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Figure 1. Overview of our method and visualization of one of the time series displacement satellite image calculation by Small Baseline
Subset (SBAS) algorithm in our dataset.

Abstract

Accurate yet lightweight forecasting of ground-displacement
image sequences is key for real-time disaster mitigation
and urban-planning workflows. We introduce the Koopman-
Prior Autoencoder (KPA), an efficient deep-learning frame-
work that embeds a physics-inspired prior—a Koopman op-
erator acting along the time axis—directly into the model’s
latent dynamics. A convolutional encoder first distills each
displacement image frame into a compact representation.
Rather than learning arbitrary nonlinear recurrence, we con-
strain temporal evolution to follow a single linear operator
whose spectrum is regularised to ensure stability. This Koop-
man prior captures the dominant, quasi-linear components
of crustal deformation, enabling long-horizon predictions
with orders-of-magnitude fewer parameters and FLOPs than
Transformer or diffusion baselines. Trained on nationwide
Japanese archived displacement images and evaluated on
geographically distinct test sites (Turkey, Italy, Hawaii), KPA
matches or exceeds state-of-the-art accuracy while slashing
inference cost, demonstrating that a carefully chosen physi-
cal prior can unlock scalable ground-motion forecasting on
modest hardware.

1. Introduction

Ground-surface deformation (subsidence, uplift, and fault
slip) poses direct risks to critical infrastructure and popula-
tion centres. Small Baseline Subset (SBAS) Satellite Image
Time Series [7] delivers millimetre-level displacement maps
at continental scale, yet remains strictly observational. For
proactive hazard mitigation and urban-planning workflows
we must forecast future deformation fields, a task that re-
quires capturing highly nonlinear spatio-temporal dynamics
while remaining computationally affordable across decades
of imagery.

Recent advancements in deep learning, including power-
ful sequence models like Transformers and generative ap-
proaches such as diffusion models, have demonstrated suc-
cess in various forecasting tasks. However, their direct appli-
cation to large-scale satellite image forecasting, particularly
for SBAS data, often faces significant hurdles. Transformer-
based models typically exhibit quadratic complexity with
respect to sequence length due to their self-attention mecha-
nisms, limiting scalability. Diffusion models, while capable
generators, can be computationally expensive to train and
sample from, and may not inherently enforce the underlying
physical consistency desirable for geophysical phenomena.



Consequently, there is a pressing need for lightweight, yet
accurate and physically-informed algorithms capable of effi-
ciently processing SBAS data for robust predictive modeling.

To bridge this gap, we turn to Koopman operator the-
ory [23], which offers a powerful framework for represent-
ing complex nonlinear dynamical systems using infinite-
dimensional linear operators. For practical implementa-
tion, the central challenge lies in finding finite-dimensional
approximations of this operator that capture the essential
dynamics. A promising machine learning approach in-
volves learning a mapping, typically via an autoencoder
network, from the high-dimensional input space to a lower-
dimensional latent space where the dynamics are approxi-
mately linear and governed by a finite-dimensional Koopman
operator [25, 32]. This approach aligns with the principles
of Physics-Constrained Learning (PCL), aiming to embed
system properties into the model architecture to enhance
interpretability and predictive accuracy with efficient param-
eterization.

In this paper, we propose a novel Koopman-Prior Autoen-
coder (KPA) framework specifically tailored for forecasting
ground displacement from SBAS data(Figure 1). Our key
contribution lies in designing an autoencoder architecture
and associated learning objectives that effectively identify a
Koopman-invariant latent subspace suitable for robust long-
term prediction of spatiotemporal satellite data. By explic-
itly optimizing for linear dynamics within this learned latent
space, KPA combines the representational power of deep
learning with the structure and potential stability guarantees
offered by Koopman theory [15, 26, 33]. This results in a
lightweight and interpretable forecasting model that over-
comes the computational limitations of larger architectures,
offering a practical solution for large-scale displacement pre-
diction tasks critical for risk management and sustainable
development.

