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ABSTRACT

In recommendation systems, representing user-item interactions as a bipartite
network is a fundamental approach that provides a structured way to model rela-
tionships between users and items, allowing for efficient predictions via network
science. Collaborative filtering is one of the most widely used and actively re-
searched techniques for recommendation systems, its rationale is to predict user
preferences based on shared patterns in user interactions, and vice versa. Memory-
based collaborative filtering relies on directly analyzing user-item interactions to
provide recommendations using similarity measures, and differs from model-based
collaborative filtering which builds a predictive model using machine learning tech-
niques such as neural networks. With the rise of machine learning, memory-based
collaborative filtering has often been overshadowed by model-based approaches.
However, the recent success of SSCF, a newly proposed memory-based method,
has renewed interest in the potential of memory-based approaches. In this paper,
we propose Network Shape Automata (NSA), a memory-based collaborative filter-
ing method grounded in the connectivity shape of the bipartite network topology.
NSA leverages the Cannistraci-Hebb theory proposed in network science to define
brain-inspired network automata, using this paradigm as the foundation for its
similarity measure. We evaluate NSA against a range of advanced collaborative
filtering methods, both memory-based and model-based, across 13 middle-scale
bipartite network datasets spanning complex systems domains such as social net-
works and biological networks and 3 classical large-scale recommentation datasets
including Gowalla, Yelp2018, Amazon-book. Results show that NSA consistently
achieves strong performance across diverse datasets and evaluation metrics, rank-
ing most often first on average. Notably, NSA demonstrates strong robustness to
network sparsity, while preserving the simplicity, interpretability, and training-free
nature of memory-based methods. As a pioneering effort to bridge link prediction
and recommendation tasks, NSA not only highlights the untapped potential of
memory-based collaborative filtering but also demonstrates the effectiveness of the
Cannistraci-Hebb theory in modeling network evolution within recommendation
systems.

1 INTRODUCION

In many real-world scenarios, relationships between entities can be modeled as bipartite networks,
where edges only exist between two disjoint sets of nodes, such as users and items (Watts & Strogatz,
1998} [Albora et al.,[2022; Tacchella et al.| 20125 |Straccamore et al.,|2022). Predicting new links in
these networks, often framed as recommendation, is a crucial task for improving user experience and
system efficiency (Ricci et al.l [2021). Collaborative filtering (CF) is one of the most widely used
approaches in recommendation systems (Goldberg et al.,|1992; Schafer et al.,[2007), with memory-
based and model-based methods as two major branches (Chen et al., 2018)). While memory-based
CF methods are simple and highly interpretable, they have long been considered less competitive in
performance compared to more complex model-based methods.
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However, recent advance, Sapling Similarity Collaborative Filtering (SSCF), has shown that memory-
based approaches still hold significant promise (Albora et al.,[2023). SSCF leverages a new similarity
measure and achieves state-of-the-art performance on benchmark datasets, outperforming all the
other models. This suggests that the full potential of memory-based methods has yet to be realized,
particularly if better ways of capturing structural information in networks can be found.

Most traditional memory-based CF methods rely

on basic node similarity measures, often lim- Table 1: Number of real-world network datasets
ited to shared neighbors, which overlook deeper  tested by different methods. For NSA, consider-

topological insights. In contrast, network sci- ing the recommendation is made from both views
ence offers rich theoretical foundations for un- of two sets of nodes, the number of datasets is

derstanding link formation. The Cannistraci- myltiplied by 2.
Hebb (CH) theory (Muscoloni et al., 2018

2020), inspired by brain connectivity, empha- ~Algorithm Year Networks Ref

sizes the importance of local community struc- ~ NGCF 2019 3 Wang et al.[(2019)
tures (Cannistraci et al.| 2013) rather than just ~ LightGCN 2020 3 He et al.|(2020)
node-level features. CH-based methods are net- lsjlhr;ggiN %8%} 141 i/[/lgg Zt 2} gggig:
work automata rules that have shown strong per- [ 1.ock 2021 3 Chot et al.|(2021)
formance in various link prediction tasks and BSPM 2022 3 Choi et al.|(2023)
have even been used to sparsify neural networks ~ SSCF 2023 5 Albora et al.[(2023)
while preserving accuracy (Abdelhamid et al, _XSimGCL 2023 4 Yu et al.[(2023)
2023} [Zhang et al, 2023). NSA 2025 13x2 Ours

Motivated by the theoretical and empirical

strength of CH theory, we propose Network Shape Automata (NSA), a novel memory-based collabo-
rative filtering method that fully leverages network topology for recommendation. NSA adheres to
the classical architecture of memory-based CF, yet redefines similarity computation based on local
topological features derived from CH theory. We evaluate NSA on various benchmark datasets from
both the recommendation and link prediction domains. Results demonstrate that NSA consistently
achieves competitive, and in some cases superior, performance compared to state-of-the-art models,
while preserving the simplicity and transparency of memory-based systems. Our work highlights the
overlooked potential of structural information in network-based recommendations and presents NSA
as a bridge between interpretable design and high recommendation accuracy.

Here, we present our main contribution in this work as follows:

Network Shape Automata (NSA): We propose NSA, a memory-based collaborative filtering method
that integrates CH theory into similarity computation using local network topology.

Comprehensive Evaluation: NSA was evaluated on 13 datasets spanning recommendation and link
prediction tasks, consistently showing stable and often superior performance. Extensive hyperparam-
eter tuning (over 105,300 model assessments) ensured fair and reproducible comparisons.

Large-Scale Dataset Robustness: NSA maintains stable and strong performance on large datasets,
including Gowalla, Yelp2018, and Amazon-Book, demonstrating its scalability and reliability.

Leveraging Structural Information: NSA effectively exploits network structural features to capture
meaningful user-item relationships, maintaining high accuracy even with sparse interactions, while
remaining interpretable.

2 RELATED WORK

2.1 BIPARTITE NETWORK PROJECTION

Bipartite networks consist of two disjoint sets of nodes with edges only between nodes of different
sets (Zhou et al.,|2007), and are commonly used to represent real-world relationships, for example,
users and items in recommendation systems. In such applications, the two sets typically correspond to
users and items, with edges representing interactions such as purchases, views, or ratings. Depending
on the nature of these interactions, bipartite networks can be divided into two categories: non-unary
rating, where links carry explicit preference scores; and unary rating, where links only indicate the
presence or absence of interaction, without expressing degrees of preference (Goldberg et al.| [1992).
This paper focuses on the unary rating scenario, where collaborative filtering methods are widely
adopted.
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Bipartite network projection, or one-mode projection, transforms a bipartite network into two
monopartite ones by connecting nodes of the same type if they share common neighbors (Zhou
et al.,|2007). This process captures similarity within a single node set and serves as a compressed
representation of the original bipartite structure. However, such compression inevitably loses some
relational detail, making the choice of edge weighting in the projected network critical for preserving
meaningful information (Fan et al.l 2007; Newman, |2001). Different weighting methods emphasize
different aspects of the original network and are chosen based on the analytical goals of the projection.

