which leads
to better convergence and contributes to the continuous increase of performance for larger hidden
layers, reaching a median test accuracy of 97.5% for 2000 neurons, slightly below the 98.0% of the
corresponding backpropagation benchmark. Finally, experiments with setup 3 provide evidence that
the direct label input to the hidden layer can be replaced with feedback from the next layer, while still
enabling solid performance especially for large layers.

Goal parameters The optimized goal used for training the main three setups at all sizes were
optimized using setup 1 for Nhid = 100 neurons on the validation set. More details regarding those
optimizations and the optimized goal functions can be found in Appendix A.10. The optimized
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Figure 1: Infomorphic Neurons directly optimize PID-based goals locally to solve a global task.
A,B. Infomorphic neuron with three inputs: feed-forward (F ), contextual (C) and lateral (L) provide
an information-theoretic abstraction of the different input classes found in biological neurons such
as pyramidal neurons. C. With three input classes, 18 distinct PID atoms can be differentiated,
represented by 18 different colors, plus the residual entropy Hres in the outer circle. Classical
information-theoretic quantities such as the entropy H(Y ) and mutual information I with individual
sources are depicted by ovals, indicating how they can be built from PID atoms. D. Disentangling
three input classes allows one to optimize for complex local goals based on 19 distinct terms. Here,
we show how trivariate PID allows to combine two bivariate objective functions (see Appendix A.2):
In a supervised learning task, one might want to maximize information in the neuron’s output that is
redundant between the feedforward input F and label C, while simultaneously ensuring the neuron’s
output stays unique with respect to lateral neurons L. While bivariate goal functions would only
allow for optimizing one of these objectives at a time, both objectives can be combined to the goal of
maximising only the single atom Π{F}{C} in the trivariate case.

objective functions outperform the intuitive goal function by including additional PID atoms besides
the intuitively derived Π{F}{C}.

Interpretation Compared to the intuitive G = Π{F}{C}, a better performing goal function
G ≈ 0.33Π{F}{C}{L} + Π{F}{C} − Π{F}{L} − Π{FC}{FL} was found using the hyperparam-
eter optimization approach. This optimized goal function is interpretable since we can interpret the
individual atoms. For the MNIST task neurons aim for (i) encoding information that is redundant
between feedforward and context inputs and thus task relevant, but not already encoded in other
neurons (strongly positive γ{F}{C}), (ii) avoid encoding information that is not in the context, thus
not task-relevant, and already encoded by other neurons (strongly negative γ{F}{L}) and (iii) allow
redundancies of task relevant information between neurons (slightly positive γ{F}{C}{L}). Addi-
tionally, neurons avoid synergies that require F and either C or L for their recovery (γ{FC}{FL})
(see Table 3 for an overview of the parameter values and interpretations). For the CIFAR10 task (see
Fig. 5.D), the two most important parameters γ{F}{C}{L} and γ{F}{C} point to a prioritization of
redundancy over uniqueness between neurons.

4 Discussion

We introduce a novel local learning framework for ANNs using partial information decomposition,
making neural learning objectives more interpretable. Our framework expresses this local objective
by selecting which output information should be uniquely, redundantly or synergistically determined
by the various classes of local inputs to a neuron. We derive a simple, intuitive learning objective for
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Figure 2: Infomorphic networks with three input classes approach the performance of a similar
network trained with backpropagation on the MNIST handwritten digit classification task.
A. In the hidden layer of the network, the infomorphic neurons receive feedforward and lateral
connections as well as either the ground-truth label or feedback from the output layer, outlined in
three setups (detailed in Appendix A.3). B. Infomorphic networks achieve similar performance
as the same network trained with backpropagation. For larger layers, using a sparse connectivity
significantly improves performance (setup 2). The context signal in the hidden layer can either be
given by the label or a feedback connection from the output layer (setup 3). The lines indicate mean
values, with the intervals depicting the maximum and minimum of 10 runs.

supervised learning and upon some optimization of this simple rule show that its performance on
MNIST matches that of backpropagation-trained ANNs.

Related works We are unaware of other efforts to use PID for designing ANNs with local learn-
ing objectives, aside from the bivariate infomorphic networks in [18]. The most related work is
Kay and Phillips’ coherent infomax [20], which inspired our use of PID-based redundancy as a
neural goal function. However, as analyzed in [8], the absence of PID at the time limited their
approach’s expressiveness and clarity for more than two input classes. Our work shows that three
input classes—data to transform (F ), relevance of the data (C), and reducing the redundancy with
other available information (L)—are crucial for effective information-theoretic learning.