2. Related Work
2.1. Koopman theory
Consider a discrete-time dynamical system on a Nd-
dimensional compact manifold M, evolving according to
the flow-map f : M 7→ M:

xn+1 = f(xn), xn ∈ M, n ∈ N ∪ {0}. (1)

Let F be a Banach space of complex-valued observables ψ :
M → C. The discrete-time Koopman operator K : F → F
is defined as

Kψ(·) = ψ ◦ f(·), with ψ(xn+1) = Kψ(xn) (2)

where K is infinite-dimensional, and linear over its argument.
The scalar observables ψ are referred to as the Koopman
observables. Koopman eigenfunctions ϕ are special set of

Koopman observables that satisfy (Kϕ)(·) = λϕ(·), with
an eigenvalue λ. Considering the Koopman eigenfunctions
span the Koopman observables, a vector valued observable
g ∈ Fp = [ψ1 ψ2 . . . ψp]

T can be expressed as a sum
of Koopman eigenfunctions g(·) =

∑∞
i=1 ϕi(·)v

g
i , where

vg
i ∈ Rp, i = 1, 2, . . . , are called the Koopman modes of

the observable g(·). This modal decomposition provides
the growth/decay rate |λi| and frequency ∠λi of different
Koopman modes via its time evolution

g(xt) =

∞∑
i=1

λtiϕi(x0)v
g
i . (3)

The Koopman eigenvalues and eigenfunctions are properties
of the dynamics only, whereas the Koopman modes depend
on the observable.

Koopman modes can be analyzed to understand the dom-
inant characteristics of a complex dynamical system and
getting traction in fluid mechanics [34], plasma dynamics
[31], control systems [33], unmanned aircraft systems [30],
and traffic prediction [3]. In addition, it is also being used
for machine learning tasks and training deep neural networks
[12]. Several methods have also been developed to compute
the Koopman modal decomposition, e.g., DMD and EDMD
[35, 42], Ulam-Galerkin methods, and deep neural networks
[32, 44]. In this paper, we primarily focus on long-term pre-
diction of autonomous dynamical systems using Koopman
modes with autoencoder networks.

2.2. Timeseies Prediction
Neural network-based methods: Forecasting dynami-
cal systems using neural networks, especially recurrent
neural networks (RNNs), has been a topic of interest for
decades [2, 5]. Advances in data availability, machine learn-
ing techniques, and computational power have significantly
renewed focus on this area. Novel architectures like Long
Short-Term Memory (LSTM) networks [19] and Gated Re-
current Units (GRUs) [11] have greatly improved the pre-
dictive capabilities of neural networks. However, training
RNNs remains challenging due to issues like vanishing and
exploding gradients [6], which can be mitigated through
strategies such as stability analysis [27] or unitary hidden
weight matrices [1]. Nevertheless, these approaches often
trade off the expressive power of RNNs, potentially hinder-
ing short-term modeling [22]. Another limitation of RNNs
lies in their lack of generalizability and interpretability when
applied to physical systems. To address this, various meth-
ods have been developed to incorporate physical constraints,
including physics-guided architectures [20], connections to
dynamical systems [38], and formulations based on differ-
ential equations [9]. Hamiltonian neural networks [16] aim
to learn conserved quantities like the Hamiltonian but are
limited to lossless systems. In this work, we propose a linear
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Figure 2. Illustration of the data transformation that maps the high-
dimensional states xk which evolve on a nonlinear trajectory via
φe to a new space where the dynamics are linear and given by K.