2.2 COLLABORATIVE FILTERING

Recommendation systems are essential tools for delivering personalized content by predicting user
preferences based on historical interactions. To address this task, various approaches have been
proposed, including content-based approach (Brusilovski et al., |2007)), collaborative filtering (Breese
et al.||2013), and hybrid models that combine multiple strategies. Among them, collaborative filtering
(CF) stands out for its effectiveness and broad adoption, relying on user behavior shared patterns
rather than item attributes.

Collaborative filtering can be further classified into memory-based and model-based methods (Chen
et al.,[2018} [Su & Khoshgoftaar, 2009).

Memory-based approaches predict user preferences by computing similarities between users or items,
with various similarity measures developed to improve recommendation accuracy. The structure
of different memory-based methods is largely the same, with the choice of similarity measure
being the key differentiator. Widely used similarity measures in memory-based approaches include
Common Neighbors (Liben-Nowell & Kleinberg,|2003)), Jaccard (Jaccard,|1901), Resource Allocation
Index (Zhou et al., 2009), Cosine Similarity, and Pearson Correlation Coefficient (Shardanand &
Maes| [1995). Most of these measures estimate similarity based on the common neighbors of two
nodes. Notably, the recently proposed Sapling Similarity Collaborative Filtering (SSCF) introduces a
probabilistic perspective that enables negative similarity modeling, offering improved performance
(Albora et al., [2023)).

Model-based approaches, in contrast, learn predictive models from user-item interactions using
machine learning techniques. Recent advancements focus on neural network methods, particularly
Graph Convolutional Networks (GCNs), which capture high-order user-item connectivity (Chen
et al.l |2020). These include NGCF, an early and influential method that introduced graph-based
message passing for collaborative filtering (Wang et al.l [2019); LightGCN, which simplified this
framework while achieving stronger performance (He et al.|[2020); SimpleX, which further optimized
the model design for efficiency (Mao et al.| 2021a); UltraGCN, which avoided explicit graph
convolution by modeling global interactions (Mao et al., 2021b); LT-OCF, which models user
and item embedding evolution over continuous time using neural ODEs with learnable interaction
timestamps, thereby effectively capturing temporal dynamics (Choi et al.| 2021); and BSPM, which
uses a blurring-sharpening process to perturb and refine interactions, and is regarded as a diffusion-
based approach rather than a conventional neural network method (Choi et al.,[2023)); and XSimGCL,
which incorporates contrastive learning into graph-based recommendation in an extremely simple
yet effective way by perturbing embeddings and enforcing consistency, thus significantly improving
robustness and performance under sparse interactions (Yu et al., 2023).

2.3 CANNISTRACI-HEBB THEORY

CH rules are network automata for estimating the likelihood of a non-observed link to appear in the
network. These rules are classified as network automata because they utilize only local information
to infer the score of a link in the network without need of pre-training of the rule. Note that CH rules
are predictive network automata that differ from generative network automata which are rules created
to generate artificial networks (Barabasi & Albert, [1999; Papadopoulos et al.l 2012; Muscoloni &
Cannistraci,[2018)). The concept of network automata was originally introduced by Wolfram (Wolfram
& Gad-el Hak| 2003) and later formally defined by Smith et al. (Smith et al.,|2011) as a general
framework for modeling the evolution of network topology. Given an unweighted and undirected
adjacency matrix X (¢) at time ¢, in a network automaton the states of links evolve over time according
to a rule that depends only on local topological properties computable from a portion of the adjacency
matrix X (t) C X (t):

X(t+1)=F(X(t)) )



Under review as a conference paper at ICLR 2026

Network shape intelligence is an emerging paradigm that tries to perform link prediction by exploiting
the intrinsic topological structure of real-world networks, without relying on training or external
data. The core idea is to treat the network itself as both input and source of knowledge, enabling
unsupervised predictions based solely on local connectivity patterns (Abdelhamid et al.| [2023). A
representative advancement in this area is the Cannistraci-Hebb (CH) theory, which extends Hebbian
learning, originally proposed in neuroscience, to the domain of complex network analysis (Cannistraci,
2018).

Hebbian learning posits that coactivated neurons tend to form connections and was generalized into
the Local-Community Paradigm (LCP) (Cannistraci et al., 2013)). LCP assumes that new links are
more likely to form within local communities, where nodes are densely connected and related. CH
theory formalizes this through two structural tendencies: maximization of internal local community
links (iLCL) and minimization of external local community links (eLCL) (Muscoloni et al.|[2018};
2020). Based on these principles, different versions of CH indexes have been proposed that focus
different properties of networks (CHn). In addition, multi-scale variants (Ln) are introduced to
account for different community sizes, based on the path length between node pairs.

CH-based link predictors have shown strong empirical performance across different domains. In
particular, Cannistraci et al. demonstrated that a CH-inspired predictor outperformed AlphaFold in
protein-protein interaction prediction (Abdelhamid et al.,|2023)). Furthermore, neural networks with
CH-based sparse connectivity, retaining only 1% of original links, achieved comparable or better
results than fully connected models (Zhang et al.,|2023)), suggesting the potential of biologically-
inspired, ultra-sparse architectures.

These insights underscore the predictive power of topology alone and provide theoretical support for
applying CH theory to recommendation systems, especially in settings where data sparsity or lack of
supervision poses significant challenges.

3 NETWORK SHAPE AUTOMATA

To formally present our approach, we begin by introducing the fundamental definitions. Consider a

bipartite network representing the recommendation system, where the set of user nodes is denoted by

U and the set of item nodes by I". The cardinalities |U| and |T'| indicate the total number of users

and items, respectively. The network structure is encoded by an adjacency matrix M € RIVI*IT1,

where each entry M, = 1 if user u is connected to item -, and 0 otherwise. As we focus on unary

rating scenarios, the network is assumed to be unweighted. The degree of a user node u is defined as
|

dy = Y M,, while the degree of an item node +y is denoted by d.,. The set of common neighbors
y=1

between users 7 and j is denoted C'N;;, and similarly, the common neighbors between items o and 3

are denoted C' N, 3.

Then, we introduce Network Shape Automata (NSA) which can be treated as memory-based collabora-
tive filtering in a topological way. Specifically, NSA follows the steps described in the subsections[3.1]
to [3.4]below, illustrated in Fig|[I}

3.1 CH SCORING

As the core component of NSA, we calculate the similarity between different pairs of nodes based on
CH theory.

CH index Inspired by CH theory (Muscoloni et al.,|2018)), the basis of the similarity is CH indexes,
including CH3-L2 (Muscoloni et al., [2020) and CH3.1-L2. CH3-L2 is the version based on local
community for path of length 2 and takes into account only the minimization of external links, of

which the formula is
1

CH3-L2(3, j) = Z F—l

keL2

@)

The formula of CH3.1-L2 is
dip + 1

CH3.1-L23, j) = Z 3)

dey,
ker2 (1+ dek)1+1+71’1k



Under review as a conference paper at ICLR 2026

L a
9 ®
00 = 00 0000

User Projection

Item Projection

—
H A [ .