Beyond the formulation of information theoretic learning rules, there is literature using PID to analyze
deep neural network function, such as [17, 16, 21–25]. These studies necessarily differ from the
perspective on neural function taken here, as they analyze the function of neurons in feedforward
networks trained with backprop, where the backprop signals are not directly available as inputs to the
neural activation function. This is in contrast to our infomorphic networks where the training signals
are just regular inputs to the neurons. Certainly also related to our work is a line of research on the
information bottleneck principle [26]. The main idea is that a representation of input data should best
encode as much information as possible about the task, while reducing the amount of information
that is irrelevant to the task [27–29].

Limitations and Outlook We show that the infomorphic local optimization approach reaches a
performance comparable to backpropagation in a setup with one fully connected hidden layer. These
infomorphic neurons lay the foundation for promising new research directions such as analyzing
deeper networks or neurons with continuous activations.

For the study of biological neural networks, infomorphic networks could potentially serve as a
powerful constructive modeling approach. While information-theoretic gradients are likely too
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complex for direct biological implementation, neurons may approximate similar objectives through
simpler local learning rules. Having a principled and general way to formulate, identify and test local
information processing objectives could provide a new perspective on local learning in general.

In conclusion, the formulation of local objective functions in the language of PID directly enables
an interpretation of the information processing of neurons. Our work represents an important step
towards a principled theory of local learning founded in information theory.

Code Availability The framework and the code to reproduce the results of this work are available
under https://github.com/Priesemann-Group/Infomorphic_Networks.
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A Appendix

A.1 Definition of shared-exclusion redundancy

In this section, we briefly motivate and explain the shared-exclusion redundancy measure Isx∩ intro-
duced by Makkeh et al. [15]. The mutual information I(T : S1, S2) between a target variable T and
two source variables S1 and S2 can be interpreted in a Bayesian sense as an average measure for how
the prior belief of the target event T = t, needs to be updated in light of the event of observing both
source events S1 = s1 and S2 = s2 simultaneously:

I(T : S1, S2) =
∑

t,s1,s2

P(T = t, S1 = s1, S2 = s2) log2
P(T = t|S1 = s1 ∧ S2 = s2)

P(T = t)
.

Makkeh et al. [15] build on this logic and define redundancy as an average measure for how the
beliefs about the target event T = t need to be updated if instead it is only known that S1 = s1 or
S2 = s2 have occurred:

Isx∩ (T : S1, S2) =
∑

t,s1,s2

P(T = t, S1 = s1, S2 = s2) log2
P(T = t|S1 = s1 ∨ S2 = s2)

P(T = t)
.

For more than two source variables si (where i is an index enumerating the set of source variables),
the term to condition on becomes a disjunction between conjunctions of the form

∨
a∈α

∧
i∈a Si = si

for the redundancy associated with the antichain α. The atoms Π can then be computed from these
redundancies via a Moebius inversion, as laid out in detail in Gutknecht et al. [14].

The definition is symmetric with respect to permutation of the sources, fulfills a target chain rule and
is differentiable with respect to the underlying probability distribution [15], which makes it a suitable
definition for optimizing objective functions.

A.2 Bivariate infomorphic neurons

The infomorphic neurons introduced in [18] considered only the apical and basal dendrites of the
pyramidal neurons as input classes lumping the lateral connection into any of these input classes. In
these bivariate infomorphic neurons the total mutual information I(Y : F,C) between the output
of the neuron Y and two aggregated inputs F and C can be dissected into four PID atoms (see
Fig. 3.C): The unique information of the feedforward connection about the output Y , Πunq,F, is the
information which can only be obtained from the feedforward and not the context input, with the
unique information Πunq,C of the context being defined analogously. The redundant information
Πred reflects the information which can equivalently obtained from either feedforward or contextual
inputs about Y , while finally the synergistic information Πsyn can only be obtained from both inputs
considered jointly. All classical mutual information terms between the target and subsets of source
variables can be constructed from these PID atoms through the consistency equations [13]

I(Y : F,C) = Πred +Πunq,F +Πunq,C +Πsyn

I(Y : F ) = Πred +Πunq,F

I(Y : C) = Πred +Πunq,C.

