
Under review as submission to TMLR

CORE-Bench: Fostering the Credibility of Published Research
Through a Computational Reproducibility Agent Benchmark

Anonymous authors
Paper under double-blind review

Abstract

AI agents have the potential to aid users on a variety of consequential tasks, including
conducting scientific research. To spur the development of useful agents, we need bench-
marks that are challenging, but more crucially, directly correspond to real-world tasks of
interest. This paper introduces such a benchmark, designed to measure the accuracy of
AI agents in tackling a crucial yet surprisingly challenging aspect of scientific research:
computational reproducibility. This task, fundamental to the scientific process, involves re-
producing the results of a study using the provided code and data. We introduce CORE-Bench
(Computational Reproducibility Agent Benchmark), a benchmark consisting of 270 tasks
based on 90 scientific papers across three disciplines (computer science, social science, and
medicine). Tasks in CORE-Bench consist of three difficulty levels and include both language-
only and vision-language tasks. We provide an evaluation system to measure the accuracy of
agents in a fast and parallelizable way, saving days of evaluation time for each run compared
to a sequential implementation. We evaluated two baseline agents: the general-purpose
AutoGPT and a task-specific agent called CORE-Agent. We tested both variants using two
underlying language models: GPT-4o and GPT-4o-mini. The best agent achieved an accuracy
of 21% on the hardest level of tasks, showing the vast scope for improvement in automating
routine scientific tasks. Having agents that can reproduce existing work is a necessary step
towards building agents that can conduct novel research and could verify and improve the
performance of other research agents. We hope that CORE-Bench can improve the state of
reproducibility and spur the development of future research agents.

Figure 1: Overview of CORE-Bench. Each task in CORE-Bench requires an agent to reproduce the results
of a research paper given its repository. The agent must install libraries, packages, and dependencies and
run the code. If the code runs successfully, the agent needs to search through all outputs to answer the task
questions. The agent submits a report and is evaluated against the results of a successful reproduction. An
agent successfully completes a task if it correctly answers all questions about a code repository.

1

Under review as submission to TMLR

1 Introduction

An article about computational science in a scientific publication is not the scholarship itself,
it is merely advertising of the scholarship. The actual scholarship is the complete software
development environment and the complete set of instructions which generated the figures.
(Buckheit & Donoho, 1995)

Computational reproducibility, the ability to reproduce the results of a scientific study using the data and
code provided by its authors, is fundamental to scientific research (Medicine, 2019). Yet, recent studies
have documented severe shortcomings in the state of computational reproducibility across fields including
psychology (Hardwicke et al., 2021; Obels et al., 2020; Hardwicke et al., 2018), economics (Gertler et al.,
2018; McCullough et al., 2006), medicine (Naudet et al., 2018), political science (Stockemer et al., 2018), life
sciences (Andrew et al., 2015; Gilbert et al., 2012; Ioannidis et al., 2009), geoscience (Konkol et al., 2019),
and computer science (Belz et al., 2021; Raff, 2019; Collberg & Proebsting, 2016). Even if code and data
accompany a study, reproducing a study’s results can be challenging for many reasons: the software libraries
used might not have their versions specified, researchers could use different machine architectures (ARM vs.
x86) or operating systems (Linux vs. Windows vs. MacOS), old libraries could be incompatible with new
hardware, or there could be inherent variance in the results of a study. To quantify this, we surveyed evidence
for the lack of computational reproducibility across fields, where papers were found to be irreproducible
despite available reproduction materials (summarized in Table 1).

Table 1: Computational reproducibility with data and code available across fields. There is a widespread
issue in scientific research: even when data and code are provided, a significant proportion of studies across
15 diverse fields fail to be computationally reproducible.

Field Paper Stu
dies

re
view

ed

Stu
dies

with

co
m

p. re
p.

er
ro

rs

Finance Pérignon et al. (2024) 1008 484

ML Sinha et al. (2023) 28 10

Multiple Trisovic et al. (2022) 2000 1480

NLP Belz et al. (2021) 549 472

Psychology Hardwicke et al. (2021) 25 16

Psychology Obels et al. (2020) 36 15

Sociology Liu & Salganik (2019) 14 12

ML Raff (2019) 255 82

Psychology Hardwicke et al. (2018) 35 13

Field Paper Stu
dies

re
view

ed

Stu
dies

with

co
m

p. re
p.

er
ro

rs

Economics Gertler et al. (2018) 203 128

Medicine Naudet et al. (2018) 17 3

Political Science Stockemer et al. (2018) 71 21

Multiple Wood et al. (2018) 50 23

Geosciences Konkol et al. (2019) 41 39

Computer Sys. Collberg & Proebsting (2016) 601 311

Biology Andrew et al. (2015) 71 25

Molecular Eco. Gilbert et al. (2012) 30 9

Genetics Ioannidis et al. (2009) 18 10

Economics McCullough et al. (2006) 150 135

Machine learning (ML) is no exception. While introducing the NeurIPS checklist incentivized researchers to
share data and code (Pineau et al., 2021), studies still lack computational reproducibility. To quantify this,
we collected the results of ML reproducibility challenges. The challenges consist of events that incentivize
independent researchers to reproduce the results of studies in top venues. We analyzed the results of the
2022 challenge and found that only 18 of 28 papers that are accompanied by code and data are completely
reproducible. Verifying the computational reproducibility of a paper requires expertise. In some (6/28) cases,
challenge participants could not fully reproduce results despite conversing with the original paper’s authors.

The importance of uncovering and documenting reproducibility issues has been recognized in the ML
community. As an example, reproducibility reports warrant publication in the peer-reviewed ML journal

2

Under review as submission to TMLR

Figure 2: Files and folders in each CodeOcean capsule. Each capsule contains a Readme, Dockerfile,
and instructions on how to use Docker, which we selectively provide to the agent depending on the difficulty
of the task.

Transactions on Machine Learning Research (TMLR),1 and earlier reproducibility challenges recommended
graduate-level ML expertise for preparing reproducibility reports.2

Simultaneously, language models have made significant strides in coding tasks, solving most tasks in
benchmarks such as HumanEval (Chen et al., 2021). However, real-world coding challenges remain difficult
for these models. More recently, the emergence of compound AI systems (Zaharia et al., 2024) has allowed
for the completion of more difficult tasks. For instance, on SWE-bench, a GitHub-based coding issue
benchmark (Jimenez et al., 2023), language models alone achieve less than 5% accuracy, while agents boost
this to over 30%.

Such results have prompted claims that we will soon be able to automate most scientific research, especially
in computationally intensive fields. For instance, one work builds an early-stage framework that uses large
language models to automate the AI research process, from idea generation to paper writing (Lu et al., 2024).
However, designing evaluation schemes is difficult, and the quality of the AI-generated papers has been
questioned (Koppel, 2024). Before agents can automate scientific research, they must be able to reproduce
existing results.

In this paper, we ask: Can AI agents automate computational reproducibility of published scientific
research? We make two main contributions:

• CORE-Bench (Computational Reproducibility Benchmark). CORE-Bench comprises 270 tasks derived
from 90 papers across computer science, social science, and medicine with Python or R codebases.
CORE-Bench evaluates whether agents can reproduce papers that have been verified to be reproducible from
CodeOcean.com, and we created tasks at three different difficulty levels based on available information
in the repository. The benchmark involves diverse skills including coding, shell interaction, retrieval,
and tool use. While many existing benchmarks include Python tasks (Cassano et al., 2022), ours is
one of the first to include tasks in R. Successful task completion may require multiple steps such as
library installation, script execution, retrieval of the results corresponding the right experiment from the
task prompt, and figure interpretation using vision-language models. CORE-Bench’s foundation in public
repositories enables periodic updates of the benchmark tasks, which allows the benchmark to be more
easily updated if it becomes saturated. An agent performing highly on CORE-Bench would have real-world
utility: authors could verify their work’s reproducibility before publication, independent researchers could
more easily replicate past studies, and conference organizers and journal editors could efficiently assess the
reproducibility of submissions.

1In the 2020-2023 editions of the reproducibility challenge, peer-reviewed reproducibility reports were published in the journal
ReScience and https://reproml.org/.

2See: https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html.

3

https://codeocean.com
https://reproml.org/
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html

Under review as submission to TMLR

Table 2: Capsule selection criteria. CodeOcean contains capsules from a variety of disciplines and
programming languages. To create a realistic and robust benchmark, we select capsules from CodeOcean
that adhere to the ten criteria in this table. These criteria ensure that CORE-Bench represents a diverse yet
feasible subset of computational reproducibility tasks.

Criterion Reason
Corresponds to a publicly accessible
research paper. Necessary for the scope of the benchmark.

From the fields of computer science,
medical science, or social science.

Allows for assessing changes in accuracy
due to distribution shifts.

Written in Python or R. Allows for assessing changes in accuracy
due to distribution shifts.

Contains a README file.
Improves construct validity. Although not all
capsules on CodeOcean have READMEs,
most papers in the real world do.

Code runs in under 45 minutes on
CodeOcean’s hardware.

Ensures capsules are reproducible given
our time and hardware constraints.

Requires a relatively simple Bash command
to reproduce the code correctly.

Allows for easy design of an English task
prompt specifying how the code should be
run for tasks where the agent does not have
access to the run file.

Results are adequately labeled with figure,
table, or file names in code output.

Eliminates the need to design task questions
for disorganized or unlabeled data.

Results have low variance when running code. Ensures that all included capsules were
verifiable and reproducible by a human.

Capsule is under 10 GB. Ensures capsules are reproducible given
our resource constraints.

Capsule results can be reproduced when
running the code locally. Ensures capsules are reproducible.

• Evaluation results on baseline agents. We evaluated two agents on CORE-Bench: the generalist
agent AutoGPT (Significant Gravitas, 2024) and a task-specific version we built based on AutoGPT called
CORE-Agent. Results show that generalist agents can be easily adapted to specific tasks, yielding sig-
nificant performance improvements. Our task-specific agent achieved 60% accuracy on the easiest task,
demonstrating potential for automating computational reproducibility. However, performance dropped
to 21% on the hardest task, indicating substantial room for improvement. We ran experiments with two
different language models: GPT-4o and GPT-4o-mini. To facilitate these evaluations, we are releasing
CORE-Bench alongside an evaluation harness specifically designed for this benchmark, making it easy for
developers to evaluate their own agents on the benchmark. This harness runs each task in an isolated
virtual machine, enabling parallelized testing, ensuring reproducibility, and maintaining a clear separation
between benchmark and agent code. The harness dramatically reduces evaluation time from over 20 days
to mere hours by running on hundreds of parallel virtual machines.

2 CORE-Bench: Evaluating agents on computational reproducibility

As the capabilities of AI agents continue to expand, many claims have been made about their ability to
autonomously conduct research (Lu et al., 2024). But reproducing existing research is easier than conducting
new research, especially when new research requires reproducing earlier baselines for comparison.

4

Under review as submission to TMLR

Figure 3: Capsule selection process. We filtered the 5,090 capsules on CodeOcean by discipline, language,
and the ten selection criteria to arrive at the 90 capsules selected for CORE-Bench. We provide a breakdown
of capsules by discipline in Appendix A.4.

Recent work has introduced several benchmarks to evaluate language models and agents on various tasks
related to computer programming and scientific research. These include benchmarks for conducting machine
learning experiments (Huang et al., 2023), research programming (Tian et al., 2024), scientific discovery
(Majumder et al., 2024), performing scientific reasoning and citation tasks (Press et al., 2024; Xu et al., 2024),
and solving real-world programming problems (Zhang et al., 2024). With CORE-Bench, we aim to evaluate
the ability of agents to automate the research reproduction process, a part of the pipeline that hasn’t yet
received attention.