/ V2

o (1]

CH Scoring Monopartite Bipartite Mixing Item&User
Projection Scoring Scores
B CHindex User Projection guser — p(BUser) §= (1= N)§uer 4 \gitem
Dexp Item Projection gitem _ F(Bitem)
sum of nlcl sum
e rormazaton
O Related User Monopartite Link —— Monopartite Link with Score (Similarity)
Bipartite Link === Target Link with User/ltem based Score
D Related Item . . T
----- Target Link =+ = Target Link with Final Score

Figure 1: Workflow of NSA. This figure illustrates how NSA computes the prediction score for
a target link through four stages: (1) CH Scoring, assigning similarity using the CH index; (2)
Monopartite Projection, mapping topology and weights from the bipartite graph to two monopartite
networks; (3) Bipartite Scoring, aggregating similarity into single-view recommendation scores; (4)
Mixing Item and User Scores, combining single-view scores into the final prediction. *Core functions
are shown in each stage block, with surrounding gray boxes indicating configurable options.

For clarification, ¢ and j represent two nodes of the same kind in the bipartite network, L2 denotes
the set of nodes on the path of length 2 between nodes ¢ and j (specifically, in the case of a path of
length 2, this can be understood as the set of common neighbors between ¢ and j). dey, represents the
number of external community links for node k (i.e., the number of neighbors of node & that are not
in the L2 set and are not ¢ or j). dij, represents the number of internal community links for node k
(i.e., the number of neighbors of node k that are also in the L2 set).

Denominator Inspired by the weighting methods used in bipartite network projection, we introduce
a scaling factor as the denominator of the CH index to reduce the weight of links connecting two
nodes with many neighbors. We adopt three options as denominator with different topological
meaning, including:

* sum of degree: the sum of the degrees of the two seed nodes
Dy = d; + d; “
* union of neighbors: the total number of neighbor nodes of the two seed nodes
D;j =d; +dj — CNy; 5)
 sum of nlcl: the number of non local community links (nlcl) of the two seed nodes (i.e., the

number of neighbors of the two seed nodes that are not in the 2 set)
Dij =d; + dj — 2CNij (6)

Exponent To further control the impact of the scaling factor, we introduce a new exponent variable
for the denominator. As the name suggests, the exponent serves as the power of the denominator base
that ranges from 1 to 2.

The similarity between a pair of nodes can be represented as
CH-index(i, j)

Bij = ——Fep— 7
j DET? (N
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3.2 MONOPARTITE PROJECTION

The CH-scoring process is based on the local community defined by paths of length two. This
naturally gives rise to two projected monopartite networks, one for users and one for items, where a
link exists between two nodes of the same type only if they share at least one common neighbor. We
employed bipartite network projection to transform both the topology and the assigned weights into
two separate monopartite networks.

3.3 BIPARTITE SCORING

Based on two monopartite networks respectively, we can weight all the non-existing links inside
the original bipartite network based on simple aggregation. Here, we adopted two options for the
aggregation:

e sum
U] ‘ T
Si" = 2 Buiblins S5 =) BraMua ®)
i=1 =1
e normalization
U] 7|
> BuiMiy > BryoaMya
user _ 1=1 item __ o=l
A — ©)
Z BUZ E Bua
=1 a=1

3.4 MIXING ITEM AND USER SCORES

Based on the item-based score and user-based score we draw from two monopartite networks, take
the weighted average of item-based score and user-based score controlled by parameter A as the
weight of item-based score, which is ranged from O to 1 step by 0.1. The final recommendation score
can be represented as:

Suy = (1= NS 4+ A5iem (10)

4 EXPERIMENTS

We’ve conducted quite a lot of experiments to prove that our method is of superiority compared to
both traditional memory-based methods and the advanced model-based methods.

4.1 BASELINES

The baselines adopted in our study span from traditional memory-based approaches to state-of-the-art
model-based methods. Memory-based methods follow a standard pipeline and the key distinction
among various memory-based approaches lies in the choice of similarity metric. Our implementation
of memory-based collaborative filtering strictly follows the framework introduced in previous work
(Albora et al.l 2023). We selected two representative similarity measures to construct memory-
based baselines: the state-of-the-art Sapling Similarity and the widely-used Jaccard Similarity, with
the memory-based method built upon called SSCF and JCF respectively. We select a series of
representative and state-of-the-art model-based methods as baselines, including NGCF (Wang et al.,
2019), LightGCN (Mao et al., [2021a), SimpleX (Mao et al.,|2021a), UltraGCN |[Mao et al.[ (2021Db),
LT-OCF (Choi et al.,|2021)), BSPM (Choi et al.l 2023)) and XSimGCL (Yu et al., 2023). For BSPM,
to be specific, we utilized the variant BSPM-EM which offers better performance (Choi et al., 2023).

4.2 DATASETS

We employed 13 datasets from different filed ranging from drug-target network in biological field to
typical recommendation datasets in social system (Coscia et al., 2013 |Albora et al.,|2023; Ruggles
et al.,[1995; |Yildirim & Coscia, |2014} |Yamanishi et al., [2008}; [Balassal, |1965; Hu & Bajorath, 2014;
Cheng et al., 2019; McAuley et al.l 2015} [Pasricha & McAuley} 2018). The statistics of all the
datasets are listed in Appendix B} where we reported the source, number and type of nodes and the
density.

It is important to note that, for some datasets, there is no explicit distinction between users and items.
For example, in drug-target networks, recommendations can be made from either the drug perspective
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or the target perspective, both of which are meaningful in real-world applications. Therefore, we
conducted experiments from both perspectives, treating different sets of nodes as the "user” side.

4.3 HYPERPARAMETER LEARNING AND EVALUATION

In this section, we introduce the way we split the datasets as train and test set, the metric we used for
evaluation, and the evaluation process. For clarity, the entire procedure is also illustrated in a figure
provided in Appendix [E]

Metrics To better evaluate the performance of models, we utilized widely used metrics in recom-
mendation system field: Recall@10, Recall@20, NDCG@ 10, NDCG @20.

Train-Test Split We follow the widely used way to split each dataset to train set and test set. For
all the datasets, the train set retains 80% links for each user randomly. The rest links would become
test set which is used to evaluate the performance of models. We repeat the split several times which
can be called as different realizations in case that the randomness of segmentation influences the
evaluation of performance.

Hyperparameter Learning We adopted multiple validation samplings to learn the most appropriate
hyperparameter setting for each realization automatically. To be specific, we’ll further split the train
set to two parts. 10% links of each user would be randomly removed to verify the performance of
different hyperparameter settings. Also, to avoid randomness, we repeat this procedure 10 times and
the hyperparameter setting with highest average performance would be the one used for test. It needs
attention that, when evaluated by different metrics, the best hyperparameter setting can be different.
To ensure the fairness of comparison, we conducted the same hyperparameter choosing strategy on
all baseline methods mentioned above strictly and carefully. The concrete hyperparameter setting
under search for each baseline method are reported in Appendix [D]

Evaluation Process Each model would give a ranking of all the non-existing links for all the users
based on the existing links in the train set, then the links with highest ranking would become the
result of prediction. For each user, we would compute metrics Recall@20, Recall@ 10, NDCG @20
and NDCG@10. For each metric, the final performance is the average among all the users. Results
reported are the average across all realizations.

