HIERARCHICAL PREFERENCE OPTIMIZATION: LEARNING TO ACHIEVE GOALS VIA FEASIBLE SUB GOALS PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL) that addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks. HPO leverages maximum entropy reinforcement learning combined with token-level Direct Preference Optimization (DPO), eliminating the need for pre-trained reference policies that are typically unavailable in challenging robotic scenarios. Mathematically, we formulate HRL as a bi-level optimization problem and transform it into a primitive-regularized DPO formulation, ensuring feasible subgoal generation and avoiding degenerate solutions. Extensive experiments on challenging robotic navigation and manipulation tasks demonstrate HPO's impressive performance, where HPO shows an improvement of upto 35% over the baselines. Furthermore, ablation studies validate our design choices, and quantitative analyses confirm HPO's ability to mitigate non-stationarity and infeasible subgoal generation issues in HRL.

025 026 027

028

006

008 009 010

011

013

014

015

016

017

018

019

021

1 INTRODUCTION

Reinforcement learning (RL) encounters significant challenges in sparse-reward environments, particularly in complex robotic control tasks (Nair et al., 2018). Hierarchical Reinforcement Learning (HRL) (Sutton et al., 1999) helps to deal with sparse reward issues by enhancing exploration and introducing temporal abstraction (Nachum et al., 2019). However, off-policy HRL methods (Levy et al., 2018; Nachum et al., 2018) face their own challenges. The first (C1) is non-stationarity caused by evolving lower-level policies, which destabilizes the higher-level reward function (Chane-Sane et al., 2021). The second (C2) is the high-level policy's tendency to generate subgoals that are infeasible for the lower-level policy to achieve.

Preference-based learning (PbL) approaches like Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) have been successful in solving complex tasks. However, integrating PbL directly with HRL is non-trivial. Singh et al. (2024) proposed an RLHF-based method to mitigate non-stationarity in HRL by first learning a reward model from preference data and then using RL to train the high-level policy. However, the approach in Singh et al. (2024) introduces an expensive and potentially unstable RL step which can still result in infeasible subgoal predictions for the lower-level primitives.

 Recently, direct preference optimization (DPO) methods (Rafailov et al., 2024b) have been introduced, which learn policies directly from preference data, bypassing the need for RL. Leveraging
 DPO to learn the high-level policy in HRL could efficiently mitigate non-stationarity. However, naively applying DPO requires effective pre-trained reference policies, which are often unavailable in robotics scenarios. Additionally, such approaches may still produce subgoals that are infeasible for the lower-level policy to execute.

In this work, we propose Hierarchical Preference Optimization (HPO), a hierarchical approach that
 optimizes the higher level policy using token-level DPO objective (Rafailov et al., 2024a), and the
 lower level primitive policy using RL. Since HPO learns higher level policy from preference data, it
 avoids dependence on changing lower level primitive and thus mitigates non-stationarity (C1). We
 derive token-level DPO objective in a maximum entropy RL setting, to eliminate the requirement

Figure 1: HPO Overview: (left) In vanilla HRL, the higher level rewards depend on the environment rewards, and thus on the lower primitive behavior, which causes non-stationarity in HRL. Also, the higher level may predict infeasible subgoals that are too hard for lower primitive. (middle) In HPO, the lower level value function $V_{\pi L}$ is leveraged to condition higher level policy into predicting feasible subgoals, and direct preference optimization (DPO) is used to optimize higher level policy. Since this preference-based learning approach does not depend on lower primitive, this mitigates non-stationarity. Note that since the *current* estimation of value function is used to regularize the higher policy, it does not cause non-stationarity. (right) Training environments: (i) maze navigation, (ii) pick and place, (iii) push, and (iv) franka kitchen environment.

072 073 074

066

067

068

069

071

of pre-trained models as reference policy. Furthermore, in order to generate feasible subgoals, we 075 formulate HRL as a bi-level formulation, which regularizes the higher level policy to predict feasible 076 subgoals using lower level value function based regularization, which we call primitive regulariza-077 tion (thus mitigating C2). Finally, since eliciting human feedback is hard in complex robotic tasks, we employ primitive-in-the-loop approach (Singh et al., 2024) for autonomously generating prefer-079 ences using sparse environment rewards. The primary contributions of this work are as follows.

(i) Novel primitive-regularized preference optimization approach to solve hierarchal RL: 081 We propose a novel Hierarchical Preference Optimization (HPO) method that leverages primitiveregularized Direct Preference Optimization (DPO) to solve complex RL tasks using human prefer-083 ence data (Section 4). Our approach is principled; we derive it by reformulating the HRL problem 084 as a bi-level optimization problem. To the best of our knowledge, this is the first work to utilize the 085 bi-level optimization framework to develop a principled solution for HRL.

(ii) Addressing non-stationarity and infeasible subgoal generation issues of SoTA HRL: By 087 adopting a principled approach, we solve the bi-level optimization problem while respecting the 088 distributional dependence between lower-level and higher-level policies. This enables our approach 089 to significantly reduce the effects of non-stationarity and infeasible subgoal generation in a variety 090 of scenarios. We provide detailed evidence of this in Section 5 Figures 3 and 4. 091

(iii) Improved performance in complex robotics tasks: Our extensive experiments demonstrate that HPO demonstrates an improvement of upto 35% over the baselines in most of the task environments, where other baselines typically fail to make any significant progress (Section 5).

094 095 096

092

093

2 RELATED WORKS

098 **Hierarchical Reinforcement Learning.** HRL is an elegant framework that promises the intuitive 099 benefits of temporal abstraction and improved exploration (Nachum et al., 2019). Prior research 100 work has focused on developing efficient methods that leverage hierarchical learning to efficiently 101 solve complex tasks (Sutton et al., 1999; Barto and Mahadevan, 2003; Parr and Russell, 1998; Di-102 etterich, 1999). Goal-conditioned HRL is an important framework in which a higher-level policy 103 assigns subgoals to a lower-level policy (Dayan and Hinton, 1992; Vezhnevets et al., 2017), which 104 executes primitive actions on the environment. Despite its advantages, HRL faces challenges owing 105 to its hierarchical structure, as goal-conditioned RL based approaches suffer from non-stationarity in off-policy settings where multiple levels are trained concurrently (Nachum et al., 2018; Levy et al., 106 2018). These issues arise because the lower level policy behavior is sub-optimal and unstable. Prior 107 works deal with these issues by either simulating optimal lower primitive behavior (Levy et al.,

2018), relabeling replay buffer transitions (Nachum et al., 2018; Singh and Namboodiri, 2023b;a),
or assuming access to privileged information like expert demonstrations or preferences (Singh et al., 2024; Singh and Namboodiri, 2023a;b). In contrast, we propose a novel bi-level formulation to
mitigate non-stationarity and regularize the higher-level policy to generate feasible subgoals for the
lower-level policy.

Behavior Priors. Some prior work relies on hand-crafted actions or behavior priors to accelerate learning (Nasiriany et al., 2021; Dalal et al., 2021). While these methods can simplify hierarchical learning, their performance heavily depends on the quality of the priors; sub-optimal priors may lead to sub-optimal performance. In contrast, ours is an end-to-end approach that does not require prior specification, thereby avoiding significant expert human effort.

