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Abstract
Offline multi-agent reinforcement learning
(MARL) is increasingly recognized as crucial
for effectively deploying RL algorithms in
environments where real-time interaction is
impractical, risky, or costly. In the offline
setting, learning from a static dataset of past
interactions allows for the development of robust
and safe policies without the need for live data
collection, which can be fraught with challenges.
Building on this foundational importance, we
present EAQ, Episodes Augmentation guided
by Q-total loss, a novel approach for offline
MARL framework utilizing diffusion models.
EAQ integrates the Q-total function directly into
the diffusion model as a guidance to maximize
the global returns in an episode, eliminating the
need for separate training. Our focus primarily
lies on cooperative scenarios, where agents are
required to act collectively towards achieving
a shared goal—essentially, maximizing global
returns. Consequently, we demonstrate that our
episodes augmentation in a collaborative manner
significantly boosts offline MARL algorithm
compared to the original dataset, improving the
normalized return by +17.3% and +12.9% for
medium and poor behavioral policies in SMAC
simulator, respectively.

1. Introduction
Offline multi-agent reinforcement learning (MARL) (Levine
et al., 2020) tackles the difficulties of implementing learning
algorithms in situations where immediate interaction is in-
feasible or carries substantial dangers, such as operating in
safety-critical systems like autonomous driving and robotic
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Figure 1. (a) EAQ enhances the dataset to involve cooperative be-
haviors among agents. For instance, in a scenario like 3marines vs
3marines in StarCraft2, it encourages agents to sequentially target
and attack a single enemy, which is a good strategy to win. (b)
illustrates the proportion of focusing fire actions on a single enemy
when all agents choose to attack. Compared to the original dataset,
EAQ has successfully increased the frequency of cooperative be-
haviors, towards achieving a shared goal.

surgery. This approach, which emphasizes the utilization
of a collection of past interaction data, presents a promis-
ing alternative to conventional MARL methods that rely on
real-time data. By relying on pre-existing datasets, offline
MARL enables the development of robust decision-making
strategies without the need to continuously gather new data
in potentially hazardous situations.

However, collecting static data for offline MARL poses sig-
nificant challenges, often requiring substantial time, exper-
tise, and financial resources. This process typically involves
human experts to check the relevance and accuracy of data,
which not only makes it costly but also time-consuming.
Hence, such static datasets usually lack the variability and
complexity of real-world scenarios, resulting in a limited
range of experiences for training MARL algorithms. This
may lead to overfitting to the training data and poor gen-
eralization in actual environments, ultimately stifling the
learning process and restricting the potential of MARL al-
gorithms to adapt effectively to real-world conditions.

In order to tackle these problems, Laskin et al. (2020) and
Sinha et al. (2022) have proposed the use of data augmenta-
tion techniques in RL, which include introducing random
variables into the original state space. The denoising diffu-
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sion probablistic model, proposed by Ho et al. (2020), rec-
ommends the use of data augmentation in single-agent RL
and has been supported by the studies of Lu et al. (2024); He
et al. (2024). Yet, data augmentation strategies for MARL
remain underexplored compared to the field of single-agent
RL, although addressing data scarcity and efficiency is par-
ticularly crucial in offline MARL given its complex envi-
ronments and interactions between multiple agents. In this
paper, we introduce a novel episodes augmentation method,
named as EAQ, simplifying the training architecture while
significantly enhancing performance through three primary
contributions:

Pioneering episodes augmentation for MARL: We com-
pile an offline dataset by incorporating multi-agent trajec-
tories, including observations, actions, global rewards, and
terminal states, formatted for a Conv1D-based diffusion
model. As detailed in Section 3, we describe our approach
for effectively synthesizing episodes. To the best of our
knowledge, our work is the first to propose a method for
augmenting episodes specifically within the context of of-
fline MARL. By identifying and addressing the need for
enriched training scenarios, this study opens new avenues
for data-centric research and applications in MARL.