5 RESULTS

In this section, we present a comprehensive summary, comparison, and analysis of the performance
of NSA and selected baseline methods across 13 datasets. Specifically, experiments were conducted
using 10 realizations under the default ViewA, and 5 realizations under the alternative ViewB. For
the latter, we selected the top-performing method from each category based on the results in ViewA:
NSA for memory-based methods; LT-OCF for neural network-based methods, which are considered
a subset of model-based approaches; and BSPM for diffusion-based methods, which has shown
competitive performance in prior work (Albora et al.l[2023). Due to space limitations, additional
results are provided in the Appendix.

ViewA Results We present results for all methods based on individual network from ViewA in
Appendix |F, where NSA consistently outperforming most methods on the majority of datasets
compared to a comprehensive set of baselines. To provide a comprehensive comparison, we further
compute the average ranking of each method across all datasets. As shown in Fig[2], NSA consistently
ranks first or second across various metrics, highlighting its overall superiority. This consistent top-
tier performance not only reflects NSA’s high accuracy but also underscores its robustness and
adaptability across different domains and evaluation criteria.

ViewB Results NSA achieves the best average ranking across three evaluation metrics, outperform-
ing BSPM and LT-OCEF, as shown in Fig[3] The results for ViewB organized by individual networks
are provided in Appendix |G| These results further demonstrate the effectiveness and robustness of
NSA.

Robustness of NSA on Large-scale Datasets To evaluate the scalability of NSA, we conducted
experiments on three large-scale recommendation datasets: Gowalla, Yelp2018, and Amazon-Book.
Due to time constraints, we include only LT-OCF and SSCEF as baselines, as these are accessible
methods with average rankings comparable to or better than NSA on medium-scale datasets, as
reported in Figure 2] We directly adopt the train-test splits provided in the literature, using the
latest 20% of emerging links as the prediction targets. Validation is performed three times to select
appropriate hyperparameter settings. For Amazon-Book, due to computational limits, we evaluate
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Figure 2: ViewA: Average ranking across 13 datasets evaluated by different metrics. To better
distinguish between memory-based and model-based methods, all bars corresponding to model-based
approaches are overlaid with white hatching. *ViewA means that these experiments are conducted
treating nodes in set A as users.

ViewB: Average Ranking by NDCG@10 ViewB: Average Ranking by NDCG@20 ViewB: Average Ranking by Recall@10 ViewB: Average Ranking by Recall@20
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Figure 3: ViewB: Average ranking across 13 datasets evaluated by different metrics. Bars corre-
sponding to model-based approaches are overlaid with white hatching. *ViewB means that these
experiments are conducted treating nodes in set B as users.

NSA using only the CH3-L2 index, referred to as NSA3. The results are reported in Table[2] Across
all three datasets and various evaluation metrics, NSA demonstrates clear advantages in stability,
consistently ranking first or second, while the third-place method lags significantly behind. In
contrast, although LT-OCF and SSCF occasionally achieve the top rank, their performance is highly
dataset-dependent. These results provide strong evidence for the robustness and effectiveness of NSA
on large-scale datasets, regardless of the underlying structure or organization of the data.

Effectiveness of a Simplified NSA Variant To further evaluate the flexibility and robustness of
NSA, we conducted an ablation study in which the exponent parameter was fixed to a constant value
of 1 without tuning in the validation stage. Interestingly, it still achieved impressive results from
ViewA, ranking first on average evaluated by multiple metrics. The detailed results are provided in
Appendix[H] This finding demonstrates the strong performance of NSA even under a more constrained
configuration.
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Table 2: Recommendation performance on large-scale datasets. The table contains the perfor-
mance of NSA compared with LT-OCF and SSCF on three classicale large-scale recommendation
datasets evluated by different metrics. NSA3 refers to the variant of NSA which utilize only the
CH3-L2 index.

Dataset Method Recall@10 Recall@20 NDCG@10 NDCG@20

LT-OCF 0.1278 0.1817 0.1370 0.1530
Gowalla SSCF 0.1213 0.1775 0.1209 0.1390
NSA 0.1294 0.1864 0.1335 0.1508

Ranking of NSA 1 1 2 2
LT-OCF 0.0345 0.0597 0.0388 0.0484
Yelp2018 SSCF 0.0385 0.0656 0.0442 0.0540
NSA 0.0409 0.0684 0.0467 0.0566

Ranking of NSA 1 1 1 1
LT-OCF 0.0229 0.0400 0.0234 0.0304
Amazon-book SSCF 0.0500 0.0773 0.0547 0.0647
NSA3 0.0452 0.0723 0.0491 0.0602

Ranking of NSA3 2 2 2 2

Training-Free Robustness of NSA  While NSA achieves strong overall performance, we observe
that it performs slightly less competitively than certain model-based methods specifically on Re-
call@20. This discrepancy may stem from the epoch selection strategies commonly employed by
model-based approaches. In contrast, NSA is a non-training method and thus does not involve
such metric-specific tuning so that it avoids potential bias introduced by overfitting and maintains
consistently strong performance across other key metrics. This distinction highlights NSA’s ability to
preserve ranking fidelity and generalize effectively across evaluation settings, without the need for
iterative optimization or metric-dependent parameter tuning.

High Sparsity Robustness of NSA  Especially on datasets under high sparsity level, NSA demon-
strates strong performance compared to other methods. This indicates that NSA is more robust to
networks with higher sparsity. Its advantage may stem from the incorporation of CH theory from
network science, which enables it to extract more informative signals from the inherently sparse
structures found in real-world networks.

6 CONCLUSION AND DISCUSSION

In this paper, we propose Network Shape Automata (NSA), a novel memory-based collaborative
filtering method that leverages bipartite network topology for recommendation. Building on recent
progress in memory-based methods, NSA further explores the potential of this class of approaches,
emphasizing simplicity, interpretability, and strong performance. NSA introduces the Cannistraci-
Hebb (CH) theory from network science as the foundation for its similarity measure. This theory,
inspired by the evolution of brain neural networks, enables NSA to utilize local community structures
based on topological features of real-world networks, without requiring any training. We evaluate
NSA on 13 real-world bipartite datasets across multiple domains and compare it against both memory-
based and model-based collaborative filtering methods. We conducted experiments on networks with
up to 9,865 nodes and 172,206 edges. For ViewA alone, we performed thorough hyperparameter
learning and evaluation on 13 networks using 9 methods, each with 3 hyperparameters (averaging
9 settings), across 10 realizations with 10 validation samplings, resulting in a total of 105,300
model assessments. Experimental results show that NSA consistently outperforms strong baselines
across multiple evaluation metrics. It also demonstrates notable robustness under high sparsity and
maintains stable and superior performance on large-scale datasets, while preserving the desirable traits
of memory-based approaches. Overall, NSA highlights the overlooked potential of memory-based
collaborative filtering in modern recommendation systems and validates the effectiveness of the
Cannistraci-Hebb theory in modeling network evolution for link prediction and recommendation
tasks.
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REPRODUCIBILITY STATEMENT

The code for this work is provided in the supplementary material. Detailed hyperparameter settings
for each method are presented in Appendix [DJto facilitate reproducibility.
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Figure 4: The classification of Collaborative Filtering.

