

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING UNOBSERVED CONFOUNDING VIA DIFFUSION PROBABILISTIC MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning Conditional average treatment effect estimation from observational data is a challenging task due to the existence of latent covariates. Previous methods mostly focus on assuming the ignorability assumption ignoring the latent covariates or overlooking the impact of an *a priori* knowledge on the generation process of the latent variable, which can be quite impractical in real-world scenarios. We introduce a novel framework that mitigates unobserved confounding by generating the latent covariates using a conditional diffusion probabilistic model. This model first infers a causal context vector from the observed data, and then uses this vector to guide a reverse diffusion process that synthesizes the unobserved covariate. We render this architecture tractable by deriving a closed-form variational lower bound for its optimization. To ensure causal validity, we theoretically analyze that the latent variable z learned by our model is orthogonal-identifiable. In the experiments, we compare our model with the state-of-the-art methods based on two standard benchmarks, demonstrating consistent improvements of our model.

1 INTRODUCTION

Estimating the Conditional Average Treatment Effect (CATE) from observational data is a fundamental problem in a multitude of fields, including personalized medicine, economic policy-making, and online advertising. The ability to accurately predict how an individual will respond to a specific treatment or intervention allows for more effective, data-driven decision-making. However, the validity of such estimations is often compromised by confounding bias, which arises when extraneous variables, known as covariates or confounders, are associated with both the treatment assignment and the outcome. While numerous methods have been developed to adjust for observed covariates, the presence of latent covariates remains a critical and pervasive challenge.

To improve the CATE estimation, a line of methods uses representation learning to force the covariate balance. The representation learning-based approaches aim to generate covariate representations that eliminate the differences within the distributions between treatment and control groups to mitigate confounding bias. To obtain the balanced representations, integral probability metric (IPM) for regularization Johansson et al. (2016), local similarity preservation Yao et al. (2018), targeted learning Zhang et al. (2020a), and optimal transport (Wang et al., 2023) have been adopted. These methods have achieved state-of-the-art performance but operate under the strong, and often untestable, assumption of *ignorability*, which posits that all confounding variables are observed. In many real-world scenarios—such as clinical studies where a patient’s genetic predispositions or lifestyle factors are unrecorded—this assumption is violated, leading to biased estimates and potentially flawed conclusions.

To address the issue of unobserved confounding, some methods that only rely on large-scale observation data (OBS) have gathered increasing attention, including sensitivity analysis, instrumental variables, and front-door adjustment methods. However, these methods require strong assumptions. On the other hand, some prominent generative models have been proposed to generate such latent covariates that we could utilize them to isolate the causal effect of treatment on outcome. For instance, VAE-based method CEVAE (Louizos et al., 2017) assumes that there exists a proxy variable in the causal graph, and then generates the unmeasured confounder by optimizing the variational lower bound of this graphical model, GANITE (Yoon et al., 2018) aims to generate the counterfactual distributions using GAN, and accordingly to infer the CATE in an unbiased setting. Other exemplar

054 methods involve generating the unmeasured confounder with Gaussian Processes (Witty et al., 2020),
 055 Imitation Learning (Zhang et al., 2020a), deep latent variable models (Josse et al., 2020), and more (Li
 056 & Zhu, 2022; Yao et al., 2021a). However, these methods assume an explicit data generation process
 057 to be known, which does not hold in complex real-world scenarios.

058 To this end, we introduce a novel framework to mitigate unobserved confounding by generating
 059 the latent covariates using a Diffusion Probabilistic Model. We harness the exceptional generative
 060 power and training stability of diffusion models to tackle this challenging causal inference task.
 061 Specifically, we propose a conditional latent diffusion architecture that operates across different
 062 variable domains. The core of our method involves two key processes as shown in Figure 1. First,
 063 we infer a causal context vector, u , from the complete set of observed data $\eta^{(0)} = (X, A, Y)$.
 064 This vector encapsulates the domain-specific causal knowledge distilled from observational data,
 065 particularly pertaining to the generation of confounding variables. Second, the context vector u
 066 conditions a reverse diffusion process that generates the latent covariate Z by progressively denoising
 067 a vector sampled from a simple Gaussian distribution. To facilitate end-to-end training of this complex
 068 generative process, we derive a tractable Variational Lower Bound (VLB) on the log-likelihood,
 069 which provides a stable and principled optimization objective. Furthermore, to ensure the generated
 070 variable is causally valid, we introduce an Identifiability Analysis theory to guarantee that the latent
 071 variable Z learned by our model is orthogonal-identifiable.

072 The main contributions of this paper can be concluded as follows: (1) We propose to solve the task of
 073 latent covariates in causal inference with the diffusion model; (2) To realize the above idea, we first
 074 design a novel conditional latent diffusion framework and derive a variational lower bound of the
 075 likelihood of the latent covariates conditional on the causal context vector, and then reformulate that
 076 bound into a tractable expression in closed form; (3) We theoretically analyze that the latent variable
 077 z learned by our model is orthogonal-identifiable; (4) We verify the effectiveness and generality of
 078 our framework by comparing it with 12 state-of-the-art methods on two benchmarks. The empirical
 079 studies manifest that the proposed method can achieve competitive gains.

081 2 RELATED WORK

083 The Conditional Average Treatment Effect (CATE), also known as the Heterogeneous Treatment
 084 Effect (HTE), refers to the average treatment effects of a treatment/intervention on pre-specified
 085 outcomes for subgroups characterized by distinct covariates. Statistical methods for estimating
 086 CATE include matching Dehejia & Wahba (2002), stratification O’Muircheartaigh & Hedges (2014),
 087 reweighting Rosenbaum (1987); Bang & Robins (2005), and tree-based approaches like BART
 088 and causal forest Chipman et al. (2010); Wager & Athey (2018). Recent work introduced highly
 089 efficient deep learning algorithms to estimate CATE. The deep learning-based methods for CATE
 090 estimation can be broadly divided into two main categories: representation learning-based and
 091 generative model-based approaches. Representation learning-based methods aim to find balanced
 092 covariate representations that eliminate the differences within the distributions between treatment
 093 and control groups, thus mitigating confounding bias Assaad et al. (2021); Yao et al. (2021b); Guo
 094 et al. (2020). To achieve this, methods such as integral probability metric (IPM) regularization
 095 Johansson et al. (2016); Shalit et al. (2017), local similarity preservation Yao et al. (2018; 2019),
 096 targeted learning Shi et al. (2019); Zhang et al. (2020b), and optimal transport Wang et al. (2023);
 097 Torous et al. (2021) are employed to learn the balanced representations. On the other hand, generative
 098 model-based methods estimate counterfactual outcomes by modeling the data generation process
 099 with generative models Zhang et al. (2021); Zou et al. (2020); Guo et al. (2020). For instance,
 100 CEVAE applies variational autoencoders (VAE) to infer latent covariates from observed data Louizos
 101 et al. (2017), while SCIGAN employs generative adversarial networks (GAN) to generate missing
 102 counterfactual outcomes and combines these with factual outcomes for CATE estimation Bica et al.
 103 (2020). Different from the representation learning-based methods, the generative model-based
 104 methods allow unmeasured covariates. However, the existing generative model-based methods
 105 to estimate CATE build on strict assumptions of the data generation process, which restricts the
 106 application of these methods in real-world scenarios.

107 Additionally, Latent confounding arises when unmeasured variables influence both the treatment and
 108 outcome, potentially leading to biased CATE estimates Ananth & Schisterman (2018). These methods
 109 include instrumental variables, and front-door adjustment. The instrumental variable methods exploit

108 external instruments to account for unmeasured confounding in observational studies Imbens (2014);
 109 Wu et al. (2022), but they generally assume linear relationships and require unconfounded instruments,
 110 limiting their applicability in practice Frauen & Feuerriegel (2022). Front-door adjustment methods,
 111 on the other hand, estimate causal effects by leveraging a causal pathway (the front-door criterion)
 112 that blocks the influence of unmeasured covariates Bellemare et al. (2020); Fulcher et al. (2020).
 113 However, these methods typically require knowledge of the true causal graph, which may not always
 114 be available Shah et al. (2024); Li et al. (2024).

3 PRELIMINARIES

In this section, we first introduce the context of estimating CATE, understanding the underlying mechanisms of data generation and transformation, and then present the Diffusion Denoising Probabilistic Model (DDPM) framework.

3.1 ESTIMATION OF CONDITIONAL AVERAGE TREATMENT EFFECT

We aim to estimate the conditional average treatment effect (CATE) from the samples, which is defined as:

$$\tau(x) = \mathbb{E}[Y_1 - Y_0 \mid X = x].$$

where Y_a represents the potential outcome under treatment a , and x denotes the covariates or characteristics of the individual. This measure quantifies the expected difference in outcomes when the treatment is applied versus when it is not, conditioned on the individual's characteristics.

Let $\Phi : \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{R}$ be a representation function, $f : \mathcal{R} \times \{0, 1\} \rightarrow \mathcal{Y}$ be a hypothesis predicting the outcome of a patient's covariates x , given the representation covariates $\Phi(x)$ and the treatment assignment a . Let $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_+$ be a loss function. The estimation of the potential outcome $Y(T = a) = f(\Phi(x), a)$ ($a \in \{0, 1\}$). To identify the CATE from observed data, we require some additional assumptions. For more details about these assumptions, see the Appendix.