operator-based recurrent architecture augmented with phys-
ical prediction constraints to enhance generalizability and
accuracy in forecasting the displacement of SBAS data as
dynamical systems.
Koopman-based methods: Exploiting the linear nature of
the Koopman operator in an infinite-dimensional function
space [34], Koopman-based methods offer a linear frame-
work for recurrent predictions. Early approaches relying
on dynamic mode decomposition (DMD) [35] have been
extended to include dictionary-based techniques [14, 15, 33,
42, 43], though these approaches often assume a dictionary
that spans a Koopman-invariant subspace. Neural network-
based Koopman autoencoders overcome this limitation by
learning invariant spaces where dynamics can be approxi-
mated linearly [25, 32, 40]. The advantage of the Koopman
spectral method has been demonstrated over recurrent net-
works like LSTM, GRU, and ESNs, emphasizing their ability
to identify slowly evolving frequencies crucial for accurate
long-term predictions [24]. Furthermore, autoencoders are
particularly advantageous for modeling and reducing the di-
mensionality of high-dimensional systems, which is central
to this work. Despite these benefits, existing KAE models
often prioritize minimizing multi-step prediction errors and
fail to address prediction consistency. Recent work [4] intro-
duces the concept of the past state Koopman operator, which
enforces future state and past state prediction consistency.
However, this technique is effective only in cases where past
state dynamics can be clearly defined.

3. Method
3.1. Problem Statement
Satellite SBAS time series encode millimetre–scale ground
displacement. Let xi∈M ⊂ RH×W denote the i-th frame.
We model the sequence as a discrete, time-invariant dynami-
cal system

xi+1 = f(xi), (4)

where the unknown map f is highly nonlinear. A naive
computer-vision approach would train a deep network to

approximate f directly.
Koopman theory, however, guarantees that every nonlin-

ear system admits a change of coordinates under which the
evolution becomes linear. As shown in Figure ?? if we can
learn an encoder φe such that

zk+1 = Kzk, zk = φe(xk), (5)

then forecasting l steps ahead reduces to zk+l = Klzk fol-
lowed by a decoder φd that reconstructs xk+l ≈ φd(zk+l).
Our goal is therefore to learn the encoder–decoder pair
(φe, φd) and a compact transition matrix K ∈ RNl×Nl .

3.2. Koopman-Prior Autoencoder (KPA)
KPA couples a lightweight autoencoder with an explicit
Koopman layer:
1. Encoder. A shallow CNN φe maps each frame to a latent

vector zn ∈ RNl .

2. Koopman Layer. Latent dynamics are forced to be lin-
ear: zn+k = Kzn, where K is a learnable Nl × Nl

matrix.

3. Decoder. A symmetric CNN–upsampling decoder φd

reconstructs the forecast x̂n+k from zn+k.
To embed physical reversibility directly into the latent

dynamics, we extend the model with a backward evolution
operator so that it can predict the past as well as the future.
Both K and its backward counterpart Kb ∈ RNl×Nl are
trainable. The latter generates past states via zn−k = Kbzn

and is regularised towards K−1. If K is constrained to be
orthogonal, we simply set Kb = KT, incurring no extra pa-
rameters while preserving numerical stability. The resulting
bidirectional pair enforces exact round-trip consistency, em-
beds the near-reversible nature of crustal deformation, and
enables a unified spectral analysis of forward and backward
error.

To train KPA, we jointly minimise reconstruction error on
the input frames and prediction error on both future and past
frames, while also penalising discrepancies in latent space to
promote numerical stability. Concretely, we minimise four
ℓ2–norm losses:

Lrec =
1

Nin

Nin∑
n=1

∥∥x̂n − xn

∥∥2
2
, (6)

Lfwd =
1

kmNin

km∑
k=1

Nin∑
n=1

∥∥x̂n+k − xn+k

∥∥2
2
, (7)

Lbwd =
1

kmNin

km∑
k=1

Nin∑
n=1

∥∥x̂n−k − xn−k

∥∥2
2
, (8)