Cooperative trajectories augmentation: Based on the
prepared data, we guide our diffusion models to augment
trajectories to be cooperative, i.e., exhibiting higher state-
action values, with Q-total loss. This targeted approach
ensures that the augmented trajectories are not only diverse
but also strategically cooperative, enhancing the learning
efficacy and performance of MARL algorithms in com-
plex scenarios. Our findings indicate that our augmenta-
tion method, EAQ, promotes increased cooperative behavior
among agents. Figure 1 depicts the SMAC (Samvelyan
et al., 2019) scenario (3m vs 3m), where we observe that
EAQ exhibits a significant rise in the cooperative actions
among agents—represented as all agents attacking a single
enemy to achieve maximum global returns.

Simplification of model architecture: Q-total loss guid-
ance (Wang et al., 2023; Ada et al., 2024; Kang et al., 2024;
Chen et al., 2024; Li et al., 2023a) directly optimizes the
diffusion model to maximize the expected cumulative re-
wards. This ensures that the diffusion model aligns closely
with the objective function of RL, which is to learn from
the reward function effectively. However, guiding with Q-
total loss also requires a Q-function estimator Qtot

θ (ot,at)
to be trained separately (Wang et al., 2023; Ada et al., 2024;
Kang et al., 2024; Chen et al., 2024; Li et al., 2023a). In
contrast, our method utilizes only a single diffusion model
for episodes augmentation, eliminating the need for estimat-
ing Q-function. This not only simplifies the overall model
architecture but also reduces the computational overhead.

2. Preliminaries
2.1. Offline multi-agent reinforcement learning

Offline multi-agent reinforcement learning (offline MARL)
represents an integration of the unique dynamics and com-
plexities of MARL with distinctive methods and constraints
inherent in the offline RL. This integration entails a range
of challenges and leverages combined techniques from both
domains to address the intricacies of learning and decision-
making in multi-agent environments without the require-
ment of real-time data collection.

Offline MARL is a Decentralized-Partially Observable
Markov Decision Process (Dec-POMDP). The frame-
work of Dec-POMDP is described by a tuple G :=<
S,A, P, r,Ω, O,N, γ >. In this context, s ∈ S denotes
all possible environmental states and configurations for the
system. a ∈ A represents the agents’ actions, which may
change the environment with specific probability. The tran-
sition function, P (s′ | s, a): S×A×S′ → [0, 1], determines
the probability distribution of which state follows the cur-
rent state after an agent’s action. The reward function r
measures the immediate payoff after an action in a specific
state, assessing action’s effectiveness. Furthermore, Ω is the
observation function which satisfy Ω(s, a) : S × A → O
where O is the observation space. N represents the number
of environmental agents. The discount factor γ determines
the importance of future rewards over immediate ones, af-
fecting the agents’ long-term strategies. Each agent acts
based on its own observations and the shared goal of maxi-
mizing cumulative sum of rewards

∑T
t=0 γ

trt. To express
the collective observations and actions from all agents at
time step t, we utilize bold notation ot and at.

In our setup, agents are trained with a fixed dataset D :=
{τ1, τ2, ..., τE}, where the trajectory τ is composed of se-
quential transitions (ot,at, rt, done) where each refers to
observation, action, and reward at timestep t from multiple
agents and E is the number of trajectories. Generally, the
policy is trained by maximizing the expectation of cumu-
lative discounted global reward E

[∑T
t=0 γ

tr(ot,at)
]

(Sut-
ton & Barto, 2018). Challenges specific to offline MARL
dataset include (1) handling data from a scarce dataset,
which cannot cover all the state-action space that increases
exponentially as the number of agents grows, (2) mitigat-
ing non-stationarity in the environment due to the evolving
strategies of other agents, and (3) deriving insights from
possibly sub-optimal and exploratory past actions of these
agents.

2.2. Diffusion models

Diffusion models (Ho et al., 2020; Song et al., 2020) are
generative models known for producing high-quality sam-
ples especially in vision domain. Recently, several works
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have applied diffusion models to RL tasks such as policy
learning (Wang et al., 2023; Kang et al., 2024; Ada et al.,
2024; Chen et al., 2023; Li et al., 2023b), planning (Janner
et al., 2022; Liang et al., 2023), and data synthesizing (Lu
et al., 2024; He et al., 2024; Li, 2023; Ni et al., 2023) uti-
lizing their capabilities to capture the data distribution and
powerful expressiveness.