3.2 DIFFUSION MODEL

DDPMs simulate the data generation process by reversing a diffusion process that transforms real data x^0 into Gaussian noise x^T over time (Ho et al., 2020). The process $p_\theta(x^0)$ is defined as:

$$p_\theta(x^0) = \int p(x^T) \prod_{t=1}^T p_\theta(x^{t-1} \mid x^t) dx^{1:T}$$

The sequence $x^{T:0}$ is defined as a Markov chain with learned Gaussian transitions, each denoted by:

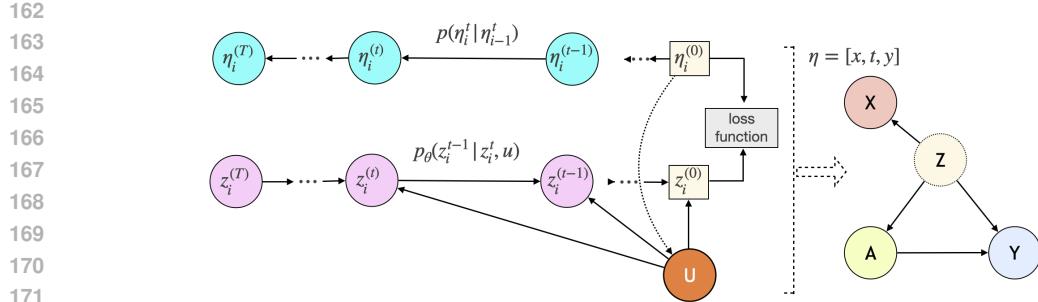
$$p_\theta(x^{t-1} \mid x^t) = \mathcal{N}(\mu_\theta(x^t, t), \Sigma_\theta(x^t, t)) \quad (1)$$

This formulation shows how the model uses parameterized Gaussian transitions to reverse the diffusion process step-by-step, recreating the initial data from pure noise.

Forward Process (Diffusion). In the forward process, starting with the data sample x^0 from the distribution $q(x^0)$, noise is incrementally added over T time steps, until the data is completely converted into Gaussian noise x^T . The noise addition at each step t is defined by:

$$q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t)}; \sqrt{\bar{\alpha}_t} x^{(0)}, (1 - \bar{\alpha}_t) \mathbf{I}) \quad (2)$$

where $\bar{\alpha}^t = \prod_{i=1}^t \alpha^i$, and $\alpha^t = 1 - \beta^t$ represents how much of the previous data is retained (with $\beta^t \in (0, 1)$ is a hyper-parameter). The α^t terms are crucial as they determine the rate at which the data is corrupted by noise.

Figure 1: Corresponding graph model of our method: x is the proxy variable, z is latent covariate.

Reverse Process (Denoising). Recall that we use Equation 1 to denoise. Typically, the mean is calculated using the expression derived by the reparameterization trick and Bayes' rule:

$$\mu_\theta(\mathbf{x}^t, t) = \frac{1}{\sqrt{\alpha^t}} \left(\mathbf{x}^t - \frac{\beta^t}{\sqrt{1 - \bar{\alpha}^t}} \epsilon_\theta(\mathbf{x}^t, t) \right),$$

where $\bar{\alpha}^t = \prod_{i=1}^t \alpha^i$. In this process, $\epsilon_\theta(\mathbf{x}^t, t)$ represents the noise estimated by the parameterized network. This equation facilitates the step-by-step transformation from pure noise back to structured data. The covariance matrix is typically fixed to $\beta^t \mathbf{I}$ in practice.

4 DIFFUSION MODEL FOR LATENT COVARIATES

In this section, we develop a diffusion model to generate latent covariates. To perform valid latent covariates from observed datasets, we introduce a causal context vector variable u that encapsulates some essential information required to associate the observed data with its corresponding unobserved covariate.

4.1 INFERENCE LATENT COVARIATES USING DIFFUSION MODEL

The process of conditional image generation using diffusion models has been extensively explored (Luo & Hu, 2021; Zhang et al., 2023; Ni et al., 2023). Unlike the well-documented generation of images where generated outputs can be directly compared with training data, the generation of latent covariate Z presents unique challenges due to the absence of observable data for Z . This issue necessitates the development of effective representations for unobserved variables. We address the challenge of learning these representations in Section 4.2. The formulation begins with using observed data X, A, Y to infer latent covariate Z through a diffusion model, i.e. modeling $p(z|x, a, y)$, as shown in Figure 1.

To generate latent covariates Z requires the intrinsic connection between observed and unobserved data to infer the latent covariates from observed covariates. This motivates us to assume a hidden factor that bridges the gap. Thus, we propose introducing a causal context vector u which is learnable from the observed data to capture the domain-specific causal knowledge of the observed variable X and the unobserved variable Z . For example, u can be the common knowledge between X and Z . Subsequently, we can use the observed data to infer the posterior $p(u | x, a, y)$ and then generate the corresponding z using the likelihood $p(z | u, x, a, y)$.

The forward diffusion process in our task involves incrementally adding noise to the observed variable $\eta^{(0)} \sim P(X, A, Y)$, transforming the initial distribution into a pure noise distribution. This transformation occurs incrementally over T steps, culminating in $\eta^{(T)}$. This procedure adheres to the standard diffusion process outlined in Section 3.2.

In our generation process, the reverse diffusion is capable of approximating $p_\theta(z^{(t-1)} | z^{(t)}, u)$ from a simple noise distribution $p_\theta(z^{(T)})$ that are given as the input. Therefore, with the latent variable u and the preserved information from the forward diffusion process, we can generate the desired latent

216 covariates $z = z^{(0)}$ through the reverse Markov chain. Formally, the reverse diffusion process for
 217 generating latent covariates is:

$$219 \quad p_{\theta}(z^{(0:T)} | u) = p(z^{(T)}) \prod_{t=1}^T p_{\theta}(z^{(t-1)} | z^{(t)}, u) \quad (3)$$

221 where $p_{\theta}(z^{(t-1)} | z^{(t)}, u)$ is learnable transition kernel and θ is the model parameters. It describes
 222 the denoising process at some time steps. The learnable transition kernel takes the form of
 223

$$224 \quad p_{\theta}(z^{(t-1)} | z^{(t)}, u) = \mathcal{N}(z^{(t-1)}; \mu_{\theta}(z^{(t)}, t, u), \beta_t I) \quad (4)$$

225 In this model, the mean $\mu_{\theta}(\eta^{(t)}, t, u)$ are parameterized by deep neural networks learned in the
 226 optimization process and u is the latent variable encoding the shared information such as the
 227 correlation between observed and unmeasured covariates. Unlike the setup described in Section 3.2,
 228 the additional variable u establishes the dependence between η and z , facilitating the inference of
 229 the posterior $q_{\varphi}(u | \eta^{(0)})$ and enabling the sampling of unobserved variable Z accordingly.
 230

231 In practice, we assume the noise distribution $p(\eta^{(T)})$ to be a standard normal distribution $\mathcal{N}(0, I)$.
 232 By applying the reverse Markov chain which given the generation factors and initial distribution
 233 $p(\eta^{(T)})$, we can retrieve the latent covariates aligned with the target distribution.

234 **Inference of latent covariates.** With the above well-defined denoising process established, we can
 235 now apply it to causal inference. As depicted in Algorithm 1 and Figure 1, each time we observe a
 236 data point η , the process starts by calculating the posterior $q_{\varphi}(u | \eta^{(0)})$, which models the latent
 237 representation u given the observed data. Subsequently, the algorithm samples a point $z^{(T)}$ from
 238 a standard normal distribution $\mathcal{N}(0, I)$, initializing the reverse diffusion sequence. This sampled
 239 data point serves as the basis for the reverse diffusion process, which iteratively estimates $z^{(t-1)}$
 240 from $z^{(t)}$ using the transition kernel p_{θ} conditioned on u . This iterative process proceeds until $t = 1$,
 241 finally yielding the inferred latent covariates $z^{(0)}$. These covariates, alongside the initial observation
 242 x , allow the model to predict the potential outcomes y_i as outlined in the Figure 1. The model thus
 243 leverages both observed and latent variables to generate comprehensive predictions that integrate
 244 both observed characteristics and inferred unobserved factors.

245 **Variational Lower Bound.** With the formulated forward and reverse diffusion processes for latent
 246 covariates in mind, we now aim to formalize the training objective. Since directly optimizing the exact
 247 log-likelihood is intractable, we instead maximize its variational lower bound (VLB)(the detailed
 248 derivation is present in the Appendix):

$$249 \quad \mathbb{E}[-\log p_{\theta}(z^{(0)})] \leq E_q \underbrace{\left[\log \frac{q(\eta^{(1:T)}, u | \eta^{(0)})}{p_{\theta}(z^{(0:T)}, u)} \right]}_{VLB} \quad (5)$$

253 where L_{VLB} is a common objective for training probabilistic generative models (Luo & Hu, 2021;
 254 Ho et al., 2020; Yang et al., 2023).

255 We can further derive the L_{VLB} as:

$$257 \quad L_{VLB} = E_q \left[\sum_{t=2}^T D_{KL} \left(\underbrace{q(\eta^{(t-1)} | \eta^{(t)}, \eta^{(0)})}_{A} || \underbrace{p_{\theta}(z^{(t-1)} | z^{(t)}, u)}_{B} \right) \right. \\ 258 \quad \left. - \log \underbrace{p_{\theta}(z^{(0)} | z^{(1)}, u)}_{C} + D_{KL} \left(\underbrace{q_{\varphi}(u | \eta^{(0)})}_{D} || \underbrace{p(u)}_{E} \right) \right] \quad (6)$$

263 The above training objective can be optimized efficiently since each term in this objective is tractable.
 264 Among the terms, $q(\eta^{(t-1)} | \eta^{(t)}, \eta^{(0)})$ is computed by a closed-form Gaussian (Luo & Hu, 2021;
 265 Ho et al., 2020). $p_{\theta}(z^{(t-1)} | z^{(t)}, u)$ where $t \in \{1, 2, \dots, T\}$ are trainable Gaussian distribution shown
 266 in Eq. 4. $q_{\varphi}(u | \eta^{(0)})$ are learnable posterior distribution, which is the posterior of u after observe
 267 $\eta^{(0)}$, aiming to encode the input observed covariates $\eta^{(0)}$ into the distribution of the latent generation
 268 factor u . We define it as: $q_{\varphi}(u | \eta^{(0)}) = \mathcal{N}(u; \mu_{\varphi}(\eta^{(0)}), \Sigma_{\varphi}(\eta^{(0)}))$. $p(u)$ is the prior distribution
 269

270 defined as isotropic Gaussian $\mathcal{N}(0, \mathbf{I})$, which is the most common choice for approximating the
271 target distribution.