Llat =
1

Nin

Nin∑
n=1

∥∥ẑn±k − zn±k

∥∥2
2
, (9)



where km is the maximum prediction horizon. The total
objective combines four complementary errors, each scaled
by a weight γ⋆. The reconstruction term Lrec compels the
autoencoder to reproduce every input frame, preserving all
pixel-level detail in the latent code. The forward term Lfwd
penalises mismatches between predicted and true frames
up to km steps ahead, teaching the Koopman matrix K to
advance latent dynamics reliably along the time axis. To
inject reversibility, the backward term Lbwd imposes the
same penalty for km steps into the past via the operator Kb,
thereby regularising Kb toward K−1 and stabilising long
roll-outs. Finally, the latent-consistency term Llat aligns
trajectories predicted by K (or Kb) with the encoder’s latent
codes, tightening Koopman invariance and further improving
numerical stability. The total loss is

L = γrecLrec + γfwdLfwd + γbwdLbwd + γlatLlat, (10)

whitch are tuned to balance pixel-level fidelity, forecasting
accuracy, temporal reversibility, and latent coherence..

3.3. Network Architecture

While the fundamental training methodology has been out-
lined in the preceding sections, this subsection provides a
detailed examination of our deep learning architecture and
the specific hyperparameter configurations employed for dis-
placement imagery prediction. We focus on the technical
implementation details that enable our model to effectively
learn temporal patterns in displacement data.

The architecture of our displacement imagery predic-
tion network is illustrated in Figure 3, building upon the
framework presented in [4]. The network processes high-
dimensional displacement data through input(xn ∈ RH×W)
and predict xn+1 ∈ RH×W (shown in blue rectangle). In
this case, our network trains the first Nin frames and predicts
Nout frames respectively.

Encoder. The transformation between input spaces and
latent space is facilitated by the encoder (green triangle in
Figure 3) and decoder (magenta triangle in Figure 3)), each
containing a simple CNN-based network.

First, we show the encoder network. We adopt a
three–stage FasterNet backbone, which alternates depth-
wise–separable 3×3 convolutions with point-wise linear
projections and LayerNorm, following the design of origi-
nal FasterNet[10]. Each stage halves the spatial resolution
(H×W → H

2 ×W
2 ) so that, after the third down-sampling,

the feature map is H
8 ×W

8 with C channels. A global aver-
age pooling and a linear layer project this tensor to the Nl-
dimensional Koopman latent vector zn = φe(xn). Except
for the bottleneck, all layers use tanh activations, yielding
a parameter-efficient yet expressive encoder.

Figure 3. Overview of the proposed KPA architecture. A single,
weight–shared encoder first maps each SBAS frame to a latent
vector. The latent code is then routed through three heads: (i) a
reconstruction head that decodes the same frame, (ii) a future-
state head that applies the forward Koopman matrix K up to km
steps and decodes the resulting vectors, and (iii) a past-state head
that applies the backward matrix Kb and decodes past frames. All
three heads share an identical decoder, ensuring that only the latent
dynamics—not the image generator—differ across tasks. Dashed
arrows indicate the linear propagation performed by K or Kb; solid
arrows correspond to convolutional operations. The entire graph
is trained end-to-end with the loss terms described in Sec. 3.2,
enforcing pixel fidelity, forward prediction, backward consistency,
and latent invariance.

Decoder. The decoder(φd) inverses the encoder process.
The latent code zn ∈ RNl or zn±k ∈ RNl is first reshaped to
a square tensor of size H

8 ×
W
8 ×C. We then apply three iden-

tical up-sampling blocks: nearest-neighbour interpolation
by a factor of 2 followed by a 3×3 depthwise convolution,
a point-wise convolution, and LayerNorm. After the final
block the resolution is restored toH×W ; a 1×1 convolution
produces the predicted displacement map x̂n±k. All decoder
activations are tanh, ensuring that the reconstructed range
matches the input dynamic range.