Diffusion models operate through two main phases: the
forward noising process and the reverse denoising process.
In the forward phase, data samples x0 from the original dis-
tribution q(x0) are progressively transformed into Gaussian
noise N (0, I) over a series of diffusion steps k by adding
i.i.d. Gaussian noise with a standard deviation σ. The trans-
formation at each step according to a variance schedule
β1, ..., βK is given by:

q(x1:K |x0) :=
K∏

k=1

q(xk|xk−1) (1)

In the reverse phase, the model learns to reconstruct the
original data from the noised starting point p(xK) =
N (xK ;0, I). This process is modeled by:

pθ(xk−1|xk) := N (xk−1;µθ(xk, k),Σθ(xk, k)), (2)

where µθ(xk, k) and Σθ(xk, k) are functions parameter-
ized by neural networks, representing the mean and co-
variance of the Gaussian distribution at each reverse step.
Finally, training is performed via optimizing the variational
lower bound on negative log likelihood:

E[logpθ(xo)] ≥ Eq[log
pθ(x0:T )

q(x1:T |x0)
] (3)

In this paper, we denote trajectory τk as
√
ᾱkτ0+

√
1− ᾱkϵ

where αk := 1− βk and ᾱk :=
∏k

s=1 αs, where τ0 refers
the trajectory which is not corrupted with gaussian noise.
By leveraging diffusion models to planning domain, Zhu
et al. (2023); Li et al. (2023a) could significantly improve
their performance with MARL algorithms.

2.3. Data synthesis in RL

Conventional data augmentation methods in RL typically
introduce minor perturbations to states to maintain consis-
tency with the environment dynamics (Laskin et al., 2020;
Sinha et al., 2022). However, diffusion models, commonly
used in computer vision to create synthetic data, are well-
suited for addressing data scarcity in the RL datasets and
offer a more robust approach by learning the entire distri-
bution from the actual dataset, Dreal. Lu et al. (2024) first
parameterize and learn the data distribution ρθ(τ) from Dreal,
and then generate the desired synthetic data, represented

as Dsyn = {τ ∼ ρθ(τ)}. The resulting composite dataset,
D = Dreal ∪ Dsyn, is then utilized for policy learning.

In online settings, ongoing interaction between agent and en-
vironment facilitates a cyclical updating mechanism where
both the diffusion model and the policy itself are iteratively
refined. Such a dynamic process promotes continual en-
hancements in the policy’s decision-making capabilities and
the diffusion model’s data generation accuracy. The ability
to adapt and improve continuously is crucial for maintaining
relevance and effectiveness in changing environments.

Data augmentation strategies for MARL are not as advanced
as those developed for single-agent RL. Addressing this dis-
crepancy is particularly essential given the complex and
multifaceted dynamics inherent in MARL systems, where
multiple agents interact within a shared space. These interac-
tions can significantly complicate the training process, mak-
ing the development of robust data augmentation techniques
vital. In offline settings, where real-time data collection
is not feasible, the scarcity of diverse and comprehensive
datasets becomes a critical issue. Effective data augmenta-
tion for MARL is necessitated to simulate a wider range of
scenarios and interactions, enhancing the model’s ability to
generalize from limited data.

3. Synthesizing Multi-Agent Offline Data
In the realm of synthesizing data for RL, methodologies
can generally be categorized into two primary classes: (1)
Purturbation on state space (Laskin et al., 2020; Sinha et al.,
2022) and (2) Generative models (Lu et al., 2024; He et al.,
2024). Our approach falls within the generative class, which
focuses on creating new data points through models that
learn the underlying distribution of the dataset. For that rea-
son, generative models are more advantageous to highlight
the diversity of the data rather than merely increasing the
quantity by making the data similar.

One of the key challenges in MARL data augmentation is
the complexity associated with handling data from multiple
agents. The difficulties primarily arise from two main areas:
(1) integration of multi-agent data which is often unclear
due to the intricate relationships and dependencies between
agents’ actions and states; and (2) development of methods
to enhance the cooperativeness of episodes, which is crucial
for scenarios where agents need to work together towards
a common goal. To address these challenges, we devise
specific strategies as outlined below.