2.1 Benchmark Construction

We decompose the task of verifying computational reproducibility into two sub-tasks: code reproducibility
and result reproducibility. This paper and benchmark focuses on code reproducibility, or running the code and
obtaining the results the capsule is supposed to produce, whether or not those match the results reported in
the paper. code reproducibility is by far the more time consuming part for a human. Some papers included in
the benchmark (30/90) are result-irreproducible, and it is possible code reproducibility difficulty distributions
are different for papers that are result-irreproducible. For the remainder of the paper, when we refer to
“reproducible”, we mean “code-reproducible”.

Verifying code reproducibility requires significant domain expertise and can be labor-intensive, even for
experienced researchers. This makes it particularly challenging to build a benchmark where the reproducibility
of each paper is verified. It can take a few hours to test the reproducibility of a paper in the wild, so verifying
about a hundred papers from diverse fields would be impractical.

To address this, we based our benchmark on CodeOcean capsules (See Figure 2), which are known to be
code-reproducible with little effort (Clyburne-Sherin et al., 2019). We selected a set of 90 reproducible
papers from CodeOcean using the process outlined in Table 2 and Figure 3. We split the dataset into 45
papers for training and 45 for testing. For each paper, we manually created a set of task questions about
the outputs generated from a successful reproduction of the paper (Appendix A.3 provides details on task
question construction). These questions assess whether an agent has correctly executed the code and retrieved
the results. For instance, an agent could be asked to report the test accuracy of a model, an axis label of a
figure, or another reproduced result. Some tasks have a single task question, while others consist of multiple.
We ensure each task has at least one question that cannot be solved by guessing (e.g. a question with an
open-ended numerical answer), and a task is marked as correct only if all of the task questions are answered
correctly, which ensures all tasks cannot be solved by guessing.

5

Under review as submission to TMLR

Table 3: Ladder of difficulty. We created tasks at three distinct difficulty levels for each of the 90 papers.
This translates to 270 tasks and 181 task questions across the three benchmark levels (the number of questions
is less than the total number of tasks because all three difficulty levels consist of the same task questions).
These levels are differentiated by the amount of information provided to the agent for answering the questions
about each paper. CORE-Bench-Hard is the most realistic and akin to the setup an agent would have when
reproducing a paper in the real world. Each difficulty level tests the agent on an expanding set of skills as
the difficulty increases.

Task level Information provided to the agent Agent task

CORE-Bench-Easy

Agent is provided the complete code
output from a successful run of the
code (instead of having to run the
code correctly itself).

Perform information extraction
over the code output to correctly
answer the task questions.

CORE-Bench-Medium

Agent is provided the Dockerfile
required to run the code, alongside
text-based instructions for running
it in a README.

Run the Docker command and
perform information extraction
over the code output.

CORE-Bench-Hard
Agent is provided only the READ-
ME file with instructions and no
Dockerfile.

Install all required libraries and
dependencies, determine (and run)
the correct command to reproduce
the code from the task prompt, and
perform information extraction over
the code output.

We focus on evaluating if agents can automate reproducibility, not verify if papers are reproducible. If agents
score very highly on this benchmark, they could be used as a verifier to check whether other papers are
code-reproducible. CORE-Bench measures the ability of agents to reproduce the results of running the code
associated with the paper correctly (as opposed to verifying whether the results reported in a paper are
consistent with the code), so all tasks must be reproducible that way any failures can be attributed to the
agent. If we included irreproducible capsules, agents would just fail them since the task questions would be
impossible to answer.

2.2 Why use CORE-Bench?

Skills and modalities. Solving the tasks in CORE-Bench requires many skills, including understanding
instructions, debugging code, retrieval, and interpreting results from a wide range of disciplines. The skills
necessary to perform well on CORE-Bench reflect many skills necessary to reproduce new research.

Tasks require interpreting both text and image output from code. The vision-based questions (e.g. “From the
Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.”) require extracting
results from attributes of figures, graphs, plots, or PDF tables. The text-based questions (e.g. “Report the
test accuracy of the neural network after epoch 10.”) include extracting results from command line text, PDF
text, and tables or text in HTML, markdown, or latex. Capsules can have vision-based questions, text-based
questions, or both (See Table A2), and capsules have codebases in either Python or R (See Table A1).

Real-world computational reproducibility tasks. When constructing our benchmark, we focus on
its construct validity, which is about how well a test measures real-world performance (Biderman et al.,
2024; Raji et al., 2021; Kapoor & Narayanan, 2023). CORE-Bench tasks correspond closely to tasks that
researchers must accomplish so that improved performance on the benchmark can directly lead to improved
computational reproducibility norms.

6

Under review as submission to TMLR

(a) Example of task execution pipeline (b) Example of evaluation criteria

Figure 4: During task execution, the agent must interpret the task prompt, set up the code in the capsule,
run the code, and populate the specified result in the provided JSON file. For evaluation, we manually
reproduced each capsule in the benchmark three times. We determine if an agent correctly solves a task if
the agent’s reported results for all questions fall within a 95% prediction interval for every task question
of the results from the three manual runs. Prediction intervals provide a range in which we expect future
observations to fall, accounting for stochasticity in the code outputs (Spence & Stanley, 2016).

First step towards research agents. The first step towards completing new scientific research is the
ability to reproduce existing scientific work. Building agents that excel at reproducibility is a necessary, and
yet more attainable step towards building agents that can conduct novel research.

3 Baseline agents and evaluation setup

We evaluated all agents on CORE-Bench split by difficulty: CORE-Bench-Easy, CORE-Bench-Medium, and
CORE-Bench-Hard.

Baseline agents. We developed and evaluated two variants of the AutoGPT agent (Significant Gravitas,
2024) on the benchmark: AutoGPT, which was not prompted or given any tools specific to CORE-Bench and
the CORE-Agent family of agents, which were prompted and modified for enhanced performance on each of
the three difficulty levels of CORE-Bench.

1. AutoGPT: This agent is largely unmodified from the popular general-purpose AutoGPT agent, but we
created another tool for the agent called query_vision_language_model, which takes as input an image
and a query, and outputs OpenAI API’s response to the image query. This allows the agent to analyze
results in figures and plots3. We included this modification in AutoGPT because the ability to query a
vision language model is not specific to CORE-Bench. Other minor changes can be found in Appendix D.1.

2. CORE-Agent: We built upon AutoGPT to create CORE-Agent, a task-specific variant of AutoGPT, customized
for each level of CORE-Bench4. Our primary change was implementing a programmatic check to ensure the
correct submission and keys of the file reporting the reproduced results (i.e., report.json). In addition, for
each difficulty level, we added specific prompting hints to guide the agent’s behavior, as detailed in Table 4.
These hints address common pitfalls observed during qualitative analysis of agent performance on the
training set. Notably, these adaptations required only a few days of work, with the most time-consuming
aspect being the analysis of failure logs to identify effective prompting strategies.

3We plan to make a pull request to include this feature in the official AutoGPT repository.
4When we refer to CORE-Agent , we refer to the agent customized for that level of the benchmark.

7

Under review as submission to TMLR

Table 4: Primary task-specific modifications to AutoGPT . This table summarizes the modifications
made to create CORE-Agent for each level of difficulty. The modifications listed for CORE-Bench-Easy,
CORE-Bench-Medium, and CORE-Bench-Hard are hints specific to each difficulty level we added to the default
prompt, while the programmatic check of the output report file applies to all levels. Additional modifications
and prompts can be found in Appendix D.2.

Task Level AutoGPT Errors CORE-Agent Modifications
All Task Levels • Not creating a

report.json file
or not including the
correct keys in the file

• Programmatic check of report.json to en-
sure agent submitted the report file with
correct keys

CORE-Bench-
Easy

• Not consistently read-
ing results from PDFs
or HTML

• Extracting information
from the incorrect file
without exploring all
files

• Use pdftotext for text extraction from
PDFs

• Use pdftoppm for extracting results from
tables and figures

• Check full results directory for image files
before querying vision language model

• Prioritize reading ‘output’ or ‘manuscript’
files

• Convert HTML to PDF or PNG before in-
formation extraction

• Print the entire output directory tree and
analyze five most relevant files before us-
ing query_vision_language_model() to
extract information from images

CORE-Bench-
Medium

• execute_shell() tool
did not support environ-
mental variables

• All modifications from CORE-Bench-Easy
• Use absolute paths instead of environmental

variables in execute_shell() command

CORE-Bench-
Hard

• Greedily installing de-
pendencies in response
to code failures, with-
out a plan

• All modifications from CORE-Bench-Easy
and CORE-Bench-Medium

• Determine and install package dependencies
before running code

Models. We ran both AutoGPT and CORE-Agent using GPT-4o-2024-05-13 and GPT-4o-mini-2024-07-18
as LLM backends since the AutoGPT developers recommend the GPT-4 family of models. We included
the smaller GPT-4o-mini-2024-07-18 to better understand the cost-accuracy trade-off. Due to budget
constraints, we had the agents terminate if they incurred API costs of over $4 per task (as Figure 7 shows,
this did not have a major impact on accuracy).

Metrics. We report task accuracy as the main metric, which is the proportion of tasks for which all of
the task questions have been answered correctly. We also report the average cost of the agent, which is the
average API cost of all requests made by each agent.

Evaluation harness. We developed an evaluation harness to run each task of CORE-Bench on an isolated
virtual machine to ensure each task is encapsulated and so we could parralelize evaluating all tasks (See

8

Under review as submission to TMLR

Figure 5: (1) The manager machine creates a VM for each (agent, task) pair and uploads both the capsule
and the agent code to the VM. (2) The manager machine invokes the agent on each of the VMs, so they all
run in parallel. (3) The manager machine downloads the results from the agent off each VM once the agent
indicates task completion, deletes the VM, and locally evaluates all of the results.

Figure 5 and Appendix B). Running each task on a VM, as opposed to a Docker container, allowed us to
standardize hardware access for each agent. The harness can run hundreds of benchmark tasks in parallel on
virtual machine instances, enforcing a clear separation between the benchmark and the agent, and allowing
for the easy development of new agents (AISI, 2024; METR, 2024).

The harness is initialized on a Manager machine, which has the code to run the benchmark and stores the
CORE-Bench dataset. For each task in the benchmark, the Manager creates a Worker instance, copies over
the code for the agent and task capsule, and runs the agent on that instance. When the agent completes
or fails a task, the Manager downloads the results from the Worker, deletes the instance, and evaluates the
results locally. Agent evaluations are performed on the Manager machine. On CORE-Bench, which has 270
tasks and 181 task questions (and a per-task time limit of 2 hours in our evaluation), running each task
sequentially could take over 20 days. Using our evaluation harness took a little over two hours.

4 Results

Overall, CORE-Agent with GPT-4o is the top performing agent on all three levels of the benchmark, solving
60.00% of tasks on CORE-Bench-Easy, 57.78% on CORE-Bench-Medium, but only 21.48% on CORE-Bench-Hard.
We report all results in this section on the test split unless otherwise mentioned, since we used the train split
while developing the agent (see Figure A1 for train set results).

Our results demonstrate that generalist agents can be effectively adapted to specific tasks with minimal
effort, yielding significant performance improvements. For instance, AutoGPT with GPT-4o scored just 6.7%
on CORE-Bench-Hard. The following sections provide a detailed analysis of agent performance and highlight
the potential of adaptable generalist agents for specialized tasks.

4.1 Accuracy varies by difficulty level

Agents generally performed the best on CORE-Bench-Easy, followed by CORE-Bench-Medium and
CORE-Bench-Hard. For instance, CORE-Agent with GPT-4o-mini scored 44.44%, 32.59%, and 16.30% on the
three levels, respectively (See Table 5).