Table 3: Statistics of Datasets

Others

Index Name Field TypeA #NodeA TypeB #NodeB #Link  Density
D1 aidorganizations_issues|Coscia et al.|(2013 Social orgnization 151 issue 34 1889 36.79%
D2 export I—I Social country 169 item 4957 120377  14.37%
D3 industries_educationfields_IPUMS Social industry 267 education 513 18088  13.21%
D4 congressmen_topics_US \M Social congressmen 525 topic 970 56215 11.04%
D5 users_movies_movielens 00 Social user 943 movie 1574 82520  5.56%
D6 drug_target_ionchannel 2009 |Yamanishi et al.| Biological ~drug 210 target 204 1476 3.45%
D7 drug_target GPCR 2009|Yamanishi et al. [(2008] Biological ~drug 223 target 95 635 3.00%
D8 occupations_tasks ONET]Yildirim & Coscia|(2014] Social occupation 428 task 1691 16936 2.34%
DY tfs_genes_regulation_ecoli Biological  protein 212 gene 1856 4496 1.14%
D10 1201 8| Social user 6121 item 2744 172206 1.03%
D11 Biological drug 445 target 664 2926 0.99%
D12 Biological drug 518 target 358 1666 0.90%
D13 Biological drug 4428 target 2256 15051 0.15%

A CLASSIFICATION OF COLLABORATIVE FILTERING

In Fig ] we illustrate that collaborative filtering can be further divided into memory-based and
model-based method. NSA can be classified as a memory-based approach.

B STATISTICS OF DATASETS

In this section, we present the detailed statistics of all the datasets we used for test. In TableEI, we
summarized the source, number of nodes, type of nodes and density of each dataset. For clarity, we
give each dataset an index in descending order considering network density.

C EXPERIMENTAL ENVIRONMENT

The NSA experiments are conducted in a CPU-based computing environment equipped with an AMD
processor featuring 64 cores, using MATLAB and C++. The number of CPU cores employed during
execution is configurable, allowing flexible adaptation to the available computational resources.
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D HYPERPARAMETER SETTING

For all the baseline methods we’re using, we listed all the hyperparameters we used for experiments in
Table ] (the rows with yellow background refer to the tuned parameters). For memory-based methods,
there’s limited range for hyperparameters to tune. For model-based methods, we chose the appropriate
range of hyperprameter based on what mentioned in literature and preliminary experiments for each
dataset.
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Table 4: Hyperparameters For Different Methods

Classification | Algorithm Parameter Tuning value
CH index CH3-L2, CH3.1-L2
denominator sum of degree, sum of nlcl, union of neighbours
NSA exponent 1,2
Memory-based bipartite scoring sum, normalization
mixing parameter 0-1, interval 0.1
SSCF mixing parameter 0-1, interval 0.1
JCF mixing parameter 0-1, interval 0.1
Ir le-3, le-4, 1e-5
reg le-4, 1e-5, 1e-6
embed_size 64
NGCF layer size [64, 64, 64]
batch size 1024
node dropout 0.1
mess dropout [0.1,0.1,0.1]
Ir le-2, 1le-3, le-4
decay le-3, le-4, 1e-5
. recdim 64
LightGCN dropout 0
layer 3
bpr_batch 2048
Ir le-3, le-4, 1e-5
gamma 0.8, 0.5
negative weight 250, 10
. embedding_dim 64
SimpleX num neg 1000
margin 0.9
net_dropout 0.1
batch size 1024
Ir le-2, le-1
Model-based gamma le-3, le-4, le-5
lambda Se-4, 1e-5
UltraGEN batch size 512
negative weight 300
embedding dim 64
Ir le-2, le-3, le-4
k 4,2
LT-OCF decay le-4
Irt le-5
Ir le-3, le-2
idl_betas 0.2,0.3
factor_dims 12, 50
BSPM decay le-4
dropout 0
layer 3
n_layers 1,2,3
I* 1,3
tau 0.15, 0.1, 0.05
XSimGCL Ir le-3
reg_lambda le-4
lambda 0.05
epsilon 0.2
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E HYPERPARAMETER LEARNING AND EVALUATION PROCESS

To better illustrates the evaluation process, we present the whole procedure by a figure. Note that,
for time reason, ViewA results are the average among 10 realizations, while ViewB results are
based on 5 realizations. For each realization, we conducted 10 validation samplings to find the best
hyperparameter setting. Also, for different metrics, the best hyperparameter settings can be different.

Origial - 000000 - —
o]l —_—
Network
I []P
80% links of each user Removed 20% links
for test
- 0000080 - [usor | tem | ==
1 2
1 4 Final
~-HHEEEN - ArE:
Performance — X10 Performance
90% links of / %10 \ Realizations
each user Validation Samplings
. erformance
000096 099909 Selected Setting
HEEEEE AEEEEE Position of Best
¢ ¢ ¢
BEST
>
Performance tables of different settings Average Performance Table _

Figure 5: Hyperparameter Learning and Evaluation procedure. We conducted thorough hyper-
parameter learning and evaluation for each method according to this to get the final performance:
(1) split the original dataset for different realizations; (2) for each realization, conduct 10 validation
samplings to determine the best setting and then utilized it for evaluation; (3) report the final average
performance across all realizations.
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F VIEWA RESULTS ON INDIVIDUAL NETWORK

For page limit, results from ViewA evaluated by different metics on each network are reported here.
Since the scale of some datasets can be small, it is of significance to evaluate the performance based
on both top 20 and top 10 performance. Here we can find that NSA is competitive across different

metrics.
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Figure 6: ViewA: Performance evaluated by NDCG on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewA means that these experiments
are conducted treating nodes in set A as users. Error bars represent sample standard deviation (with
degrees of freedom = 1).
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ViewA: Recall@20 on 20% removal test with 10% cross-validation (%)

D3 (267x513, dens=13.21%)

D4 (525x970, dens=11.04%)

D5 (943x1574, dens=5.56%)

D6 (210x204, dens=3.45%)

D7 (223x95, dens=3.00%)

D1(151x34, dens=36.79%) D2 (4957x169, dens=14.37%)

196.844 YA 1.045 H30.713 VARA37.405 A0 706
A06.522 A 7.02 VA 30.672 A7 158 VARZA96 819
96.644 Ak 46888 AR 30 268 77 X #95.794

AR AA96 544 44.997 AR 20 953 36.43 195.512
96.011 H44.664 29.879 AR 6 03 95.508
VAR5 5 AR 456 7 7 #35.417 H95.495
195.789 H44.334 H28.714 434.879 /7 CEEEH

VAR A4 5 533 #44.176 27.71 A4 018 VA5 094
AR 956 42.86 27355 33.836 H94.787
¥87.788 AR 1.511 426,993 32.074 A0 497

80 100 40 50 25 30 35 30 40 80 100

D8 (428x1691, dens=2.34%)

D9 (212x1856, dens=1.14%)

D10 (2744x6121, dens=1.03%)

D11 (445x664, dens=0.99%)

D12 (518x358, dens=0.90%)

D13 (2256x4428, dens=0.15%)