118 **Preference-based Learning.** A variety of methods have been developed in this area to apply re-119 inforcement learning (RL) to human preference data (Knox and Stone, 2009; Pilarski et al., 2011; 120 Wilson et al., 2012; Daniel et al., 2015), that typically involve collecting preference data from human 121 annotators, which is then used to guide downstream learning. Prior works in this area (Christiano 122 et al., 2017; Lee et al., 2021) first train a reward model based on the preference data, and subse-123 quently employ RL to derive an optimal policy for that reward model. More recent approaches 124 have focused on improving sample efficiency using off-policy policy gradient methods (Haarnoja 125 et al., 2018) to learn the policy. Recently, direct preference optimization based approaches have emerged (Rafailov et al., 2024b;a; Hejna et al., 2023), which bypass the need to learn a reward 126 model and subsequent RL step, by directly optimizing the policy with a KL-regularized maximum 127 likelihood objective corresponding to a pre-trained model. In this work, we build on the foundational 128 knowledge in maximum entropy RL (Ziebart, 2010), and derive a token-level direct preference op-129 timization (Rafailov et al., 2024b;a) objective regularized by lower -level primitive, resulting in an 130 efficient hierarchical framework capable of solving complex robotic tasks. 131

131 132 133

134

3 PROBLEM FORMULATION

MDP Setup. We formulate the problem using a Markov Decision Process (MDP), defined as 135 $(\mathcal{S}, \mathcal{A}, p, r, \gamma)$. Here, \mathcal{S} represents the state space, and \mathcal{A} denotes the action space. The transi-136 tion dynamics are governed by the stochastic probability function $p : S \times A \to \Delta(S)$, which 137 maps each state-action pair to a probability distribution over subsequent states. The reward func-138 tion, $r: S \times A \to \mathbb{R}$, provides a scalar reward based on the current state and action, and $\gamma \in (0, 1)$ 139 is the discount factor that modulates the importance of future rewards. At each time step t, the 140 agent follows a policy $\pi : S \to \Delta(A)$, which defines a probability distribution over actions a_t 141 given the current state s_t . After taking action a_t , the agent receives a reward $r_t = r(s_t, a_t)$, and the 142 environment transitions to a new state s_{t+1} according to the transition probability $p(\cdot|s_t, a_t)$. 143

RL Objective. The objective in RL is to find an optimal policy that maximizes the expected cumulative reward, formally defined as $\pi^* := \arg \max_{\pi} J(\pi)$, where $J(\pi) = \mathbb{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^t r_t]$. The value function for policy π , denoted as $V_{\pi}(s_t, g_t)$, captures the expected cumulative reward from state s_t with goal g_t , and is defined as $V_{\pi}(s_t, g_t) = \mathbb{E}_{\pi} [\sum_{t=0}^{T} \gamma^t r_t | s_t, g_t]$, where the expectation is over policy trajectories, γ is the discount factor, and r_t is the reward at time t.

Goal-Conditioned HRL. In this framework, the higher-level policy generates subgoals for the lowerlevel policy, which then takes primitive actions to achieve these subgoals, collectively working toward the overall objective. Formally, the higher-level policy $\pi^H : S \to \Delta(G)$ selects a subgoal $g_t \in G$, where G is a subset of the state space S, representing the set of goals. A subgoal $g_t \sim \pi^H(\cdot|s_t)$ is selected every k timesteps, such that $g_t = g_{k \cdot \lfloor t/k \rfloor}$ and remains fixed during this period. At each timestep t, the lower-level policy $\pi^L : S \times G \to \Delta(A)$ selects an action $a_t \sim \pi^L(\cdot|s_t, g_t)$ based on the current state s_t and the subgoal g_t , after which the environment transitions to the next state, $s_{t+1} \sim p(\cdot|s_t, a_t)$.

157 We operate under a sparse reward setting, where the lower-level policy is driven by a sparse reward 158 signal $r_t^L(s_t, g_t, a_t) = \mathbf{1}_{\{|s_t - g_t|^2 < \varepsilon\}}$, with $\mathbf{1}_C$ as an indicator function returning 1 if the condition C159 holds, indicating that the subgoal is reached. The reward function $r^L : S \times \mathcal{G} \times \mathcal{A} \to \mathbb{R}$ governs the 160 lower level. In contrast, the higher-level policy is rewarded based on $r_t^H(s_t, g^*, g_t)$, where $g^* \in \mathcal{G}$ 161 is the final goal. The reward function for the higher level, $r^H : S \times \mathcal{G} \times \mathcal{G} \to \mathbb{R}$, encourages progress toward the final goal. Experience for the lower-level policy is stored in its replay buffer 162 as tuples $(s_t, g_t, a_t, r_t^L, s_{t+1})$, while the higher-level policy stores transitions as (s_t, g^*, g_t, r_t^H) 163 $\sum_{i=t}^{t+k-1} r_i^L, s_{t+k}$, updated every k timesteps. Notably, rewards for the higher-level policy $r_t^H(\pi_L)$ depend on the lower-level policy π_L . Next, we enlist the challenges of standard HRL methods. 164 165

Challenges of HRL While HRL offers advantages over traditional RL, such as better sample effi-166 ciency through temporal abstraction and enhanced exploration (Nachum et al., 2018; 2019), it also 167 faces significant challenges. This paper focuses on two key issues: 168

169 C1. Training instability due to *non-stationarity* in off-policy HRL, and

170 **C2**. Suboptimal performance due to the generation of *infeasible subgoals* by the higher-level policy.

171 Off-policy HRL suffers from non-stationarity because the behavior of the lower-level policy changes 172 over time (Nachum et al., 2018; Levy et al., 2018). This makes previously collected higher-level 173 transitions in the replay buffer outdated, reducing their effectiveness. Furthermore, the higher-level 174 policy may suggest infeasible subgoals for the lower-level policy (Chane-Sane et al., 2021), hinder-175 ing learning and decreasing overall performance. Thus, despite its theoretical advantages, HRL often 176 underperforms in practice (Nachum et al., 2018; Levy et al., 2018).