Integration of agents’ features. We have established a
method to efficiently merge attributes from numerous agents,
guaranteeing that the data accurately represents the interac-
tions between the agents. This entails employing sophisti-
cated aggregation techniques that preserve the integrity and
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context of every agent’s actions and observations, enabling a
comprehensive perspective of the multi-agent environment.

Enhancing episode cooperativeness. We focus on gen-
erating the episodes to foster more cooperative interactions
among agents. This is achieved through the use of Q-total
loss directly into the diffusion loss. By adpoting the cumu-
lative sum of reward given all agents’ current observation
and action, generally denoted as Qtot(ot,at) in RL domain,
we promote the generative model to synthesize the episodes
to be more cooperative direction, which is key to improving
the overall effectiveness of the training episodes.

In the rest of this section, we present how we devised novel
methods for synthesizing pre-existing MARL data, with
the goal of improving the quality of offline datasets. Our
method use a Conv1D-based diffusion model to create the
fundamental elements of MARL episodes τ : observations
ot, actions at, rewards rt, terminal states donet, and total
Q-values Qtot(ot,at) (we will denote this as Qtot

t for sim-
plicity) which refers the sum of cumulative rewards given
the current state and action until the episode ends, named as
rewards-to-go in RL domain. We augment the episodes to
be more cooperative by guiding with Qtot

t .

We clarify our analytical approach and its implementation
in section 3.1 and 3.2, illustrating how these strategies are
used with MARL data. Furthermore, we present empirical
evidence of substantial performance improvement when em-
ploying these enhanced datasets with offline MARL meth-
ods, as demonstrated in Table 1.

3.1. Training data preparation

In this section, we describe how we prepare training data,
which involves reformatting the original data into a specific
structure for diffusion model with Conv1D. The data struc-
ture is reformatted as the size of (B, F, T), serving as the
input format for our model: Batch size refers to the number
of episodes included in the given dataset D, Feature length
represents the combined length of the feature vectors for
all agents, and Time steps indicate the maximum duration
of any episode within the dataset, D. If the episode ends
before the maximum time step in this dataset, then its fea-
ture values are padded with 0. Our dataset exhibits high
multi-modality, consisting of diverse range of features from
multiple agents that include both continuous and discrete
values, as shown in Figure 2.

To address the discrete action space, we convert discrete
actions into a one-hot encoding format, as depicted in Figure
2. In the last few dimensions of the feature space, we append
several critical pieces of information:

• Global reward rglobal
t given to the agents at time t.

• Total state-action value Qtot(ot,at) evaluating the cho-

sen actions’ value given the states, particularly used for
guiding generated episodes to be cooperative.

• Episode termination state indicating whether the
episode terminates at the current step. We mark it with 1
if the episodes ends, or 0 otherwise.

Then, our episode data reformatted for training is shaped as:

τ0 :=



o10 o11 · · · o1T

a10 a11 · · · a1T

...
. . . . . .

...

oN0 oN1 · · · oNT

aN0 aN1 · · · aNT

rglobal0 rglobal1 · · · rglobalT

Qtot
0 Qtot

1 · · · Qtot
T

done0 done1 · · · doneT


, (4)

where the superscript and subscript of observation ont and
action ant denote the agent’s index and the time step of
the episode. The details on the each value is deployed
in the Figure 2. This approach allows our model to per-
form observation learning, policy learning, reward learning,
and even state-action value learning. We use only a dif-
fusion model for these tasks, which significantly reduces
the complexity of training and sampling processes. This
streamlined approach ensures our model to efficiently learn
the pre-collected trajectories distribution, while guiding its
episodes synthesis in a cooperative manner. The detailed
specifications for the dataset D is presented in Section 4.3.