113541

15

ViewA: Recall@10 on 20% removal test with 10% cross-validation (%)

D3 (267x513, dens=13.21%)

D4 (525x970, dens=11.04%)

D5 (943x1574, dens=5.56%)

D6 (210x204, dens=3.45%)

NSA
BSPM
SimpleX
LT-OCF
LightGCN
NGCF
XSimGCL
UltraGCN
SSCF

JCF

D7 (223x95, dens=3.00%)

D1 (151x34, dens=36.79%) D2 (4957x169, dens=14.37%)
//  JEKE / [/ [/ EENUN H20.321 VARV 24.544
79.55 A 32 224 AR 19992 A 20513
78.678 31 88 VAR 19.838 77 e
AR AE18.118 31.178 A 19315 77 e
AR 5.0 H31.167 AR 19257 H23.975
H76.631 AR 30212 18.924 #2337
H76.288 H30.197 H18.198 H23.026
H72.737 29.947 18.077 A4 22.492
YARE71.928 H28.86 A 17.68 21.997
7 70.681 A28 154 H17.074 20.725
25 30 35 15 20 20 25

D8 (428x1691, dens=2.34%)

D9 (212x1856, dens=1.14%)

D10 (2744x6121, dens=1.03%)

D11 (445x664, dens=0.99%)

D12 (518x358, dens=0.90%)

D13 (2256x4428, dens=0.15%)

47.67 4.468
A4 6 536 83.819
AR5 224 H83.717
#45.113 AR 63 657
VARA44.858 A AH53.016
A3 392 A 52.721
142624 52341
H42.299 HB1.956
141.985 H81.176
AR 9.917
40 50 80 100

NSA
BSPM
Simplex
LT-OCF
LightGCN
NGCF
XSimGCL
UltraGCN
SSCF
. CF

Figure 7: ViewA: Performance evaluated by Recall on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewA means that these experiments are

conducted treating nodes in set A as users.
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G VIEWB RESULTS ON INDIVIDUAL NETWORK

In this section, we present the results from ViewB. For time reason, only BSPM and LT-OCF which
are the two model-based methods shows the most potential from ViewA. With 5 tests repeated, NSA

remains competitive on different metrics.
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Figure 8: ViewB: Performance evaluated by NDCG on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewB means that these experiments
are conducted treating nodes in set B as users. Error bars represent sample standard deviation (with

degrees of freedom = 1).
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Figure 9: ViewB: Performance evaluated by Recall on individual dataset. Bars corresponding to
model-based approaches are overlaid with white hatching. *ViewB means that these experiments
are conducted treating nodes in set B as users. Error bars represent sample standard deviation (with
degrees of freedom = 1).
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H NSA WITH FIXED EXPONENT 1 RESULTS FROM VIEWA

In this section, we reported the results of simplified version NSA, with its configurable exponent being
fixed to 1. Surprisingly we found that it performs quite well, with its average ranking consistently

being the first across all the metrics we test.
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Figure 10: ViewA: NSA(exp=1) Performance evaluated by NDCG on individual dataset. Bars
corresponding to model-based approaches are overlaid with white hatching. *ViewA means that these
experiments are conducted treating nodes in set A as users. Error bars represent sample standard
deviation (with degrees of freedom = 1).
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Figure 11: ViewA: NSA(exp=1) Performance evaluated by Recall on individual dataset. Bars
corresponding to model-based approaches are overlaid with white hatching. *ViewA means that these
experiments are conducted treating nodes in set A as users. Error bars represent sample standard
deviation (with degrees of freedom = 1).
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ViewA: Average Ranking by NDCG@10
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Figure 12: ViewA: NSA (exp=1) Average ranking across 13 datasets evaluated by different metrics.
Bars corresponding to model-based approaches are overlaid with white hatching. *ViewB means that
these experiments are conducted treating nodes in set B as users.
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I BROADER IMPACT AND FUTURE WORK

Broader Impact NSA is a link prediction model applicable to recommendation systems and
network modeling tasks. Its simplicity makes it both interpretable and easy to implement and integrate
into existing infrastructures. Potential real-world applications include personalized content delivery
and modeling social connections (e.g., friend suggestions on social platforms). However, like other
link prediction models, NSA may unintentionally amplify existing biases or propagate misinformation,
particularly when deployed without proper safeguards. To mitigate such risks, practitioners should
regularly audit model outputs, monitor their downstream impact in live environments, and incorporate
human feedback mechanisms to ensure responsible use.

Future Work NSA is built upon the principles of memory-based methods, which, while effective
and offering higher interpretability, can be sensitive to network scale, as they often require access to
the entire dataset to aggregate interaction information. In contrast, model-based methods offer better
scalability through iterative processing and compact representations. Future work could focus on
combining NSA with model-based techniques to enhance scalability, exploring sampling strategies to
reduce memory consumption, and developing online or incremental variants of NSA that are suitable
for streaming or dynamically evolving networks. Furthermore, investigating NSA’s robustness and
fairness under adversarial or biased conditions would further strengthen its practical applicability.
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J TIME COMPLEXITY OF NSA

In this section, we’ll explain the time complexity of our method NSA. We’ll start with the basic
definition and explain the time complexity step by step.

J.1

BASIC DEFINITION

e UU: number of users

e I: number of items

J.2 CH SCORING AND MONOPARTITE PROJECTION

CH index The time complexity of CH index on path of length 2 computation is determined by the
cost of computing iLCL and eLCL statistics for the intermediate nodes along those paths. Here we’ll
discuss the time complexity in a general case, where n and m denote the number of nodes and edges
in a network, respectively. d = 2m/n is the average degree.

 Path count. Each length-2 path u — z — v is defined by an intermediate node z connected
to both u and v. The total number of such paths is given by:

#1.2_path = i (d2> = i % =0 (Zn‘; d§>

z=1 z=1

where d,, is the degree of node z. This represents the number of unique unordered two-hop
paths in the network.

* Computation per path. For each length-2 path, CHA computes a score based on the iLCL
and eLCL of the intermediate node 2. This requires checking the neighbors of z against the
local community associated with the pair (u, v), which takes O(d,) time per path.

* Overall time complexity. Multiplying the path count and per-path cost gives the total time

complexity:
0 (Zd§ -dz> =0 <Zd§>
z=1 z=1

We now analyze this quantity under three typical network regimes:

* Sparse, degree-homogeneous: If the graph is Sparse (i.e. d = 2m/n = O(1)) with relatively
uniform degrees (i.e., d, = O(1) for all z), then:

@ (i d§> = 0O(n)

So the overall time complexity of O(n).

* Sparse, degree-heterogeneous: TIf the graph is sparse (i.e., d = O(1)), but has a skewed
degree distribution (e.g., power law), we can no longer assume d, = O(1) for all nodes.
To handle this case, we apply a relaxation via Holder’s inequality to upper-bound the

3\1/3 .
root-mean-cube degree (% > d‘;) /% in terms of the average degree:

EZCP <n?3. lZdz =n?3.d=0n*3)
nz:l : a nz:l

This relaxation allows us to express the cubic-degree term in the overall complexity as:

O <ZZ:d§> -0 <n <iz_:ld3>) -0 (n <n2/3)3) — On?)