(1)

However, these atoms are underdetermined as there are four unknown atoms with only three consis-
tency equations providing constraints [13]. For this reason, an additional quantity needs to be defined,
which is usually a measure for redundancy [13, 15]. Such a definition for redundancy, based on the
concept of shared exclusions in probability space, is given by the shared-exclusion PID, Isx∩ [15]
(see Appendix A.1). Importantly, the resulting PID is differentiable with respect to the underlying
probability mass function, which allows for a specification and subsequent optimization of learning
goals based on PID.

Depending on the task the network is set to solve, different PID atoms become relevant to the
information processing. In this work, we focus on the application to supervised learning tasks, in
which the ground-truth label is provided as the context C during training. Here, the intuitive goal
for the neuron is to foster redundancy between the feedforward and context inputs in its output, to
capture only the feedforward signal that agrees with the label. Likewise, if the goal is unsupervised
encoding of the input, lateral connections between neurons might be used as the context signal and
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Figure 3: Infomorphic neurons are abstract, information-theoretic neurons inspired by the struc-
ture of pyramidal neurons [8]. They are trained by adjusting their synaptic weights according
to a PID-based goal function. A,B. Inspired by the distinction between apical and basal dendrites in
cortical pyramidal neurons, infomorphic neurons are defined as computational units with separate
feedforward (F ) and contextual (C) input classes. C: Partial information decomposition (PID) allows
one to dissect the total entropy of the neuron into explainable components. D. PID enables one to
distinguish which information comes uniquely from either the feedforward F (Πunq,F) or contextual
C input (Πunq,C), whether it could be retrieved redundantly from the two (Πred), or whether the
two inputs contribute synergistically (Πsyn). Classic information theory (top) cannot disentangle
these information atoms: The classic entities cover several of the atoms, and fundamentally lack
one constraint, so that effectively one can only measure redundant minus synergistic information.
Therefore, novel approaches to quantify PID have been developed in the past years [13, 14, 30]. E:
Formulating goal functions Gneuron in terms of PID-atoms Πneuron enables one to formulate how
strongly redundant, unique, or synergistic information should contribute to a neuron’s output. Figure
adapted from [18].

the goal might become maximizing the unique information of the feedforward input about the output,
i.e., to capture only the information which is not already encoded in other neurons [18].

PID can not only be used to describe the local information processing, but also to optimize it through
the maximization of a PID based objective function. Generally, such an objective function can be
expressed as a linear combination of PID atoms as

G = γredΠred + γunq,FΠunq,F + γunq,CΠunq,C + γsynΠsyn + γresHres = γTΠ, (2)

where the residual entropy Hres = H(Y |F,C), although not being a PID atom, is included in the
vector Π for brevity of notation. Due to the differentiability of the Isx∩ redundancy measure, the goal
function can be optimized by adjusting the weights of the incoming connections of the inputs F and
C using gradient ascent – with the analytic formulation of the gradients given in [18], or using a
suitable autograd algorithm.

While such infomorphic neurons can indeed be used for supervised learning tasks [18], two input
classes are insufficient for fully self-organizing the necessary local information processing in super-
vised tasks. This is because if in supervised learning each neuron is tasked with encoding information
that is redundant between the whole label and the feedforward signal with no regard to what the other
neurons already encode, the neurons will all inevitably start encoding much of the same information,
leading to poor performance. To avoid this, the neurons need to be made aware of what the other
neurons encode, similar to the unsupervised example. This can be achieved by incorporating a third
input class representing lateral connections between neurons of the same layer, as presented next.
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A.3 Network Setup

The trivariate neurons in the hidden layer each receive the whole image as their feedforward signal
and the output of other neurons of the same layer through lateral connections. They additionally
receive one of two choices for the context signal: Either the ground-truth label, which is only provided
during training, or a feedback connection from the readout layer. The bivariate neurons in the output
layer receive all outputs of the hidden layer and additionally exactly one element of the one-hot label
as context, which is only provided during training, and are trained to maximize redundancy between
their input and the information about the one label they observe.

The reasoning behind the three different approaches to how the hidden layer can be set up using
trivariate infomorphic neurons (see Fig. 2.A) is as follows. In setup 1, we use the fully connected
feedforward F as input, fully connected label as C and the output of all neurons of the same layer as
all-to-all connected lateral input L. In setup 2, a sparse connectivity of a maximum of 100 connections
is used instead of all-to-all for L. In setup 3, additionally to sparse L, the label is replaced by a
fully connected feedback from the output layer as context C, indicating a path towards how multiple
hidden layers may be stacked in the future. For comparison, we trained a benchmark network with
the same connectivity as setup 1 using standard backpropagation and cross-entropy loss. Additionally,
we trained the output layer of a fixed-random hidden layer setup using step-function activation.

