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Fig. 1: Our EDADepth model takes single image (top) and estimates depth using a pre-trained U-Net model. It uses the BEiT
semantic segmentation model to extract context for the generation of depth maps (Middle). 3D point cloud (Bottom) is
constructed from the estimated depth map and the respective input RGB image.

Abstract—Due to their text-to-image synthesis feature, diffu-
sion models have recently seen a rise in visual perception tasks,
such as depth estimation. The lack of good-quality datasets makes
the extraction of a fine-grain semantic context challenging for the
diffusion models. The semantic context with fewer details further
worsens the process of creating effective text embeddings that will
be used as input for diffusion models. In this paper, we propose
a novel EDADepth, an enhanced data augmentation method to
estimate monocular depth without using additional training data.
We use Swin2SR, a super-resolution model, to enhance the quality
of input images. We employ the BEiT pre-trained semantic
segmentation model for better extraction of text embeddings. We
introduce BLIP-2 tokenizer to generate tokens from these text
embeddings. The novelty of our approach is the introduction
of Swin2SR, the BEiT model, and the BLIP-2 tokenizer in the
diffusion-based pipeline for the estimation of monocular depth.
Our model achieves state-of-the-art results (SOTA) on the δ3 met-
ric on both NYUv2 and KITTI datasets. It also achieves results
comparable to those of the SOTA models in the RMSE and REL
metrics. Finally, we also show improvements in the visualization
of the estimated depth in comparison to the SOTA diffusion-based
monocular depth estimation models. Anonymous code repository:
https://github.com/edadepthmde/EDADepth ICMLA.

Index Terms—Monocular Depth Estimation, Semantic Con-
text, Text Embbedings, Tokenizer.

I. INTRODUCTION

Depth estimation is an essential task in computer vision
that measures the distance of each pixel relative to a camera.
Depth is necessary for operations such as 3D reconstruction [1]
(refer 1) and scene understanding [2]. One of the types of
depth estimation is Monocular Depth Estimation (MDE) [3].
MDE is a task that estimates the depth of an object using
a single-view image. Since single-view images do not have
epipolar geometry [4], it is challenging to determine the depth
of each pixel. Traditional methods for depth estimation used
monocular cues [5] and shading [6]. However, such methods
faced challenges, such as the varying image lighting and the
need for precise camera calibration. Such limitations suggested
a need for a technique to estimate depth value based on per-
pixel regression[7], a task commonly used in deep learning
[3]. Hence, deep learning methods have emerged as a reliable
solution for depth estimation.

One of the most popular deep learning methods used in
computer vision is Transformers [8]. Transformers employ
self-attention mechanisms, making them a good choice for
capturing long-range dependencies [9]. Long-range dependen-
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cies are significant in MDE, as they capture contextual infor-
mation from various regions in a single image. Hence, Trans-
formers have successfully been applied to estimate monocular
depth. Furthermore, transformers effectively create generative
models such as the diffusion model [10]. Diffusion mod-
els have been widely used for text-to-image generation and
image denoising. Additionally, data augmentation techniques
have significantly improved the performance of Transform-
ers on various datasets [11]. In this paper, we introduce a
diffusion-based model called EDADepth, an enhanced data
augmentation-based monocular depth estimation.

In EDADepth, we created a diffusion-based pipeline that
does not use extra training data, following the footsteps
of ECoDepth[12]. Our pipeline enhances the input image
through data augmentation. The original indoor NYU–Depth
V2 [13] dataset with low image quality has been fed to a
pre-trained Swin2SR model [14] for obtaining the enhanced
dataset. From the input data, to extract text-embeddings, pre-
trained ViT [15] and CLIP [16] models are widely used. Our
model introduces a novel idea of using a pre-trained BEiT
semantic segmentation model [17] for extracting detailed text
embeddings as summarized in Figure 2. For our experiments
and visualization, we used both the indoor (NYU–Depth V2)
[13] and outdoor (KITTI) [18] datasets. Following recent
works [12], [19], the evaluation metrics are absolute relative
error (REL) and root mean squared error (RMSE), the average
error log10 between the predicted depth and the actual depth
and threshold accuracy δn.

The key contributions of this work are three-fold:
• We propose a novel method to enhance the input images

to improve the estimated depth map. The enhanced input
is used for semantic context extraction.

• We adopt a BEiT semantic segmentation model to extract
the semantic context for creating text embeddings. We
employ the BLIP-2 tokenizer as a novel way to create text
embedding tokens from the extracted semantic context.