Koopman Layer. The latent bottleneck vector (cyan)
holds the latent state zn ∈ RNl ; its dimension Nl is chosen
as a multiple of 16 to balance expressiveness and efficiency.
Temporal evolution is computed purely linearly by the learn-
able Koopman matrix K ∈ RNl×Nl :

zn+1 = Kzn, zn+k = Kk zn (k ≥ 1). (11)

Thus a single learnable matrix–vector multiply advances the
latent code by one time step, while repeated application of K



yields multi-step predictions with negligible computational
overhead.

3.4. Baseline Methods
To evaluate the performance of KPA, we compare it against
five baseline models. The first baseline employs Dy-
namic Mode Decomposition (DMD) combined with an Au-
toEncoder to capture the underlying temporal structures.
DMD [36, 41] has been widely used for analyzing spatiotem-
poral patterns. The second utilizes a State Space Model,
a state-space model architecture, in combination with an
AutoEncoder for sequence prediction. In this paper, we
use Mamba [17] as an SSM method. Mamba, a recently
proposed state-space model, enables efficient sequence mod-
eling with linear-time complexity. The third and fourth base-
lines directly apply DMD and SSM, respectively, without an
AutoEncoder to assess their standalone forecasting capabili-
ties. Dynamic Mode Decomposition (DMD) is used for time-
series image prediction by representing image sequences as
linear dynamical systems. Each image is reshaped into a
1D vector before applying DMD, enabling the extraction of
dominant spatiotemporal patterns. The trained model then
extrapolates future image frames based on learned modes
and dynamics. Finally, the fifth baseline leverages a direct
Koopman operator approach to predict future states in the
latent space. These baselines provide a comprehensive evalu-
ation of KPA’s predictive performance against both classical
and modern forecasting techniques.

3.5. Training strategy
We implement a training methodology based on [4], adapted
specifically for SBAS displacement prediction. During train-
ing, each time–series sample is temporally split into two
parts: the first Nin frames and the subsequent Nout frames.
The initial Nin frames are used to train the network via two
objectives—(i) frame reconstruction and (ii) autoregressive
prediction of future states. The following Nout frames serve
exclusively as validation targets: after the model has pro-
cessed the Nin context frames, it must predict these unseen
valudation and test Nout frames (see Figure 1), and we mea-
sure accuracy by the mean-squared error between the fore-
casts and ground-truth displacements.

4. Experimental Results
4.1. Training details
The critical hyperparameters for future prediction of satel-
lite images using the proposed model include the learn-
ing rate (lr), the decay rate of the learning rate (lrd), the
associated decay schedule, the maximum prediction step
km, and the weights of the individual loss components:
γid, γfwd, γbwd, γcon, and γlat. Structural hyperparameters
such as Nl also play an important role. The specific values

of these hyperparameters are chosen for different scenarios
in the satellite image prediction task. Note that Nin, Nout are
determined by the dimensionality of the input data and are
not tunable. Training is performed for 600 epochs.

The model is trained for a total of 600 epochs. The initial
learning rate is set to lr = 1 × 10−4 and is decayed by a
factor of lrd = 0.5 every 200 epochs. The maximum predic-
tion step calculating loss function is defined as km = 5. The
number of input frames and the number of predicted output
frames are determined by the structure of the dataset and are
not subject to optimization. Regarding the loss function, the
reconstruction loss is weighted by γrec = 1.0, the forward
prediction loss by γfwd = 0.5, the backward prediction loss
by γbwd = 0.5, and the latent consistency loss by γlat = 0.1.
To stabilize early training, the latent consistency loss is dis-
abled for the first 100 epochs by setting γlat = 0 during
that period, and enabled thereafter. The dimensionality of
the latent space, which determines the size of the Koopman
operator, is set to Nl = 64, providing a compact yet expres-
sive representation of the high-dimensional displacement
imagery.