177 Preference-based learning (PbL) methods such as RLHF (Christiano et al., 2017; Ibarz et al., 2018; 178 Lee et al., 2021) and DPO (Rafailov et al., 2024b) leverage preference data to solve complex tasks. 179 Prior work (Singh et al., 2024) leverages RLHF to mitigate non-stationarity in HRL using preferences. However, directly applying PbL techniques to HRL remains challenging. We now first 181 discuss PbL approaches and then discuss their key limitations when directly applying to HRL. 182

3.1 PBL: PREFERENCE BASED LEARNING

185 **Reinforcement Learning from Human Feedback (RLHF):** In this setting, the agent behavior 186 is represented as a k-length trajectory denoted as τ , of state observations and actions: $\tau =$ $((s_t, a_t), (s_{t+1}, a_{t+1}) \dots (s_{t+k-1}, a_{t+k-1}))$. The reward model to be learned is denoted by \hat{r}_{ϕ} : 187 $\mathcal{S} \times \mathcal{A} \to \mathbb{R}$, where ϕ are the reward model parameters. Thus, the preferences between two tra-188 jectories, τ^1 and τ^2 , can be expressed through the Bradley-Terry model (Bradley and Terry, 1952): 189

$$P_{\phi}\left[\tau^{1} \succ \tau^{2}\right] = \frac{\exp\sum_{t} \widehat{r}_{\phi}\left(s_{t}^{1}, a_{t}^{1}\right)}{\sum_{i \in \{1, 2\}} \exp\sum_{t} \widehat{r}_{\phi}\left(s_{t}^{i}, a_{t}^{i}\right)},\tag{1}$$

(2)

193 where $\tau^1 \succ \tau^2$ implies that τ^1 is preferred over τ^2 . The preference dataset \mathcal{D} has entries of the form 194 (τ^1, τ^2, y) , where y = (1, 0) when τ^1 is preferred over τ^2 , y = (0, 1) when τ^2 is preferred over τ^1 , 195 and y = (0.5, 0.5) in case of no preference. In RLHF, we first learn the reward function \hat{r}_{ϕ} (Chris-196 tiano et al., 2017) using cross-entropy loss along with use equation 1 to yield the formulation: 197

 $\mathcal{L}(\phi) = -\mathbb{E}_{(\tau^{1},\tau^{2},y)\sim\mathbb{D}} \left[\log \sigma(\sum_{t=0}^{T-1} \hat{r}_{\phi}\left(s_{t}^{1},g^{*},g_{t}^{1}\right) - \sum_{t=0}^{T-1} \hat{r}_{\phi}\left(s_{t}^{2},g^{*},g_{t}^{2}\right)) \right].$

183

184

190 191 192

199

200 201

202

Subsequently, the reward model is used to learn the corresponding policy using RL.

Direct Preference Optimization (DPO): Although RLHF provides an elegant framework for learn-203 ing policies from preferences, it involves RL training step which is often expensive and unstable 204 in practice. In contrast, DPO (Rafailov et al., 2024b) circumvents the need for RL step by using 205 a closed-form solution for the optimal policy of the KL-regularized RL problem (Levine, 2018): 206 $\pi^*(a|s) = \frac{1}{Z(s)}\pi_{ref}(a|s)e^{r(s,a)}$, where π_{ref} is the reference policy, π^* is the optimal policy, 207 and Z(s) is a normalizing partition function ensuring that π^* provides a valid probability dis-208 tribution over \mathcal{A} for each $s \in \mathcal{S}$. This formulation is rearranged to yield the reward function: 209 $r(s,a) = \alpha \log \pi^*(a|s) - \alpha \log \pi_{ref}(a|s) - Z(s)$, which is then substituted in the standard cross-210 entropy loss equation 2, to yield the following objective:

211 212 213

214

$$\mathcal{L}_{DPO}(\theta) = -\mathbb{E}_{(s,y_1,y_2)\sim\mathbb{D}}\left[\log\sigma\left(\alpha\log\frac{\pi_{\theta}(y_1|s)}{\pi_{ref}(y_1|s)} - \alpha\log\frac{\pi_{\theta}(y_2|s)}{\pi_{ref}(y_2|s)}\right)\right],\tag{3}$$

where θ are the policy parameters and σ denotes the sigmoid function. Next we discuss key limita-215 tions when directly applying PbL to HRL.

216 3.1.1 LIMITATIONS OF DIRECTLY APPLYING PBL TO HRL

Directly using RLHF: Prior approaches leverage the advancements in PbL to mitigate nonstationarity (Singh et al., 2024) by utilizing the reward model r_{ϕ}^{H} learned using RLHF as higher level rewards instead of environment rewards $r_{\pi_{L}}^{H}$ used in vanilla HRL approaches, which depend on the sub-optimal lower primitive. However, such approaches may lead to degenerate solutions by generating infeasible subgoals for the lower-level primitive. Additionally, such approaches require RL as an intermediate step, which might cause training instability (Rafailov et al., 2024b).

Directly using DPO: In temporally extended task environments like robotics, directly extending DPO
 to the HRL framework is also non-trivial due to three reasons: (i) such scenarios deal with multi-step
 trajectories involving stochastic transitions models, (ii) efficient pre-trained reference policies are
 typically unavailable in robotics, (iii) similar to RLHF, such approaches may produce degenerate
 solutions when the higher level policy subgoal predictions are infeasible.

229 230

231

4 HPO : HIERARCHICAL PREFERENCE OPTIMIZATION

To deal with the challenges of HRL and utilizing PbL in HRL framework (3.1.1), we introduce HPO: Hierarchical Preference Optimization, a novel approach that leverages primitive regularized DPO to mitigate non-stationarity and infeasible subgoal generation issues in HRL. The rest of this section proceeds as follows: we first critically analyze the key source of non-stationarity in HRL and formulate HRL as a bi-level optimization problem. Utilizing this formulation, we then derive a primitive-regularized token-level DPO objective that overcomes the limitations of non-stationarity and infeasible subgoals generation in HRL. Finally, we analyze the HPO objective and gradient, and provide the final algorithm.

239 240 241

4.1 HRL: BI-LEVEL FORMULATION

We first consider the bi-level formulation for HRL. Let T be the task horizon, s_t be the state at time t, g^* be the final goal, and $g_t \sim \pi^H(.|s_t, g^*)$ be the higher level subgoal prediction at time t. In the HRL framework, the lower level optimal policy is represented as π_*^L . The higher-level policy π^H predicts subgoal g_t to π_*^L , and receives higher level rewards $r_{\pi_*}^H$ (which depends on the optimal lower primitive π_*^L). The lower primitive policy executes primitive actions a_t to achieve the predicted subgoals. The higher level objective can thus be represented as:

249

250

251

265 266 267

$$\max_{\pi^{H}} \mathbb{E}_{\pi^{H}} \left[\sum_{t=0}^{T-1} r^{H}_{\pi^{L}_{*}(\cdot|s_{t},g_{t})}(s_{t},g^{*},g_{t}) \right].$$
(4)

Issue of non-stationarity. In vanilla HRL, when the hierarchical levels are trained concurrently, since we do not have access to the optimal $\pi_*^L(\cdot|s,g)$ policy in the objective in equation 4, the higher level rewards are instead generated using an approximated lower primitive $\pi_{\theta}^L(\cdot|s,g)$, which is sub-optimal. Due to this sub-optimal lower level primitive, the higher level rewards $r_{\pi_{\theta}}^H$ are nonstationary (e.g. we may encounter different higher level rewards for the same subgoal prediction, as $\pi_{\theta}^L(\cdot|s,g)$ changes). This causes the non-stationarity issue in HRL.

Issue of infeasible subgoal generation. Since the sub-optimality in the lower-level policy affects
 its ability to reach a given subgoal, it consequently impacts the higher-level credit assignment during
 subsequent subgoal generation. This may cause the higher level to produce infeasible subgoals.