A.4 Neuron structure and activation function

To construct infomorphic networks, a number of practical decisions need to be made for how the
output signal is constructed from the inputs in the forward pass. As a first step, the higher-dimensional
signals from the different input classes are aggregated to the single numbers F , C and L by a weighted
sum. Subsequently, these aggregated inputs are passed into an activation function, which can be
chosen arbitrarily, but needs to fit the requirements of the specific application. For the supervised
classification task at hand, the function A(F,C, L) = F [(1−α1−α2)+α1 σ(β1FC)+α2 σ(β2FL)]
has been chosen, where σ refers to the sigmoid function and α1 = α2 = 0.1 and β1 = β2 = 2 are
parameters that shape the influence of the input compartments on the activation function. Note that
this function makes a clear distinction between the driving feedforward input and the modulatory
context and lateral inputs, ensuring that the network performs similarly during training, when context
and lateral inputs are provided, and for evaluation, where the context signal is withheld. The output
of the activation function is finally mapped to the unit interval by a sigmoid function, whose output is
used as a probability to stochastically output “1” (firing) or “-1” (non-firing). For the bivariate output
layer, the sigmoid is not sampled from but just interpreted as a firing probability, with the neuron
with the highest value being used as the network prediction. Because lateral connections depend on
the activity of the neurons in a previous timestep, the same input is presented twice.

Input: data, num_epochs
Output: trained model
INITIALIZE model;
foreach epoch in range(num_epochs) do

foreach (batch_samples, batch_labels) in data do
INITIALIZE last_outputs to zero;
last_outputs← forward(f=batch_samples, c=batch_labels, l=last_outputs);
last_outputs← forward(f=batch_samples, c=batch_labels, l=last_outputs);
foreach neuron in model do

TrainNeuron(y=last_outputs[neuron], f=batch_samples, c=batch_labels,
l=last_outputs[other neurons]);

end
end

end
return trained model

Algorithm 1: TrainModel
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Input: y, f, c, l
BIN continuous values f, c, l to 20 equally sized bins;
COUNT occurrences of tuples (y, f, c, l) in batch;
COMPUTE empirical probability masses p(y, f, c, l);
COMPUTE isx_redundancies from p(y, f, c, l);
COMPUTE pid_atoms from isx_redundancies;
goal← scalar_product(goal_params, pid_quantities);
PERFORM autograd to maximize goal;
UPDATE neuron weights;

Algorithm 2: TrainNeuron

A.5 Hyperparameter optimization of goal parameters

For the hyperparameter optimization, we compared two established techniques: Firstly, we used the
tree-structured Parzen Estimator (TPE) [31], that splits the sample points into two groups with high
and low performance, fits a model to each group and draws the next sample points according to the
ratio of probabilities. Secondly, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [32]
was employed, which generates new evaluation points by sampling from a multivariate Gaussian
distribution that was fitted to the best samples from previous iteration steps.

A.6 Discretization and local gradients

To optimize a PID-based goal function during training, the first step is to estimate the PID atoms.
Since the original Isx∩ measure only works with discrete variables, the aggregated inputs from a batch
of samples are first discretized to 20 levels each. Subsequently, the PID atoms are computed by
means of a plug-in estimation and the current value of the goal function is determined. For the local
gradient computation, the gradient of the individual neuron’s objective function is backpropagated
via the output to produce the neuron’s weight updates.

A.7 Compute resources

For the figures in this paper, we performed a total of seven hyperparameter optimizations: Three TPE
optimizations and three CMA-ES optimizations of MNIST objective function parameter and a single
CMA-ES optimization for the CIFAR task. Each of these optimizations took ≤ 12 hours to compute
on a HPC cluster node with 32 cpu cores and two NVIDIA A100 GPUs with 40GB of VRAM each.

Including evaluation runs and earlier computations not shown in the results, we estimate to have
utilized a total of 200 hours of compute time on a compute node equivalent to the one described
earlier.

A.8 Implementation details and model parameters

We implemented infomorphic networks as a flexible and efficient python package using pytorch [33]
for automatic differentiation of the local goal functions. Furthermore, the optuna [34] package was
used to compute the TPE and CMA-ES hyperparameter optimizations as well as the computation of
the parameter importance via the mean decrease in impurity.