3.2. Implicit Qtot loss guidance augmentation

In training session, we train Qtot(ot, at) whose learning
target is sum of reward given the current state and action
until the episode ends, named as reward-to-go in RL do-
main, which can be calculated given the dataset. The reason
why we utilize the reward to go is that it indicates the un-
biased estimator of the state-action value from the current
timestep, defined by Q(ot, at) = E[ΣT

t′=tγ
t′−tr(o, a)|o =

ot′ , a = at′ ]. From this, we can implicitly train our
diffusion model to make more cooperative scenarios by
maximizing Qfθ(τk,k)(o, a), which can be represented as:
argmaxfθ Qfθ(τk,k)(o, a), where fθ is diffusion model and
Qfθ(τk,k)(o, a) is regarded as the estimator of Qtot

t generated
from the diffusion model as shown in Figure 2 (b).

In this context, we optimize the diffusion model with the loss
Ek∈U [1,T ],τ0∈B∼D[∥τ0 − fθ(τk, k)∥2] to predict the start
trajectory τ0, not just like DDPM (Ho et al., 2020) which
predict the noise ϵ with the loss Ek∈U [1,T ],τ0∈B∼D[∥ϵ −
ϵθ(τk, k)∥2]. These two formulations are interchangeable
and are both widely used in diffusion models (Ramesh et al.,
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Figure 2. Our proposed algorithm architecture for MARL episodes augmentation. (a) represents the example of MARL offline dataset
based on SMAC (Samvelyan et al., 2019) environments at time step = t. There are two teams that have to kill each other to win the
battle. Here, the actions are in the discrete space such as digit which is converted into one-hot encoding format. (b) represents (1) how
our training datasets are prepared and look like, (2) how EAQ is trained under the guidance of Qtot

t and (3) how highly the values in the
datasets is multi-modal.

2022). Our diffusion loss function to predicting the start
trajectory is for utilizing the Qtot

t as target values with the
estimator of Qfθ(τk,k)(o, a) in the training phase, simulta-
neously maximizing the estimator. If we predict the noise
ϵθ, then we cannot optimize the Qfθ(τk,k)(o, a) to be max-
imized in the training steps otherwise, it will require addi-
tional model to predict the Qtot. Then, the final loss function
with diffusion model is given by:

L(θ) = Ldiffusion + λLQtot

= Ek∈U [1,K],τ0∈B∼D[∥τ0 − fθ(τk, k)∥2 (5)

+ λ

[
max
τ0∈B

Qτ0(o, a)−Qfθ(τk,k)(o, a)
]
≥0

]

where maxτ0∈B Qτ0(o, a) is the maximum Q-value empir-
ically obtained from the minibatch B. λ is a balancing
hyperparameter, and Qτ0(o, a) is an expectation of Qtot

t in
an episodes represented as 1

T Σ
t=T
t=0 Q

tot
t . We define the upper

bound of Qfθ(τk,k)(o, a) to be maxτ0∈B Qτ0(o, a) in the
minibatch B for the stable training, otherwise the value gen-
erated by Qfθ(τk,k)(o, a) can explode to the infinity value
by the reason that we maximize the Qfθ(τk,k)(o, a). The
logic to train EAQ is explained in Algorithm 1.

3.3. Visualization of augmented dataset

We wonder if EAQ is indeed beneficial to augment the data
in the perspective of variability and cooperativeness. Thus,
we raise a question: “Does EAQ-generated dataset encom-

Algorithm 1 EAQ
Given: dataset episodesN ∈ Dreal
Set: hyperparameter λ
Calculate the reward-to-go in the episodes.
Transform D into (B, F, T) shaped tensor.
/* Training Process */
repeat

x0 ∼ q(x0)
k ∼ Uniform({1, ...,K})
Compute the loss
Ldiffusion = ∥τ0 − fθ(τk, k)∥2
LQtot =

[
maxτ0∈B Qτ0(o, a)−Qfθ(τk,k)(o, a)

]
≥0

L(θ) = Ek∈U [1,K],τ0∈B∼D[Ldiffusion + λLQtot ]
until converged
/* Sampling Process */
Set: Upsampling scale S
Generate episodesN×S ∈ Dsyn
Daug = Dreal ∪ Dsyn

pass a broader range of states than the original dataset?”
The cooperativeness of augmented data by EAQ has been
demonstrated in Section 1 with Figure 1. To validate the
variability of the augmented data, we map the observations
of the agents into 2-D space using t-SNE (van der Maaten
& Hinton, 2008) as shown in Figure 3. We find that EAQ
not only follows the true data distribution but also covers
broader range of observations, which shows the fidelity and
variability of EAQ.
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Figure 3. We visualize a t-SNE (van der Maaten & Hinton, 2008)
projection on the observation space of original dataset and EAQ
augmented dataset on several scenarios in SMAC environment.