262 Distribution shift issue and bi-level formulation. To understand further the technical reasoning of
 263 the above-mentioned issues, let us expand upon the nested structure of the objective in equation 4,
 264 which is a bi-level optimization problem given by

$$\max_{\pi^{H}} \mathcal{J}(\pi^{H}, \pi_{*}^{L}(\pi^{H})) \quad s.t. \quad \pi_{*}^{L}(\cdot|s_{t}, g_{t}) = \arg\max_{\pi^{L}(\cdot|s_{t}, g_{t})} V_{\pi^{L}(\cdot|s_{t}, g_{t})}(\pi^{H}), \forall t \in [0: T-1], \quad (5)$$

where $\mathcal{J}(\pi^H, \pi^L_*(\pi^H))$ represents the higher level maximization objective (cf. equation 4), and $V_{\pi^L}(\pi^H)$ is the lower level value function, conditioned on the higher level policy subgoals. We note that the problem in equation 5 is just an expanded version of the problem in equation 4. From the

bi-level structure in equation 5, we note that when we approximate the optimal lower level policy π_L^* with an approximated version π_{θ}^L , it would actually break the nested structure of the problem in equation 5, leading to the issues of non-stationarity as well as infeasible subgoal generation. In this work, we propose a novel approach to solving the original HRL problem in equation 5 without breaking the nested structure as follows.

Directly considering the nested structure in equation 4. Utilizing the recent advancements in the optimization literature (Liu et al., 2022), we consider the equivalent constraint formulation of the problem in equation 5 as follows

 $\max_{\pi^{H},\pi^{L}} \mathcal{J}(\pi^{H},\pi^{L}) \quad s.t. \quad V_{\pi^{L}(\cdot|s_{t},g_{t})}(\pi^{H}) \geq V_{\pi^{L}_{*}(\cdot|s_{t},g_{t})}(\pi^{H}), \forall t \in [0:T-1].$ (6)

The constraint optimization problem is also challenging because it requires the access to $V_{\pi_{\star}^{L}}(\pi^{H})$ which is hard to obtain in practice. But let us try to discuss the constraint in detail. The constraint $V_{\pi^L}(\pi^H) \geq V_{\pi^L}(\pi^H)$ is essentially to enforce the optimality of the lower level policy, because $V_{\pi^L}(\pi^H)$ is the maximum (optimal) value. But we note that for the sparse reward scenarios (wlog assuming reward is between 0 and 1), the value function $V_{\pi^L}(\pi^H) = 0$ for any non-goal reaching policy. But $V_{\pi^L_*}(\pi^H) > 0$ or equivalently is definitely non-zero for the goal reaching optimal policy π^L_* . Therefore, it is sufficient to ensure $V_{\pi^L}(\pi^H) > 0$ in the constraint. To make the problem tractable, we introduce a parameter delta and reformulate the problem in equation 6 as follows:

$$\max_{\pi^{H},\pi^{L}} \mathcal{J}(\pi^{H},\pi^{L}) \quad s.t. \quad V_{\pi^{L}(\cdot|s_{t},g_{t})}(\pi^{H}) \ge \delta, \forall t \in [0:T-1],$$
(7)

where $\delta > 0$. Now, we formulate equation 7 as the following Lagrangian objective and substitute the objective from equation 4, where λ is the regularization weight hyper-parameter:

$$\max_{\pi^{H},\pi^{L}} \mathbb{E}_{\pi^{H}} \left[\sum_{t=0}^{T-1} r^{H}_{\pi^{L}(\cdot|s_{t},g_{t})}(s_{t},g^{*},g_{t}) + \lambda_{t}(V_{\pi^{L}(\cdot|s_{t},g_{t})}(\pi^{H}) - \delta) \right].$$
(8)

We can use equation 8 to solve the HRL policies for both higher and lower level, where (i) the higher level policy learns to achieve the final goal and predict feasible subgoals to the lower level policy, and (ii) the lower level policy learns to achieve the predicted subgoals. This will mitigate the issues of non-stationarity (C1) and infeasible subgoal generation (C2). However, directly optimizing equation 8 requires knowledge of higher level reward function $r_{\pi^L}^H$ as a function of π^L , which is unavailable. Also as mentioned before, using RL to optimize the objective will be unstable.

Next, we discuss HPO: our PbL based approach that efficiently optimizes equation 8 by learning a primitive-regularized DPO objective which simultaneously solves the issues of non-stationarity (C1) and infeasible subgoal generation (C2).

4.2 HPO

Here, we derive our HPO objective. When optimizing for the higher level policy, equation 8 can be re-written as:

$$\max_{\pi^{H}} \mathbb{E}_{\pi^{H}} \left[\sum_{t=0}^{T-1} \widehat{r}_{\phi} \right], \tag{9}$$

where, $\hat{r}_{\phi} = r_L^H(s_t, g^*, g_t) + \lambda(V_{\pi^L}(s_t, g_t) - \delta)$ (for simplicity, we will henceforth represent $r_{\pi^L(s_t, g_t)}^H$ by r_L^H). As originally explored in Garg et al. (2021), the relationship between the future returns and the current timestep return can be captured by the following bellman equation corre-sponding to the optimal higher level policy π^{H}_{*} :

$$Q^{H}_{*}(s_{t}, g^{*}, g_{t}) = \begin{cases} r^{H}_{L}(s_{t}, g^{*}, g_{t}) + V^{H}_{*}(s_{t+1}, g^{*}) & \text{if } s_{t+1} \text{ is not terminal,} \\ r^{H}_{L}(s_{t}, g^{*}, g_{t}) & \text{if } s_{t+1} \text{ is terminal.} \end{cases}$$
(10)

Since there is a bijection between the reward function $r_L^H(s_t, g^*, g_t)$ and corresponding optimal state value function $Q_*^H(s_t, g^*, g_t)$ in the token MDP (Rafailov et al., 2024a), we reformulate equation 10 to represent the rewards as follows:

$$r_L^H(s_t, g^*, g_t) = \left[Q_*^H(s_t, g^*, g_t) - V_*^H(s_{t+1}, g^*)\right].$$
(11)

For the full trajectory τ , we can use equation 9 and equation 11 to get:

$$\sum_{t=0}^{T-1} \widehat{r}_{\phi} = \sum_{t=0}^{T-1} \left(Q_*^H(s_t, g^*, g_t) - V_*^H(s_{t+1}, g^*) + \lambda (V_{\pi^L}(s_t, g_t) - \delta) \right)$$

$$\stackrel{(a)}{=} V_*^H(s_0, g^*) + \sum_{t=0}^{I-1} \left(Q_*^H(s_t, g^*, g_t) - V_*^H(s_t, g^*) + \lambda(V_{\pi^L}(s_t, g_t) - \delta) \right)$$

$$\stackrel{(b)}{=} V_*^H(s_0, g^*) + \sum^{T-1} \left(A_*^H \right)^{-1}$$

$$\stackrel{(b)}{=} V_*^H(s_0, g^*) + \sum_{t=0} \left(A_*^H(s_t, g^*, g_t) + \lambda(V_{\pi^L}(s_t, g_t) - \delta) \right)$$