4.2. Displacement Datasets

The Small BAseline Subset (SBAS) technique is employed
to generate time series satellite images, capturing ground
displacement patterns with high temporal and spatial res-
olution. In this experiment, we use the public Japanese
SBAS dataset [28](Table. 1), which contains the deforma-
tion data for 191 SBAS of velocities(mm/y). This dataset
was calculated using Sentinel-1 by LiCSBAS [29]. Prepro-
cessing steps involve phase unwrapping, noise filtering, and
the exclusion of outliers. This dataset serves to evaluate the
method’s applicability to geophysical phenomena. Addition-
ally, each input image was resized into 64× 64 pixels. Spe-
cific dataset details are described in the supplemental mate-
rial 6.2. To structure the temporal forecasting task, we divide
the full SBAS time series into non-overlapping sequences.
These sequences are then partitioned as follows: the earliest
30-frame sequence is used for training(Nin) and the middle
30-frame sequence for validation(Nout). Additionally, the
most recent 20-frame sequence for testing. These validation
and test data are predicted from the Nin frames used for
training. To address the common challenge of limited SBAS
data availability, we evaluate three different scenarios with
varying Nin and Nout values. To that end, we additionally
construct two extended-horizon variants of the dataset: one
with Nin = 10 and Nout = 50, and another with Nin = 20
and Nout = 40. In both cases, the set of test frames is kept
identical to the original split, ensuring a consistent evaluation
protocol. For a detailed explanation, please see the Figure 6
in the supplementary material 6.2. This chronological split
ensures realistic evaluation by mimicking practical forecast-
ing scenarios where future observations are unknown during



Table 1. Displacement dataset in this experiment was targeted in
Japan. This Displacement was calculated by the SBAS algorithm
by LicSBAS [29] using Sentinel-1 and openly published [28].

FrameID Date (yyyymmdd) # Img.Start End
017D 05353 130400 20151118 20200308 109
017D 05514 131312 20141123 20200308 133
039A 05193 040711 20150430 20200304 113
039A 05372 151515 20150430 20200304 116
046D 04690 121308 20141207 20200322 128
046D 04907 081313 20141231 20200310 128
046D 05096 121313 20141231 20200310 126
046D 05292 131313 20141125 20200310 125
046D 05469 071311 20141125 20200322 132
068A 04667 071312 20150526 20200330 116
083A 05602 131212 20151205 20200224 105
090D 05485 121414 20151123 20200301 110
090D 05651 051011 20141116 20200301 132
112A 05300 030808 20150505 20200321 108
112A 05454 131213 20150505 20200226 117
119D 05226 070704 20150117 20200303 124
119D 05372 141313 20150728 20200327 117
119D 05525 040809 20141130 20200303 131
141A 04925 131313 20150507 20200228 120
141A 05118 131311 20150507 20200228 121
141A 05337 160700 20151209 20200228 103
148D 04631 101009 20141120 20200129 123
156A 05796 080500 20150508 20200405 101
163D 05579 100804 20141121 20200306 118
163D 05736 131313 20141121 20200330 136
163D 05934 091414 20141121 20200330 134

training. This setup enables the model to learn long-term
temporal dynamics from historical deformation patterns and
assess its ability to extrapolate future ground deformation
based on past trends.

4.3. Forcasting Future State

We generated the future frames of test data using the trained
KPA. We perform the tests for Nin = 10, 20 and 30 frames
to predict test frames. The Mean Square Error(MSE) is cal-
culated average over all predicted frames in only the test time
data. The results are summarized in Table 2 and in Figure
4. We evaluate our proposed Koopman-Prior AutoEncoder
(KPA) against several baseline methods on the SBAS dataset
for time-series image prediction. Table 2 presents the MSE
displacement in millimeters across different input sequence
lengths (Nin).