These results are expected, since CORE-Bench-Easy is designed to be the easiest task with the code outputs
already provided in the environment. CORE-Bench-Medium is slightly harder, requiring agents to use a
provided Docker command to replicate the paper’s results. CORE-Bench-Hard is significantly harder, requiring

9

Under review as submission to TMLR

Table 5: Accuracy (pass@1) of CORE-Agent and AutoGPT with gpt-4o-2024-05-13 and
gpt-4o-mini-2024-07-18 by task difficulty on the test set. We ran CORE-Agent three times on
the benchmark to calculate confidence intervals (see Table A4), and therefore report average accuracy across
the three runs. We only ran AutoGPT once due to cost constraints.

Agent Architecture LLM CORE-Bench-Easy CORE-Bench-Medium CORE-Bench-Hard

CORE-Agent
GPT-4o 60.00% 57.78% 21.48%
GPT-4o-mini 44.44% 32.59% 16.30%

AutoGPT
GPT-4o 35.56% 37.78% 6.67%
GPT-4o-mini 8.89% 2.22% 2.22%

agents to install all dependencies and libraries and determine the correct command necessary to reproduce
relevant results.

4.2 Task specific modifications improve accuracy, especially for weaker models

Comparing performance when fixing the LLM model, we observed that AutoGPT’s performance improved
substantially with only slight modifications. This adaptability seems to be particularly advantageous for
weaker LLMs, where small changes provide crucial guardrails and task guidance. With the GPT-4o back-end,
a few modifications to the prompt and the programmatic check of the output format boosted the performance
on CORE-Bench-Easy performance from 35.6% to 60.60%. The differences were even starker when using
GPT-4o-mini: performance improved from 8.9% to 44.44%.

Our results highlight the adaptability of generalist agents, demonstrating significant performance gains from
minimal, task-specific adjustments. We hypothesize that agents that use stronger models in the future will
require even fewer task-specific modifications to perform well on a given task.

4.3 Stronger models lead to higher accuracy despite a lower token budget

We ran AutoGPT and CORE-Agent using both GPT-4o and GPT-4o-mini with an API cost limit of $4. Even
though the per-token cost of GPT-4o-mini is less than 5% that of GPT-4o, which allows for longer sessions
before hitting the cost limit, GPT-4o still outperformed GPT-4o-mini on both agents. Despite having the
same cost limits, GPT-4o-mini powered agents tended to be 3-5x cheaper than GPT-4o agents. In all
settings, the average per-task cost was cheapest on CORE-Bench-Easy, followed by CORE-Bench-Medium and
CORE-Bench-Hard (Figure 6).

To evaluate the impact of our $4 cost limit on performance, we ran CORE-Agent on the CORE-Bench-Hard with
a $10 cost limit on the train set. With the new limit, GPT-4o-mini performance remained unchanged, and
GPT-4o’s performance increased modestly from 26% to 31% (Figure 7). Note that GPT-4o-mini outperformed
GPT-4o for lower cost limits under around $2.50.

Increasing the cost limit did not greatly increase accuracy because when agents succeeded at tasks, they
succeeded quickly (the average cost of successful tasks for CORE-Agent and GPT-4o was $0.54, compared to
$2.59 for failed tasks) but when they failed at tasks, they often hit the cost limit and failed after not making
progress. Even when increasing the cost limit, agents tended to remain stuck.

4.4 Written questions are easier than vision questions

Agents consistently performed better on text-based questions than vision-based questions. CORE-Agent with
GPT-4o got 59.26% vision questions correct and 87.88% written questions correct on CORE-Bench-Easy on
the test set. Similarly, CORE-Agent with GPT-4o-mini got 37.78% of vision questions correct and 81.81% of
written questions correct. Vision questions are harder because they typically require analyzing results from
figures, whereas written answers are often directly found in the terminal output. Agents were sometimes
unable to find the relevant figure if multiple output files are generated. Even once found, analyzing the
output can be difficult, as past work as also shown (Xu et al., 2024; Majumdar et al., 2024).

10

Under review as submission to TMLR

Figure 6: Scatter plot of the cost vs accuracy of agents on the test set.

Figure 7: Success rates of CORE-Agent with GPT-4o and GPT-4o-mini at varying cost limits on
CORE-Bench-Hard tasks on the train set.

4.5 Python tasks are much easier than R

Agents performed much better on Python tasks than R tasks (Figure 8). One reason is that R outputs were
often more difficult to parse, since many R capsules generate full PDF manuscripts which the agent has to
read through. Another reason is that installing the requirements and dependencies for R packages can take
much longer than for Python. Computer Science tasks are disproportionately in Python, which might explain
why they tended to be the most reproducible compared to the other two disciplines (Figure 8).

4.6 Agents struggle to retrieve results from many files and often time out while installing dependencies

We qualitatively analyzed some of the common failure cases of agents on each level of the benchmark. On
CORE-Bench-Easy, agents excelled on tasks where the code output was written in just one file or directly
outputted to the terminal. If the code output was written to multiple files, such as in different figures, agents
struggled to determine which figure was relevant and had the correct information. Often, agents would use
information from the incorrect figure to answer the question (Appendix D.3.1).

On CORE-Bench-Medium, AutoGPT struggled to follow instructions to execute the Docker command to
reproduce the code and would sometimes get thrown off by competing instructions. For instance, the
agent might read the README file, and attempt to reproduce the code manually, without using Docker
(Appendix D.3.2). CORE-Agent, however, tended to not struggle on this because of the task-specific instructions,
and mistakes were usually caused by retrieval issues as described above.

On CORE-Bench-Hard, in addition to the retrieval issues described above (which accounted for 23% of failures
for CORE-Agent with GPT-4o on the test set), agents struggled with installing the dependencies for running
code repositories (accounting for 57% of failures) and running the correct commands to reproduce the paper

11

Under review as submission to TMLR

Figure 8: Performance of CORE-Agent using GPT-4o vs GPT-4o-mini on the test set by discipline and
programming language. Error bars are one standard deviation calculated from three trials.

(accounting for 20% of failures). Agents often did not finish resolving dependency version issues before hitting
the cost limit, getting stuck attempting to install the same library multiple times (Appendix D.3.3).

4.7 Better guardrails are needed to deploy safe agents

In one case, the agent attempted to search for the CodeOcean repository online to look for the requirements
for missing dependencies. Although the agent tried to create an account on CodeOcean, it could not view the
CodeOcean website since it required JavaScript (Appendix D.3.4). This points to the need for mechanisms to
restrict the actions taken by the agent. We have updated the release version of our evaluation harness to
restrict access to the CodeOcean.com domain.

Since AutoGPT can execute arbitrary actions on the web, better guardrails should be developed to ensure
agents exhibit safe and expected behavior (He et al., 2024). For instance, there are no existing safeguards
preventing simple agent errors such as creating thousands of accounts on a website. For this paper, we did
not incorporate web browsing restrictions for our agents since their inability to render JavaScript prevented
most damaging actions from being taken out. However, as agents advance, developers should implement
additional safety checks.

5 Conclusion

Many visions for the future of LLMs and tool use anticipate grandiose reforms of the fields of research and
science, including claims that AI agents will automate research completely (Lu et al., 2024). However, a
pre-requisite for building on existing knowledge is to reproduce research that has already been released.

If an AI agent can reproduce research effectively, it can drastically reduce the human labor required to
read, understand, and run code as part of an assessment of computational reproducibility. By releasing
CORE-Bench, we hope to stimulate the development of agents to reduce the time and effort required for this
burdensome yet routine scientific activity. At the same time, we recognize important future work remains in
evaluating computational reproducibility agents, particularly when high-performing agents are used to verify
the reproducibility of other papers.

Our baseline results show that while automating computational reproducibility is hard, simple task-specific
modifications to existing general-purpose agents can already help increase accuracy. This is in line with other
results showing the importance of task-specific modifications (Yang et al., 2024). Yet, our best baseline agent
only has a test-set accuracy of 21%, showing the vast room for improvement. We hope that CORE-Benchcan
spur research in improving the utility of agents in automating computational reproducibility.

12

Under review as submission to TMLR

References
AISI. Inspect, 2024. URL https://inspect.ai-safety-institute.org.uk.

Rose L. Andrew, Arianne Y.K. Albert, Sebastien Renaut, Diana J. Rennison, Dan G. Bock, and Tim
Vines. Assessing the reproducibility of discriminant function analyses. PeerJ, 3:e1137, August 2015. ISSN
2167-8359. doi: 10.7717/peerj.1137. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540019/.

Anya Belz, Shubham Agarwal, Anastasia Shimorina, and Ehud Reiter. A Systematic Review of Reproducibility
Research in Natural Language Processing. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.),
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, pp. 381–393, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.eacl-main.29. URL https://aclanthology.org/2021.eacl-main.29.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi, Julen Etxaniz, Benjamin
Fattori, Jessica Zosa Forde, Charles Foster, Mimansa Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering,
Niklas Muennighoff, Ellie Pavlick, Jason Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A.
Wang, Genta Indra Winata, François Yvon, and Andy Zou. Lessons from the Trenches on Reproducible
Evaluation of Language Models, May 2024. URL http://arxiv.org/abs/2405.14782. arXiv:2405.14782
[cs].

Matteo Brivio and Çağrı Çöltekin. [Re] Exploring the Representation of Word Meanings in Context. ReScience
C, 9(2):#5, July 2023. doi: 10.5281/zenodo.8173658. URL https://zenodo.org/records/8173658.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large Language Monkeys: Scaling Inference Compute with Repeated Sampling, July 2024.
URL http://arxiv.org/abs/2407.21787. arXiv:2407.21787 [cs].

Jonathan B. Buckheit and David L. Donoho. WaveLab and Reproducible Research. In Anestis Antoniadis and
Georges Oppenheim (eds.), Wavelets and Statistics, pp. 55–81. Springer, New York, NY, 1995. ISBN 978-1-
4612-2544-7. doi: 10.1007/978-1-4612-2544-7_5. URL https://doi.org/10.1007/978-1-4612-2544-7_
5.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code
Generation, 2022. URL https://arxiv.org/abs/2208.08227. Version Number: 4.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107.03374.
arXiv:2107.03374 [cs].

April Clyburne-Sherin, Xu Fei, and Seth Ariel Green. Computational Reproducibility via Containers in
Psychology. Meta-Psychology, 3, November 2019. ISSN 2003-2714. doi: 10.15626/MP.2018.892. URL
https://open.lnu.se/index.php/metapsychology/article/view/892.

Christian Collberg and Todd A. Proebsting. Repeatability in computer systems research. Communications
of the ACM, 59(3):62–69, February 2016. ISSN 0001-0782, 1557-7317. doi: 10.1145/2812803. URL
https://dl.acm.org/doi/10.1145/2812803.

13

https://inspect.ai-safety-institute.org.uk
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540019/
https://aclanthology.org/2021.eacl-main.29
http://arxiv.org/abs/2405.14782
https://zenodo.org/records/8173658
http://arxiv.org/abs/2407.21787
https://doi.org/10.1007/978-1-4612-2544-7_5
https://doi.org/10.1007/978-1-4612-2544-7_5
https://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2107.03374
https://open.lnu.se/index.php/metapsychology/article/view/892
https://dl.acm.org/doi/10.1145/2812803

Under review as submission to TMLR

Paul Gertler, Sebastian Galiani, and Mauricio Romero. How to make replication the norm. Nature, 554(7693):
417–419, February 2018. doi: 10.1038/d41586-018-02108-9. URL https://www.nature.com/articles/
d41586-018-02108-9. Bandiera_abtest: a Cg_type: Comment Publisher: Nature Publishing Group
Subject_term: Research data, Research management, Publishing.

Kimberly J. Gilbert, Rose L. Andrew, Dan G. Bock, Michelle T. Franklin, Nolan C. Kane, Jean-Sébastien
Moore, Brook T. Moyers, Sébastien Renaut, Diana J. Rennison, Thor Veen, and Timothy H. Vines.
Recommendations for utilizing and reporting population genetic analyses: the reproducibility of ge-
netic clustering using the program structure. Molecular Ecology, 21(20):4925–4930, 2012. ISSN 1365-
294X. doi: 10.1111/j.1365-294X.2012.05754.x. URL https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1365-294X.2012.05754.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-
294X.2012.05754.x.