4. Experiments
We validate EAQ practically with other RL data augmenta-
tion methods based on the offline MARL algorithms. For
the experiments, we consider two variants of offline MARL
algorithms adopted to QMIX (Rashid et al., 2018) with rep-
resentatives of the offline RL baseline: QMIX-CQL (Kumar
et al., 2020) and QMIX-BCQ (Fujimoto et al., 2019). We
upsample the dataset five times more than the original size
and aggregate it as Daug = Dreal ∪ Dsyn.

4.1. Baseline RL algorithms

As aforementioned, we utilize the combined version of
QMIX with CQL and BCQ algorithms implemented by
Formanek et al. (2023). We briefly explain about each algo-
rithm below.

QMIX (Rashid et al., 2018) addresses the challenge of
learning decentralized policies in a centralized end-to-end
fashion, leveraging global state information during training.
It employs a mixing network that estimates the joint action-
value function Qtot

t as a monotonic combination of per-agent
utility functions Qagent

t .

CQL (Kumar et al., 2020) aims to penalize the Q-values of
out-of-distribution actions in the offline data, ensuring that
the Q-function underestimates rather than overestimates. It
learns a Q-function network by minimizing the standard
Bellman error, with an additional regularization term that
penalizes Q-values for actions with low probability under
the data distribution from the offline dataset.

BCQ (Fujimoto et al., 2019) is an offline reinforcement
learning algorithm that mitigates distributional shift by con-
straining the policy to the behavior distribution. It starts by
training a generative model, such as a VAE, on the offline
dataset to capture the action distribution of the behavior
policy conditioned on the states. For a given observation ot,
BCQ samples multiple actions from the generative model’s,
denoted as Gθ, output distribution Gθ(·|ot). It then selects
the action a∗t that maximizes the Q-value Q(ot, at) while
remaining close to the behavior distribution Gθ(at|ot).

4.2. Compared augmentation algorithms

Augmentation in RL remains largely unexplored, particu-
larly in proprioceptive observation-based single-agent RL,
and even more so in the multi-agent RL domain. For the
purposes of comparison with existing augmentation meth-
ods, we utilize RAD (Laskin et al., 2020) as our benchmark
model. Furthermore, to assess the effectiveness of the Qtot

optimization, we evaluate our algorithm without Q-loss op-
timization, which we will refer to as EAQ−Q for simplicity.

RAD-s and RAD-m (Rashid et al., 2018) RAD is a data
augmentation method that multiplies the uniform random
variable z ∼ U [α, β] to the given state s, i.e., s′ = s ∗ z.
Here, we set α and β to be 0.8 and 1.2 respectively. If the
random variable z is single-variate variable, we denote it as
RAD-s, otherwise (multi-variate variable), we denote it as
RAD-m.

4.3. Datasets and environments

We select the simulator StarCraft Multi-Agent Challenges
(SMAC) (Samvelyan et al., 2019) for evaluation of our pro-
posed augmentation methods which is the most popular
environment for the reason of complexity in cooperative-
ness and environments and the pre-collected dataset is from
the open-source website (Formanek et al., 2023). For the
assumption that the pre-collected dataset is small, we delib-
erately downsample the original dataset to be 3% amount
of the pre-collected dataset. We denote the downsampled
dataset as original dataset.