Our experimental results demonstrate the superiority of
KPA over traditional methods. Integrating an autoencoder
significantly enhances performance, reducing prediction er-
ror by approximately 70% for both SSM and DMD, under-

scoring the importance of efficient latent space representa-
tion. KPA achieves competitive accuracy across all training
sequence lengths, with MSE values of 39.192 mm, 35.929
mm, and 34.708 mm forNin of 10, 20, and 30 frames, respec-
tively. This matches state-of-the-art deep learning models
like ConvLSTM while surpassing the Transformer, espe-
cially for shorter sequences. Notably, KPA outperforms its
non-autoencoder counterpart (Koopman w/o AE) by up to
65%, validating our hypothesis that combining Koopman
dynamics with autoencoder-based dimensionality reduction
enhances spatiotemporal pattern prediction. Moreover, KPA
maintains strong performance even with limited training con-
text data (Nin = 10), a crucial advantage in scenarios where
extensive training sequences are unavailable.

A key consideration is that Transformer architectures typ-
ically require substantial amounts of training data to fully
leverage their self-attention mechanisms and realize their
potential. The regional nature of our SBAS dataset, which
is limited to observations over Japan, may not provide suf-
ficient scale for optimal Transformer training. This aligns
with previous findings in the literature that highlight the
data-hungry nature of Transformer models [13, 21]. We hy-
pothesize that the Transformer model’s performance could
potentially improve significantly if trained on a global-scale
dataset incorporating SBAS measurements from multiple
geographical regions. This would provide the model with
the volume and diversity of data typically required for Trans-
former architectures to achieve their characteristic scaling
benefits [8]. In contrast, our proposed KPA method demon-
strates robust performance despite the limited dataset size.
This efficiency in data utilization can be attributed to the
inherent properties of Koopman operators, which effectively
capture the underlying dynamical system with fewer exam-
ples due to their physically motivated mathematical foun-
dation. This characteristic makes our approach particularly
valuable for specialized applications where large-scale dis-
placement is impractical or unavailable. The ability of KPA
to achieve superior results with limited training data suggests
that it offers a more practical solution for regional-scale ap-
plications, where data availability might be constrained by
geographical or temporal limitations. This advantage be-
comes especially relevant in operational scenarios where
rapid deployment with limited historical data is required.

4.4. Computational Efficiency Analysis

To evaluate the computational efficiency of our proposed
KPA model using 20 frames as context input, we conduct
comprehensive comparisons with state-of-the-art models,
including Transformers and ConvLSTM networks. All ex-
periments were performed on a single NVIDIA RTX 3080
GPU to ensure fair comparison. Specific experimental de-
tails are described in the supplemental material 8.1.

As shown in Table 3, our KPA achieves remarkable effi-



Figure 4. Starting the initial displacement image(the first frame of training data), we compared our KPA model(AE w/Koopman), Dynamic
Mode Decomposition-based AutoEncoder(AE w/ DMD) and State Space Model-based Auto Encoder(AE w/ SSM) to forecast the future
displacement of SBAS data for the 80th frames(the last frames of test data). All of the methods used the first 30 frames as input context
frames and forecasted the next 50 frames.

Method Nin = 10 Nin = 20 Nin = 30

SSM w/o AE 143.348 141.438 138.156
SSM w AE 41.782 39.238 36.593

DMD w/o AE 153.854 151.289 143.662
DMD w AE 45.721 42.299 38.327

Koopman w/o AE 129.101 102.716 100.243
Koopman w AE(Ours) 39.192 35.929 34.708

ConvLSTM 40.122 35.524 33.182
Transformer 83.316 45.625 40.537

Table 2. Prediction displacement of Mean Square Error (mm) com-
parison at test 20 frames: Our Koopman-Prior Auto Encoder(KPA)
and baseline algorithms on SBAS dataset. Nin is used as input
frames of SBAS dataset.

ciency improvements across all computational metrics. The
parameter count of our model is merely 0.2M, which rep-
resents a reduction of 99.3% compared to the Transformer
baseline (28M parameters) and 98.0% compared to ConvL-
STM (10M parameters). This dramatic reduction in model
complexity is attributed to our efficient Koopman operator
design and the utilization of spectral methods through FFT.