Tom E. Hardwicke, Maya B. Mathur, Kyle MacDonald, Gustav Nilsonne, George C. Banks, Mallory C.
Kidwell, Alicia Hofelich Mohr, Elizabeth Clayton, Erica J. Yoon, Michael Henry Tessler, Richie L. Lenne,
Sara Altman, Bria Long, and Michael C. Frank. Data availability, reusability, and analytic reproducibility:
evaluating the impact of a mandatory open data policy at the journal Cognition. Royal Society Open
Science, 5(8):180448, August 2018. doi: 10.1098/rsos.180448. URL https://royalsocietypublishing.
org/doi/10.1098/rsos.180448. Publisher: Royal Society.

Tom E. Hardwicke, Manuel Bohn, Kyle MacDonald, Emily Hembacher, Michèle B. Nuijten, Benjamin N.
Peloquin, Benjamin E. deMayo, Bria Long, Erica J. Yoon, and Michael C. Frank. Analytic reproducibility
in articles receiving open data badges at the journal Psychological Science : an observational study. Royal
Society Open Science, 8(1):201494, January 2021. ISSN 2054-5703. doi: 10.1098/rsos.201494. URL
https://royalsocietypublishing.org/doi/10.1098/rsos.201494.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The Larger the Better? Improved
LLM Code-Generation via Budget Reallocation, July 2024. URL http://arxiv.org/abs/2404.00725.
arXiv:2404.00725 [cs].

Yifeng He, Ethan Wang, Yuyang Rong, Zifei Cheng, and Hao Chen. Security of AI Agents, 2024. URL
https://arxiv.org/abs/2406.08689. Version Number: 2.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking Large Language Models As AI
Research Agents, October 2023. URL https://arxiv.org/abs/2310.03302v1.

John P. A. Ioannidis, David B. Allison, Catherine A. Ball, Issa Coulibaly, Xiangqin Cui, Aedín C. Culhane,
Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta, Michael
Nitzberg, Grier P. Page, Enrico Petretto, and Vera van Noort. Repeatability of published microarray gene
expression analyses. Nature Genetics, 41(2):149–155, February 2009. ISSN 1546-1718. doi: 10.1038/ng.295.
URL https://www.nature.com/articles/ng.295. Publisher: Nature Publishing Group.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, October 2023. URL https:
//arxiv.org/abs/2310.06770v1.

Sayash Kapoor and Arvind Narayanan. Evaluating LLMs is a minefield, October 2023. URL https:
//www.aisnakeoil.com/p/evaluating-llms-is-a-minefield.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. AI Agents That
Matter, July 2024. URL http://arxiv.org/abs/2407.01502. arXiv:2407.01502 [cs].

Markus Konkol, Christian Kray, and Max Pfeiffer. Computational reproducibility in geoscientific papers:
Insights from a series of studies with geoscientists and a reproduction study. International Journal of
Geographical Information Science, 33(2):408–429, February 2019. ISSN 1365-8816. doi: 10.1080/13658816.
2018.1508687. URL https://doi.org/10.1080/13658816.2018.1508687. Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/13658816.2018.1508687.

14

https://www.nature.com/articles/d41586-018-02108-9
https://www.nature.com/articles/d41586-018-02108-9
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2012.05754.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2012.05754.x
https://royalsocietypublishing.org/doi/10.1098/rsos.180448
https://royalsocietypublishing.org/doi/10.1098/rsos.180448
https://royalsocietypublishing.org/doi/10.1098/rsos.201494
http://arxiv.org/abs/2404.00725
https://arxiv.org/abs/2406.08689
https://arxiv.org/abs/2310.03302v1
https://www.nature.com/articles/ng.295
https://arxiv.org/abs/2310.06770v1
https://arxiv.org/abs/2310.06770v1
https://www.aisnakeoil.com/p/evaluating-llms-is-a-minefield
https://www.aisnakeoil.com/p/evaluating-llms-is-a-minefield
http://arxiv.org/abs/2407.01502
https://doi.org/10.1080/13658816.2018.1508687

Under review as submission to TMLR

Jimmy Koppel. Everyone’s talking about Sakana’s AI scientist. But no-one’s answering the big question: is
its output good?, August 2024. URL https://x.com/jimmykoppel/status/1828077203956850756.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume,
Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray
Kavukcuoglu, and Oriol Vinyals. Competition-Level Code Generation with AlphaCode. Science, 378
(6624):1092–1097, December 2022. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.abq1158. URL
http://arxiv.org/abs/2203.07814. arXiv:2203.07814 [cs].

David M. Liu and Matthew J. Salganik. Successes and Struggles with Computational Reproducibility:
Lessons from the Fragile Families Challenge. Socius, 5:2378023119849803, January 2019. ISSN 2378-0231.
doi: 10.1177/2378023119849803. URL https://doi.org/10.1177/2378023119849803. Publisher: SAGE
Publications.

Victor Livernoche and Vidya Sujaya. [Re] A Reproduction of Automatic Multi-Label Prompting: Simple and
Interpretable Few-Shot Classification. ReScience C, 9(2):#33, July 2023. doi: 10.5281/zenodo.8173735.
URL https://zenodo.org/records/8173735.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scientist:
Towards Fully Automated Open-Ended Scientific Discovery, August 2024. URL http://arxiv.org/abs/
2408.06292. arXiv:2408.06292 [cs].

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav, Qiyang Li, Ben
Newman, Mohit Sharma, Vincent Berges, Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk, Dhruv Ba-
tra, Mrinal Kalakrishnan, Franziska Meier, Chris Paxton, Alexander Sax, and Aravind Rajeswaran.
OpenEQA: Embodied Question Answering in the Era of Foundation Models. pp. 16488–16498,
2024. URL https://openaccess.thecvf.com/content/CVPR2024/html/Majumdar_OpenEQA_Embodied_
Question_Answering_in_the_Era_of_Foundation_Models_CVPR_2024_paper.html.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena,
Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. DiscoveryBench: Towards
Data-Driven Discovery with Large Language Models, July 2024. URL http://arxiv.org/abs/2407.01725.
arXiv:2407.01725 [cs].

B. D. McCullough, Kerry Anne McGeary, and Teresa D. Harrison. Lessons from the JMCB Archive. Journal
of Money, Credit and Banking, 38(4):1093–1107, 2006. ISSN 0022-2879. URL https://www.jstor.org/
stable/3838995. Publisher: [Wiley, Ohio State University Press].

National Academies of Sciences Engineering and Medicine. Reproducibility and Replicability in Science. 2019.
doi: 10.17226/25303. URL https://nap.nationalacademies.org/read/25303/chapter/7.

METR. Vivaria, 2024. URL https://vivaria.metr.org.

Florian Naudet, Charlotte Sakarovitch, Perrine Janiaud, Ioana Cristea, Daniele Fanelli, David Moher, and
John P. A. Ioannidis. Data sharing and reanalysis of randomized controlled trials in leading biomedical
journals with a full data sharing policy: survey of studies published in The BMJ and PLOS Medicine.
BMJ, 360:k400, February 2018. ISSN 0959-8138, 1756-1833. doi: 10.1136/bmj.k400. URL https:
//www.bmj.com/content/360/bmj.k400. Publisher: British Medical Journal Publishing Group Section:
Research.

Pepijn Obels, Daniël Lakens, Nicholas A. Coles, Jaroslav Gottfried, and Seth A. Green. Analysis of Open Data
and Computational Reproducibility in Registered Reports in Psychology. Advances in Methods and Practices
in Psychological Science, 3(2):229–237, June 2020. ISSN 2515-2459. doi: 10.1177/2515245920918872. URL
https://doi.org/10.1177/2515245920918872. Publisher: SAGE Publications Inc.

15

https://x.com/jimmykoppel/status/1828077203956850756
http://arxiv.org/abs/2203.07814
https://doi.org/10.1177/2378023119849803
https://zenodo.org/records/8173735
http://arxiv.org/abs/2408.06292
http://arxiv.org/abs/2408.06292
https://openaccess.thecvf.com/content/CVPR2024/html/Majumdar_OpenEQA_Embodied_Question_Answering_in_the_Era_of_Foundation_Models_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Majumdar_OpenEQA_Embodied_Question_Answering_in_the_Era_of_Foundation_Models_CVPR_2024_paper.html
http://arxiv.org/abs/2407.01725
https://www.jstor.org/stable/3838995
https://www.jstor.org/stable/3838995
https://nap.nationalacademies.org/read/25303/chapter/7
https://vivaria.metr.org
https://www.bmj.com/content/360/bmj.k400
https://www.bmj.com/content/360/bmj.k400
https://doi.org/10.1177/2515245920918872

Under review as submission to TMLR

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer, Florence
d’Alche Buc, Emily Fox, and Hugo Larochelle. Improving Reproducibility in Machine Learning Research(A
Report from the NeurIPS 2019 Reproducibility Program). Journal of Machine Learning Research, 22(164):
1–20, 2021. ISSN 1533-7928. URL http://jmlr.org/papers/v22/20-303.html.

Ori Press, Andreas Hochlehnert, Ameya Prabhu, Vishaal Udandarao, Ofir Press, and Matthias Bethge.
CiteME: Can Language Models Accurately Cite Scientific Claims?, July 2024. URL http://arxiv.org/
abs/2407.12861. arXiv:2407.12861 [cs].

Christophe Pérignon, Olivier Akmansoy, Christophe Hurlin, Anna Dreber, Felix Holzmeister, Juergen
Huber, Magnus Johannesson, Michael Kirchler, Albert J. Menkveld, Michael Razen, and Utz Weitzel.
Computational Reproducibility in Finance: Evidence from 1,000 Tests, February 2024. URL https:
//papers.ssrn.com/abstract=4064172.

Edward Raff. A Step Toward Quantifying Independently Reproducible Machine Learning Research, September
2019. URL http://arxiv.org/abs/1909.06674. arXiv:1909.06674 [cs, stat].

Inioluwa Deborah Raji, Emily M. Bender, Amandalynne Paullada, Emily Denton, and Alex Hanna. AI and
the Everything in the Whole Wide World Benchmark, 2021. URL https://arxiv.org/abs/2111.15366.
Version Number: 1.

Sheeba Samuel and Daniel Mietchen. Computational reproducibility of Jupyter notebooks from biomedical
publications. GigaScience, 13:giad113, January 2024. ISSN 2047-217X. doi: 10.1093/gigascience/giad113.
URL https://doi.org/10.1093/gigascience/giad113.

Significant Gravitas. AutoGPT, September 2024. URL https://github.com/Significant-Gravitas/
AutoGPT. original-date: 2023-03-16T09:21:07Z.

Koustuv Sinha, Maurits Bleeker, Samarth Bhargav, Jessica Zosa Forde, Sharath Chandra Raparthy, Jesse
Dodge, Joelle Pineau, and Robert Stojnic. ML Reproducibility Challenge 2022. ReScience C, 9(2):#46,
July 2023. doi: 10.5281/zenodo.8200058. URL https://zenodo.org/records/8200058.

Jeffrey R. Spence and David J. Stanley. Prediction Interval: What to Expect When You’re Expecting . . . A
Replication. PLOS ONE, 11(9):e0162874, September 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.
0162874. URL https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162874.
Publisher: Public Library of Science.