SMAC consists of allies and enemies, where each team must
kill others to win the battle. Allies receive the episode’s
total reward of 20 when they win a battle, as well as small
rewards of 0.05 for killing an enemy and a payout equal to
the amount of damage they dealt to adversaries. To win a
battle, agents must cooperate among themselves to manage
their group behavior, like focusing fire while not overkilling
the enemies, or kiting to lure the enemies and kill them
one by one. We report the results of scenarios 3m vs 3m,
5m vs 6m, 8m vs 8m, 2s3z vs 2s3z and 3s5z vs 3s6z with
sup-optimal policies with return values in an episode.
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Table 1. Returns on each SMAC scenario using CQL and BCQ-based algorithms, reported with mean and standard deviation across 5 runs
for 15,000 training iterations. Each scenario consists of {team} - {quality}, where m, s, and z in team refer to marine, stalker, and zealot,
respectively. The original data quality has medium and poor policy. The best performance is marked with bold.

QMIX-CQL QMIX-BCQ

Scenario original RAD-s RAD-m EAQ−Q EAQ (ours) original RAD-s RAD-m EAQ−Q EAQ (ours)

3m-medium 7.47 ± 6.35 16.90 ± 2.75 15.05 ± 3.11 8.22 ± 5.77 13.70 ± 7.43 5.17 ± 2.76 2.56 ± 1.45 4.56 ± 2.00 4.16 ± 3.27 16.90 ± 2.21

3m-poor 3.81 ± 1.59 2.83 ± 0.85 7.87 ± 6.36 6.95 ± 3.46 10.60 ± 6.25 0.79 ± 0.83 1.35 ± 1.31 0.77 ± 0.32 1.38 ± 0.97 1.59 ± 1.59

5m vs 6m-medium 0.29 ± 0.45 0.05 ± 0.07 0.18 ± 0.31 0.77 ± 0.42 3.75 ± 2.04 3.38 ± 0.43 3.00 ± 0.81 3.52 ± 0.52 2.62 ± 1.87 1.72 ± 1.66

5m vs 6m-poor 0.99 ± 1.21 1.84 ± 1.83 1.73 ± 1.61 6.48 ± 1.39 3.64 ± 2.24 2.01 ± 1.05 1.96 ± 1.27 2.25 ± 1.38 4.00 ± 1.53 4.23 ± 0.70

8m-medium 1.87 ± 0.86 1.24 ± 0.67 1.22 ± 0.70 2.95 ± 1.17 3.59 ± 0.60 1.64 ± 1.10 2.32 ± 0.75 1.60 ± 1.83 4.91 ± 1.34 5.92 ± 5.58

8m-poor 0.35 ± 0.25 0.66 ± 0.62 0.88 ± 0.92 1.41 ± 0.93 1.69 ± 1.69 2.56 ± 0.48 2.75 ± 0.42 2.44 ± 0.41 9.23 ± 2.61 6.06 ± 1.79

2s3z-medium 3.77 ± 0.86 5.98 ± 2.92 5.26 ± 1.48 9.74 ± 2.15 9.05 ± 1.80 6.86 ± 0.84 5.41 ± 1.78 6.57 ± 1.49 5.65 ± 1.68 7.46 ± 2.61

2s3z-poor 5.16 ± 2.71 5.13 ± 1.68 3.30 ± 1.43 6.13 ± 1.26 5.40 ± 3.37 5.20 ± 1.89 5.39 ± 1.33 4.72 ± 0.87 6.61 ± 1.38 7.34 ± 3.90

3s5z vs 3s6z-medium 2.69 ± 1.49 2.81 ± 1.00 3.34 ± 1.37 6.14 ± 2.60 7.17 ± 1.37 6.14 ± 1.86 5.37 ± 1.21 5.47 ± 0.79 6.07 ± 1.22 6.58 ± 2.90

3s5z vs 3s6z-poor 2.87 ± 0.80 2.69 ± 0.42 2.00 ± 0.88 5.16 ± 1.19 5.35 ± 0.74 4.69 ± 1.32 5.48 ± 1.23 5.75 ± 0.40 5.51 ± 0.37 6.37 ± 0.46

AVG-medium 3.22 5.39 5.01 5.56 7.45 4.64 3.73 4.34 4.68 7.72
AVG-poor 2.64 2.63 3.16 5.23 5.34 3.05 3.38 3.19 5.35 5.12

4.4. Diffusion model for EAQ

In our experiments, we selected the Denoising Diffusion
Probabilistic Model (DDPM) detailed by Ho et al. (2020),
which incorporates a Conv1D-layer, to implement EAQ
approach. We adhere to the established DDPM hyperparam-
eters for training and sampling, ensuring consistency across
our processes.