• We provide both qualitative and quantitative evaluations
on two popular datasets NYUv2[13] and KITTI [18] to
demonstrate the effectiveness of our pipeline.

II. RELATED WORKS

A. Monocular Depth Estimation

Over the last decade, several methods [20], [21], [22], [23],
[24], [25], [26] have been proposed addressing Monocular
Depth Estimation (MDE). MDE using supervised [27] and
self-supervised learning [28] are among the recent works.
The first MDE challenge organized at WACV 2023 show-
cased the work of Spencer et al. [29]. Several partici-
pants at the challenge outperformed the baseline on the
SYNS-Patches [30] dataset. Few among the teams that im-
plemented self-supervised learning models were team OP-
DAI whose MDE model was based on ConvNeXt-B [31]
and HRDepth [32] models. Team z.suri based their MDE
model on ConvNeXt [31] and DiffNet [33] models and team
MonoViT’s [34] model was based on MPViT [35] model.

ZoEDepth [36] introduced a generalized and robust method
for MDE using zero-shot transfer knowledge.

B. Diffusion-based MDE models

Recently, diffusion model [10] has attracted more notable
advances in estimating depth [37], [38], [39], [40], [41]
because of its pre-trained features. Due to their nature of
intentionally adding noise into the data during the forward
process and trying to restore the original data during the
reverse process, they have been extensively used to extract
high-level features for MDE.

Fig. 2: In EDADepth, the raw RGB input image is enhanced
using a Swin2SR model. BEiT model extracts detailed seman-
tic context from the enhanced image and passes it to a BLIP-2
tokenizer for tokens. These text embedding tokens are fed to
a pre-trained U-Net model to estimate depth.

VPD [37] uses the U-Net architecture for depth estimation
and reference segmentation. EVP [42] and MetaPrompts [40]
enhance the existing VPD model by adding layers to create
effective text embeddings. Recently, ECoDepth [12] intro-
duced the concept of using embeddings from a pre-trained ViT
for detailed semantic information extraction. Existing MDE
models [37], [12], [40], [42], [38] use CLIP [16] text tokenizer
for generating text embedding tokens from semantic context.
Our approach differs from traditional image-to-text caption
generators such as CLIP [16] used in VPD [37], providing
a more informative and precise representation of the input
images. Likewise, PatchFusion [43] was the first to enhance
low-quality input dataset as a data augmentation step in the
MDE pipeline. In the same direction, we for the first time,
use the Swin2SR model to enhance the input dataset. To
effectively extract the semantic context from the enhanced
dataset, we introduce a novel idea of using the BEiT semantic
segmentation [17] model. Additionally, to extract tokens from
the text embeddings effectively, we propose applying BLIP-2
[44] tokenizer.



Fig. 3: EDADepth model framework. The architecture integrates a Swin2SR model to process raw RGB inputs, producing
enhanced images for the text embedding module. It utilizes the BEiT semantic segmentation model for a segmentation-based,
self-supervised text embedding process that generates a vector of text embeddings. These vectors are then fed into the U-Net
model via the BLIP-2 tokenizer. The model follows a forward-reverse denoising process to generate an estimated depth map.

III. METHODS

A. Diffusion Models Overview

Diffusion models [10] are generative models implemented
by adding noise to the input and aiming to reconstruct the
original input by learning the reverse denoising process. The
diffusion model implemented in this project is stable diffusion,
a text-to-image latent diffusion model [10]. The Stable Dif-
fusion model consists of four key components: Encoder (E),
Conditional denoising auto-encoder (ϵ0), Language encoder
(τθ), and decoder (D). The diffusion process is modeled as
follows:

zt ∼ N (
√
αtzt−1, (1− αt)I) (1)

where zt is random variable at time t, αt is fixed coefficient
representing the noise schedule, and N (z, µ, σ) represents the
normal distribution.