Daniel Stockemer, Sebastian Koehler, and Tobias Lentz. Data Access, Transparency, and Replica-
tion: New Insights from the Political Behavior Literature. PS: Political Science & Politics, 51
(4):799–803, October 2018. ISSN 1049-0965, 1537-5935. doi: 10.1017/S1049096518000926. URL
https://www.cambridge.org/core/journals/ps-political-science-and-politics/article/abs/
data-access-transparency-and-replication-new-insights-from-the-political-behavior-literature/
64CA07CBA652E299079FF32BC5A6DCB3.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan Ji,
Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha Trinh, Chenyu Tian, Zihan
Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu, Genglin Liu, Yufeng
Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta, and Hao Peng. SciCode: A Research Coding
Benchmark Curated by Scientists, July 2024. URL http://arxiv.org/abs/2407.13168. arXiv:2407.13168
[cs].

Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercè Crosas. A large-scale study on research
code quality and execution. Scientific Data, 9(1):60, February 2022. ISSN 2052-4463. doi: 10.1038/
s41597-022-01143-6. URL https://www.nature.com/articles/s41597-022-01143-6. Publisher: Nature
Publishing Group.

Benjamin D. K. Wood, Rui Müller, and Annette N. Brown. Push button replication: Is impact evaluation
evidence for international development verifiable? PLOS ONE, 13(12):e0209416, December 2018. ISSN

16

http://jmlr.org/papers/v22/20-303.html
http://arxiv.org/abs/2407.12861
http://arxiv.org/abs/2407.12861
https://papers.ssrn.com/abstract=4064172
https://papers.ssrn.com/abstract=4064172
http://arxiv.org/abs/1909.06674
https://arxiv.org/abs/2111.15366
https://doi.org/10.1093/gigascience/giad113
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://zenodo.org/records/8200058
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162874
https://www.cambridge.org/core/journals/ps-political-science-and-politics/article/abs/data-access-transparency-and-replication-new-insights-from-the-political-behavior-literature/64CA07CBA652E299079FF32BC5A6DCB3
https://www.cambridge.org/core/journals/ps-political-science-and-politics/article/abs/data-access-transparency-and-replication-new-insights-from-the-political-behavior-literature/64CA07CBA652E299079FF32BC5A6DCB3
https://www.cambridge.org/core/journals/ps-political-science-and-politics/article/abs/data-access-transparency-and-replication-new-insights-from-the-political-behavior-literature/64CA07CBA652E299079FF32BC5A6DCB3
http://arxiv.org/abs/2407.13168
https://www.nature.com/articles/s41597-022-01143-6

Under review as submission to TMLR

1932-6203. doi: 10.1371/journal.pone.0209416. URL https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0209416. Publisher: Public Library of Science.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. ChartBench: A Bench-
mark for Complex Visual Reasoning in Charts, June 2024. URL http://arxiv.org/abs/2312.15915.
arXiv:2312.15915 [cs].

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. SWE-AGENT: Agent-Computer Interfaces Enable Automated Software Engineering. 2024. URL
https://swe-agent.com/paper.pdf.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ-bench: A Benchmark for Tool-
Agent-User Interaction in Real-World Domains, June 2024. URL http://arxiv.org/abs/2406.12045.
arXiv:2406.12045 [cs].

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James Zou,
Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The Shift from Models to Compound AI
Systems, February 2024. URL http://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/.

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. PyBench: Evaluating LLM Agent on various real-world
coding tasks, August 2024. URL http://arxiv.org/abs/2407.16732. arXiv:2407.16732 [cs].

A Benchmark Details

A.1 Original CodeOcean Dataset

To obtain a dataset of all 5,090 capsules on CodeOcean and their corresponding environment files, we wrote
a webscraper that downloads the metadata for every capsule from CodeOcean. We then manually exported
each capsule from CodeOcean’s web interface to obtain the environment files. Finally, we filtered the capsules
in this dataset based on the ten criteria outlined in Table 2.

A.2 Examples of capsule selection criteria

Table 2 presents the ten criteria we used to filter the capsules on CodeOcean and construct the tasks for
CORE-Bench. We provide an example of a capsule’s run file that satisfies criteria six (Listing 1) and an
example of the output from a capsule we rejected from the benchmark (Listing 2 and Listing 3).

#!/ usr/bin/env bash
set -ex

This is the master script for the capsule . When you click " Reproducible Run", the code
in this file will execute .

python -u multiclass_state_analysis_testing .py "$@"

Listing 1: Capsule 5507257 run file. Example of a simple CodeOcean capsule run file, where code is
executed with a single bash command. This run file satisfies criteria six, which requires capsules to have a
relatively simple Bash command to reproduce the code correctly.

17

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209416
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209416
http://arxiv.org/abs/2312.15915
https://swe-agent.com/paper.pdf
http://arxiv.org/abs/2406.12045
http://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
http://arxiv.org/abs/2407.16732

Under review as submission to TMLR

Table A1: A breakdown of the number of capsules from each discipline by language.

Python R Total
Medical Sciences 10 15 25
Social Sciences 4 24 28

Computer Science 35 2 37
Total 49 41 90

+ python -u model .py
input shape : torch .Size ([1 , 1, 234 ,

256])
spike probability : 0.42303016781806946
segmentation output shape : torch .Size

([1 , 1, 234 , 256])
+ python -u augmentation .py

Listing 2: Capsule 826891 code output from
our first manual run on CodeOcean’s web
interface. The spike probability from this run is
0.42303016781806946.

+ python -u model .py
input shape : torch .Size ([1 , 1, 234 ,

256])
spike probability : 0.7832228541374207
segmentation output shape : torch .Size

([1 , 1, 234 , 256])
+ python -u augmentation .py

Listing 3: Capsule 826891 code output from
our second manual run on CodeOcean’s web
interface. The spike probability from this run is
0.7832228541374207.

A.3 Task question construction

To write task questions for each capsule, we examined the capsule’s results folder after a successful reproducible
run on CodeOcean’s web interface and chose outputs from any of the files in the results for the agent to
extract. These outputs could include a model’s accuracy, the axis label of a figure, or any other relevant
metric. Then, for each output, we manually write a prompt instructing the agent to report the corresponding
value. Since a single paper can have multiple outputs, CORE-Bench consists of 90 capsules and 181 task
questions. The number of task questions per capsule ranges from one to eight.

We referred to tables or figures in task questions in one of three ways:

1. The metric the table or figure is measuring. For example, From the figure measuring average RTT
without ISL, report the x-axis label.

2. The title of the table or figure. For example, From the Indoor Air Quality - Kitchen - Autumn plot,
report the correlation between hum and gas, where Indoor Air Quality - Kitchen - Autumn is the title
of a figure depicting correlation coefficients.

3. The table figure number from the file name, PDF files, or HTML files in the results folder. For
example, From Figure 3 panel A, report the label of the green line.

A.4 Breakdown of task questions discipline, modality, and language

When choosing capsules to include in CORE-Bench, we attempted to have a similar number of capsules of each
discipline. We provide a breakdown of capsules from each discipline in the train and test sets in Table A3.
CodeOcean contains 1,259 computer science capsules written in Python or R, 270 social science capsules
written in Python or R, and 128 medical sciences capsules written in Python or R. Due to the limited
availability of social science and medical sciences capsules that fulfilled all of our criteria (See Table 2), our
final benchmark contains more computer science capsules than capsules of other disciplines. CORE-Bench also
consists of a similar number of Python and R capsules (See Table A1) and a similar number of vision-based
and language-based task questions (See Table A2).

Examples of text-based task questions include:

18

Under review as submission to TMLR

Table A2: Number of capsules from each discipline with only vision task questions, only language task
questions, or at least one vision task question and at least one language task question.

Only vision task questions Only language task questions Both Total
Medical Sciences 16 5 4 25
Social Sciences 19 6 3 28

Computer Science 9 24 4 37
Total 44 35 11 90

Table A3: Number of capsules from each discipline in train and test sets.

Train set Test set Total
Medical Sciences 12 13 25
Social Sciences 14 14 28

Computer Science 19 18 37
Total 45 45 90

• “Report the accuracy of the multitask learning model at the end of training on the test set.”

• “Report the AUC at the ’sample-level’.”

• “Report the f1 score for the Musk1+ dataset with the knn classifier.”

• “For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome
with the Day variable.”

• “Report the CN prediction accuracy for the Zoo dataset.”

• “Report the closeness coefficient for location L1.”

Examples of vision-based task questions include:

• “Report Institutions Sampled for US in Table 1.”

• “From the Experimental IAQ Data graph, report the y-axis label.”

• “For dataset 1, report the score (%) for the GRU classifier for ACC.”

• “From the final result plot, report the label for the orange line.”

• “Report the name of the model with the highest average energy”

• “From the figure depicting calculated transmission coefficient for the 100-nF VISHAY capacitor, report
the label of the red line.”

B Harness Details

Our evaluation harness runs all agents on virtual machines using Azure. For non-GPU capsules, we use a
Standard_E2as_v5 machine type, and for GPU capsules, we use a Standard_NC4as_T4_v3 machine type.
All VMs run Ubuntu Linux and have an 80 GB disk attached.

19

Under review as submission to TMLR

Figure A1: Accuracy of AutoGPT and CORE-Agent with GPT-4o and GPT-4o-mini on the train set. Task-
specific agents consistently outperformed generalist agents, which were designed to correct for commonly
made mistakes.

Table A4: Accuracy and costs after running CORE-Agent on the benchmark three times, with 95% confidence
intervals. Results are presented by task difficulty on the test set with n = 3 trials on the benchmark.

Agent Architecture LLM Model Metric

Task Type
CORE-Bench-Easy CORE-Bench-Medium CORE-Bench-Hard

CORE-Agent
GPT-4o

Accuracy (%) 60.60% ± 4.51% 57.78% ± 4.51% 21.48% ± 2.60%
Cost ($) $0.6407 ± $0.1886 $1.2005 ± $0.3223 $2.9643 ± $0.0888

GPT-4o-mini
Accuracy (%) 44.44% ± 13.52% 32.59% ± 11.34% 16.30% ± 2.60%

Cost ($) $0.0445 ± $0.1083 $0.3893 ± $0.3891 $0.7315 ± $0.1871

The harness initially creates a VM for each task-agent pair and copies over the capsule files and agent files to
the VM. Once the files are copied over, the harness runs the agent on the VM. The capsule only downloads
the results and deletes the VM once the agent creates a file called task_completed.log in the home directory.
This log file can be empty or can contain any logging information that the developer wishes to save from the
run.

On occasion, the harness may fail to download the results from an agent from a VM due to an Azure error
(for example, timing out when attempting to create a virtual machine). In this case, you should re-run the
experiment with the –resume flag, which will only start VMs for unfinished tasks.

When running the benchmark on multiple capsules, please be aware that you will incur billing charges for all
instances. If you need to manually delete a VM capsule (if the harness code gets interrupted), be aware that
you must delete all associated resources with the VM, (i.e. the network interface, the public IP, the disk, and
the virtual network) associated with the instance. It is not sufficient to only delete the instance itself.

C Experimental Details

C.1 Agent Accuracy on the Train Set

We plot the accuracy of CORE-Agent and AutoGPT on the train set (See Fig A1). Similarly to the test set
results, we see that CORE-Agent consistently outperforms AutoGPT, and GPT-4o outperforms GPT-4o-mini.

C.2 Confidence Intervals on Test Set

We ran CORE-Agent experiments with GPT-4o and GPT-4o-mini three times to generate a 95% confidence
interval over the mean accuracy and mean cost (See Table A4). The accuracy of the top-performing agent
had a CI of under 5 percentage points on all difficulty levels. Overall, the accuracy of GPT-4o-mini had a
bigger CI on results than GPT-4o, suggesting it is a less reliable model to use.

20

Under review as submission to TMLR

Table A5: Task completion time (seconds) of CORE-Agent and AutoGPT with gpt-4o-2024-05-13 and
gpt-4o-mini-2024-07-18 by task difficulty on the test set. We ran CORE-Agent three times on the benchmark
to calculate confidence intervals, and therefore report average time across the three runs. We only ran
AutoGPT once due to cost constraints.