Thus, the overall time complexity in this case is O(n?).
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* Dense graphs: In the worst-case scenario of dense graphs, where d, = O(n) for all nodes,
we obtain: .
> dd=0(@n")
z=1

leading to an overall time complexity of O(n*).

We compute CH index on the whole bipartite network, which means that in our case, n = U + L.

Denominator The computation of denominator is related to common neighbors (C'IV; ;) between
two nodes of same kind. The computation of common neighbors between two nodes of same kind is
implemented by the dot product of the adjacent matrix and its transpose. This procedure is offline
and the results can be reused always. For user based, it’s of time complexity U2, while for item
based it’s of time complexity UI?. Since we want the similarity score on two projected monopartite
networks, we only need to consider U? + I? computations of denominator. The final time complexity
of denominator computation can be O(U?I + UI* + U? + I?) = O(U*I + UI?).

J.3 BIPARTITE SCORING

In this step, we aggregate the similarity scores on two monopartite networks separately to the link
prediction scores. For instance, when we compute the user-based link prediction score, we utilized the
user similarity matrix of size U x U and adjacent matrix of size U X I utilizing sum or normalization
method. For each user-item pair, we compute the score using all the user’s similarity corresponding
to our target user so that the complexity can be U exactly. Hence, the user based link prediction
complexity should be multiplied with all pairs of user-item pair and result in time complexity of
O(U?I). Correspondingly the item based link prediction score time complexity can be of O(UI?).
The total time complexity in this step can be O(U2I + UI?).

J.4 Mix ITEM AND USER SCORES

For each user-item pair, we aggregate user and item score, so that the time complexity is O(UT)

J.5 SUMMARY

Corresponding the different network regime mentioned in section[J.2} we summarize here the overall
time complexity of NSA.

* Sparse, degree-homogeneous: The dominant component of the time complexity is the
collaborative filtering mechanism, result in overall complexity of O(U?%I + UT?).

* Sparse, degree-heterogeneous: The dominant component of the time complexity is CH score
computation, result in overall complexity of O((U + I)3).

* Dense graphs: The dominant component of the time complexity is CH score computation,
result in overall complexity of O((U + I)*) which is rare for recommendation system tasks.
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Table 5: Summary of Running Time. All reported times are averaged over three runs. Experiments
for memory-based methods were conducted on an AMD Ryzen Threadripper PRO 3995WX CPU
with 64 physical cores, while other methods were conducted on an NVIDIA RTX A6000 GPU. All
time values are expressed in seconds (s).

Dataset NSA SSCF JCF NGCF LightGCN UltraGCN SimpleX LT-OCF BSPM
aidorganizations_issues 0.06+ 0.00  0.06+ 0.00  0.06+ 0.00 28.90+ 1.52 1130+ 0.07  35.80+0.74 2239+ 0.42 13.41+0.09 17.31+£0.27
export 5.40+ 0.01 1.55+ 0.00 1.20£0.00 112981+ 8.55 43542+ 344 27743+£2.16 267.52+0.63 617.89+31.94 22.75+0.03
industries_eductionfields IPUMS | 0.35+0.00  0.344+0.00  0.404 0.00 150.53+£2.49  67.50+£0.54 75344037  34.17£0.94 96.63+ 0.85 17.99+0.13
congressmen_topics_US 1.21+0.01 1.24+ 0.00 1.4140.02 340444+ 1.96  209.35+230 157.58+ 1.26 113.68+ 3.61 269.45+4.39  18.97+0.20
users_movies_movielens100k 2.90+0.00  3.15+0.01 3.65+£0.01  477.04+5.27 288.40+0.68 205.45+2.18 132.38+2.65 402.87+2.50 19.33+0.07
drug_target_ionchannel 2009 0.13£0.00  0.13£0.00  0.124 0.00 70.05+ 2.24 9.85+ 0.37 3558+ 0.70  12.84+0.41 11.10£0.27 17.71£ 0.04
drug_target. GPCR 2009 0.09£0.00  0.09£0.00  0.094 0.00 39.53+ 1.36 6.98+ 0.06 34.92+ 1.14 13.8540.95 8.58+ 0.13 17.8740.13
occupations_tasks_ ONET 1.32+ 0.00 1.51£0.00  1.7640.01 141.58+ 0.41 61.06+£0.37 7630+ 047  63.22+2.62 83.36+£0.36  17.91+0.12
tfs_genes_regulation_ecoli 0.65+ 0.00 1.00+0.00  0.5740.01 8275+ 0.23 19.40+£0.13  41.33+0.54  24.49+0.93 23.85+£0.11 18.04+ 0.05
amazon-product 26.81£0.12  25.674+0.05 2525+ 0.14  924.45+ 648  600.66+ 1.88 385.63+ 1.44 394.01£227  836.37+4.80 22.19+ 0.05
drug_target_enzyme_2009 0.37+£0.00  0.54+0.00  0.304 0.00 64.72+ 0.05 14.46+0.20 3943+ 1.12 12.96+ 0.24 19.76+0.14 1770+ 0.11
drug_target HQ 2014 0.32+0.00  0.43+0.00  0.304 0.00 67.52+ 0.36 1033+ 0.12  35.92+ 1.32 18.43+0.59 12.29+0.27 17.83+ 0.09
drug_target_moesm4_esm 12.30£0.10  16.36+ 0.04  11.66+0.01  135.00£2.90  60.33+0.11  74.57+0.37  58.64+ 1.48 85.20+ 0.63 18.85+ 0.07

Table 6: Running time of NSA with different number of configurations tested. The NSA (avg.
over settings) column reports the running time of NSA when multiple configurations tested. The
value reported is based on second (s), 3 times average with standard error.

Dataset NSA NSA (avg. over settings)

D1 0.06+0.00 0.04+0.00
D2 5.40+0.01 0.89+0.00
D3 0.35+0.00 0.26+0.00
D4 1.21+0.01 0.89+0.00
D5 2.90+0.00 2.35+0.01
D6 0.13+0.00 0.09+0.00
D7 0.09+0.00 0.07+0.00
D8 1.32+0.00 1.15+0.00
D9 0.65+0.00 0.48+0.00
D10 26.81+0.12 21.52+0.05
D11 0.37+0.00 0.27+0.00
D12 0.32+0.00 0.24+0.00
D13 12.30+0.10 9.95+0.02

K EXPERIMENTAL TIME

In this section, we listed the running time of each method on different datasets with one hyperparam-
eter setting in Table 5]

Moreover, NSA, as a memory-based method, benefits from reusing computational components
efficiently during validation. To be specific, when searching hyperparameter settings, instead of
training from scratch several times as model-based methods, NSA could simply reuse the components
when changing hyperparameters like the mixing parameter. Statistically, we report the comparison
in Table [6] between time of NSA with 1 configuration tested and average time of NSA with 10
configurations tested, which is often the case during validation. It shows that the running time
averaged over settings of NSA is improved as expected for the component reusage which would
benefit a lot the validation process.
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Table 7: Peak memory usage of different methods. The reported values in the table are based on
MB, measured by “/usr/bin/time -v”.