The encoder (E) and decoder (D) are trained before the
ϵ0, such that D(E(x)) = x̂ ≈ x. ϵ0 is implemented using
U-Net as a pre-trained forward process (using the LAION-
5B dataset [45]) and we train the reverse process for depth
estimation. ϵ0 of the latent diffusion model is trained to
minimize the loss given by:

LLDM := EE(x),y,ϵ∼N (0,1),t||ϵ− ϵθ(zt, t, τθ(y))||22 (2)

where zt is calculated using Equation 1.
From equation 1, we know that the diffusion model is

processed as Markov, making it a regression problem, which
can be used to model the distribution p(y|x), where y is the
output depth and x is its corresponding input image. Since
we already have a pre-trained model from stable diffusion,
the model ϵ0 can be used to predict the density function gra-
dient, ∇zt logp(zt|C). The distribution p(y|x) can be further
modeled as:

pλ(y|x, T ) = pλ4(y|z0)pλ3(z0|zt, C)pλ2(zt|x)pλ1(C, x) (3)

where, pλ1
(C, x) = p(C|T )p(T |x).

T is used to denote the textual embeddings obtained from
the BEiT model (discussed in the next section). The pre-
trained transformer model implements the distribution p(T |x),

and through the learnable embeddings from the BEiT model,
p(C|T ) is implemented. The distribution p(z0|x) is imple-
mented using the encoder (E). Likewise, the distribution
p(z0|zt, C) is implemented via the U-Net model [46] to extract
hierarchical feature maps. Finally, the distribution p(y|z0)
generates the depth map from the hierarchical feature maps.

Fig. 4: Text-embedding extraction using BEiT model.

B. BEiT model for Text-Embeddings

We adopt the BEiT model, a self-supervised semantic seg-
mentation model trained on ImageNet-21K from the ImageNet
dataset [47] and fine-tuned on the ADE20K dataset [47] to
extract semantic context from enhanced input images. Figure
4 describes the image semantic segmentation pipeline of the
BEiT model that extracts the semantic context of the image
into a 150-dimensional logit vector. The semantic context is
fed to a multilayered perceptron equipped with GELU[48]
to generate text embeddings (100-dimensional logit vectors).
These vectors are now passed to the BLIP-2 tokenizer [44].



Fig. 5: Probabilities of the predicted semantic classes for the original, the resized, and the super-resolved images.

Our model then performs a forward-reverse denoising process
to extract high-level knowledge based on the learnable embed-
dings.

C. Enhanced Data Augmentation

Depth estimation models are sensitive to low-quality in-
puts [43], which can lead to loss of features. When a low-
quality input image is supplied to the BEiT text embedding
model, it results in incomplete semantic information or knowl-
edge and improper estimation of depth for various objects.
Hence, we propose an enhanced data augmentation through
a pre-trained Swin2SR model [14] to enhance the quality of
the input image. Figure 5 compares the probability of BEiT
predicted semantic classes between the original images resized
using bilinear interpolation and the superresolved images.
There is a noticeable improvement in the probability of the
super-resolved image. The model misclassifies the ”window-
pane” class as the ”CRT screen” class in the red-annotated
portions of the images, likely because of their similar visual
appearances. However, the predictive probability of the su-
perresolved image is lower than that of the original image,
indicating that the superresolved input enhances the accuracy
of semantic classification while reducing false positives. In
addition, the probabilities for many components of the resized
image are lower than those of the original.

D. Overall EDADepth Architecture

Figure 3 shows the overall architecture of EDADepth model.
Input: As shown in figure 3, the input RGB image is fed
to an image encoder for conversion into a latent space [49],
which is then processed through the denoising U-Net. The
same image is also provided to the Swin2SR model, which
enhances the image by super-resolving it. The enhanced image
is passed through the pre-trained BEiT model for semantic
context extraction. This step transforms the input image into
a sequence of visual tokens [17] for semantic contextual
information extraction to segment the image. This contextual
information, after linear transformation [50] is passed through
the U-Net diffusion backbone (stable diffusion).
Stable Diffusion: The stable diffusion model enables image
diffusion into the latent space to learn latent embedding

through a variational autoencoder (VAE) [51]. The VAE trans-
forms the input image into latent space for the U-Net model
which considers different features of the input image in various
dimensions. Likewise, learnable text embeddings are fed into
the U-Net. Based on the image denoising process and the
text-to-image generation process from text embeddings in the
U-Net model, multiscale hierarchical feature maps [52] are
generated and sent to the upsampling decoder [53].
Decoder: The Decoder [53] is designed to perform
convolution-deconvolution [54] to upsample the feature maps.
The decoder has a regression model with two convolution
layers that generate the depth map from the feature maps.
This depth map is colorized to better visualize the metric depth
estimate of the RGB input image.