$$\stackrel{(c)}{=} V_*^H(s_0, g^*) + \sum_{t=0}^{I-1} \left(\beta \log \pi_*^H(g_t | s_t, g^*) + \lambda(V_{\pi^L}(s_t, g_t) - \delta)\right), \tag{12}$$

where (a) is due to adding and subtracting $V_*^H(s_0, g^*)$, (b) is due to $Q_*^H(s_t, g^*, g_t) - V_*^H(s_t, g^*) =$ $A^H_*(s_t, g^*, g_t)$ where $A^H_*(s_t, g^*, g_t)$ represents the advantage function, and (c) is due to a result from (Ziebart, 2010), $A^H_*(s_t, g^*, g_t) = \beta \log(\pi^H_*(g_t|s_t, g^*))$. Substituting equation 12 in equation 2 yields the following primitive regularized DPO objective:

$$\mathcal{L}(\pi_{*}^{H}, \mathbb{D}) = -\mathbb{E}_{(\tau^{1}, \tau^{2}, y) \sim \mathbb{D}} \bigg[\log \sigma \bigg(\sum_{t=0}^{T-1} \big(\beta \log \pi_{*}^{H} \left(g_{t}^{1} | s_{t}^{1}, g^{*} \right) - \beta \log \pi_{*}^{H} \left(g_{t}^{2} | s_{t}^{2}, g^{*} \right) \\ + \lambda V_{\pi^{L}} \left(s_{t}^{1}, g_{t}^{1} \right) - \lambda V_{\pi^{L}} \left(s_{t}^{2}, g_{t}^{2} \right) \bigg) \bigg].$$
(13)

Note that terms $V_*^H(s_0, g^*)$ and $\lambda \delta$ are same for both trajectories and hence they cancel. This is the final HPO objective which optimizes the higher-level policy using primitive regularized DPO. Next, we analyze and discuss the HPO gradient.

Analyzing HPO gradient: We further analyze the HPO objective by computing and interpreting the gradients of $\mathcal{L}(\pi^H_*, \mathbb{D})$ with respect to higher level policy π^H_* :

$$\nabla \mathcal{L}(\pi^{H}_{*}, \mathbb{D}) = -\beta \mathbb{E}_{(\tau_{1}, \tau_{2}, y) \sim \mathbb{D}} \bigg[\sum_{t=0}^{T-1} \bigg(\underbrace{\sigma\left(\hat{r}\left(s_{t}^{2}, g_{t}^{2}\right) - \hat{r}\left(s_{t}^{1}, g_{t}^{1}\right)\right)}_{\text{higher weight for incorrect preference}} \cdot \underbrace{\left(\underbrace{\nabla\log\pi^{H}\left(g_{t}^{1}|s_{t}^{1}, g^{*}\right)}_{\text{increase likelihood of } \tau_{1}} - \underbrace{\nabla\log\pi^{H}\left(g_{t}^{2}|s_{t}^{2}, g^{*}\right)}_{\text{decrease likelihood of } \tau_{2}} \right) \bigg) \bigg].$$

$$(14)$$

where $\hat{r}(s_t, g_t, g^*) = \beta \log \pi^H(g_t | s_t, g^*) + \lambda V_{\pi^L}(s_t, g_t)$, which is the implicit reward determined by the higher-level policy and the lower-level value function. Conceptually, this objective increases the likelihood of preferred trajectories while decreasing the likelihood of dispreferred trajectories. Further, according to the strength of the KL constraint, the examples are weighted based on how inaccurately the implicit reward model $\hat{r}(s_t, g_t, g^*)$ ranks the trajectories. Notably, the λ weighted value function term V_{π^L} in the implicit reward \hat{r} assigns high value to feasible subgoals, thus en-abling primitive regularization.

Replacing human feedback: In the vanilla PbL framework, preferences are elicited from human feedback (Christiano et al., 2017). However, collecting large amount of human preference feedback 378 required for PbL is computationally expensive. In this work, we follow the primitive-in-the-loop 379 (PiL) approach in PIPER (Singh et al., 2024), and simulate this preference feedback by using implicit 380 sparse rewards: $r^s(s_t, g^*, g_t)$, to determine preferences y between trajectories τ^1 and τ^2 . This feed-381 back is obtained as follows: suppose the higher level policy π^H predicts subgoal $g_t \sim \pi^H(\cdot|s_t, g^*)$ for state s_t and final goal g^* . The lower-level primitive executes primitive actions according to its 382 policy π^L for k timesteps to end up in state s_{t+k-1} . We use the sparse reward provided by the 383 environment at state s_{t+k-1} as the implicit sparse reward, i.e., $r^s(s_t, g^*, g_t) = \mathbf{1}_{\{\|s_{t+k-1}-g^*\|_2 \le \epsilon\}}$. 384 We use the sum of all k-step rewards r^s for comparing the two trajectories, to obtain preferences 385 between higher level behavior sequences, as explained in detail in Singh et al. (2024). 386

We provide the psuedo-code for HPO algorithm in the Appendix A.1 Algorithm 1.

- 387 388 389 390
- 5 EXPERIMENTS

In our empirical analysis, we ask the following questions:

(1) How well does HPO perform against baselines?: How well does HPO perform in complex robotics control tasks against prior hierarchical and non-hierarchical baselines?

(2) Does HPO mitigate HRL limitations?: How well does HPO mitigate the issues of nonstationarity and infeasible subgoal generation in HRL?

(3) What is the impact of our design decisions on the overall performance?: Can we concretely justify our design choices through extensive ablation analysis?

Task details: Here, we explain the experimental setup and test beds for comparing HPO against baselines. We assess HPO on four robotic navigation and manipulation environments: (*i*) maze navigation, (*ii*) pick and place (Andrychowicz et al., 2017), (*iii*) push, and (*iv*) franka kitchen environment (Gupta et al., 2019). These are formulated as sparse reward scenarios, where the agent is only rewarded when it comes within a δ distance of the goal. Due to this, these environments are hard where the agent must extensively explore the environment before coming across any rewards. As an example: in franka kitchen task, the agent only receives a sparse reward after achieving the final goal (e.g. successfully opening the microwave and then turning on the gas knob).

406 **Environment details**: Since in our goal-conditioned RL setting, the final goals are randomly gener-407 ated, and this further increases the task complexity. As empirically demonstrated later, these chal-408 lenges prevent previous baselines from performing well, making these environments ideal test beds 409 for evaluating the advantages of efficient hierarchical preference-based hierarchical policy learning. 410 Unless otherwise stated, we maintain consistency across all baselines to ensure fair comparisons. 411 Finally, for the more complex sparse reward tasks such as pick and place, push, and franka kitchen, 412 we assume access to one human demonstration and incorporate an imitation learning objective at the lower level to accelerate learning. However, we do not use demonstrations in the maze task. 413 However, we apply the same assumption consistently across all baselines to ensure fairness. Further 414 implementation and environment details are provided in Appendix A.3 and A.5, and the implemen-415 tation code is provided in the supplementary. 416

417 418

419

5.1 How well does HPO perform against baselines?

In this section, we compare HPO against multiple hierarchical and non-hierarchical baselines. Please
 refer to Figure 2 for success rate comparison plots and subsequent discussion. The solid line and
 shaded regions represent the mean and standard deviation, averaged over 5 seeds.