272 **Learning the Noise Model.** The training of DDPM involves learning the function ϵ_θ that can
273 accurately predict the noise ϵ added at each step based on the noisy data η^t and the step number t .
274 The loss function used typically minimizes the mean squared error between the actual noise and the
275 predicted noise:

$$277 \quad \mathcal{L}(\theta) = \mathbb{E}_{\eta^0, \epsilon, t} \left[\|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}^t} \eta^0 + \sqrt{1 - \bar{\alpha}^t} \epsilon, t)\|^2 \right], \text{ where } \epsilon \sim \mathcal{N}(0, \mathbf{I}). \quad (7)$$

278 The loss function encourages the model to accurately infer the noise components that were added to
279 the data, allowing the reverse process to effectively denoise the data.

281 4.2 ALGORITHM FOR ESTIMATING CATE

283 Following the above analysis, we propose a method called DFHTE (Estimation of Heterogeneous
284 Treatment Effect Using DiFFusion Model), which takes into account the latent covariates to estimate
285 the potential outcomes. We apply the unmeasured covariates to the observational studies data, and
286 the loss function is shown as the following:

$$287 \quad \min_{f, \Phi} \mathbb{E}_{z \sim p_\theta(z^{(t-1)} | z^{(t)}, \mathbf{u})} [w \|y - f(\Phi(z), a)\|^2 + \text{IPM}_G(\hat{p}_\Phi^{a=1}, \hat{p}_\Phi^{a=0})] \\ 288 \\ 289 \quad \text{s.t. } p_\theta = \arg \min_{\theta} \mathbb{E}_{\eta^0 \sim p(X, A, Y), \epsilon \sim \mathcal{N}(0, 1)} \left[\|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}^t} \eta^0 + \sqrt{1 - \bar{\alpha}^t} \epsilon, t)\|^2 \right] \quad (8)$$

291 where w is used to compensate for the difference in treatment group size. It can be calculated by the
292 proportion of treated units in the population, the latent covariate z is derived by diffusion model, i.e.,
293 $z \sim p_\theta(z^{(t-1)} | z^{(t)}, \mathbf{u})$ where t is the time step in reverse Markov chain and u is the causal context
294 vector, $\hat{p}_\Phi^{a=1}$ and $\hat{p}_\Phi^{a=0}$ are learned high-dimensional representations for treated and control groups
295 respectively, $\text{IPM}_G(\cdot, \cdot)$ is the (empirical) integral probability metric w.r.t. a function family G . We
296 adopt it to balance the treated and control distribution. In our framework, latent covariates is the key
297 factor influencing the causal effect estimate, while the proxy variables, affected by latent covariates,
298 do not directly determine the value of Y . By training the model based on latent covariates, we enhance
299 its capacity to capture the true causal effect and simultaneously benefits alignment between the treated
300 and control groups.

301 4.3 MODEL TRAINING

303 The training workflow of our proposed framework adheres to a two-stage procedure, as detailed
304 below:

306 **Training Diffusion Model.** We first minimize the loss function of the diffusion model based on
307 the observed datasets $P(X, A, Y)$, thereby imposing the model to learn the distribution of the latent
308 covariates. Subsequently, we freeze the model parameters and accordingly to train our CATE model.

309 **Training CATE Model.** We train the CATE model in terms of f and Φ based on the generated
310 latent covariates. More concretely, The latent covariates z_i is derived by diffusion model, i.e.,
311 $z_i \sim \mu_\theta(c, t, u_i) + \beta_t \epsilon$, where $\epsilon, c \sim \mathcal{N}(0, \mathbf{I})$, t is the time step in reverse Markov chain and
312 $q_\varphi(u_i | \eta_i)$ is the learned causal context vector. Here, we use a reparameterization trick to make the
313 generation process feasible.

315 5 IDENTIFIABILITY ANALYSIS

317 In this section, we analyze the identifiability of the proposed model. Our objective is to prove that,
318 under certain assumptions, a well-defined correspondence exists between the latent representations
319 learned by our model and their ground-truth counterparts.

321 **Theorem 1** (Identifiability of Latent Variable Z). *Under the assumptions H1-H4 detailed in Ap-
322 pendix B, which crucially include the existence of valid proxy variables, the latent variable \tilde{z} learned
323 by our model is **orthogonal-identifiable**. That is, there exists an invertible affine transformation
 $\tilde{z} = \mathbf{R}z + \mathbf{b}$ between the learned \tilde{z} and the true z , where \mathbf{R} is an orthogonal matrix.*

324 *Proof Sketch.* The proof hinges on the framework of proximal causal inference, where the proxy
 325 variables \mathbf{X} provide the necessary information to resolve the ambiguity of the unobserved confounder
 326 \mathbf{z} . This additional information, combined with constraints from the downstream CATE estimation
 327 task, ensures that the mapping from the observed data to the latent space is invertible. Furthermore,
 328 the VLB objective of the generative diffusion model forces the learned latent space to adhere to an
 329 isotropic Gaussian prior. By the Darmois-Skitovich theorem, these constraints collectively restrict
 330 the transformation between the true \mathbf{z} and the learned $\tilde{\mathbf{z}}$ to the orthogonal group. \square

331 **Theorem 2** (Identifiability of CATE). *Given the identifiability of the latent confounder $\tilde{\mathbf{z}}$ established
 332 in Theorem 1, which serves as a sufficient adjustment set by blocking all back-door paths from
 333 treatment A to outcome Y, the causal effect becomes identifiable from observational data by applying
 334 the back-door adjustment formula. Therefore, the Conditional Average Treatment Effect (CATE),
 335 $\text{CATE}(\mathbf{x})$, is identifiable.*

337 *Proof Sketch.* Theorem 1 establishes that our model can identify a latent variable $\tilde{\mathbf{z}}$ that is a geomet-
 338 rically equivalent representation of the true confounder \mathbf{z} . As $\tilde{\mathbf{z}}$ serves as a sufficient adjustment set,
 339 it allows us to block the spurious back-door path between A and Y. Consequently, we can apply the
 340 back-door adjustment formula to uniquely identify the true CATE. \square

341 The formal definitions, core assumptions, and detailed mathematical proofs for these theorems are
 342 provided in Appendix B.

345 6 EXPERIMENTS

347 6.1 EXPERIMENT SETUP

349 This section outlines our experimental approach for assessing the effectiveness of the proposed
 350 DFHTE model in estimating CATE across a variety of datasets. We conduct experiments us-
 351 ing two benchmark datasets, ACIC 2016 (Dorie et al., 2019) and IHDP (Hill, 2011), which are
 352 commonly used in causal inference research. Additionally, DFHTE’s performance is compared
 353 against a wide array of established causal inference models, ensuring a thorough validation of
 354 its capabilities in diverse scenarios. We adopt the commonly used metrics including Rooted
 355 Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, 2011) and Mean Absolute Er-
 356 rror (ATE) (Shalit et al., 2017) for evaluating the quality of CATE. Formally, they are defined
 357 as: $\sqrt{\epsilon_{PEHE}} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i - \tau_i)^2}$, $\epsilon_{ATE} = |\frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i) - \frac{1}{n} \sum_{i=1}^n (\tau_i)|$, where $\hat{\tau}_i$ and τ_i stand for
 358 the predicted CATE and the ground truth CATE for the i -th instance respectively. The more details
 359 about the implementation of all adopted baselines and our methods and full experimental settings are
 360 presented in following Appendix.

361 6.2 BENCHMARKS

363 We conduct experiments based on two standard benchmark datasets, namely **ACIC 2016** Dorie et al.
 364 (2019) and **IHDP** Hill (2011). The **ACIC 2016**. was developed for the 2016 Atlantic Causal Inference
 365 Conference competition data. It comprises 4,802 units (28% treated, 72% control) and 82 covariates
 366 measuring aspects of the linked birth and infant death data (LBIDD). The dataset are generated
 367 randomly according to the data generating process setting. The **IHDP** introduced a semi-synthetic
 368 dataset for causal effect estimation. The dataset was based on the Infant Health and Development
 369 Program (IHDP), in which the covariates were generated by a randomized experiment investigating
 370 the effect of home visits by specialists on future cognitive scores. it consists of 747 units(19% treated,
 371 81% control) and 25 covariates measuring the children and their mothers.

372 For both **ACIC** and **IHDP**, we simulate proxy variables by generating a same-dimensional with
 373 original covariates. This new dataset aims to mimic the causal data generating process in terms of a
 374 latent covariates specified in advance. We generate the data below:

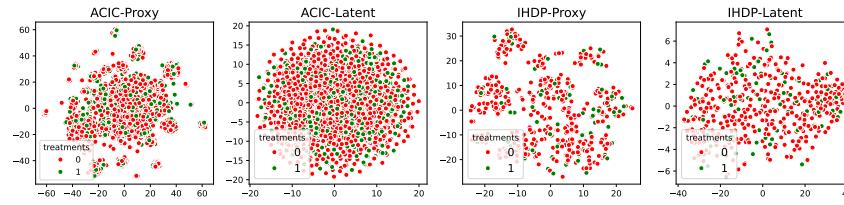
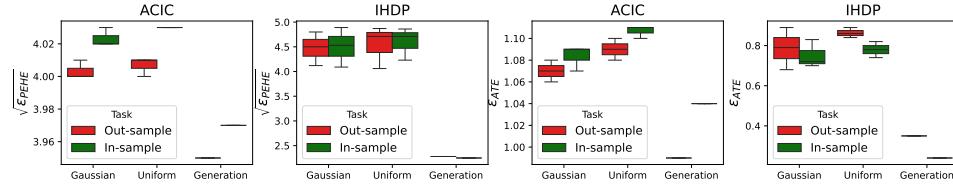
$$375 z \sim x, \quad x'_i | z_i \sim \mathcal{N}(z_i, \sigma_1^2 z_i + \sigma_2^2 (1 - z_i)); \quad (9)$$

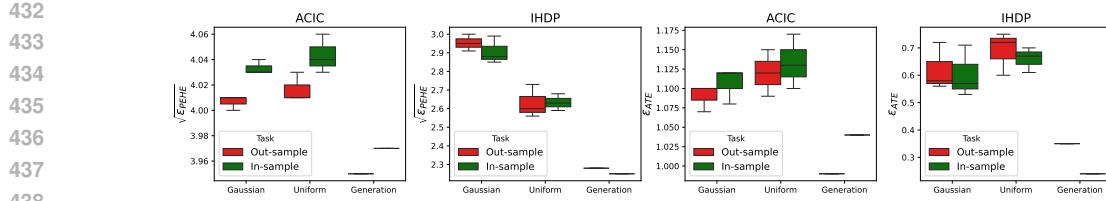
377 We sample the generation latent covariates z from the original covariates x and accordingly generate
 the proxy variables x' . We conduct experiments over randomly picked 100 realizations with 63/27/10

378

379
380
Table 1: Conditional average treatment effect estimation on IHDP and Jobs. We present each of the
result with form mean \pm standard deviation and we use bold fonts to label the best performance.