IV. EXPERIMENTAL RESULTS

A. Datasets and Evaluation

The monocular depth estimation (MDE) models are trained
and evaluated using the NYU Depth v2 and KITTI data sets.
NYU Depth v2 [13] dataset consists of video sequences in
indoor scenes with 24,231 2D 640×480 RGB images and the
corresponding infrared-based depth maps have a depth range
of 0.1 to 10 meters. KITTI Eigen-Split [20] dataset consists
of video sequences in outdoor scenes containing 23,158 2D
1240×375 RGB images and its corresponding infrared-based
depth maps having a depth range of 0.1 to 80 meters. The
results are measured using RMSE (root mean squared error)
and REL (absolute relative error) as the primary evaluation
metrics. The average error log10 between the predicted depth
a and the actual depth d, and the threshold accuracy δn which
measures the % of pixels that satisfy the max(ai/di, di/ai) <
1.25n, where n = 1, 2, 3, are other common metrics as in
Tables I, II. We also provide qualitative results in figures 6,7.

B. Implementaton Details

Our proposed EDADepth model uses the HuggingFace
Stable-Diffusion-v1-5 checkpoint as the U-Net diffusion back-
bone. For super-resolution, we utilized a Swin2SR model from
HuggingFace to upscale the resolution by 2x. Additionally, we
incorporated the BEiT-based model for semantic segmentation.



TABLE I: Comparison of recent models on the NYUv2 Dataset. The recent models are categorized into non-diffusion-based
and diffusion-based monocular depth estimation (MDE) models. Diffusion-based MDE models are further divided into those
trained with extra training data (ETD) and those without. Bold metrics indicate SOTA performance, and italic metrics indicate
the second-best performance. The row with a light gray fill represents the performance of our model.

Method Venue RMSE↓ REL↓ log10↓ δ1↑ δ2↑ δ3↑ extra training data
Non-Diffusion-Based

Eigen et al. [20] NIPS’14 0.641 0.158 - 0.769 0.950 0.988 ×
DORN [21] CVPR’18 0.509 0.115 0.051 0.828 0.965 0.992 ×
GeoNet [22] TPAMI’20 0.569 0.128 0.057 0.834 0.960 0.990 ×

SharpNet [55] ICCVW’21 0.502 0.139 0.047 0.836 0.966 0.993 ×
Yin et al.[56] CVPR’21 0.416 0.108 0.048 0.875 0.976 0.994 ×

BTS[23] Arxiv’19 0.392 0.110 0.047 0.885 0.978 0.994 ×
ASN [57] ICCV’21 0.377 0.101 0.044 0.890 0.982 0.996 ×

TransDepth [58] ICCV’21 0.365 0.106 0.045 0.900 0.983 0.996 ×
AdaBins[24] CVPR’21 0.364 0.103 0.044 0.903 0.984 0.997 ×

DPT [25] ICCV’21 0.357 0.110 0.045 0.904 0.988 0.998 ✓
P3Depth[59] CVPR’22 0.356 0.104 0.043 0.898 0.981 0.996 ×

NeWCRFs[26] CVPR’22 0.334 0.095 0.041 0.922 0.992 0.998 ×
Localbins [60] ECCV’22 0.357 0.099 0.042 0.907 0.987 0.998 ×

DepthFormer[61] ArXiv’22 0.329 0.094 0.040 0.923 0.989 0.997 ×
PixelFormer[62] WACV’23 0.322 0.090 0.039 0.929 0.991 0.998 ×
WorDepth [19] CVPR’24 0.317 0.088 0.038 0.932 0.992 0.998 ×

MIM [63] CVPR’23 0.287 0.083 0.035 0.949 0.994 0.999 ×
ZoeDepth [36] ArXiv’23 0.270 0.075 0.032 0.955 0.995 0.999 ✓

Diffusion-Based (with extra training data)
VPD [37] ICCV’23 0.254 0.069 0.030 0.964 0.995 0.999 ✓

TADP [38] CVPR’24 0.225 0.062 0.027 0.976 0.997 0.999 ✓
Marigold [39] CVPR’24 0.224 0.055 0.024 0.964 0.991 0.998 ✓

MetaPrompts [40] ArXiv’23 0.223 0.061 0.027 0.976 0.997 0.999 ✓
Diffusion-Based (without extra training data)

DDP [41] ICCV’23 0.329 0.094 0.040 0.921 0.990 0.999 ×
ECoDepth [12] CVPR’24 0.218 0.059 0.026 0.978 0.997 0.999 ×

EDADepth(ours) ICMLA’24 0.223 0.061 0.026 0.977 0.998 1.000 ×

Fig. 6: Comparison of different diffusion-based MDE models with their test samples. The annotated green box denotes the area
where the visualization of the output from our model outperforms the visualization of ECoDepth [12], the current diffusion-
based SOTA. Zoom-in for better visibility.