HPO-No-V baseline: HPO-No-V is an ablation of HPO without primitive regularization, which
 uses DPO at the higher level to predict subgoals, and RL at the lower level policy. Since primitive
 regularization conditions the higher level policy into predicting feasible subgoals, we use this base line to demonstrate the importance of feasible subgoal generation. As seen in Figure 2, although
 this baseline mitigates non-stationarity using preference based learning and outperforms prior base lines, HPO outperforms this baseline demonstrating that both non-stationarity mitigation and feasible
 subgoal generation are crucial for improved performance.

HPO-FLAT baseline: Here, we compare HPO with HPO-FLAT, which is a token-level
 DPO (Rafailov et al., 2024a) implementation for our sparse reward robotics tasks. Note that since we do not have access to a pre-trained model as a reference policy in robotics scenarios like generative

Figure 2: **Success Rate plots** This figure illustrates the success rates across four sparse-reward maze navigation and robotic manipulation tasks, where the solid lines represent the mean, and the shaded areas denote the standard deviation across 5 different seeds. We evaluate HPO against several baselines. Although HAC and RAPS surpass HPO in the maze task, HPO demonstrates strong performance and significantly outperforms the baselines in the more challenging tasks.

441

442

443

language modeling, we use a uniform policy as a reference policy, which effectively translates to an additional objective of maximizing the entropy of the learnt policy. HPO is an hierarchical approach which benefits from temporal abstraction and improved exploration, as is apparent from Figure 2 which shows that HPO significantly outperforms this baseline.

RAPS baseline: Here, we consider RAPS (Dalal et al., 2021) baseline, which employs behavior priors at the lower level, effectively simplifying the hierarchical structure for solving the task. Although RAPS is an elegant framework for solving robotic tasks where behavior priors are readily available, it requires considerable effort to construct such priors and struggles to perform well in their absence, especially when dealing with sparse reward scenarios. Indeed we empirically find this to be the case, since although RAPS performs exceptionally well in maze navigation task, it fails to perform well in other sparse complex manipulation tasks.

HAC baseline: In order to analyze how HPO compares with prior approaches that tackle non-stationarity, we also consider HAC (Levy et al., 2018) baseline. HAC tries to mitigate non-stationarity by simulating optimal lower level primitive behavior. This approach performs relabeling on the replay buffer transitions and is closely related to hindsight experience replay (HER) (Andrychowicz et al., 2017). Although HAC performs well in maze navigation task, it struggles to perform well in harder manipulation environments. HPO outperforms this baseline in 3 of 4 tasks.

HIER baseline: We also implement HIER, a vanilla HRL baseline implemented using SAC (Haarnoja et al., 2018) at both hierarchical levels to demonstrate the significance of dealing with non-stationarity. As expected, HPO is able to consistently outperform this baseline in all tasks.

DAC baseline: We implement a single-level baseline: Discriminator Actor Critic (DAC) (Kostrikov et al., 2018). We provide one demonstration to DAC baseline in each environment. However, despite having access to privileged information, DAC still struggles to perform well.

FLAT baseline: We also implement a FLAT baseline using single-level SAC. As seen in Figure 2, this baseline also fails to achieve good results, highlighting the importance of our hierarchical structure for success in complex robotic tasks.

474 475

476 477

5.2 Does HPO MITIGATE HRL LIMITATIONS?

In this section, we empirically verify whether HPO indeed mitigates the non-stationarity and infeasible subgoal generation limitations of HRL.

C1: Non-stationarity issue in HRL Here, we analyze whether HPO mitigates non-stationarity in HRL, by comparing against vanilla HIER baseline in Figure 3. We compute average distance between subgoals predicted by the higher level policy and subgoals achieved by the lower level primitive for 100 rollouts during various stages of training. If HPO indeed mitigates non-stationarity, this average distance should be low, since this implies that the HPO predicts subgoals achievable by the lower primitive and hence induces optimal lower primitive behavior. Indeed, we find that HPO consistently generates low average distance values, which implies that HPO mitigates non-stationarity.

Figure 3: **Non-stationarity ablation** This figure compares HPO with HIER baseline, based on average distance between subgoals predicted by the higher level policy and subgoals achieved by the lower level primitive *during training*. HPO consistently generates low average distance values, which implies that in HPO, the higher level policy generates achievable subgoals that induce optimal lower primitive goal reaching behavior. This mitigates non-stationary in HRL and leads to improved performance.

C2: Infeasible subgoal generation issue in HRL As seen in Figure 4, after training, the average distance values for HPO are significantly lower than HIER baseline, which implies that HPO generates feasible subgoals that are achievable by the lower primitive due to primitive regularization.

Figure 4: Feasible subgoal generation ablation This figure compares HPO with HIER baseline, based on the average distance between the subgoals predicted by the higher level policy and the subgoals achieved by the lower level policy *after the training is completed*. As seen in figure, the average distance values for HPO are significantly lower than HIER baseline, which implies that HPO generates feasible subgoals that are achievable by the lower primitive.

5.3 WHAT IS THE IMPACT OF OUR DESIGN DECISIONS ON THE OVERALL PERFORMANCE?

⁵¹⁹ In this section, we conduct experiments to evaluate the impact of each individual design choice. ⁵²⁰ Concretely, we provide ablation studies and insights on selecting the max-ent parameter β and the ⁵²¹ regularization weight λ , as shown in Appendix A.2 Figures 5 and 6. Please refer to the Appendix ⁵²² for more detailed explanation.

6 CONCLUSION

- In this work, we introduce Hierarchical Preference Optimization HPO, a novel hierarchical approach that employs primitive-regularized direct preference optimization DPO to mitigate the issues of non-stationarity and infeasible generation in HRL. HPO employs token-level DPO to efficiently learn higher level policy using preference data, and RL to learn the lower level primitive policy. Since the DPO formulation avoids the dependence on changing lower level primitive, it mitigates non-stationarity. We formulate HRL as a bi-level optimization objective to insure that the higher level policy generates feasible subgoals, and avoids degenerate solutions. Based on strong empirical results, We believe that HPO is an important step towards learning effective control policies for solving complex sparse robotics scenarios.
 - 536 REFERENCES
 - Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
 McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. *CoRR*, abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

561

570

571

572

573

592

- Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. *Discrete Event Dynamic Systems*, 13:341–379, 2003.
- Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
 the method of paired comparisons. *Biometrika*, 39:324, 1952. URL https://api.
 semanticscholar.org/CorpusID:125209808.
- Zehong Cao, Kaichiu Wong, and Chin-Teng Lin. Human preference scaling with demonstrations for deep reinforcement learning. *arXiv preprint arXiv:2007.12904*, 2020.
- Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
 with imagined subgoals. In *International Conference on Machine Learning*, pages 1430–1440.
 PMLR, 2021.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.
- Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
 learning via parameterized action primitives. *Advances in Neural Information Processing Systems*, 34:21847–21859, 2021.
- Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning with a novel acquisition function. *Autonomous Robots*, 39:389–405, 2015.
- Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
 processing systems, 5, 1992.
- Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. *CoRR*, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.
- Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
 Inverse soft-q learning for imitation. *Advances in Neural Information Processing Systems*, 34: 4028–4039, 2021.
 - Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning: Solving long-horizon tasks via imitation and reinforcement learning. *arXiv preprint arXiv:1910.11956*, 2019.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. *CoRR*, abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.
- Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
 Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. *arXiv* preprint arXiv:2310.13639, 2023.
- Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
 learning from human preferences and demonstrations in atari, 2018.
- 583
 584
 584
 585
 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint* arXiv:1412.6980, 2014.
- W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
 framework. In *Proceedings of the fifth international conference on Knowledge capture*, pages
 9–16, 2009.
- Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. *arXiv preprint arXiv:1809.02925*, 2018.
- 593 Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement learning via relabeling experience and unsupervised pre-training, 2021.