Datasets	ACIC				IHDP			
	Metric		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	Metric		$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}
Task	In-sample	Out-sample	In-sample	Out-sample	In-sample	Out-sample	In-sample	Out-sample
RF	5.24 ± 0.98	4.98 ± 1.5	1.69 ± 1.46	1.79 ± 1.52	6.22 ± 9.26	6.19 ± 9.41	0.35 ± 0.53	0.83 ± 1.87
CF	4.01 ± 1.33	4.01 ± 1.29	1.14 ± 0.67	1.14 ± 0.71	6.13 ± 9.04	6.23 ± 9.76	0.62 ± 1.27	0.86 ± 1.63
T-learner	4.03 ± 1.36	4.0 ± 1.35	1.11 ± 0.69	1.07 ± 0.69	7.37 ± 9.32	8.56 ± 10.04	2.84 ± 4.7	3.06 ± 5.05
S-learner	4.03 ± 1.36	4.0 ± 1.35	1.11 ± 0.69	1.07 ± 0.69	6.29 ± 9.36	6.02 ± 9.16	0.4 ± 0.67	0.63 ± 1.08
CEVAE	5.58 ± 1.57	5.59 ± 1.57	3.91 ± 1.38	3.95 ± 1.37	8.56 ± 8.86	8.37 ± 8.81	4.62 ± 2.0	4.8 ± 2.47
BNN	5.58 ± 1.56	5.59 ± 1.56	3.92 ± 1.36	3.95 ± 1.35	8.6 ± 8.83	8.41 ± 8.78	4.66 ± 1.96	4.85 ± 2.42
DragonNet	4.27 ± 1.26	4.32 ± 1.32	0.94 ± 0.78	$\mathbf{0.91 \pm 0.73}$	5.59 ± 6.85	6.12 ± 8.5	1.31 ± 1.86	1.44 ± 2.06
GANITE	4.29 ± 1.32	4.27 ± 1.33	3.29 ± 1.38	3.25 ± 1.39	6.86 ± 6.00	6.81 ± 5.92	4.48 ± 1.65	4.43 ± 1.53
CFR _{WASS}	4.29 ± 1.24	4.32 ± 1.3	1.08 ± 0.67	1.03 ± 0.68	4.46 ± 5.33	6.09 ± 8.48	1.00 ± 1.82	1.21 ± 2.01
CFR _{MMD}	4.24 ± 1.25	4.28 ± 1.34	0.91 ± 0.66	0.86 ± 0.64	4.30 ± 5.55	6.21 ± 8.46	0.95 ± 1.57	0.91 ± 1.20
DeRCFR	4.22 ± 1.26	4.29 ± 1.35	1.04 ± 0.86	0.97 ± 0.82	5.63 ± 7.37	6.33 ± 8.75	1.34 ± 2.09	1.53 ± 2.51
ESCFR	4.13 ± 1.24	4.17 ± 1.29	1.15 ± 0.65	1.09 ± 0.66	4.34 ± 5.3	6.24 ± 8.55	0.94 ± 1.44	1.00 ± 1.61
DFITE	$\mathbf{3.97 \pm 1.32}$	$\mathbf{3.95 \pm 1.32}$	$\mathbf{1.04 \pm 0.64}$	0.99 ± 0.64	$\mathbf{2.25 \pm 1.30}$	$\mathbf{2.28 \pm 1.33}$	$\mathbf{0.24 \pm 0.28}$	$\mathbf{0.35 \pm 0.39}$

401
402
403
404
405
406
407
Figure 2: t-SNE visualization of the generated latent covariates z and proxy variables x condition on
408 treatments.
409410
train/validation/test splits by setting σ_1^2 and σ_2^2 , to 0.7, 0.3 respectively.
411
412413
6.3 OVERALL RESULTS
414415
The overall comparison results are presented in Table 1, from which we can see: among the baselines,
416 distance metric methods like CFR_{WASS} and CFR_{MMD}, can obtain more performance gain both than
417 the non-distance metric ones like GANITE and CEVAE, and traditional machine learning models
418 like RF and CF, in most cases. This observation is consistent to our expectations and also agrees with
419 the previous work (Shalit et al., 2017), and verify that minimizing the distance between the treated
420 and control groups on the studied latent space can effectively eliminate the distribution shift and lead
421 to better performance on CATE estimation.
422423
It is encouraging to see that our model DFITE can achieve the best performance on different datasets
424 and evaluation metrics in more cases. The results verify the effectiveness of our idea. Comparing with
the baselines, we take advantages of the latent covariates instead of proxy variables , which enable us
425426
427
428
429
430
431
Figure 3: Performance comparison between our model and its variants on the causal context vector u .
432

Figure 4: Performance comparison between our model and its variants on the latent covariates z .

to not only facilitate the identification of potential outcome, but also enhance to balance the studied representations between the treated and control groups. As a result, our model can always achieve the better performance on the estimation of CATE.

6.4 QUALITATIVE ANALYSIS

In order to provide more intuitive understandings on the generated latent covariates z , in this section, we conduct visualization studies on these latent variables, where the parameter settings follow the above experiments. From the results shown in Figure 2, we can see: The generated latent covariates Z exhibit significantly improved distributional balance compared to the original covariates X . More importantly, by conditioning on the causal context vector u , the generated covariates Z effectively incorporate informative priors that enhance the representational fidelity of the original feature space. These results demonstrate that structure-aware covariate generation simultaneously addresses two fundamental challenges in causal inference: (1) mitigating data sparsity through information enrichment, and (2) correcting distributional imbalances in the covariate space. Consequently, by incorporating the generated covariates into the process of CATE, this approach enables more accurate and robust treatment effect estimation.

6.5 COVARIATES CERTIFICATION

In this section, we would like to study whether different unobserved covariates and causal context vector in our model are necessary. To this end, we compare our model with four different unobserved covariates and causal context vectors: DFHTE(Gaussian) is a method with the unobserved covariates or causal context vector variables sampled randomly from the normal Gaussian $\mathcal{N}(0, 1)$, $\mathcal{N}(1, 2.5)$, and $\mathcal{N}(-1, 2.5)$ respectively, DFHTE(Uniform) is based on Uniform $\mathcal{U}(-0.1, 0.1)$, $\mathcal{U}(-0.5, 0.5)$ and $\mathcal{U}(-1, 1)$ separately. Both of which are applying to the generated variable z and u . DFHTE(Generation) is our method, in which the latent covariates z are generated by a reverse diffusion model. We present the results based on $\sqrt{\epsilon_{PEHE}}$ and ϵ_{ATE} and the datasets of ACIC and IHDP. From the results shown in Figure 3 and 4, we can see: DFHTE(Gaussian) slightly performs better than DFHTE(Uniform). We speculate that the unobserved covariates sampled from normal Gaussian is more common than sampled from Uniform in practice. It is interesting to see that when we add the generated latent covariates in estimating CATE, the performance of DFHTE(Generation) is better than DFHTE(Gaussian) in all cases. This observation demonstrates the effectiveness of our idea on capturing latent covariates.

7 CONCLUSION

In this paper, we propose to generate the latent covariates, and accordingly to facilitate the identification of potential outcome, as well as enhancing the learned representations. To achieve this goal, we first reconstruct the latent covariates by a reverse diffusion model, and then to estimation the CATE and balance the distribution between the treated and control groups. In the experiments, we evaluate our framework based on two datasets to demonstrate its effectiveness and generality. This paper makes a first step on applying the idea of diffusion model to the field of generating latent covariates. There is still much room for improvement. To begin with, one can incorporate different prior knowledge into the generation process, and at the same time devise effective mechanism for encouraging identification to causal inference. In addition, in order to investigate the time-consuming, people can also investigate the specific time step in generating latent covariates.

486 REFERENCES
487

488 Abien Fred Agarap. Deep learning using rectified linear units (relu). *arXiv preprint arXiv:1803.08375*,
489 2018.

490 Cande V Ananth and Enrique F Schisterman. Hidden biases in observational epidemiology: the case
491 of unmeasured confounding. *BJOG: An International Journal of Obstetrics and Gynaecology*, 125
492 (6):644, 2018.

493 Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, and
494 Lawrence Carin. Counterfactual representation learning with balancing weights. In *International
495 Conference on Artificial Intelligence and Statistics*, pp. 1972–1980. PMLR, 2021.

496 Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal inference
497 models. *Biometrics*, 61(4):962–973, 2005.

498 Marc F Bellemare, Jeffrey R Bloem, and Noah Wexler. The paper of how: Estimating treatment
499 effects using the front-door criterion. *Oxford Bulletin of Economics and Statistics*, 2020.

500 Ioana Bica, James Jordon, and Mihaela van der Schaar. Estimating the effects of continuous-valued
501 interventions using generative adversarial networks. *Advances in Neural Information Processing
502 Systems*, 33:16434–16445, 2020.

503 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.

504 Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
505 trees. 2010.

506 Rajeev H Dehejia and Sadek Wahba. Propensity score-matching methods for nonexperimental causal
507 studies. *Review of Economics and Statistics*, 84(1):151–161, 2002.

508 Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Dan Cervone. Automated versus do-it-
509 yourself methods for causal inference: Lessons learned from a data analysis competition. *Statistical
510 Science*, 34(1):43–68, 2019.