Agent Architecture LLM CORE-Bench-Easy CORE-Bench-Medium CORE-Bench-Hard

CORE-Agent
GPT-4o 94.84 571.01 1133.92
GPT-4o-mini 90.62 1153.55 2329.49

AutoGPT
GPT-4o 78.31 595.07 1192.69
GPT-4o-mini 33.38 622.94 1256.88

Figure A2: pass@k rate for CORE-Agent with GPT-4o and GPT-4o-mini on the test set. Increased performance
gains suggests future work could focus on improving reliability.

C.3 Task Completion Time on Test Set

We report the average amount of time (in seconds) each agent takes to complete tasks at all three levels (See
Table A5). CORE-Bench-Easy are by far the quickest tasks to complete since the code outputs are already
given to the agent, so it does not need to run code. CORE-Bench-Medium tasks are longer since the agent
needs to run the repository Docker command and wait for it to finish. CORE-Bench-Hard tasks take by far
the longest, since the agent needs to install repositories and potentially debug running the code.

C.4 Pass@k on the Test Set

On the test set, the pass@1 accuracy of CORE-Agent with GPT-4o on the CORE-Bench-Hard was 22.2% and
the pass@3 accuracy was 31.1% (See Figure A2). Similarly, with GPT-4o-mini, the pass@1 accuracy was
15.6% and the pass@3 accuracy was 26.7%. Since the performance could be improved simply by re-running
the model, strategies like running the agents multiple times and choosing the best outputs could be promising.
Past work has shown retrying or increasing temperature between retries can be enough to drastically improve
performance (Kapoor et al., 2024; Hassid et al., 2024; Brown et al., 2024; Li et al., 2022).

C.5 Pass∧k on the Test Set

To measure the reliability of agents, we report the pass∧k metric, which is defined as the chance that
all k task trials are successful (Yao et al., 2024). The pass∧1 accuracy of CORE-Agent with GPT-4o on
CORE-Bench-Hard was 22.22% and the pass∧3 accuracy was 8.89%. Similarly, the pass∧1 accuracy of
CORE-Agent with GPT-4o-mini on CORE-Bench-Hard was 15.56% and the pass∧3 accuracy was 6.67% (See
Figure A3). The results suggests that the underlying stochasticity of the agent caused it to not consistently
solve the same tasks. Increasing the reliability of agents such that they can consistently solve problems they
are capable of solving is a challenging problem.

21

Under review as submission to TMLR

Figure A3: pass∧k rate for CORE-Agent with GPT-4o and GPT-4o-mini on the test set. Note that the pass∧k
line is identical on CORE-Bench-Easy and CORE-Bench-Medium for GPT-4o.

D Agent Details

D.1 AutoGPT Bug Fixes and Changes

In addition to the modifications to AutoGPT described in the main text, we implemented two other changes
for both AutoGPT and CORE-Agent. We implemented these changes for both agents and did not consider
them as task-specific modifications since the changes are not specific to CORE-Bench and would improve the
agent in many domains.

1. Truncating tool output: If a tool invoked by AutoGPT generates an output that is too long, we
updated the code to truncate the output to include the beginning and end, rather than return an
error. We found this change helps the agent better use tools when the outputs are long.

2. Using the shell to execute all Bash commands: AutoGPT uses the subprocess module to
execute commands on the command line. However, the default setting was to set shell=False when
invoking subprocess.run, which prevented the agent from using shell-specific commands such as &&
when chaining together two commands. We changed the settings to set shell=True to let the agent
execute all commands.

D.2 CORE-Agent Prompts

We provided tailored prompts to CORE-Agent for each difficulty level of the benchmark. These prompts were
given as arguments to the AutoGPT agent, called ‘constraints’ or ‘best-practices’.

CORE-Bench-Easy Prompt
--ai -role "a seasoned digital assistant : capable , intelligent , considerate , and

assertive . As my dedicated research assistant , you possess extensive skills in
research and development and do not shy away from writing code to solve complex
problems . You are adept at extracting , processing , and analyzing data from various

sources to reproduce research results accurately . Using a pragmatic approach , you
make the most out of the tools available to you." \

--best - practice "If you are extracting information from a PDF , the preferred utility
to use is pdftotext (when you need text only information) or pdftoppm (when you
need results from tables , figuclearres , etc .)." \

--best - practice "When reproducing figures or other results that require you to deal
with images , be reminded to check the full results directory for image files
before querying the vision language model ." \

--best - practice "If you are unsure of what to do , make your best guess ." \
--best - practice " Before using resources like scripts or utilities , verify their

presence and functionality in the current directory or installation path." \
--best - practice "If there exists a file called ’output ’ or ’manuscript ’ then first

read those files to extract the required results to answer the questions of the
task." \

22

Under review as submission to TMLR

--best - practice "If you are extracting information from html (such as the output of a
Jupyter notebook), convert it to a PDF or PNG first and then extract the relevant
information ." \

--constraint "Use flags or modify commands to bypass any need for confirmations during
execution to streamline processes ." \

--constraint " There is no task that you cannot do , so you should not refuse a request
by saying you cannot do it" \

--constraint "You may wish to write and run a Python script to complete the task ,
especially if the task requires access to the Internet or other libraries . However
, assume that I do NOT have API keys to use external services ." \

--constraint "If you have a task that requires you to use the
query_vision_language_model command to extract information from image files , first

output the full tree of files in the directory containing the results and pick
the 5 most relevant files per question given the information you want to extract .
Then investigate all the identified files first before choosing which one contains

the information you need to answer the question ." \
--constraint " Before you are done , make sure that the keys of the report .json you

write match the ones in the task specified by the user. Refine your results if
they do not." \

--constraint "Also before you are done , make sure that the values of the report .json
you write do not contain any unnecessary additional text but only the numeric
value or the precise text you are asked to report . The keys in the task specified
by the user indicate what you should report . Refine your results if they do not."
\

CORE-Bench-Medium Prompt
--ai -role "a seasoned digital assistant : capable , intelligent , considerate , and

assertive . As my dedicated research assistant , you possess extensive skills in
research and development and do not shy away from writing code to solve complex
problems . You are adept at extracting , processing , and analyzing data from various

sources to reproduce research results accurately . Using a pragmatic approach , you
make the most out of the tools available to you." \

--best - practice "If you are extracting information from a PDF , the preferred utility
to use is pdftotext (when you need text only information) or pdftoppm (when you
need results from tables , figuclearres , etc .)." \

--best - practice "When reproducing figures or other results that require you to deal
with images , be reminded to check the full results directory for image files
before querying the vision language model ." \

--best - practice "If you are unsure of what to do , make your best guess ." \
--best - practice " Before using resources like scripts or utilities , verify their

presence and functionality in the current directory or installation path." \
--best - practice "If there exists a file called ’manuscript ’ then first read this file

to extract the required results to answer the questions of the task." \
--best - practice "If you are extracting information from html (such as the output of a

Jupyter notebook), convert it to a PDF or PNG first and then extract the relevant
information ." \

--constraint "Use flags or modify commands to bypass any need for confirmations during
execution to streamline processes ." \

--constraint " There is no task that you cannot do , so you should not refuse a request
by saying you cannot do it" \

--constraint "You may wish to write and run a Python script to complete the task ,
especially if the task requires access to the Internet or other libraries . However
, assume that I do NOT have API keys to use external services ." \

--constraint "If you have a task that requires you to use the
query_vision_language_model command to extract information from image files , first

output the full tree of files in the directory containing the results and pick
the 5 most relevant files per question given the information you want to extract .
Then investigate all the identified files first before choosing which one contains

the information you need to answer the question ." \
--constraint "Do include environmental variables such as ‘PWD ‘ as an argument for the

‘execute_shell ‘ command . Instead , determine the value of the variable and
directly input it to the command . For example , by using the absolute path instead
of ’PWD ’." \

--constraint " Before you are done , make sure that the keys of the report .json you
write match the ones in the task specified by the user. Refine your results if
they do not." \

23

Under review as submission to TMLR

--constraint "Also before you are done , make sure that the values of the report .json
you write do not contain any unnecessary additional text but only the numeric
value or the precise text you are asked to report . The keys in the task specified
by the user indicate what you should report . Refine your results if they do not."
\

CORE-Bench-Hard Prompt
--ai -role "a seasoned digital assistant : capable , intelligent , considerate , and

assertive . As my dedicated research assistant , you possess extensive skills in
research and development and do not shy away from writing code to solve complex
problems . You are adept at extracting , processing , and analyzing data from various

sources to reproduce research results accurately . Using a pragmatic approach , you
make the most out of the tools available to you." \

--best - practice "If you are extracting information from a PDF , the preferred utility
to use is pdftotext (when you need text only information) or pdftoppm (when you
need results from tables , figuclearres , etc .)." \

--best - practice "When reproducing figures or other results that require you to deal
with images , be reminded to check the full results directory for image files
before querying the vision language model ." \

--best - practice "If you are unsure of what to do , make your best guess ." \
--best - practice " Before using resources like scripts or utilities , verify their

presence and functionality in the current directory or installation path." \
--best - practice "If there exists a file called ’manuscript ’ then first read this file

to extract the required results to answer the questions of the task." \
--best - practice "If you are extracting information from html (such as the output of a

Jupyter notebook), convert it to a PDF or PNG first and then extract the relevant
information ." \

--best - practice " Before running the code , first determine a list of package / dependency
requirements that must be installed by reading through the README file or code

itself . Then install those dependencies before running the code." \
--constraint "Use flags or modify commands to bypass any need for confirmations during

execution to streamline processes ." \
--constraint " There is no task that you cannot do , so you should not refuse a request

by saying you cannot do it" \
--constraint "You may wish to write and run a Python script to complete the task ,

especially if the task requires access to the Internet or other libraries . However
, assume that I do NOT have API keys to use external services ." \

--constraint "If you have a task that requires you to use the
query_vision_language_model command to extract information from image files , first

output the full tree of files in the directory containing the results and pick
the 5 most relevant files per question given the information you want to extract .
Then investigate all the identified files first before choosing which one contains

the information you need to answer the question ." \
--constraint "Do include environmental variables such as ‘PWD ‘ as an argument for the

‘execute_shell ‘ command . Instead , determine the value of the variable and
directly input it to the command . For example , by using the absolute path instead
of ’PWD ’." \

--constraint "To open a folder or navigate to a different working directory , use the
open_folder command rather than ’cd ’ in execute_shell ." \

--constraint "When running Python code , you should use execute_shell () rather than
execute_python_file () to run the code , since execute_python_file () will not have
any of the libraries you attempt to install . In other words , NEVER use
execute_python_file ()." \

--constraint " Before you are done , make sure that the keys of the report .json you
write match the ones in the task specified by the user. Refine your results if
they do not." \

--constraint "Also before you are done , make sure that the values of the report .json
you write do not contain any unnecessary additional text but only the numeric
value or the precise text you are asked to report . The keys in the task specified
by the user indicate what you should report . Refine your results if they do not."
\

D.3 Agent Trajectory Examples

In this section, we provide some examples of common failure cases for each level of the benchmark.

24

Under review as submission to TMLR

D.3.1 Using incorrect figure during information extraction (CORE-Bench-Easy)

On capsule-4299879, CORE-Agent with GPT-4o extracted the p-value from the wrong image in the results.
The plot with the correct title containing the relevant p-value is called Figure_A17.pdf, but the agent only
looked at Figure_2-1.pdf and Figure_3-1.pdf. Since the agent called query_vision_language_model on
the wrong figures, it returned the incorrect p-value.