NSA SSCF JCF BSPM LightGCN LT-OCF NGCF SimpleX UltraGCN

D1 639 585 594 6352 5397 5394 1201 4958 2705
D2 1955 684 674 6330 5388 5421 1726 10099 2707
D3 717 586 582 6352 5404 5399 1236 5567 2704
D4 828 591 592 6350 5391 5424 1281 7020 2713
D5 1098 593 585 6344 5381 5408 1317 8058 2710
D6 676 587 585 6334 5385 5403 1232 4943 2707
D7 656 587 595 6351 5405 5400 1201 4919 2707
D8 917 593 590 6316 5381 5397 1245 5545 2701
D9 863 594 585 6335 5387 5411 1252 5080 2705
D10 6804 3110 3112 6450 5413 5430 1737 11587 2764
D11 754 586 586 6365 5393 5398 1230 5010 2702
D12 724 586 594 6339 5395 5398 1236 4955 2717
D13 3444 1970 1964 6343 5393 5418 1257 5502 2718

L TiME COMPLEXITY OF BASELINES

L.1 DEFINITION
For clarification, all the mathematical symbol mentioned below are defined here.

* U: number of users

* I: number of items

* E: number of edges in the network

* L: number of layers for neural-network based methods
e D: dimension of embedding in model-based methods

* N: number of negative samples

* K: number of sampling similar neighbors

 T: number of epochs for neural-network based methods

L.2 TIME COMPLEXITY

We list below the time complexities of the baseline methods, based on their respective descriptions in
the original papers.

. NGCF:(’)(Tx L xE x DQ)
* LightGCN: Not declared
« UltraGCN: O(T x Ex (1+K + N) x DQ)

» SimpleX: Not declared
* LT-OCF: Not declared
* BSPM: Not declared
 SSCF: O(U?I + UI?)
« ICF: O(U*I + UI?)

M MEMORY USAGE OF BASELINES

In this section, we report the memory usage of different methods in Table[7] Results show NSA
consumes less memory than many model-based methods on 13 middle-scale datasets.
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Table 8: Comparison between CH theory based NSA and CN based NSA. The table consists
of performance evaluated by different metrics on different datasets of NSA based on CH theory or
commen neighbors.

Recall@10 Recall@20 NDCG@10 NDCG @20
NSA NSA(CN) NSA NSA(CN) NSA NSA(CN) NSA NSA(CN)
aidorganizations _issues 0.7955 £0.0201  0.7619 £ 0.0325 | 0.9579 £0.0183  0.9497 £ 0.0175 | 0.5968 £ 0.0139  0.5688 + 0.0232 | 0.6504 £ 0.0129 0.6272 + 0.0182
congressmen_topics _US 0.1892 £ 0.0039  0.0434 +£0.0134 | 0.2988 + 0.0048  0.0339 +0.0358 | 0.4057 £ 0.0078 0.0579 +0.0286 | 0.3785 £ 0.0072 0.0704 + 0.0348
drug_target GPCR 2009 0.9406 £ 0.0184  0.9315 +0.0235 | 0.9551£0.0147 0.9525+0.0178 | 0.8325£0.0159 0.8151+0.0192 | 0.8351£0.0140 0.8212+0.0154
drug_target HQ_2014 0.7307 £0.0139  0.7143 £0.0148 | 0.7863 +£0.0145 0.7802 +0.0165 | 0.5658 +0.0142  0.5424 +0.0192 | 0.5805 +0.0117 0.5582 + 0.0208

drug_target_enzyme_2009 0.8447 £0.0206  0.8162 +0.0242 | 0.8852+0.0168 0.8781 +0.0156 | 0.8123 £ 0.0185 0.8039 £ 0.0329 | 0.8265 +0.0156 0.8253 +0.0172
drug_target_ionchannel 2009 0.9048 +0.0142  0.8724 +0.0408 | 0.9346 +0.0187 0.9144 +0.0171 | 0.8654 +0.0178 0.8325 +0.0186 | 0.8681 +0.0193 0.8418 + 0.0235
drug_target_moesm4_esm 0.6566 = 0.0115 | 0.7391 £ 0.0055 0.7156 £ 0.0081 | 0.5766 + 0.0089 0.5469 + 0.0096 | 0.5922 + 0.0080 0.5637 + 0.0081
industries_eductionfields_ IPUMS 0.0887 £ 0.0620 | 0.4500 +0.0095 0.1290 +0.0700 | 0.4811 + 0.0144  0.1470 £ 0.1136 | 0.4732+0.0123 0.1580 +0.1151

0.3118 + 0.0122

occupations_tasks ONET 0.4767 £ 0.0118  0.2187 £0.0168 | 0.6247 +0.0083  0.3234 £ 0.0098 | 0.5279 £ 0.0090 0.2336 +0.0195 | 0.5682 + 0.0078 0.2742 +0.0158
tfs_genes_regulation_ecoli 0.5585 £ 0.0220  0.4886 +0.0329 | 0.6496 + 0.0284  0.5820 + 0.0259 | 0.4976 £ 0.0268 0.4563 + 0.0305 | 0.5224 +0.0293  0.4680 + 0.0315
users_movies_movielens100k 0.2200 £ 0.0040  0.1940 +0.0051 | 0.3384 +0.0083  0.2225 +0.1027 | 0.3548 £ 0.0065 0.3120 +0.0076 | 0.3588 +0.0061 0.3131 +0.0057
export 0.0521 £ 0.0030  0.0169 +0.0063 | 0.0837 +0.0041 0.0233 +0.0028 | 0.4596 £ 0.0111  0.1370 £ 0.0062 | 0.4190 + 0.0068 0.1300 = 0.0036
amazon-product 0.1246 + 0.0022  0.1131+0.0029 | 0.1796 + 0.0020  0.1625 + 0.0022 | 0.1154 £ 0.0020  0.1042 +0.0017 | 0.1321 +0.0018  0.1193 +0.0017

N THE EFFECTIVENESS OF CH THEORY OVER SIMPLE PARADIGM

In this work, we bridge the task of link prediction and recommendation using network science theory
Cannistraci-Hebb theory, which captures the local-community structure inside of real-world networks
and utilizes it for prediction. Instead of using existing trivial similarity measures, we introduce CH
index to better build the mechanism and through the experimental results in the article, it shows that
NSA shows stable and excellent ability in terms of recommendation performance. To better prove
that NSA’s take advantage of its intrinsic physic logic instead of the existing traditional scheme of
collaborative filtering, we conducted ablation test, preserve the hyperparameter settings searched of
NSA and replace the similarity measure from CH-index to CN (common neighbors, which is a basic
similarity measure in the field of network science). Table[§]shows the results of with average results
of 10 test splits on different datasets. It shows that NSA shows a clear advantage in terms of all the
metrics. This could further prove that utilizing simple structure, NSA has its strong improvement
over others with its root physic description of real-world networks.

O USAGE OF LLM

In this work, Large Language Model (LLM) is primarily used to assist with tasks such as text refine-
ment, summarization, and improving the clarity and readability of the manuscript. The LLM helps
streamline writing and editing, ensuring that technical content is clearly and accurately presented.
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