511 Dennis Frauen and Stefan Feuerriegel. Estimating individual treatment effects under unobserved
512 confounding using binary instruments. *arXiv:2208.08544*, 2022.

513 Isabel R Fulcher, Ilya Shpitser, Stella Marealle, and Eric J Tchetgen Tchetgen. Robust inference
514 on population indirect causal effects: the generalized front door criterion. *Journal of the Royal
515 Statistical Society Series B: Statistical Methodology*, 82(1):199–214, 2020.

516 Ruocheng Guo, Jundong Li, and Huan Liu. Learning individual causal effects from networked
517 observational data. In *Proceedings of the 13th International Conference on Web Search and Data
518 Mining*, pp. 232–240, 2020.

519 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational
520 and Graphical Statistics*, 20(1):217–240, 2011.

521 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
522 Neural Information Processing Systems*, 33:6840–6851, 2020.

523 Guido W Imbens. Instrumental variables: An econometrician’s perspective. Technical report,
524 National Bureau of Economic Research, 2014.

525 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
526 reducing internal covariate shift. In *International Conference on Machine Learning*, pp. 448–456.
527 PMLR, 2015.

528 Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
529 inference. In *International Conference on Machine Learning*, pp. 3020–3029. PMLR, 2016.

530 Julie Josse, Imke Mayer, and Jean-Philippe Vert. Missdeepcausal: causal inference from incomplete
531 data using deep latent variable models. 2020.

540 Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous
 541 treatment effects using machine learning. *Proceedings of the national academy of sciences*,
 542 116(10):4156–4165, 2019.

543

544 Haoxuan Li, Yue Liu, Zhi Geng, and Kun Zhang. A local method for satisfying interventional fairness
 545 with partially known causal graphs. *Advances in Neural Information Processing Systems*, 2024.

546

547 Zongyu Li and Zhenfeng Zhu. A survey of deep causal model. *arXiv preprint arXiv:2209.08860*,
 548 2022.

549

550 Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
 551 effect inference with deep latent-variable models. *Advances in Neural Information Processing
 552 Systems*, 30, 2017.

553

554 Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In *Proceedings
 555 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2837–2845, 2021.

556

557 Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min. Conditional
 558 image-to-video generation with latent flow diffusion models. In *Proceedings of the IEEE/CVF
 559 Conference on Computer Vision and Pattern Recognition*, pp. 18444–18455, 2023.

560

561 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*,
 562 108(2):299–319, 2021.

563

564 Colm O’Muircheartaigh and Larry V Hedges. Generalizing from unrepresentative experiments: a
 565 stratified propensity score approach. *Journal of the Royal Statistical Society Series C: Applied
 566 Statistics*, 63(2):195–210, 2014.

567

568 Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Budgeted heterogeneous treatment effect estimation.
 569 In *International Conference on Machine Learning*, pp. 8693–8702. PMLR, 2021.

570

571 Paul R Rosenbaum. Model-based direct adjustment. *Journal of the American Statistical Association*,
 572 82(398):387–394, 1987.

573

574 Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal
 575 of the American Statistical Association*, 100(469):322–331, 2005.

576

577 Abhin Shah, Karthikeyan Shanmugam, and Murat Kocaoglu. Front-door adjustment beyond markov
 578 equivalence with limited graph knowledge. *Advances in Neural Information Processing Systems*,
 579 36, 2024.

580

581 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
 582 ization bounds and algorithms. In *International Conference on Machine Learning*, pp. 3076–3085.
 583 PMLR, 2017.

584

585 Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
 586 effects. *Advances in Neural Information Processing Systems*, 32, 2019.

587

588 William Torous, Florian Gunsilius, and Philippe Rigollet. An optimal transport approach to causal
 589 inference. *arXiv:2108.05858*, 2021.

590

591 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 592 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

593

594 Hao Wang, Zhichao Chen, Jiajun Fan, Haoxuan Li, Tianqiao Liu, Weiming Liu, Quanyu Dai, Yichao
 595 Wang, Zhenhua Dong, and Ruiming Tang. Optimal transport for treatment effect estimation. *arXiv
 596 preprint arXiv:2310.18286*, 2023.

597

598 Sam Witty, Kenta Takatsu, David Jensen, and Vikash Mansinghka. Causal inference using gaussian
 599 processes with structured latent confounders. In *International Conference on Machine Learning*,
 600 pp. 10313–10323. PMLR, 2020.

601

602 Anpeng Wu, Kun Kuang, Bo Li, and Fei Wu. Instrumental variable regression with confounder
 603 balancing. In *International Conference on Machine Learning*, pp. 24056–24075. PMLR, 2022.

594 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 595 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 596 applications. *ACM Computing Surveys*, 56(4):1–39, 2023.

597

598 Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation learning
 599 for treatment effect estimation from observational data. *Advances in Neural Information Processing
 600 Systems*, 31, 2018.

601 Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Ace: Adaptively
 602 similarity-preserved representation learning for individual treatment effect estimation. In *2019
 603 IEEE International Conference on Data Mining (ICDM)*, pp. 1432–1437. IEEE, 2019.

604 Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. A survey on causal
 605 inference. *ACM Transactions on Knowledge Discovery from Data*, 15(5):1–46, 2021a.

606

607 Liuyi Yao, Yaliang Li, Sheng Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Sci: subspace learning
 608 based counterfactual inference for individual treatment effect estimation. In *Proceedings of the
 609 30th ACM International Conference on Information & Knowledge Management*, pp. 3583–3587,
 610 2021b.

611 Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
 612 treatment effects using generative adversarial nets. In *International Conference on Learning
 613 Representations*, 2018.

614

615 Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
 616 confounders. *Advances in Neural Information Processing Systems*, 33:12263–12274, 2020a.

617 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 618 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 619 pp. 3836–3847, 2023.

620

621 Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled latent factors.
 622 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 10923–10930,
 623 2021.

624 Yao Zhang, Alexis Bellot, and Mihaela Schaar. Learning overlapping representations for the estima-
 625 tion of individualized treatment effects. In *International Conference on Artificial Intelligence and
 626 Statistics*, pp. 1005–1014. PMLR, 2020b.

627

628 Hao Zou, Peng Cui, Bo Li, Zheyuan Shen, Jianxin Ma, Hongxia Yang, and Yue He. Counterfactual
 629 prediction for bundle treatment. *Advances in Neural Information Processing Systems*, 33:19705–
 630 19715, 2020.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A BACKGROUND: HETEROGENEOUS TREATMENT EFFECT
649

650 Under the Neyman-Rubin potential outcomes framework (Rubin, 2005), CATE estimation aims to
651 measure the causal effect of a treatment or intervention $a \in \mathcal{A}$ on the outcome $y \in \mathcal{Y}$ for given the
652 unit's covariates or descriptions $x \in \mathcal{X}$. Throughout this paper, we only focus on the binary treatment
653 case, where $\mathcal{A} = \{0, 1\}$, y represents the factual outcome. We treat units which received treatment,
654 i.e., $a = 1$ as treated units and the other units with $a = 0$ as control units. The Conditional Average
655 Treatment Effect (CATE) for unit x is (Shalit et al., 2017):

$$656 \tau(x) := \mathbb{E}[Y_1 - Y_0|x] \quad (10)$$

657 Where Y_a denotes the potential outcome for treatment a . In practice, we can only observe the factual
658 outcome with respect to treatment assignment, i.e., $y = Y_0$ if $a = 0$, otherwise $y = Y_1$. Usually, we
659 build on three significant assumptions to guarantee that the potential outcomes are identifiable from
660 observational study.

661 **Assumption 1. Consistency.** For a given patient with treatment assignment a , then the potential
662 outcome for the treatment a is the same as the observed (factual) outcome: $Y_a = y$

663 **Assumption 2. Positivity (Overlap).** if $P(X = x) \neq 0$, then $P(A = a|X = x) > 0$, $\forall a$ and x .

664 **Assumption 3. Strong ignorability.** For a given patient (i) , the treatment are independent of the
665 potential outcomes if given the covariates X : $A \perp\!\!\!\perp Y_1, Y_0|X$.
666

667 With these assumptions in mind, the estimation on potential outcomes could be transformed into
668 identifiable estimation from a statistical point of view. In other words, we call that the counterfactual
669 outcomes can be identified under these assumptions, i.e, $\tau(x) = \mathbb{E}[Y|X = x, A = 1] - \mathbb{E}[Y|X =$
670 $x, A = 0]$. From machine learning perspective, these observational dataset can be modeled via a
671 standard supervised learning model, such as SVM, for estimating $\tau(x)$. However, this model could be
672 unreliable and unviable employed to estimate the future counterfactual outcomes under the fact that
673 without adjusting for the bias introduced by the latent covariates and imbalanced distribution between
674 treated groups and control groups. The existing generative-based models can achieve promising
675 results in generating latent covariates (Louizos et al., 2017) and counterfactuals (Yoon et al., 2018),
676 which indeed eliminate the influence from backdoor between treatment and outcome. However, they
677 have some inherent limitations, which would hinder the model's flexibility and performance. In this
678 paper, we build on the prominent diffusion model to generate the latent covariates, and accordingly
679 align the distribution between treated groups and control groups and measure the CATE. We proceed
680 in two steps: (1) Generate the latent covariates conditioned on generation factor; (2) Balance the
681 confounder's representation in latent space and measuring the CATE based on the observed and latent
682 covariates.
683

684 B DETAILED PROOF FOR IDENTIFIABILITY
685

686 B.1 PROBLEM SETUP AND DEFINITIONS

687 Let $p_{data}(\boldsymbol{\eta}^{(0)})$ be the true distribution of the observed data $\boldsymbol{\eta}^{(0)} = (\mathbf{X}, A, Y)$. We assume the
688 existence of a true, unobserved confounder $\mathbf{z} \in \mathbb{R}^{d_z}$ with a prior distribution $p^*(\mathbf{z})$. Crucially, we
689 assume that the observed covariates \mathbf{X} act as **proxy variables** for \mathbf{z} , as depicted in the causal graph
690 in the main text. The true data generating process is described by a joint distribution $p^*(\mathbf{z}, \boldsymbol{\eta}^{(0)}) =$
691 $p^*(\boldsymbol{\eta}^{(0)}|\mathbf{z})p^*(\mathbf{z})$.

