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Abstract
Polymer conformation generation is a critical task
that enables atomic-level studies of diverse poly-
mer materials. While significant advances have
been made in designing conformation generation
methods for small molecules and proteins, these
methods struggle to generate polymer conforma-
tions due to their unique structural characteristics.
Meanwhile, the scarcity of polymer conformation
datasets further limits the progress, making this
important area largely unexplored. In this work,
we propose PolyConf, a pioneering tailored poly-
mer conformation generation method that lever-
ages hierarchical generative models to unlock
new possibilities. Specifically, we decompose the
polymer conformation into a series of local con-
formations (i.e., the conformations of its repeat-
ing units), generating these local conformations
through an autoregressive model, and then gener-
ating their orientation transformations via a dif-
fusion model to assemble them into the complete
polymer conformation. Moreover, we develop the
first benchmark with a high-quality polymer con-
formation dataset derived from molecular dynam-
ics simulations to boost related research in this
area. The comprehensive evaluation demonstrates
that PolyConf consistently outperforms existing
conformation generation methods, thus facilitat-
ing advancements in polymer modeling and sim-
ulation. The whole work is available at https:
//polyconf-icml25.github.io.
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Figure 1. The comparison of small molecule, protein, and polymer.
Here, the polymer chain comprises a series of repeating units, and
the atomic force microscopy (AFM) image (Roiter & Minko, 2005)
is used for direct 3D visualization of various polymer chains.

1. Introduction
Polymers, the macromolecules formed by covalent bonding
of numerous identical or similar monomers, have already be-
come indispensable to modern life (Audus & de Pablo, 2017;
Kuenneth & Ramprasad, 2023). For example, polyethylene
and polypropylene are used as durable and lightweight pack-
aging materials, while polystyrene and polycarbonate find
applications in electronics for their robustness and flexibil-
ity (Chen et al., 2021; Xu et al., 2023). The vast chemical
space of polymers represents the art of molecular condensa-
tion that transforms simple building blocks into functional
materials. In this context, polymer conformation genera-
tion 1, where various deep generative models can be used

1This work mainly focuses on generating conformations of
linear homopolymers, as modeling copolymers and blends involves
complexities beyond data modeling.
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Figure 2. The overview of PolyConf: A hierarchical framework for polymer conformation generation, employing a masked autoregressive
(MAR) model with a diffusion procedure to sample the conformation of each repeating unit within the polymer in random order, followed
by a SO(3) diffusion model to assemble these repeating unit conformations into the complete polymer conformation. Here, for the sake of
visualization simplicity, only a small fragment of the whole polymer conformation with five repeating units is presented in this figure.

to obtain the stable 3D polymer structures conditioned on
the corresponding 2D polymer graph (Hoseini et al., 2021;
Baillif et al., 2023), serves as a fundamental starting point
for simulations—a crucial step in studying polymer proper-
ties (Kremer & Grest, 1990; Nakano & Okamoto, 2001).

Although conformation generation methods have been ex-
tensively studied over the past few years, generating macro-
molecular conformations remains challenging (Riniker &
Landrum, 2015; Hawkins, 2017). Traditional stochastic
methods like molecular dynamics (MD) simulations are
widely used (Hospital et al., 2015; Padhi et al., 2022),
but they are computationally expensive and slow, particu-
larly for macromolecules like polymers (Pracht et al., 2020;
Bilodeau et al., 2022), leading to the severe scarcity of poly-
mer conformation datasets. Recent advances in artificial
intelligence have led to various learning-based methods for
conformation generation (Tang et al., 2024). However, these
methods are primarily designed for small molecules (Jing
et al., 2022; Wang et al., 2024b) and proteins (Janson et al.,
2023; Lu et al., 2024), leaving polymers unexplored (Kuen-
neth & Ramprasad, 2023; Wang et al., 2024a). As shown in
Figure 1, polymers present unique challenges distinct from
both small molecules and proteins. Unlike proteins, stabi-
lized by strong, directional intramolecular interactions, poly-
mers typically lack such organizing forces, resulting in more
flexible and less ordered conformations. In addition, poly-
mers occupy larger chemical space than small molecules,
further complicating conformation generation (Martin &
Audus, 2023). With fewer prior constraints, the complex
conformational behaviors of polymers render protein con-
formation generation methods ineffective. Meanwhile, con-
formation generation methods designed for small molecules
struggle to scale to polymers due to their significantly higher
molecular weight (Xu et al., 2022). Given these challenges,
it is critical to develop a tailored polymer conformation
generation method to accommodate their unique structural

characteristics, thus fundamentally transforming our ability
to design polymers and predict their properties.

Technically, a polymer conformation can be decomposed
into a series of repeating unit conformations, as illustrated
in Figure 1. However, unlike proteins that share a common
backbone scaffold characterized by similarly distributed
dihedral angles between amino acid residues (i.e., the “N −
Cα − C − O” structure) (Jumper et al., 2021), different
polymers are composed of distinct monomers with diverse
geometries, leading to various repeating units and structural
frameworks (Huang et al., 2016). In addition, although
repeating unit conformations within the same polymer share
the same SMILES string and scaffold, the monomer itself
can be highly complex and the spatial rearrangement of
the remaining structure can also vary significantly in 3D
space, which indicates that a polymer conformation cannot
be simplistically modeled as a rigid assembly of a single
predefined repeating unit conformation.