"Step 1: Executed ‘list_folder (folder =’ results ’)‘ and successfully listed files
: [’ Figure_A16 .pdf ’, ’Figure_A10 .pdf ’, ’Table_A7 .tex ’, ’Table_A2 .tex ’, ’
Table_2 .tex ’, ’Table_A11 .tex ’, ’Table_3b .tex ’, ’Figure_A11 .pdf ’, ’Figure_A9
.pdf ’, ’Table_A6 .tex ’, ’Table_A10 .tex ’, ’Figure_2 .pdf ’, ’Table_A1 .tex ’, ’
Figure_3 .pdf ’, ’Figure_A18 .pdf ’, ’Figure_A3 .pdf ’, ’Figure_A7 .pdf ’, ’
Figure_A8 .pdf ’, ’Figure_A1 .pdf ’, ’output ’, ’Figure_A15 .pdf ’, ’Table_1 .tex ’,

’Table_A8 .tex ’, ’Figure_A12 .pdf ’, ’Table_3a .tex ’, ’Figure_7 .pdf ’, ’
Figure_6 .pdf ’, ’Table_A9 .tex ’, ’Figure_A13 .pdf ’, ’Figure_A17 .pdf ’, ’
Figure_5 .pdf ’, ’Figure_A14 .pdf ’, ’Figure_A5 .pdf ’, ’Figure_A6 .pdf ’]

Step 2: Executed ‘query_vision_language_model (prompt =’Find the sample with the
lower homicide rate per 100k in 2000 and the p-value from the predicted
distribution of endline trust in police .’, input_image_paths =[’ results /
Figure_2 .pdf ’, ’results / Figure_3 .pdf ’]) ‘\n", " - ** Reasoning :** \" There
are multiple figures in the results directory , and the file names do not
provide clear information about the figures ’ content .\"\n", " - ** Status
:** ‘error ‘\n", " - ** Reason :** Error code: 400 - {’error ’: {’ message ’: \"
You uploaded an unsupported image. Please make sure your image is below 20
MB in size and is of one the following formats : [’png ’, ’jpeg ’, ’gif ’, ’
webp ’].\", ’type ’: ’invalid_request_error ’, ’param ’: None , ’code ’: ’
invalid_image_format ’}}\n", " - ** Error :** CommandExecutionError (’Error
code: 400 - {\\’ error \\’: {\\’ message \\’: \" You uploaded an unsupported
image. Please make sure your image is below 20 MB in size and is of one the

following formats : [\\’ png\\’, \\’ jpeg \\’, \\’ gif\\’, \\’ webp \\ ’].\" , \\’
type \\’: \\’ invalid_request_error \\’, \\’ param \\’: None , \\’ code \\’: \\’
invalid_image_format \\ ’}} ’)

Step 3: Executed ‘execute_shell (command_line =’ pdftoppm -png results / Figure_2 .
pdf results / Figure_2 && pdftoppm -png results / Figure_3 .pdf results / Figure_3
’) ‘\n", " - ** Reasoning :** \" The PDF files need to be converted to a
compatible image format (e.g., PNG) before querying the vision language
model .\"\n", " - ** Status :** ‘success ‘\n", " - ** Output :** \n", "
‘‘‘\n", " STDOUT :\n", " \n", " STDERR :\n", " \n", "

‘‘‘
Step 4: Executed ‘query_vision_language_model (prompt =’Find the sample with the

lower homicide rate per 100k in 2000 and the p-value from the predicted
distribution of endline trust in police .’, input_image_paths =[’ results /
Figure_2 -1. png ’, ’results /Figure_3 -1. png ’]) ‘\n", " - ** Reasoning :** \" The
next step is to query the vision language model on the converted PNG images

to extract the required information .\"\n", " - ** Status :** ‘success ‘\n",
" - ** Output :** \n", " ‘‘‘\n", " The homicide rate per 100k in
the year 2000 is shown in the first image. The solid line represents
Antioquia , and the dashed line represents Colombia as a whole. In 2000 ,
Antioquia has a higher homicide rate per 100k compared to Colombia .
Therefore , Colombia (the dashed line) has the lower homicide rate per 100k
in 2000.\ n", " \n", " To find the p-value from the predicted
distribution of endline trust in police , we refer to the second image. The
relevant measure from the trust category is \" Change in trust in police (
endline - baseline).\" We look for the point estimate with the Block FE ,
lagged DV (represented by triangles).\n", " \n", " Based on the
graph :\n", " - The point estimate for the \" Change in trust in police
(endline - baseline)\" with Block FE and lagged DV crosses the zero line .\n
", " - The corresponding confidence intervals also cross zero .\n", "

\n", " When the confidence intervals cross zero , it usually

25

Under review as submission to TMLR

indicates non - significance . In this plot , it suggests that the p-value is
above the typical threshold for statistical significance (usually 0.05) .\n"
, " \n", " In summary :\n", " - Colombia had a lower homicide

rate per 100k in 2000.\ n", " - The p-value for the predicted
distribution of endline trust in police , based on the provided graph for
the \" Change in trust in police (endline - baseline)\" with Block FE and
lagged DV , is not statistically significant (p-value > 0.05) .\n", "
‘‘‘

Step 5: Executed ‘write_file (filename =’ report .json ’, contents = ’{\" fig From the
figure measuring homicide rate per 100k in the last 12 months , report the
name of the sample with the lower homicide rate per 100k in 2000.\": \"
Colombia \", \" fig From the figure measuring bootstrapped predictive
distribution of endline trust in police assuming mean regression at rate of

mean regression among unexposed citizens , report the p value from the
Heard of Meetings plot .\": \"> 0.05\"} ’)

D.3.2 Manually reproducing the code instead of using Docker (CORE-Bench-Medium)

On capsule-8234136, CORE-Agent with GPT-4o-mini tried to manually reproduce the code even when
prompted to use Docker, causing the agent to eventually hit the context limit and fail. We found this problem
to be more persistent on weaker models like GPT-4o-mini, which did not follow instructions as well as GPT-4o.

Step 1: Listed the contents of the current directory , resulting in a successful
output of 162 files and directories .

Step 2: Read the ’REPRODUCING .md’ file successfully , which provided
instructions for reproducing results using a Docker image from Code Ocean ’s

registry .\n", "\n", "*
Step 3: Executed ‘pip install -r code/ requirements .txt --no -input ‘, resulting

in a failure during the installation of packages , specifically with numpy
due to metadata generation issues .

Step 4: Executed ‘pip install numpy ==1.18.5 --no -input ‘, but the installation
failed due to a metadata generation error.

Step 5: Attempted to install ‘matplotlib ==3.2.2 ‘ to resolve dependency
conflicts , but the installation failed due to a missing FreeType dependency
.

Step 6: Installed ‘libfreetype6 -dev ‘ and related packages successfully ,
enabling Matplotlib to build.

Step 7: Reinstalled Matplotlib version 3.3.2 successfully after installing
FreeType .

Step 8: Executed ‘main.py ‘ with GOBI as the scheduler argument , resulting in a
success status but encountering a ‘ModuleNotFoundError ‘ for ’joblib ’.

[...]

Step 65: Executed ‘open_file (file_path =’code/ grapher .py’) ‘\n", " - ** Reasoning
:** \"I need to adjust the import statements in ’grapher .py’ to ensure it
can access the required modules directly , which will resolve the ’
ModuleNotFoundErro r’ for ’src ’.\"\n", " - ** Status :** ‘success ‘\n", " -
** Output :** File code/ grapher .py has been opened and added to the context \
u2705

Step 66: Executed ‘open_file (file_path =’code/ grapher .py’) ‘\n", " - ** Reasoning
:** \"Next , I will adjust the import paths in ’grapher .py’ to ensure it
references modules correctly .\"\n", " - ** Status :** ‘success ‘\n", " - **
Output :** File code/ grapher .py has been opened and added to the context \
u2705

Step 67: Executed ‘open_file (file_path =’code/ grapher .py’) ‘\n", " - ** Reasoning
:** \" The next step is to modify the import statements in ’grapher .py’ to
ensure it can access the necessary modules directly , which will resolve the

26

Under review as submission to TMLR

’ModuleNotFoundErro r’ for ’src ’.\"\n", " - ** Status :** ‘success ‘\n", " -
** Output :** File code/ grapher .py has been opened and added to the context

\u2705\n"
Step 68: Executed ‘open_file (file_path =’code/ grapher .py’)

D.3.3 Being unable to install the correct version of dependencies (CORE-Bench-Hard)

In capsule-8807709, CORE-Agent with GPT-4o installed network-diffusion version 0.14.4. However, one
of the import statements (from network_diffusion import MultiSpreading) threw an error because the
import was only supported in version 0.6). The agent successfully realized it may need to install an older
library version and performed a web search to see which version was applicable, but could not find the correct
result within the cost constraint.

This example shows how reproducing a paper can be a difficult task, even for a human. Determining which
library version to install without additional documentation can be hard without external knowledge.

Step 1: Executed ‘read_file (filename =’README .md’)‘ and successfully identified
dependencies and installation instructions for ’epidemic .py’.

Step 2: Executed ‘list_folder (folder =’./’)‘ and found: [’config .ini ’, ’LICENSE ’
, ’README .md’, ’. gitignore ’, ’. DS_Store ’, ’code/ config .ini ’, ’code/ epidemic
.py’, ’code/ LICENSE ’, ’code/ gossip .ipynb ’, ’code/ market_competition .ipynb ’,

’code/ auxiliaries / model_real .png ’, ’code/ auxiliaries / model_nd .png ’, ’code/
auxiliaries / florentine .mpx ’, ’code/ auxiliaries / phase_3 .png ’, ’code/
auxiliaries / phase_1 .png ’, ’code/ auxiliaries / phase_2 .png ’, ’code/ auxiliaries
/ general_model .png ’, ’efficiency_tests /tests.ipynb ’, ’efficiency_tests /
data_ndlib .csv ’, ’efficiency_tests / time_measurements .py’, ’efficiency_tests
/ tested_functions .py’, ’efficiency_tests / data_ndiff .csv ’, ’metadata /
metadata .yml ’].

Step 3: Executed ‘read_file (filename =’code/ epidemic .py’)‘ and successfully
retrieved the content , including the import statements , configuration setup
, propagation model initialization , and node state settings for a multi -
spreading experiment .

Step 4: Executed ‘pip install -r requirements .txt ‘ - Result : ERROR: Could not
open requirements file: [Errno 2] No such file or directory : ’requirements .
txt ’

Step 5: Executed ‘pip install networkx numpy ‘ and successfully installed
networkx -3.3 (numpy was already satisfied).

Step 6: Executed ‘execute_shell (command_line =’python3 code/ epidemic .py’)‘
resulting in a ‘ModuleNotFoundError : No module named ’network_diffusion ’‘.

Step 7: Read the ‘README .md ‘ file successfully , revealing instructions for
using the ‘network_diffusion ‘ package , including setup via CodeOcean or a
Python environment , and details on running various example files.

Step 8: Executed ‘web_search (query=’python network_diffusion module
installation ’)‘ and found the relevant module \"network - diffusion \" on PyPI
: https :// pypi.org/ project /network - diffusion /.

Step 9: Executed ‘pip install network -diffusion ‘ resulting in the successful
installation of ‘network -diffusion -0.14.4 ‘ and its dependencies , but noted
a dependency conflict with ‘numpy ‘.

Step 10: Executed ‘python3 code/ epidemic .py ‘ resulting in an ImportError :
cannot import name ’MultiSpreading ’ from ’network_diffusion ’.

Step 11: Executed ‘pip show network -diffusion ‘ and found that the module ‘
network_diffusion ‘ is version 0.14.4 , authored by Micha\u0142 Czuba and
Piotr Br\u00f3dka , licensed under GNU GPL v3 , located at ‘/root /. cache/
pypoetry / virtualenvs /agpt -ttFEHEs8 -py3 .10/ lib/ python3 .10/ site -packages ‘,
and requires ‘dynetx ‘, ‘matplotlib ‘, ‘networkx ‘, ‘numpy ‘, ‘pandas ‘, ‘scipy
‘, and ‘tqdm ‘.\n", "\n", "*

Step 12: Executed ‘ls /root /. cache/ pypoetry / virtualenvs /agpt -ttFEHEs8 -py3 .10/
lib/ python3 .10/ site - packages / network_diffusion ‘ and found files: ‘__init__ .