692 Our model is parameterized by $\psi = (\phi, \theta)$. We abstract the entire process of inferring the "clean"
693 latent variable $\tilde{\mathbf{z}}$ from the observed data $\boldsymbol{\eta}^{(0)}$ as a mapping $M_\psi : \mathcal{H} \rightarrow \mathcal{Z}$, where $\tilde{\mathbf{z}} = M_\psi(\boldsymbol{\eta}^{(0)})$.
694

695 **Definition 1** (Equivalent Models). Two models, parameterized by ψ and $\tilde{\psi}$, are defined as equivalent
696 (denoted $\psi \sim \tilde{\psi}$) if they both perfectly minimize the joint optimization objective. This implies that
697 their generated marginal distributions of the observed data are identical to the true data distribution,
698 and the marginal distribution of the generated $\tilde{\mathbf{z}}$ matches the prescribed prior.

699 **Definition 2** (\mathcal{G} -Identifiability). We say that a latent variable \mathbf{z} is \mathcal{G} -identifiable, where \mathcal{G} is a
700 transformation group, if for any two equivalent models $\psi \sim \tilde{\psi}$, there exists a transformation $g \in \mathcal{G}$
701 such that the inferred latent variables $\tilde{\mathbf{z}} = M_\psi(\boldsymbol{\eta}^{(0)})$ and $\hat{\mathbf{z}} = M_{\tilde{\psi}}(\boldsymbol{\eta}^{(0)})$ satisfy $\hat{\mathbf{z}} = g(\tilde{\mathbf{z}})$ almost
everywhere.

702 Our goal is to prove that, within our model’s framework, \mathbf{z} is identifiable up to a subgroup of the
 703 affine group (the orthogonal group).
 704

705 **B.2 CORE ASSUMPTIONS**
 706

707 **H1 (Prior Form)** The true unobserved confounder \mathbf{z} follows an isotropic standard normal
 708 distribution, i.e., $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. This is a common assumption, implying that the true
 709 confounding factors are independent and identically scaled under some basis.

710 **H2 (Information Preservation & Proxy Validity)** The proxy variables \mathbf{X} are valid in the sense
 711 of proximal causal inference. This implies that they are descendants of \mathbf{z} and are separated
 712 from Y by \mathbf{z} . This validity ensures that the true generative mapping from \mathbf{z} to $\boldsymbol{\eta}^{(0)}$ is such
 713 that an invertible mapping from the observed data $\boldsymbol{\eta}^{(0)}$ back to \mathbf{z} exists. The information
 714 provided by the proxies \mathbf{X} is critical for resolving the ambiguity of \mathbf{z} and enabling this
 715 inversion.

716 **H3 (Model Capacity)** All neural networks within the model belong to the class of universal
 717 function approximators, possessing sufficient capacity to fit any continuous function.

718 **H4 (Downstream Task Constraint)** The joint optimization objective, which combines an
 719 outcome prediction loss with an Integral Probability Metric (IPM) term for balancing
 720 the treated and control distributions, i.e., $\mathbb{E}[w||y - f(\Phi(\mathbf{z}), a)||^2] + \text{IPM}_G(\hat{p}_\Phi^{a=1}, \hat{p}_\Phi^{a=0})$,
 721 collectively imposes a strong constraint. To achieve the minimum loss, the generated \mathbf{z}_i
 722 must contain all information originating from the true \mathbf{z} that is necessary for predicting the
 723 outcome and balancing the representations.

724 **B.3 FORMAL PROOF OF THEOREM 1**
 725

726 *Proof.* The proof consists of two main steps, each established by a lemma.

727 **Lemma 1.** *Under assumptions H2, H3, and H4, the mapping $M_\psi : \boldsymbol{\eta}^{(0)} \mapsto \tilde{\mathbf{z}}$ learned by an optimal
 728 model must be an invertible function of the true inverse mapping $h^* : \boldsymbol{\eta}^{(0)} \mapsto \mathbf{z}$. That is, there exists
 729 an invertible function g such that $\tilde{\mathbf{z}} = g(\mathbf{z})$.*

731 *Proof of Lemma 1.* Consider an optimal model with parameters ψ^* . By **H4**, the downstream task
 732 losses (outcome prediction and IPM balancing) are minimized. By **H2**, the true confounder \mathbf{z} is a
 733 function of the observed data $\boldsymbol{\eta}^{(0)}$, i.e., $\mathbf{z} = h^*(\boldsymbol{\eta}^{(0)})$. The key insight from proximal causal inference
 734 is that the proxy variables $\mathbf{X} \subset \boldsymbol{\eta}^{(0)}$ provide sufficient constraints to make the inverse mapping h^*
 735 unique.

736 We proceed by contradiction. Assume that M_{ψ^*} is not an invertible function of h^* . This implies there
 737 exist two distinct true latent values, $\mathbf{z}_1 \neq \mathbf{z}_2$, which produce different observed data $\boldsymbol{\eta}_1^{(0)} \neq \boldsymbol{\eta}_2^{(0)}$, but
 738 are mapped to the same latent representation: $\tilde{\mathbf{z}}' = M_{\psi^*}(\boldsymbol{\eta}_1^{(0)}) = M_{\psi^*}(\boldsymbol{\eta}_2^{(0)})$.

739 Without the proxy variables \mathbf{X} , this scenario is possible and leads to non-identifiability. However, the
 740 presence of valid proxies in $\boldsymbol{\eta}^{(0)}$ means that the observational distributions for \mathbf{z}_1 and \mathbf{z}_2 will differ
 741 in a way that allows them to be distinguished. If the model maps them to the same $\tilde{\mathbf{z}}'$, it is discarding
 742 the identifying information provided by the proxies. This would lead to an inability to correctly
 743 predict the distinct potential outcomes associated with \mathbf{z}_1 and \mathbf{z}_2 , preventing the downstream loss
 744 from reaching its theoretical minimum. This contradicts the assumption that the model is optimal.
 745 Therefore, to satisfy the downstream task constraint in the presence of valid proxies, the learned
 746 mapping $M_{\psi^*}(\boldsymbol{\eta}^{(0)})$ must be invertible. \square

747 **Lemma 2.** *Under assumptions H1 and H3, the marginal distribution of the latent variable $\tilde{\mathbf{z}}$ generated
 748 by an optimal model must match the prescribed prior distribution, $\mathcal{N}(\mathbf{0}, \mathbf{I})$.*

749 *Proof of Lemma 2.* The VLB objective forces the aggregate posterior of the learned latent variable
 750 to match the prior, regardless of the conditioning information used to generate it. The aggregate
 751 posterior is defined as:

752
$$\tilde{p}(\tilde{\mathbf{z}}) = \int p_{\text{data}}(\boldsymbol{\eta}^{(0)}) q_\psi(\tilde{\mathbf{z}} | \boldsymbol{\eta}^{(0)}) d\boldsymbol{\eta}^{(0)} \quad (11)$$

756 For the VLB to be optimal, the aggregate posterior must match the prior, i.e., $\tilde{p}(\tilde{\mathbf{z}}) = p(\tilde{\mathbf{z}}) =$
 757 $\mathcal{N}(\mathbf{0}, \mathbf{I})$. \square
 758

759 **Final Proof of Theorem 1.**

761 Combining **Lemma 1** and **Lemma 2**, we know that the learned latent variable $\tilde{\mathbf{z}}$ is an invertible
 762 function of the true \mathbf{z} , and both must follow a standard normal distribution. By the **Darmois-Skitovich**
 763 **theorem**, the function relating them must be affine: $\tilde{\mathbf{z}} = \mathbf{R}\mathbf{z} + \mathbf{b}$, where \mathbf{R} is an invertible matrix
 764 and \mathbf{b} is a vector.

765 Finally, we determine the specific forms of \mathbf{R} and \mathbf{b} by matching their means and covariances.
 766 Matching the means: $\mathbb{E}[\tilde{\mathbf{z}}] = \mathbb{E}[\mathbf{R}\mathbf{z} + \mathbf{b}] = \mathbf{R}\mathbb{E}[\mathbf{z}] + \mathbf{b}$. Since $\mathbb{E}[\tilde{\mathbf{z}}] = \mathbf{0}$ and $\mathbb{E}[\mathbf{z}] = \mathbf{0}$, we have
 767 $\mathbf{b} = \mathbf{0}$. Matching the covariances: $\text{Cov}(\tilde{\mathbf{z}}) = \text{Cov}(\mathbf{R}\mathbf{z} + \mathbf{b}) = \mathbf{R}\text{Cov}(\mathbf{z})\mathbf{R}^T$. Since $\text{Cov}(\tilde{\mathbf{z}}) = \mathbf{I}$ and
 768 $\text{Cov}(\mathbf{z}) = \mathbf{I}$, we have:

$$769 \mathbf{I} = \mathbf{R}\mathbf{I}\mathbf{R}^T = \mathbf{R}\mathbf{R}^T \quad (12)$$

770 The relation $\mathbf{R}\mathbf{R}^T = \mathbf{I}$ is the definition of an orthogonal matrix. In conclusion, the learned latent space
 771 $\tilde{\mathbf{z}}$ is equivalent to the true latent space \mathbf{z} up to an orthogonal transformation and a displacement. \square
 772

773 **B.4 FORMAL PROOF OF THEOREM 2**

774 *Proof.* Theorem 1 establishes that we can recover \mathbf{z} up to an orthogonal transformation, i.e., $\tilde{\mathbf{z}} =$
 775 $\mathbf{R}\mathbf{z} + \mathbf{b}$. We now prove this ambiguity does not affect the estimation of $\text{CATE}(\mathbf{x})$.