In this paper, we use the MNIST [35] and CIFAR10 [36] datasets. The MNIST dataset consists of
70,000 grayscale images of handwritten digits, each sized 28x28 pixels. The dataset is split into a
training set of 60,000 samples and a test set of 10,000 samples. The CIFAR10 dataset consists of
60,000 images with three color channels and a resolution of 32x32 pixels. Of the 60,000 images,
50,000 are in the training set and 10,000 are in the test set. For each of our training runs with either
dataset, 20% of the training set samples are withheld randomly to be used for validation.

The framework and the code to reproduce the results of this work are available under
https://github.com/Priesemann-Group/Infomorphic_Networks.

The parameters used to train the models shown in Fig. 2 are listed in Table 1. The backpropagation
model was trained to optimize the cross-entropy loss between the prediction and the true label.
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Table 1: Model and training parameters for the models shown in Fig. 2
Parameter Backprop Model IM Hidden Layer IM Output Layer

NEpochs 100 100 100
NBatch 1024 1024 1024
Optimizer Adam Adam Adam
Learning rate η 0.001 0.002 0.003
Weight decay 0.0 0.00035 0.00015
Number of bins per dim. - 20 20
Binning ranges - (-20,20) adaptive
Objective function cross-entropy trivariate γ γ = (−0.2, 0.1, 1.0, 0.1, 0.0)T

A.9 Model Dynamics During Training

As a measure for the dynamics of the neurons during training, we introduce the self-cosine distance
of the feedforward receptive field as

D(t)
c = 1−

www
(t−1)
F ·www(t)

F

∥www(t−1)
F ∥∥www(t)

F ∥
(3)

where wwwF corresponds to feedforward weights of a single neuron of the hidden layer. The median
value of D(t)

c for the hidden neurons of a trivariate model are shown in Fig. 4. While the self-cosine
distance consistently increases with layer size in the dense setups, it does not increase in the sparse
setup after a layer size of 100 neurons which is also the number of lateral connections in all of the
larger sparse layers.

Figure 4: The median self-cosine distance of trivariate neurons for different layer sizes during the
course of training in a dense (left) and a sparse (right) lateral connected setup.

A.10 Optimized Objective Functions

Optimization The optimization goal used for training the main three setups at all sizes were
optimized using setup 1 for Nhid = 100 neurons on the validation set. In total, we performed six
hyperparameter optimizations of 1000 trials, three using TPE and three using CMA-ES samplers,
respectively. While the objective functions that were optimized with the TPE sampler included all γ
parameters, the optimization with the CMA-ES sampler was only performed for the parameters that
describe PID-atoms while the parameter for the residual entropy was set to 0. This was done because
we observed a strong correlation between the parameter for the unique information of the feedforward
input and the residual entropy which both had to be small. The goal function that performed best is
illustrated in 5.A while an overview over all goal functions is shown in Fig. 6. Additionally to the
optimizations performed on the MNIST dataset, we also performed a single CMA-ES optimization
on the more complex CIFAR10 classification task [36], with the optimal parameters presented in
Fig. 5.D.
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Figure 5: Given a set of optimized goal parameters, an ablation study allows for the identification
and interpretation of the most critical neural subgoals for a given task. A. The heuristically
defined goal function (see Fig. 1.D) shows 92.8% test accuracy in MNIST for Nhid = 100; optimizing
the goal function using hyperparameter optimization increases the test accuracy to 94.9%. The
optimized goal parameters include the heuristically found γ{F}{C}, but also additional PID atoms to
be maximized or minimized at the same time. B. For identifying the most important goal parameters,
we performed an ablation study (individually setting parameters to 0) and measured the effect on
network performance. C. A successive ablation of parameters in order from lowest to highest
individual effect identifies four parameters as being crucial for network performance (see Table 3
for their definition and interpretation). The lines indicate mean values, with the intervals depicting
the maximum and minimum of 10 runs. D. To test whether more complex image classification tasks
require different atoms to be maximized, we perform a separate hyperparameter optimization for
setup 1, 100 neurons in CIFAR10 and reach a median test accuracy of 42.5% (compared to 42.2%
using backprop and 41.1% using the goal function originally optimized for MNIST).