27

Under review as submission to TMLR

py ‘, ‘__pycache__ ‘, ‘logger .py ‘, ‘mln ‘, ‘models ‘, ‘seeding ‘, ‘simulator .py
‘, ‘tests ‘, ‘tpn ‘, ‘utils.py ‘.

Step 13: Executed ‘ls ‘ command on ’network_diffusion / models ’ directory ,
successfully listing files: ‘__init__ .py ‘, ‘__pycache__ ‘, ‘base_model .py ‘,
‘dsaa_model .py ‘, ‘mic_model .py ‘, ‘mlt_model .py ‘, ‘tne_model .py ‘, and ‘utils
‘.

Step 14: Executed ‘grep ’class MultiSpreading ’‘ in the specified directory ; no
output was produced .

Step 15: Executed ‘read_file (filename =’code/ epidemic .py ’)‘ successfully and
found the script initializes and performs a propagation experiment using
the ‘MultiSpreading ‘ class.

Step 16: Executed ‘jupyter nbconvert --to notebook --execute code/ gossip .ipynb ‘
with result : ‘/bin/sh: 1: jupyter : not found ‘.

Step 17: Reviewed ‘README .md ‘ successfully ; detailed steps for running ’
epidemic .py’ and installing dependencies were found.

Step 18: Executed ‘pip install ipykernel tqdm ‘ successfully , installing
packages : ipykernel -6.29.5 , comm -0.2.2 , debugpy -1.8.5 , ipython -8.26.0 ,
jupyter -client -8.6.2 , jupyter -core -5.7.2 , matplotlib -inline -0.1.7 , nest -
asyncio -1.6.0 , pyzmq -26.1.0 , tornado -6.4.1 , traitlets -5.14.3 , jedi -0.19.1 ,
prompt -toolkit -3.0.47 , stack -data -0.6.3 , asttokens -2.4.1 , executing -2.0.1 ,
pure -eval -0.2.3.

Step 19: Executed ‘python3 code/ epidemic .py ‘ resulting in an ImportError :
cannot import name ’MultiSpreading ’ from ’network_diffusion ’.

Step 20: Executed ‘web_search (query=’ network_diffusion MultiSpreading class ’,
num_results =1) ‘ successfully ; found a relevant URL: https :// network -
diffusion . readthedocs .io/en/ latest / spreading_models .html.

[...]

D.3.4 Attempting to look up the capsule on CodeOcean (CORE-Bench-Hard)

Also in capsule-8807709, CORE-Agent with GPT-4o, after being unable to locate the requirements.txt file
in the repository, attempted to look up the capsule on CodeOcean online. The agent ultimately did not
succeed because JavaScript is required to render CodeOcean, which the agent did not have access to through
its web browsing capabilities. However, this example highlights the care that agent developers must take
during evaluation.

[...]

Step 60: Attempted to read ’requirements .txt ’ but encountered an error: [Errno
2] No such file or directory : ’/home/crab/ autogpt / environment /capsule
-8807709/ requirements .txt ’.\n", "\n", "*

Step 61: Executed ‘web_search (query=’network diffusion site: github .com ’,
num_results =5) ‘ and found relevant repositories , including \" GitHub -
GiulioRossetti /ndlib: Network Diffusion Library \" at https :// github .com/
GiulioRossetti /ndlib.

Step 62: Executed ‘web_search (query=’ codeocean capsule 8807709 ’) ‘ and found
links including the main capsule page [here](https :// codeocean .com/ capsule
/8807709) with additional details on compute capsules and their
functionalities .

Step 63: Executed ‘web_search (query=’https :// codeocean .com/ capsule /8807709 ’) ‘
and retrieved multiple relevant URLs and excerpts related to Code Ocean
capsules .

Step 64: Executed ‘web_search (query=’https :// codeocean .com/ capsule /8807709 ’) ‘
and found multiple relevant URLs , including https :// codeocean .com/ capsule
/8807709 , which requires JavaScript to run.

Step 65: Executed ‘web_search (query=’https :// codeocean .com/ capsule /8807709 ’) ‘
to find relevant information about Code Ocean ’s compute capsules ;

28

Under review as submission to TMLR

successfully retrieved multiple URLs and excerpts detailing their features
and usage.

Step 66: Executed ‘web_search (query=’https :// codeocean .com/ capsule /8807709 ’) ‘
with success , retrieving multiple relevant Code Ocean URLs and excerpts ,
including https :// codeocean .com/ capsule /8807709 and https :// codeocean .com/
capsule /8807709/ tree/v3.

Step 67: Executed ‘web_search (query=’https :// codeocean .com/ capsule /8807709 ’) ‘
and retrieved multiple relevant URLs , including https :// codeocean .com/
capsule /8807709.

Step 68: Executed ‘web_search (query=’ codeocean .com capsule 8807709 ’ ,
num_results =1) ‘; found URL: https :// codeocean .com/ capsule /8807709.

Step 69: Executed ‘write_file (filename =’ requirements .txt ’, contents =’\\
nnetworkx \\ nnumpy \\ ntqdm \\ nmatplotlib \\ npandas \\ nscipy \\ nnetwork -
diffusion@https :// github .com/anty - filidor / network_diffusion / archive /refs/
heads/ master .zip#egg= network_diffusion ’)‘ successfully , resulting in the
file requirements .txt being written .

Step 70: Executed ‘pip install -r requirements .txt ‘ and successfully installed
most packages , but encountered an error with scipy due to missing BLAS/
LAPACK libraries .

Step 71: Executed ‘execute_python_code (code=’ import network_diffusion \\ nprint (
dir(network_diffusion)) ’)‘ - Result : ‘ModuleNotFoundError : No module named
’network_diffusion ’‘.

Step 72: Ran ‘python3 code/ epidemic .py ‘ and encountered an ImportError : cannot
import name ’MultiSpreading ’ from ’network_diffusion ’.

Step 73: Executed ‘execute_python_code (code=’ import network_diffusion ;print(dir
(network_diffusion . models)) ’)‘ resulting in ‘ModuleNotFoundError : No module

named ’network_diffusion ’‘.
Step 74: Executed ‘execute_python_code (code=’ import network_diffusion ; print(

dir(network_diffusion . models)) ’)‘ resulting in ‘ModuleNotFoundError : No
module named ’network_diffusion ’‘.

Step 75: Executed ‘import network_diffusion . models as models ; print ([cls for
cls in dir(models) if hasattr (getattr (models , cls), ’__class__ ’)])‘
resulting in ‘ModuleNotFoundError : No module named ’network_diffusion ’‘.

Step 76: Executed ‘web_search (query=’ network_diffusion MultiSpreading class
GitHub ’)‘ and found relevant resources , including a GitHub repository for
NDlib and various documentation and articles on network diffusion models .

Step 77: Executed ‘web_search (query=’ MultiSpreading class site: github .com ’,
num_results =5) ‘; found five relevant GitHub pages discussing multithreading

in C++ and Java , but no direct references to the ’MultiSpreading ’ class.
Step 78: Executed ‘web_search (query=’ CodeOcean account creation guide ’,

num_results =1) ‘ and found \" Create an Admin Account | Code Ocean VPC
Administration Guide \" at https :// docs. codeocean .com/admin -guide/deployment
-guide/create -admin - account .

Step 79: Executed ‘read_file (filename =’ config .ini ’)‘ successfully , found ‘[
PATHS] output_dir : ./ results ‘.

Step 80: Executed ‘web_search (query=’ Create an Admin Account | Code Ocean VPC
Administration Guide ’, num_results =1) ‘\n", " - ** Reasoning :** \" Given our
progress and challenges , setting up CodeOcean seems vital to proceed
clearly and efficiently .\"\n", " - ** Status :** ‘success ‘\n", " - ** Output
:** \n", " ‘‘‘\n", " ## Search results \n", " ### \" Create an

Admin Account | Code Ocean VPC Administration Guide \"\n", " ** URL :**
https :// docs. codeocean .com/admin -guide/deployment -guide/create -admin -
account \n", " ** Excerpt :** \"Go to https :// codeocean .[hosting domain
]/ join to create an admin account : Before you invite users , we recommend
you to deploy a docker base image first. Visit Deploying Docker Images for
details . Learn to create the initial admin account on Code Ocean VPC .\"\n",

" ‘‘‘

[...]

29

Under review as submission to TMLR

E Reproducibility Study Details

We report the number of studies reproduced for each paper in Table 1 based on the format of the results
provided by the papers’ authors:

• The following papers report the percentage of reproducible studies out of the total number of studies.
We manually calculated the number of reproducible studies and rounded the result: Stockemer et al.
(2018), Gertler et al. (2018), Collberg & Proebsting (2016), Hardwicke et al. (2021), Raff (2019).

• The following papers report the number of results or metrics that were computationally reproducible,
rather than the number of papers: Gilbert et al. (2012), Trisovic et al. (2022), Samuel & Mietchen
(2024), Pérignon et al. (2024), Belz et al. (2021).

• McCullough et al. (2006) reports an approximate number of papers reproduced. Authors state that
they analyzed greater than 150 papers, with less than 15 replicated.

We manually analyzed the papers from the 2022 Machine Learning Reproducibility Challenge (Sinha et al.,
2023). Of the 44 papers submitted to the challenge, 28 attempted to reproduce papers where both data and
code were fully available. 10 of those 28 papers were only partially reproduced. We consider papers to be
fully reproduced if all the main claims of the paper completely hold, even if the reproduced quantitative
results slightly deviate from the original results. For example, we consider Livernoche & Sujaya (2023) a
successful reproduction of the original paper because authors validate the original paper’s claims and results
fall within the standard deviation reported in the original paper. On the other hand, we consider papers to
have reproducibility errors if all the main claims of the paper cannot be reproduced, or if result values from
the original paper deviate significantly from those of the reproduced paper. For example, we treat Brivio &
Çöltekin (2023) as an unsuccessful reproduction because the highest accuracy score from the reproduced
paper deviates significantly from the original paper although the original hypothesis was verified. We do not
consider the results of additional experiments not contained in the original paper. Of the fully reproduced
papers, many codebases contained errors, outdated packages, or limited documentation, requiring researchers
to modify the codebase during the reproduction process.

30

	Introduction
	CORE-Bench: Evaluating agents on computational reproducibility
	Benchmark Construction
	Why use CORE-Bench?

	Baseline agents and evaluation setup
	Results
	Accuracy varies by difficulty level
	Task specific modifications improve accuracy, especially for weaker models
	Stronger models lead to higher accuracy despite a lower token budget
	Written questions are easier than vision questions
	Python tasks are much easier than R
	Agents struggle to retrieve results from many files and often time out while installing dependencies
	Better guardrails are needed to deploy safe agents

	Conclusion
	Benchmark Details
	Original CodeOcean Dataset
	Examples of capsule selection criteria
	Task question construction
	Breakdown of task questions discipline, modality, and language

	Harness Details
	Experimental Details
	Agent Accuracy on the Train Set
	Confidence Intervals on Test Set
	Task Completion Time on Test Set
	Pass@k on the Test Set
	Pass k on the Test Set

	Agent Details
	AutoGPT Bug Fixes and Changes
	CORE-Agent Prompts
	Agent Trajectory Examples
	Using incorrect figure during information extraction (CORE-Bench-Easy)
	Manually reproducing the code instead of using Docker (CORE-Bench-Medium)
	Being unable to install the correct version of dependencies (CORE-Bench-Hard)
	Attempting to look up the capsule on CodeOcean (CORE-Bench-Hard)

	Reproducibility Study Details