776 According to the back-door adjustment formula, the interventional expectation is:

$$777 \mathbb{E}[Y|\mathbf{X} = \mathbf{x}, \text{do}(A = a)] = \int_{\mathbf{z}} \mathbb{E}[Y|\mathbf{X} = \mathbf{x}, A = a, \mathbf{z}' = \mathbf{z}]p(\mathbf{z}' = \mathbf{z}|\mathbf{X} = \mathbf{x})d\mathbf{z} \quad (13)$$

778 In our model, all quantities are estimated based on the learned latent variable $\tilde{\mathbf{z}}$. Thus, we compute:

$$779 \mathbb{E}_{\psi}[Y|\mathbf{X} = \mathbf{x}, \text{do}(A = a)] = \int_{\tilde{\mathbf{z}}} \mathbb{E}_{\psi}[Y|\mathbf{X} = \mathbf{x}, A = a, \tilde{\mathbf{z}}' = \tilde{\mathbf{z}}]p_{\psi}(\tilde{\mathbf{z}}' = \tilde{\mathbf{z}}|\mathbf{X} = \mathbf{x})d\tilde{\mathbf{z}} \quad (14)$$

780 where \mathbb{E}_{ψ} and p_{ψ} are functions defined by the trained model. Since $\tilde{\mathbf{z}} = \mathbf{R}\mathbf{z} + \mathbf{b}$ is an invertible
 781 affine transformation, we perform a change of variables. Let $\tilde{\mathbf{z}}' = \mathbf{R}\mathbf{z}' + \mathbf{b}$, then $d\tilde{\mathbf{z}}' = |\det(\mathbf{R})|d\mathbf{z}'$.
 782 Since \mathbf{R} is orthogonal, $|\det(\mathbf{R})| = 1$.

$$783 \mathbb{E}_{\psi}[Y|\mathbf{X} = \mathbf{x}, \text{do}(A = a)] = \int_{\mathbf{z}} \mathbb{E}_{\psi}[Y|\mathbf{X} = \mathbf{x}, A = a, \tilde{\mathbf{z}}' = \mathbf{R}\mathbf{z}' + \mathbf{b}]p_{\psi}(\tilde{\mathbf{z}}' = \mathbf{R}\mathbf{z}' + \mathbf{b}|\mathbf{X} = \mathbf{x})d\mathbf{z} \quad (15)$$

784 An optimal model will learn functions that are consistent with the true data generating process. The
 785 joint optimization ensures that the prediction function adapts to compensate for the transformation by
 786 \mathbf{R} and \mathbf{b} :

- 787 • $\mathbb{E}_{\psi}[Y|\mathbf{X}, A, \tilde{\mathbf{z}}' = \mathbf{R}\mathbf{z}' + \mathbf{b}] = \mathbb{E}^*[Y|\mathbf{X}, A, \mathbf{z}' = \mathbf{z}]$
- 788 • $p_{\psi}(\tilde{\mathbf{z}}' = \mathbf{R}\mathbf{z}' + \mathbf{b}|\mathbf{X} = \mathbf{x}) = p^*(\mathbf{z}' = \mathbf{z}|\mathbf{X} = \mathbf{x})$

789 Substituting these into the integral, the learned interventional expectation equals the true one:

$$790 \mathbb{E}_{\psi}[Y|\mathbf{X} = \mathbf{x}, \text{do}(A = a)] = \int_{\mathbf{z}} \mathbb{E}^*[Y|\mathbf{X} = \mathbf{x}, A = a, \mathbf{z}' = \mathbf{z}]p^*(\mathbf{z}' = \mathbf{z}|\mathbf{X} = \mathbf{x})d\mathbf{z} \quad (16)$$

$$791 = \mathbb{E}^*[Y|\mathbf{X} = \mathbf{x}, \text{do}(A = a)] \quad (17)$$

792 Since we can uniquely identify the interventional expectation for any $a \in \{0, 1\}$, their difference, the
 793 $\text{CATE}(\mathbf{x})$, is also uniquely identifiable. \square

810 C EXPERIMENT DETAILS.
811

812 **Baselines.** We compare our model with the following 12 representative baselines: Random Forests
813 (RF) (Breiman, 2001), Causal Forests (CF) (Wager & Athey, 2018), Causal Effect Variational
814 Autoencoder (CEVAE) (Louizos et al., 2017), DragonNet (Shi et al., 2019), Meta-Learner algorithms
815 S-Learner (Nie & Wager, 2021) and T-Learner (Künzel et al., 2019), Balancing Neural Network
816 (BNN) (Johansson et al., 2016), Treatment-Agnostic Representation Network (TARNet) (Shalit
817 et al., 2017), Estimation of Conditional average treatment effect using generative adversarial
818 nets (GANITE) (Yoon et al., 2018) as well as CounterFactual Regression with the Wasserstein
819 metric (CFR_{WASS}) (Shalit et al., 2017) and the squared linear MMD metric (CFR_{MMD}) (Shalit
820 et al., 2017), along with a extension of CRF method Query-based Heterogeneous Treatment Effect
821 estimation (QHTE) (Qin et al., 2021).

822
823 **Implementation details.**

824 We implement our methods based on QHTE (Qin et al., 2021). We adopt the commonly used metrics
825 including Rooted Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, 2011) and Mean
826 Absolute Error (ATE) (Shalit et al., 2017) for evaluating the quality of CATE. Formally, they are
827 defined as:

$$828 \sqrt{\epsilon_{PEHE}} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i - \tau_i)^2}, \epsilon_{ATE} = \left| \frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i) - \frac{1}{n} \sum_{i=1}^n (\tau_i) \right| \quad (18)$$

833 where $\hat{\tau}_i$ and τ_i stand for the predicted CATE and the ground truth CATE for the i -th instance
834 respectively. The more details about the implementation of all adopted baselines and our methods
835 and full experimental settings are presented in following Appendix.

836
837 C.1 IMPLEMENTATION AND EVALUATION OF THE DFHTE MODEL
838

839 We implement our methods based on QHTE (Qin et al., 2021). We use the same set of hyperparameters
840 for DFHTE across four datasets. More precisely, we employ 3 similar fully-connected exponential-
841 linear layers for the encoder $q_\varphi(\mathbf{u}|\boldsymbol{\eta}^{(0)})$, the transition kernel $p_\theta(\boldsymbol{\eta}^{(t-1)}|\boldsymbol{\eta}^{(t)}, \mathbf{u})$, representation
842 function Φ , and the CATE prediction function f respectively. The difference is that layer sizes
843 are 128 for both $q_\varphi(\mathbf{u}|\boldsymbol{\eta}^{(0)})$ and $p_\theta(\boldsymbol{\eta}^{(t-1)}|\boldsymbol{\eta}^{(t)}, \mathbf{u})$, 200 for Φ , and 100 for f . we use Batch
844 normalization (Ioffe & Szegedy, 2015) to facilitate training, and all but the output layer use ReLU
845 (Rectified Linear Unit) (Agarap, 2018) as activation functions. In the main optimization objective, we
846 set α and β both to 1. We adopt the commonly used metrics including Rooted Precision in Estimation
847 of Heterogeneous Effect (PEHE) (Hill, 2011) and Mean Absolute Error (ATE) (Shalit et al., 2017)
848 for evaluating the quality of CATE. Formally, they are defined as:

$$849 \sqrt{\epsilon_{PEHE}} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i - \tau_i)^2}, \quad \epsilon_{ATE} = \left| \frac{1}{n} \sum_{i=1}^n (\hat{\tau}_i) - \frac{1}{n} \sum_{i=1}^n (\tau_i) \right| \quad (19)$$

850 where $\hat{\tau}_i$ and τ_i stand for the predicted CATE and the ground truth CATE for the i -th instance
851 respectively.

852
853 D DETAILED DERIVATIONS.
854

855 The variational lower bound (VLB) is :

$$856 \mathbb{E}[-\log p_\theta(\mathbf{z}^{(0)})] \leq E_q \underbrace{\left[\log \frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(0:T)}, \mathbf{u})} \right]}_{VLB} \quad (20)$$

864 *Proof.* We present the detailed derivations of the Negative Log-Likelihood in Eq. 20.

$$\begin{aligned}
& -\log p_{\theta}(\mathbf{z}^{(0)}) \\
& \leq \underbrace{-\log p_{\theta}(\mathbf{z}^{(0)}) + D_{KL}(q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})||p_{\theta}(\mathbf{z}^{(1:T)}|\mathbf{z}^{(0)}, \mathbf{u}))}_{A} \\
& \leq \log p_{\theta}(\mathbf{z}^{(0)}) + E_q \left[\log \underbrace{\frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})}{p_{\theta}(\mathbf{z}^{(1:T)}|\mathbf{z}^{(0)}, \mathbf{u})}}_{B} \right] \\
& \leq -\log p_{\theta}(\mathbf{z}^{(0)}) + E_q \left[\log \underbrace{\frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})}{p_{\theta}(\mathbf{z}^{(0:T)}, \mathbf{u})}}_{C} \right] + \log p_{\theta}(\mathbf{z}^{(0)}) \\
& \leq E_q \left[\log \underbrace{\frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})}{p_{\theta}(\mathbf{z}^{(0:T)}, \mathbf{u})}}_{VLB} \right]
\end{aligned} \tag{21}$$

□

894 We can further derive the L_{VLB} as:

$$\begin{aligned}
L_{VLB} &= E_q \left[\log \frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u}|\boldsymbol{\eta}^{(0)})}{p_{\theta}(\mathbf{z}^{(0:T)}, \mathbf{u})} \right] \\
&= E_q \left[\sum_{t=2}^T D_{KL} \left(\underbrace{q(\boldsymbol{\eta}^{(t-1)}|\boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)})}_{A} || \underbrace{p_{\theta}(\mathbf{z}^{(t-1)}|\mathbf{z}^{(t)}, \mathbf{u})}_{B} \right) \right. \\
&\quad \left. - \log \underbrace{p_{\theta}(\mathbf{z}^{(0)}|\mathbf{z}^{(1)}, \mathbf{u})}_{C} + D_{KL} \left(\underbrace{q_{\varphi}(\mathbf{u}|\boldsymbol{\eta}^{(0)})}_{D} || \underbrace{p(\mathbf{u})}_{E} \right) \right]
\end{aligned} \tag{22}$$

904 To make the objective clearer, we elaborate on the terms as follows:

905 [Term A]: $q(\boldsymbol{\eta}^{(t-1)}|\boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)})$ is computed by a closed-form Gaussian (Luo & Hu, 2021; Ho et al., 906 2020):

$$q(\boldsymbol{\eta}^{(t-1)}|\boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)}) = \mathcal{N}(\boldsymbol{\eta}^{(t-1)}; \boldsymbol{\mu}_t(\boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)}), \gamma_t \mathbf{I}) \tag{23}$$

907 where $\boldsymbol{\mu}_t(\boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)}) = \frac{\sqrt{\bar{a}_{t-1}}\beta_t}{1-\bar{a}_t}\boldsymbol{\eta}^{(0)} + \frac{\sqrt{a_t}(1-\bar{a}_{t-1})}{1-\bar{a}_t}\boldsymbol{\eta}^{(t)}$ and $\gamma_t = \frac{1-\bar{a}_{t-1}}{1-\bar{a}_t}\beta_t$.