In terms of computational complexity, KPA demonstrates
exceptional efficiency, requiring only 19M FLOPs compared
to 31.3G for Transformers and 76.5M for ConvLSTM. This
represents a substantial 99.9% reduction in computational
requirements compared to the Transformer baseline. The
inference speed of our approach demonstrates a particular
advantage in real-time applications, processing each frame
in 1- 3ms compared to 15- 30ms for Transformers and 5-



Model Parameters FLOPs Inference Time
Transformer 28M 31.3G 15-30ms
ConvLSTM 10M 76.5M 5-10ms
KPA (Ours) 0.2M 19M 1-3ms

Table 3. Computational Resource Requirements of our method and
baseline models using the same 20 frames as context input.

10ms for ConvLSTM. This translates to a 10× speedup over
Transformers and 3× over ConvLSTM, while maintaining
competitive accuracy as shown in our previous experiments.
This efficiency stems from the spectral representation and the
linear nature of operations in the Koopman-embedded latent
space, eliminating the need for complex attention mecha-
nisms or recurrent computations.

4.5. Robustness Evaluation on Unseen Regions
To assess the robustness of our proposed Koopman Opera-
tor Autoencoder (KPA) in predicting ground deformation
in unseen regions, we conducted evaluations on three inde-
pendent volcanic areas: Mauna Loa in Hawaii (Sentinel-1
frame 087D 07004 060904), Mount Etna in Italy (Sentinel-1
frame 124D 05291 081406), and Mount Ararat in Turkey
(Sentinel-1 frame 152D 04960 131313) (shown in Supple-
mentary material 6.3). These locations were not included in
the training dataset, providing a rigorous test of the model’s
generalization capability.

Our experimental results demonstrate that KPA effec-
tively generalizes to these unseen locations, accurately pre-
dicting ground deformation patterns derived from SBAS
data(Figure 5). The model using 20 frames as context in-
put successfully reconstructs spatiotemporal deformation
dynamics despite differences in geological characteristics,
indicating its adaptability to diverse terrains. We evaluated
on Mauna Loa the mean absolute error (MAE) was 525.2
mm, on Mount Etna it was 36.5 mm, and on Mount Ararat it
reached 39.1 mm—each exceeding the Japanese SBAS data.

In the case of Mauna Loa, we observed instances where
the predicted deformation deviated significantly from histori-
cal trends. This suggests that our approach could potentially
be utilized for anomaly detection, as such deviations may in-
dicate abnormal volcanic activity. This capability highlights
the potential of KPA not only for standard forecasting tasks
but also for early warning systems in volcanic monitoring
applications. Overall, these findings confirm that our model
maintains high robustness and applicability even in regions
with no prior training data, supporting its effectiveness in
real-world geophysical and remote sensing scenarios.

5. Conclusion
In this paper, we introduced Koopman-Prior AutoEncoder
(KPA), an efficient and lightweight model for forecasting
time-series displacement of SBAS data. KPA leverages the

Figure 5. Predicted ground deformation on unseen regions by
trained KPA using 20 frames as context input. The model suc-
cessfully captures deformation trends across different geological
environments.

Koopman operator to map the encoder-extracted nonlinear
latent space of displacement data into a linear latent space.
A key aspect is enforcing temporal consistency in the la-
tent variables by exploiting the time-invariance property of
the Koopman operator for autonomous dynamical systems.
We evaluated KPA on Japanese SBAS datasets, comparing
it against physics-based techniques and recent time series
prediction methods, including Diffusion models [18, 37].
Our method demonstrated superior performance with shorter
training times and faster inference compared to state-of-
the-art approaches. KPA’s ability to handle limited data
is significant for computationally demanding simulations
of high-dimensional physical systems. Furthermore, this
method can be extended to non-autonomous control systems
using a bilinearly recurrent physics-based architecture based
on [15].
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