Fig. 7: Comparison of various diffusion-based monocular depth estimation (MDE) models on KITTI Eigen-Split [20] test
samples, all trained without additional data. The annotated green box highlights the area where our model’s depth estimation
surpasses that of the other models. Zoom-in for better visibility.

TABLE II: Comparision of models on KITTI Eigen-Split [20] Dataset. The bold metrics represent SOTA, and the italic metrics
represent the second-best performance. The row with a light gray fill represents the performance of our model, EDADepth.

Method Venue RMSE↓ REL↓ RMSElog↓ δ1↑ δ2↑ δ3↑ extra training data
Non-Diffusion-Based

Eigen et al. [20] NIPS’14 6.3041 0.203 0.282 0.702 0.898 0.967 ×
DORN [21] CVPR’18 2.727 0.072 0.120 0.932 0.984 0.994 ×

Yin et al. [56] CVPR’21 3.258 0.072 0.117 0.938 0.990 0.998 ×
BTS[23] Arxiv’19 2.756 0.059 0.096 0.885 0.978 0.994 ×

TransDepth[58] ICCV’21 2.755 0.064 0.098 0.956 0.994 0.999 ×
AdaBins[24] CVPR’21 2.960 0.067 0.088 0.949 0.992 0.998 ×

DPT[25] ICCV’21 2.573 0.060 0.092 0.959 0.995 0.996 ✓
P3Depth[59] CVPR’22 2.842 0.071 0.103 0.953 0.993 0.998 ×

NeWCRFs[26] CVPR’22 2.129 0.052 0.077 0.974 0.997 0.999 ×
DepthFormer[61] ArXiv’22 2.143 0.052 0.079 0.975 0.997 0.999 ×
PixelFormer[62] WACV’23 2.081 0.051 0.077 0.976 0.997 0.999 ×
ZoeDepth [36] ArXiv’23 2.440 0.054 0.083 0.970 0.996 0.999 ✓
WorDepth [19] CVPR’24 2.039 0.049 0.074 0.932 0.992 0.998 ×

MIM [63] CVPR’23 1.966 0.050 0.075 0.977 0.998 1.000 ×
Diffusion-Based (with extra training data)

Marigold [39] CVPR’24 3.304 0.099 0.138 0.916 0.987 0.996 ✓
MetaPrompts [40] ArXiv’23 1.928 0.047 0.071 0.981 0.998 1.000 ✓

Diffusion-Based (without extra training data)
DDP [41] ICCV’23 2.072 0.050 0.076 0.975 0.997 0.999 ×

ECoDepth [12] CVPR’24 2.039 0.048 0.074 0.979 0.998 1.000 ×
EDADepth (ours) ICMLA’24 2.070 0.051 0.077 0.978 0.997 1.000 ×

We trained using 8 NVIDIA H100 GPUs [64] for 25 epochs,
with a total batch size of 32. Our model did not use additional
training data, but relied solely on the original NYUv2Depth
[13] and KITTI Eigen-Split [20] datasets.

C. Quantitative Results

As shown in Table I for the NYUv2 test set, among the sta-
ble diffusion-based models (both with and without additional
training data), our model achieved the second-best results in
metrics such as RMSE, log10 and δ1. Our model achieved
SOTA results for δ2 and δ3 among diffusion-based models. For
the KITTI Eigen-Split dataset, Table II shows that our model
achieved SOTA for δ3, indicating better visualizations through

precise depth estimation than other diffusion-based models.
These results support our model’s ability to generate precise
depth maps and improve visualization in outdoor datasets.

D. Qualitative Results

Figure 6 compares our model with recent SOTA models
trained and evaluated on the NYUv2 Test Dataset. The three
rows showcase our model’s superior depth estimation. The red
boxes in the first column highlight regions of interest in RGB
images, while the green boxes in the last column show where
our model outperforms existing diffusion-based methods. In
the top row, a green dotted box marks a mirror accurately
captured by our model. In the Our model correctly identifies a



”Faucet” in the second row depth map. Similarly, in the bottom
row, the green dotted box highlights a ”Towel” accurately
included by our model.