Parameter importance An analysis of the optimized hyperparameter values (Fig. 5.B) shows that
only relatively few parameters are of high importance for performance. By setting goal parameters
to zero individually (Figure 4B, right) we find that there are four goal parameters that are critically
non-zero for high performance on MNIST. This finding is confirmed by cumulatively setting goal
function parameters to zero in the order of the individual drop in performance, which is illustrated in
Fig. 5.C. Interestingly, we find that CIFAR10 two of the four critical goal parameters for MNIST
seem especially important. As a complementary measure of parameter importance, the results of
mean decrease in impurity [37] can be found in Fig. 6 for the six different MNIST optimizations.

A.11 The Atoms of the Partial Information Decomposition for Three Source Variables
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Figure 6: The three objective functions shown in the first column were obtained by utilizing the
TPE sampler while the objective functions in the third column were obtained with the CMA-ES
sampler. The performance illustrated below each of the objective functions corresponds to the
maximum validation accuracy during optimization. The column next to the objective functions show
the corresponding mean decrease impurity score of the corresponding goal parameter as a measure
for the importance of the parameters. While the objective functions obtained with CMA-ES have
a higher maximum validation accuracy than the goals obtained with the TPE, we observed that the
first objective function function obtained with the TPE sampler (top-left) outperformed the others
in terms of median validation accuracy for larger layer sizes, which is why we used this objective
function for the main results.
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Figure 7: To improve the clarity and intuition for the atoms of the partial information decomposition
with three source variables, this figure shows a larger version of Venn-diagram of the decomposition
already shown in Fig. 1.C. The meaning of the different information atoms are also listed in Table 2
as a guide for the reader.

Table 2: A list of all atoms that are part of the Partial Information Decomposition with three source
variables and their meaning.

Atom (ΠAntichain) Meaning

Π{F}{C}{L} information that is redundant in all of the three sources

Π{F}{C} redundant information between feedforward and context input
Π{F}{L} redundant information between feedforward and lateral input
Π{C}{L} redundant information between context and lateral input

Π{F}{CL} information provided by both, the feedforward input and the synergy
between the context and the lateral input

Π{C}{FL} information provided by both, the context input and the synergy between
the feedforward and the lateral input

Π{L}{FC} information provided by both, the lateral input and the synergy between
the feedforward and the context input

Π{F} unique information provided by the feedforward input
Π{C} unique information provided by the context input
Π{L} unique information provided by the lateral input

Π{FC}{FL}{CL} information redundantly provided by each of the pairwise synergies

Π{FC}{FL} information provided by both, the synergy between the feedforward
and the context input and the synergy between the feedforward and the
context input

Π{FC}{CL} information provided by both, the synergy between the feedforward and
the context input and the synergy between the context and the lateral
input

Π{FL}{CL} information provided by both, the synergy between the feedforward and
the lateral input and the synergy between the context and the lateral input

Π{FC} synergy between the feedforward input and the context input
Π{FL} synergy between the feedforward input and the lateral input
Π{CL} synergy between the context input and the lateral input

Π{FCL} information encoded by all input sources synergistically
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Table 3: The four most important non-zero goal parameters found through optimization on MNIST
and ablation lead to interpretable requirements on each neuron’s local information processing.

parameter definition value interpretation of local information processing goal
γ{F}{C} redundancy between

F and C
0.98 maximize information that is provided both by

feedforward AND context but not by other neu-
rons – and thus relevant for the task

γ{F}{L} redundancy between
F and L

-0.99 minimize information that is redundant with other
neurons, but NOT provided by the context – and
thus not relevant for the task

γ{F}{C}{L} redundancy between
F , C and L

0.33 moderately maximize information that is redundant
with other neurons AND the context – thus relevant,
but already encoded

γ{FC}{FL} redundancy between
synergies requiring F

-0.97 minimize synergistic information that requires F
and either C or L to be recovered

Baseline Models

Figure 8: An overview over the training and test performances of the bivariate (left) and trivariate
(right) models with different model structures and objective functions as well as the performances of
some baseline models. In the bivariate models, only one of the non driving inputs (context or lateral)
and the neurons optimized the heuristic objective functions illustrated in Fig. 1.D. The corresponding
optimized objectives were optimized with the CMA-ES sampler similar to the trivariate objective
function.
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Figure 9: To estimate the importance of the different parameters of the trivariate objective function,
we modified individual parameters of the trivariate objective function. The performance change
induced by setting the parameters to 0 was already shown in Fig. 5.B and was used for the results
shown in Fig. 5.C. Additionally, we modulated the parameters in an absolute and a relative manner to
get an intuition about the importance of the fine tuning of the parameters.
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