646

595 arXiv preprint arXiv:1805.00909, 2018. 596 Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies 597 with hindsight. In International Conference on Learning Representations, 2018. 598 Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made 600 easy: A simple first-order approach. Advances in neural information processing systems, 35: 601 17248-17262, 2022. 602 Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical 603 reinforcement learning. Advances in neural information processing systems, 31, 2018. 604 605 Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does 606 hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618, 607 2019. 608 Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-609 coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international 610 conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018. 611 612 Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behav-613 ior primitives for diverse manipulation tasks. CoRR, abs/2110.03655, 2021. URL https: //arxiv.org/abs/2110.03655. 614 615 Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan, 616 M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems, volume 10. 617 MIT Press, 1998. 618 Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and 619 Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic 620 reinforcement learning. In 2011 IEEE international conference on rehabilitation robotics, pages 621 1–7. IEEE, 2011. 622 623 Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q^{*} : Your language model is 624 secretly a q-function. arXiv preprint arXiv:2404.12358, 2024a. 625 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea 626 Finn. Direct preference optimization: Your language model is secretly a reward model. Advances 627 in Neural Information Processing Systems, 36, 2024b. 628 629 Utsav Singh and Vinay P Namboodiri. Crisp: Curriculum inducing primitive informed subgoal 630 prediction. arXiv preprint arXiv:2304.03535, 2023a. 631 Utsav Singh and Vinay P Namboodiri. Pear: Primitive enabled adaptive relabeling for boosting 632 hierarchical reinforcement learning. arXiv preprint arXiv:2306.06394, 2023b. 633 Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper: 634 635 Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling. arXiv preprint arXiv:2404.13423, 2024. 636 637 Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-638 work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-639 211, 1999. 640 Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David 641 Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In 642 International Conference on Machine Learning, pages 3540–3549. PMLR, 2017. 643 644 Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from 645 trajectory preference queries. Advances in neural information processing systems, 25, 2012.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.

647 Brian D Ziebart. *Modeling purposeful adaptive behavior with the principle of maximum causal entropy*. Carnegie Mellon University, 2010.

	NIENIS
1	Introduction
2	Related Works
3	Problem Formulation
	3.1 PbL: Preference Based Learning
	3.1.1 Limitations of directly applying PbL to HRL
4	HPO : Hierarchical Preference Optimization
	4.1 HRL: Bi-Level Formulation
	4.2 HPO
5	Experiments
	5.1 How well does HPO perform against baselines?
	5.2 Does HPO mitigate HRL limitations?
	5.3 What is the impact of our design decisions on the overall performance?
6	Conclusion
A	Appendix
	A.1 HPO Algorithm
	A.2 Ablation Experiments
	A.3 Implementation details
	A.3.1 Additional hyper-parameters
	A.4 Impact Statement
	A.5 Environment details
	A.5.1 Maze navigation task
	A.5.2 Pick and place and Push Environments
	A.6 Environment visualizations

702 A APPENDIX

704 A.1 HPO ALGORITHM

Here, we provide the pseudo-code for HPO algorithm:

Algorithm 1 HPO

1:	Initialize preference dataset $\mathcal{D} = \{\}$.
2:	Initialize lower level replay buffer $\mathcal{R}^L = \{\}$.
3: 1	for $i=1\ldots N$ do
4:	// Collect higher level trajectories τ using π^H and lower level trajectories ρ using π^L ,
5:	// and store the trajectories in \mathcal{D} and \mathcal{R}^L respectively.
6:	// After every m timesteps, relabel $\mathcal D$ using primitive-in-the-loop feedback y.
7:	// Lower level value function update
8:	Optimize lower level value function V_{π_L} to get $V_{\pi_L}^k$.
9:	// Higher level policy update using HPO
10:	for each gradient step do
11:	// Sample higher level behavior trajectories.
12:	$(au^1, au^2,y)\sim \mathcal{D}$
13:	Optimize higher level policy π^U using equation 13.
14:	// Lower primitive policy update using RL
15:	for each gradient step do
16:	Sample ρ from $\hat{\mathcal{R}}^L$.
17:	Optimize lower policy π^L using SAC.
A.2	ABLATION EXPERIMENTS

Figure 5: **Regularization weight ablation** This figure depicts the success rate performance for varying values of the primitive regularization weight λ . When α is too small, we loose the benefits of primitive-informed regularization resulting in poor performance, whereas too large α values can lead to degenerate solutions. Hence, selecting appropriate λ value is essential for accurate subgoal prediction and enhancing overall performance.

Figure 6: Max-ent parameter ablation This figure illustrates the success rate performance for different values of the max-ent parameter β hyper-parameter. This parameter controls the exploration in maximum-entropy formulation. If β is too large, the higher-level policy may perform extensive exploration but stay away from optimal subgoal prediction, whereas if β is too small, the higher-level might not explore and predict sub-optimal subgoals. Hence, selecting appropriate β value is essential for enhancing overall performance.

756 Here, we perform ablations to analyze our design choices. We first analyze the effect of varying 757 regularization weight λ hyper-parameter in Figure 5. λ controls the strength of primitive regular-758 ization: if λ is too small, we lose the benefit of primitive regularization and the higher level policy 759 may predict infeasible subgoals, whereas if λ is too large, the higher level policy may fail to achieve 760 the final goal and keep predicting simple feasible subgoals. Therefore, selecting a good λ value is crucial. Next, we analyze the effect of varying β hyper-parameter in Figure 5. If β is too large, 761 the policy keeps exploring without predicting optimal subgoal, whereas if β is too small, the policy 762 might not explore which may lead to sub-optimal subgoal predictions. Therefore, we perform this 763 ablation to select good λ value in all the environments. 764

765 766

A.3 IMPLEMENTATION DETAILS

767 We conducted experiments on two systems, each equipped with Intel Core i7 processors, 48GB 768 of RAM, and Nvidia GeForce GTX 1080 GPUs. The experiments included the corresponding 769 timesteps taken for each run. For the environments (i) - (iv), the maximum task horizon \mathcal{T} is 770 set to 225, 50, 50, and 225 timesteps, respectively, with the lower-level primitive allowed to execute 771 for 15, 7, 7, and 15 timesteps. We used off-policy Soft Actor Critic (SAC)(Haarnoja et al., 2018) 772 to optimize the RL objective, leveraging the Adam optimizer(Kingma and Ba, 2014). Both the ac-773 tor and critic networks consist of three fully connected layers with 512 neurons per layer. The total 774 timesteps for experiments in environments (i) - (iv) are 1.35e6, 9e5, 1.3E6, and 6.3e5, respectively.