Figure 7 illustrates our model performance in the KITTI
eigen-split data set. We achieved results comparable to SOTA
diffusion-based models. As demonstrated with the NYUv2
dataset, our model excels in depth estimation. The red boxes
in the first column highlight objects where our model captures
intricate details with greater precision. In the upper row, a red
box indicates a street sign that is not visible in the original
image because of its resolution, but our model accurately
identifies it (last column). In the second row, a red box
highlights a traffic light pole that our model captures with
greater precision. Similarly, in the bottom row, our model more
accurately represents street signs than other models.

V. ABLATION STUDY

Extraction of text embeddings: We experimented using
SOTA backbones to extract semantic context and generate text
embedding vectors on the NYUv2 dataset. As shown in Table
III, the BEiT-Base model backbone outperforms other models
by providing better results on the given metrics.

TABLE III: Comparison of various models performing differ-
ent tasks for obtaining semantic context to generate text em-
beddings. BEiT-Base performs better for the provided metrics.
ImgC: Image Classification, SSeg: Semantic Segmentation

Model Task RMSE↓ REL↓ log10↓

SwinV2-Base [65] ImgC 0.227 0.062 0.027
SegFormer-Base [66] SSeg 0.225 0.062 0.027
BEiT-Base [17] SSeg 0.223 0.061 0.026

VI. CONCLUSION

In this paper, we proposed EDADepth, a novel method
for monocular depth estimation using the enhanced super-
resolution data enhancement technique. Firstly, we focused
on superresolving the input data using a pre-trained Swin2SR
model to improve the extraction of textual embeddings and
the denoising process in the U-Net framework. Secondly, we
employed a pre-trained BEiT Semantic Segmentation model to
generate text embeddings to capture the semantic context from
the input images. Third, we introduce the use of BLIP-2 as a
tokenizer. Finally, we conducted extensive experiments on the
NYUDepthv2 and KITTI Eigen-split datasets, demonstrating
the effectiveness of our method. Our quantitative results show
that our model achieves RMSE and REL values comparable to
the current SOTA models while achieving SOTA on δ3 values.
From our qualitative results, it is evident that EDADepth
competes closely with diffusion-based (both with and with-
out using extra training data) SOTA models, particularly in
enhancing the generation of visually detailed depth estimation.
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[55] Michaël Ramamonjisoa and Vincent Lepetit. Sharpnet: Fast and accurate
recovery of occluding contours in monocular depth estimation, 2019. 5

[56] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Long Mai,
Simon Chen, and Chunhua Shen. Learning to recover 3d scene shape
from a single image, 2020. 5, 6

[57] Xiaoxiao Long, Cheng Lin, Lingjie Liu, Wei Li, Christian Theobalt,
Ruigang Yang, and Wenping Wang. Adaptive surface normal constraint
for depth estimation, 2021. 5

[58] Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, and Elisa Ricci.
Transformer-based attention networks for continuous pixel-wise predic-
tion, 2021. 5, 6

[59] Vaishakh Patil, Christos Sakaridis, Alexander Liniger, and Luc Van
Gool. P3depth: Monocular depth estimation with a piecewise planarity
prior, 2022. 5, 6

[60] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Localbins:
Improving depth estimation by learning local distributions, 2022. 5

[61] Zhenyu Li, Zehui Chen, Xianming Liu, and Junjun Jiang. Depth-
former: Exploiting long-range correlation and local information for
accurate monocular depth estimation. Machine Intelligence Research,
20(6):837–854, September 2023. 5, 6

[62] Ashutosh Agarwal and Chetan Arora. Attention attention everywhere:
Monocular depth prediction with skip attention, 2022. 5, 6

[63] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and
Yue Cao. Revealing the dark secrets of masked image modeling, 2022.
5, 6

[64] Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE
Micro, 43(3):9–17, 2023. 6

[65] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei,
Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining
Guo. Swin transformer v2: Scaling up capacity and resolution. In
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 7

[66] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M.
Alvarez, and Ping Luo. Segformer: Simple and efficient design for
semantic segmentation with transformers, 2021. 7


	Introduction
	Related Works
	Monocular Depth Estimation
	Diffusion-based MDE models

	Methods
	Diffusion Models Overview
	BEiT model for Text-Embeddings
	Enhanced Data Augmentation
	Overall EDADepth Architecture

	Experimental Results
	Datasets and Evaluation
	Implementaton Details
	Quantitative Results
	Qualitative Results

	Ablation Study
	Conclusion
	References