911 [Terms B, C]: $p_{\theta}(\mathbf{z}^{(t-1)}|\mathbf{z}^{(t)}, \mathbf{u})$ where $t \in \{1, 2, \dots, T\}$ are trainable Gaussian distribution shown 912 in Eq. 4.

913 [Term D]: $q_{\varphi}(\mathbf{u}|\boldsymbol{\eta}^{(0)})$ are learnable posterior distribution, which is the posterior of \mathbf{u} after observe 914 $\boldsymbol{\eta}^{(0)}$, aiming to encode the input observed covariates $\boldsymbol{\eta}^{(0)}$ into the distribution of the latent generation 915 factor \mathbf{u} . We define it as: $q_{\varphi}(\mathbf{u}|\boldsymbol{\eta}^{(0)}) = \mathcal{N}(\mathbf{u}; \boldsymbol{\mu}_{\varphi}(\boldsymbol{\eta}^{(0)}), \sum_{\varphi}(\boldsymbol{\eta}^{(0)}))$.

917 [Term E]: $p(\mathbf{u})$ is the prior distribution defined as isotropic Gaussian $\mathcal{N}(0, \mathbf{I})$, which is the most 918 common choice for approximating the target distribution.

918
919**Algorithm 1:** Inference of latent covariates

- 1 **Input:** Observed data point \mathbf{x} .
- 2 Calculate the posterior $q_\varphi(\boldsymbol{\eta} | \mathbf{x})$;
- 3 Sample data points $\mathbf{z}^{(T)} \sim \mathcal{N}(0, I)$;
- 4 Use the learned reverse process to estimate $p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})$, $t = T, T-1, \dots, 1$;
- 5 **Return:** The latent covariates $\mathbf{z}^{(0)}$.

925

926

Algorithm 2: Training

- 1 Indicate the observational data \mathcal{X} .
- 2 Initialize all the model parameters.
- 3 **while** not converged **do**
- 4 Sample $\boldsymbol{\eta}^{(0)} \sim \mathcal{X}$
- 5 Sample $\boldsymbol{\eta} \sim q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)})$
- 6 Sample $t \sim \text{Uniform}(\{1, \dots, T\})$
- 7 Sample $\boldsymbol{\eta}_1^{(t)}, \dots, \boldsymbol{\eta}_m^{(t)} \sim q(\mathbf{x}^{(t)} | \mathbf{x}^{(0)})$
- 8
$$L_\theta = \sum_{i=1}^m D_{KL} \left(q(\mathbf{x}_i^{(t-1)} | \boldsymbol{\eta}^{(t)}, \mathbf{x}_i^{(0)}) || p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}_i^{(t)}, \boldsymbol{\eta}) \right)$$

$$L_\varphi = D_{KL} \left(q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)}) || p(\boldsymbol{\eta}) \right)$$
- 9 Compute the gradients of the $L_\theta + \frac{1}{T} L_\varphi$ Perform the gradient descent.
- 10 **end**

943

944

Proof. We present the detailed derivations of the VLB in Eq. 22.

$$\begin{aligned}
L_{VLB} &= E_q \left[\log \frac{q(\boldsymbol{\eta}^{(1:T)}, \mathbf{u} | \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(0:T)}, \boldsymbol{\eta})} \right] \\
&= E_q \left[\log \frac{q(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)}) \prod_{t=1}^T q(\boldsymbol{\eta}^{(t)} | \boldsymbol{\eta}^{(t-1)})}{p_\theta(\boldsymbol{\eta}) p(\mathbf{z}^{(T)}) \prod_{t=1}^T p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})} \right] \\
&= E_q \left[-\log p(\mathbf{z}^{(T)}) + \sum_{t=1}^T \log \frac{q(\boldsymbol{\eta}^{(t)} | \boldsymbol{\eta}^{(t-1)})}{p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})} + \log \frac{q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)})}{p_\theta(\boldsymbol{\eta})} \right] \\
&= E_q \left[-\log p(\mathbf{z}^{(T)}) + \log \frac{q(\boldsymbol{\eta}^{(1)} | \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(0)} | \mathbf{z}^{(1)}), \boldsymbol{\eta})} + \sum_{t=2}^T \log \left(\frac{q(\boldsymbol{\eta}^{(t-1)} | \boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})} \cdot \frac{q(\boldsymbol{\eta}^{(t)} | \boldsymbol{\eta}^{(0)})}{q(\boldsymbol{\eta}^{(t-1)} | \boldsymbol{\eta}^{(0)})} \right) + \log \frac{q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)})}{p_\theta(\boldsymbol{\eta})} \right] \\
&= E_q \left[-\log p(\mathbf{z}^{(T)}) + \log \frac{q(\boldsymbol{\eta}^{(1)} | \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(0)} | \mathbf{z}^{(1)}), \boldsymbol{\eta})} + \sum_{t=2}^T \log \frac{q(\boldsymbol{\eta}^{(t-1)} | \boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})} + \log \frac{q(\boldsymbol{\eta}^{(T)} | \boldsymbol{\eta}^{(0)})}{q(\boldsymbol{\eta}^{(1)} | \boldsymbol{\eta}^{(0)})} + \log \frac{q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)})}{p_\theta(\boldsymbol{\eta})} \right] \\
&= E_q \left[-\log \frac{p(\boldsymbol{\eta}^{(T)})}{q(\boldsymbol{\eta}^{(T)} | \boldsymbol{\eta}^{(0)})} - \log p_\theta(\mathbf{z}^{(0)} | \mathbf{z}^{(1)}), \boldsymbol{\eta}) + \sum_{t=2}^T \log \frac{q(\boldsymbol{\eta}^{(t-1)} | \boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)})}{p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta})} + \log \frac{q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)})}{p_\theta(\boldsymbol{\eta})} \right] \\
&= E_q \left[\sum_{t=2}^T D_{KL} \left(q(\boldsymbol{\eta}^{(t-1)} | \boldsymbol{\eta}^{(t)}, \boldsymbol{\eta}^{(0)}) || p_\theta(\mathbf{z}^{(t-1)} | \mathbf{z}^{(t)}, \boldsymbol{\eta}) \right) - \log p_\theta(\mathbf{z}^{(0)} | \mathbf{z}^{(1)}, \boldsymbol{\eta}) + D_{KL} \left(q_\varphi(\boldsymbol{\eta} | \boldsymbol{\eta}^{(0)}) || p_\theta(\boldsymbol{\eta}) \right) \right]
\end{aligned} \tag{24}$$

959

960

961

962

963

964

965

E PSEUDO-CODE OF DFHTE

966

967

We present the diffusion model training algorithm in Algorithm 2, the sampling algorithm in Algorithm 3, and our CATE estimation algorithm in Algorithm 4.

968

969

970

971

972
 973
 974
 975 **Algorithm 3:** Sampling
 976 1 Sampling data points: $\mathbf{z}^{(T)} \sim \mathcal{N}(0, \mathbf{I})$.
 977 2 **for** $t = T, \dots, 1$ **do**
 978 3 $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ if $t > 0$, else $\epsilon = 0$
 979 4 $\mathbf{z}^{(t-1)} = \mu_{\theta}(\mathbf{z}^{(t)}, t, \eta) + \beta_t \epsilon$
 980 5 **end**
 981 6 return latent covariates $\mathbf{z}^{(0)}$

982
 983
 984
 985
 986
 987
 988 **Algorithm 4:** Learning algorithm of our model
 989 1 Generating the latent covariates z_1, \dots, z_m through Algorithm 3.
 990 2 Indicate the observational data $(x_1, z_1, t_1, y_1), \dots, (x_m, z_m, t_m, y_m)$.
 991 3 Indicate the scaling parameter α and β .
 992 4 Initialize all the model parameters.
 993 5 Indicate the epoch number E .
 994 6 Compute $u = \frac{1}{m} \sum_{i=1}^m t_i$.
 995 7 Compute $w_i = \frac{t_i}{2u} + \frac{1-t_i}{2(1-u)}$ for $i = 1, \dots, m$
 996 8 **for** $e = 0$ **to** E **do**
 997 9 Sample mini-batch data \mathcal{B} from D
 998 10 Compute the gradients of the empirical loss:
 999
 1000 11
$$g_1 = \nabla_W \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} w_i L(y_i, f(\Phi(x_i, z_i), t_i))$$

 1001
 1002
 1003 11 Compute the gradients of the regularization:
 1004 12
$$g_2 = \nabla_W \beta \mathcal{R}(f)$$

 1005
 1006 12 Compute the gradients of the IPM term:
 1007 13
$$g_3 = \nabla_W \alpha IPM_G(\hat{p}_{\Phi}^{t=1}, \hat{p}_{\Phi}^{t=0})$$

 1008
 1009 13 Obtain the step size scalar ρ with the Adam
 1010 14 Update the parameters:
 1011 14
$$W \leftarrow W - \rho(g_1 + g_2 + g_3)$$

 1012 15 **end**

1013
 1014
 1015
 1016
 1017
 1018
 1019 **Table 2:** Statistics of the datasets used in our experiments.

Dataset	#Replications	#Units	#covariates	Treated Ratio	Control Ratio
ACIC	100	4,802	82	28%	72%
IHDP	1,000	747	25	19%	81%

1020
 1021
 1022
 1023
 1024
 1025