775 For the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm navigates a four-room 776 maze with its gripper fixed at table height and closed, maneuvering to reach a goal position. In 777 the pick-and-place task, the 7-DoF robotic arm gripper locates, picks up, and delivers a square 778 block to the target location. In the push task, the arm's gripper must push the square block toward 779 the goal. For the kitchen task, a 9-DoF Franka robot is tasked with opening a microwave door as part of a predefined complex sequence to reach the final goal. We compare our approach with 780 the Discriminator Actor-Critic (Kostrikov et al., 2018), which uses a single expert demonstration. 781 Although this study doesn't explore it, combining preference-based learning with demonstrations 782 presents an exciting direction for future research (Cao et al., 2020). 783

784 To ensure fair comparisons, we maintain uniformity across all baselines by keeping parameters such 785 as neural network layer width, number of layers, choice of optimizer, SAC implementation settings, and others consistent wherever applicable. In RAPS, the lower-level behaviors are structured as 786 follows: for maze navigation, we design a single primitive, *reach*, where the lower-level primitive 787 moves directly toward the subgoal predicted by the higher level. For the pick-and-place and push 788 tasks, we develop three primitives: gripper-reach, where the gripper moves to a designated position 789 (x_i, y_i, z_i) ; gripper-open, which opens the gripper; and gripper-close, which closes the gripper. In 790 the kitchen task, we use the action primitives implemented in RAPS (Dalal et al., 2021). 791

- 791 792 793
- A.3.1 ADDITIONAL HYPER-PARAMETERS

```
794
      Here, we enlist the additional hyper-parameters used in HPO:
                   tanh [activation for reward model]
      activation:
               3 [number of layers in the critic/actor networks]
796
      layers:
      hidden:
               512 [number of neurons in each hidden layers]
797
      Q lr:
             0.001 [critic learning rate]
798
      pi lr:
             0.001 [actor learning rate]
799
      buffer_size: int(1E7) [for experience replay]
800
      clip obs: 200 [clip observation]
801
      n_cycles:
                 1 [per epoch]
802
      n_batches: 10 [training batches per cycle]
803
     batch_size: 1024 [batch size hyper-parameter]
804
      reward_batch_size: 50 [reward batch size for DPO-FLAT]
805
      random_eps: 0.2 [percentage of time a random action is taken]
806
      alpha: 0.05 [weightage parameter for SAC]
807
      noise_eps: 0.05 [std of gaussian noise added to
      not-completely-random actions]
808
      norm_eps: 0.01 [epsilon used for observation normalization]
809
      norm_clip: 5 [normalized observations are cropped to this values]
```

```
810
811
adam_beta1: 0.9 [beta 1 for Adam optimizer]
adam_beta2: 0.999 [beta 2 for Adam optimizer]
```

815 816

817

818

819

820

A.4 IMPACT STATEMENT

Our proposed approach and algorithm are not expected to lead to immediate technological advancements. Instead, our primary contributions are conceptual, focusing on fundamental aspects of Hierarchical Reinforcement Learning (HRL). By introducing a preference-based methodology, we offer a novel framework that we believe has significant potential to enhance HRL research and its related fields. This conceptual foundation paves the way for future investigations and could stimulate advancements in HRL and associated areas.

821 822 823

A.5 ENVIRONMENT DETAILS

824 825 826

A.5.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper must navigate through randomly generated fourroom mazes. The gripper remains closed, and both the walls and gates are randomly placed. The table is divided into a rectangular $W \times H$ grid, with vertical and horizontal wall positions W_P and H_P selected randomly from the ranges (1, W - 2) and (1, H - 2), respectively. In this four-room setup, gate positions are also randomly chosen from $(1, W_P - 1), (W_P + 1, W - 2), (1, H_P - 1),$ and $(H_P + 1, H - 2)$. The gripper's height remains fixed at table height, and it must move through the maze to reach the goal, marked by a red sphere.

For both higher and lower-level policies, unless stated otherwise, the environment consists of continuous state and action spaces. The state is encoded as a vector $[p, \mathcal{M}]$, where p represents the gripper's current position, and \mathcal{M} is the sparse maze representation. The input to the higher-level policy is a concatenated vector $[p, \mathcal{M}, g]$, with g representing the goal position, while the lower-level policy input is $[p, \mathcal{M}, s_g]$, where s_g is the subgoal provided by the higher-level policy. The current position of the gripper is treated as the current achieved goal. The sparse maze array \mathcal{M} is a 2D one-hot vector, where walls are denoted by a value of 1 and open spaces by 0.

In our experiments, the sizes of p and \mathcal{M} are set to 3 and 110, respectively. The higher-level policy predicts the subgoal s_g , so its action space aligns with the goal space of the lower-level primitive. The lower-level primitive's action, a, executed in the environment, is a 4-dimensional vector, where each dimension $a_i \in [0, 1]$. The first three dimensions adjust the gripper's position, while the fourth controls the gripper itself: 0 indicates fully closed, 0.5 means half-closed, and 1 means fully open.

846 847 848

A.5.2 PICK AND PLACE AND PUSH ENVIRONMENTS

In the pick-and-place environment, a 7-DOF robotic arm gripper is tasked with picking up a square block and placing it at a designated goal position slightly above the table surface. This complex task involves navigating the gripper to the block, closing it to grasp the block, and then transporting the block to the target goal. In the push environment, the gripper must push a square block towards the goal position. The state is represented by the vector [p, o, q, e], where p is the gripper's current position, o is the block's position on the table, q is the relative position of the block to the gripper, and e contains the linear and angular velocities of both the gripper and the block.

856 The higher-level policy input is the concatenated vector [p, o, q, e, g], where g denotes the target 857 goal position, while the lower-level policy input is $[p, o, q, e, s_q]$, with s_q being the subgoal provided 858 by the higher-level policy. The current position of the block is treated as the achieved goal. In our 859 experiments, the dimensions for p, o, q, and e are set to 3, 3, 3, and 11, respectively. The higher-level policy predicts the subgoal s_a , so the action and goal space dimensions align. The lower-level action a is a 4-dimensional vector, where each dimension a_i falls within the range [0, 1]. The first three 861 dimensions adjust the gripper's position, and the fourth controls the gripper itself (0 for closed, 1 for 862 open). During training, the block and goal positions are randomly generated, with the block always 863 starting on the table and the goal placed above the table at a fixed height.

864 A.6 Environment visualizations

Here, we provide some visualizations of the agent successfully performing the task.

Figure 7: Maze navigation task visualization: The visualization is a successful attempt at performing maze navigation task

Figure 8: **Pick and place task visualization**: This figure provides visualization of a successful attempt at performing pick and place task

Figure 9: Push task visualization: The visualization is a successful attempt at performing push task

Figure 10: **Kitchen task visualization**: The visualization is a successful attempt at performing kitchen task