The choice of DDPM is particularly suitable for our pur-
poses due to its robustness and proven effectiveness in gener-
ating high-quality samples. However, it is important to note
that EAQ is versatile and not exclusively limited to DDPM
or its variant DDIM. Our method is compatible with any
diffusion model that can integrate a Conv1D-layer. This
flexibility is advantageous because it allows us the possibil-
ity to experiment with different types of diffusion models,
potentially enhancing our ability to fine-tune the algorithms
according to specific requirements.

4.5. Results

In our comprehensive experiments, we assess the perfor-
mance of two variants of RL algorithms across a spectrum of
datasets that have been enhanced by different augmentation
methods. We report EAQ augmented dataset performance
tuned on the hyperparameter λ among [0.5, 0.1, 0.01]. Our
evaluation spans 10 pre-collected datasets, utilized in con-
junction with 2 distinct RL algorithms, resulting in a total
of 20 unique scenarios being tested. Among these, the EAQ
method demonstrates best performance in 14 out of the 20
tasks, marking a significant improvement in efficacy. Addi-
tionally, EAQ−Q, which does not utilize the maximization
of the Q-function, achieves the best performance in 4 tasks,
illustrating the impact of sophisticated augmentation tech-
niques even without direct Q-function optimization. The
RAD-s method excelled only in the 3m vs 3m scenario.

Overall, the results presented in Table 1 underscore the sig-
nificant advantages offered by our EAQmethod. Particularly,
EAQ has outperformed the baseline dataset by a substantial
margin—17.3% for datasets crafted under a medium policy
datasets, and 12.9% for those under a poor policy datasets,
where the margin is calculated based on the normalized re-
turns (normalized by maximum return 20). These results
not only emphasize the effectiveness of EAQ combined with
original datasets but also highlight its superiority over prior
augmentation methods.

Furthermore, it is intriguing to note that employing EAQ−Q

also results in an enhanced performance compared to both
the original dataset and other state-based augmented datasets
such as RAD-s and RAD-m. This observation is critical as
it suggests that even without explicit optimization of the Q-
values, the inherent capabilities of diffusion models can sig-
nificantly elevate the quality of data augmentation, thereby
boosting algorithm performance across various tasks. This
is because the diffusion model generates new samples with
high fidelity by accurately learning the true data distribution.

Dataset where EAQ does not offer benefits. In our exam-
ination, we observed that when utilizing datasets character-
ized by poor behavioral policies, our algorithm EAQ exhibits
performance levels that are similar to those achieved by the
EAQ−Q method. This is in stark contrast to the results
obtained from datasets with medium behavioral policies,
where EAQ distinctly outperforms other approaches. This
discrepancy in performance can be attributed to the inherent
quality of the datasets being used.

EAQ is designed to maximize the function Qfθ(τk,k)(o, a)
during each epoch, with the upper bound of the maximum Q-
value observed in the minibatch maxτ0∈B Qτ0(o, a). This
strategy is predicated on the assumption that there is po-
tential for improvement in the dataset’s quality through
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the application of our algorithm. However, if the initial
quality of the dataset is exceedingly poor, the ceiling for en-
hancement is significantly lowered. Under such conditions,
even with a considerable increase in the number of gener-
ated episodes, the improvement in dataset quality remains
marginal compared to EAQ−Q.

5. Conclusion and Future Work
In this study, we use a diffusion model as an episodes aug-
mentation module for offline MARL that mitigates the data
scarcity problem. Specifically, we guide the diffusion model
by the implicit Q-loss to generate multi-agent’s coopera-
tive actions, which is found to be effectively deploying a
practical, and cooperativeness-oriented model.

However, there is still room for improvement in EAQ. First,
we need to validate our algorithms across a broader range of
observation and action spaces, such as those involving con-
tinuous actions. Second, we must explore ways to enhance
dataset quality, especially when dealing with extremely poor
behavioral policies. Nevertheless, our approach will work
with any generative models, which we believe could be a
potential future work by applying to the next generation
models like Flow Matching.
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