In this context, we propose PolyConf, the first tailored
method for polymer conformation generation, to over-
come the above challenges. As shown in Figure 2, we design
our PolyConf as a hierarchical generative framework with a
two-phase generating process. In the first phase, we leverage
the state-of-the-art autoregressive generation paradigm pro-
posed recently (Li et al., 2024), which integrates a masked
autoregressive model (MAR) with a diffusion procedure (Ho
et al., 2020), to generate repeating unit conformations in
random order. Specifically, the partial output of the masked
autoregressive model, which corresponds to masked repeat-
ing units, is used as the condition of the diffusion procedure
designed for repeating unit conformation, thus effectively
integrating the abilities of autoregressive modeling and diffu-
sion processes to capture the dependencies within repeating
unit conformations. In the second phase, building directly
on the output of the MAR encoder, we employ an SO(3)
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diffusion model 2 designed for repeating unit orientation
transformation to generate the required orientation trans-
formations, thus facilitating the assembly of repeating unit
conformations into the complete polymer conformation.

Besides designing PolyConf, we devote considerable time
and resources to developing PolyBench, the first bench-
mark for polymer conformation generation, to address
the scarcity of polymer conformation datasets. PolyBench
comprises a high-quality polymer conformation dataset ob-
tained through molecular dynamics simulations (Afzal et al.,
2020) and establishes standardized evaluation protocols.
Extensive and comprehensive experiments on PolyBench
consistently demonstrate that our PolyConf significantly
outperforms existing conformation generation methods and
achieves state-of-the-art performance, thus facilitating ad-
vancements in polymer modeling and simulation.

The whole work, including code, model, and data, is pub-
licly available to facilitate the development of this important
yet largely unexplored research area.

2. Related Work
2.1. Molecular Conformation Generation

In recent years, with the significant progress of deep gen-
erative models (Mehmood et al., 2023; Cao et al., 2024),
many learning-based methods (Shi et al., 2021; Ganea et al.,
2021) have been proposed to generate molecular confor-
mations, thus facilitating traditional molecular dynamics
simulations. In particular, CGCF (Xu et al., 2021) generates
molecular conformations by combining the advantages of
flow-based and energy-based models. Then GeoDiff (Xu
et al., 2022) treats molecular conformations as point clouds
and learns a diffusion model in Euclidean space, while Tor-
sionalDiff (Jing et al., 2022) further restricts the diffusion
process only in the torsion angle space to improve perfor-
mance. Recently, MCF (Wang et al., 2024b) proposes to
directly predict the 3D coordinates of atoms using the ad-
vantages of scale, and ETFlow (Hassan et al., 2024) tries to
employ a well-designed flow matching to tackle this task.
However, these molecular conformation generation methods
are primarily designed for small molecules and typically
generate the entire molecular conformation through a single
process (Wang et al., 2023). Although they can be applied to
generate polymer conformations, their performance will de-
grade significantly as polymers have larger chemical space
and higher structural flexibility than small molecules.

2Since the corresponding repeating units in the polymer are
defined by their monomers, the bonding atoms between adjacent
repeating units are naturally overlapping (as illustrated in Figure 3).
Therefore, we only need to train an SO(3) diffusion model to
generate rotations, as translations can be directly derived from the
3D coordinates of those overlapping atoms.

2.2. Protein Conformation Generation

The emergence of AlphaFold (Jumper et al., 2021; Abram-
son et al., 2024) has greatly revolutionized the protein
area (Bryant et al., 2022; Hekkelman et al., 2023) which in-
spired further protein conformation generation methods (Lu
et al., 2024; Wang et al., 2024c) that unlock the multi-
conformation capability by modifying AlphaFold predic-
tions through MSA perturbations, such as mutations (Stein
& Mchaourab, 2022), clustering (Wayment-Steele et al.,
2024), and reducing depth (Del Alamo et al., 2022). In addi-
tion, various deep generative models, particularly diffusion
models, have significantly contributed to protein confor-
mation generation (Watson et al., 2022; Jing et al., 2023),
including protein backbone generation (Huguet et al., 2024;
Yim et al., 2024) and side chain generation (Zhang et al.,
2024; Lee & Kim, 2024). Since proteins are composed of
amino acid sequences with the consistent structural frame-
work (i.e., the “N − Cα − C − O” structure) (Yue et al.,
2025), protein-specific prior knowledge, such as the unified
backbone parameterization method (Yim et al., 2023; Bose
et al., 2024) and constraints on the number of side-chain
torsional angles (Misiura et al., 2022; Visani et al., 2024),
has been widely integrated into various protein conforma-
tion generation methods. In this context, these methods
are unsuitable for polymer conformation generation as they
rely on evolutionary information, sequence similarity, and
dihedral angle constraints that do not apply to polymers.

3. Proposed Method
3.1. Modeling Principle

Frame-based Polymer Representation. Each polymer
with N atoms can be represented as a 2D graph G = (V, E),
where V = {vi}Ni=1 describes the corresponding atomic
features (e.g., atomic type) and E = {eij}Ni,j=1 describes the
corresponding bond features (e.g., bond type). The polymer
conformation can be further denoted as C = [ci] ∈ RN×3,
where ci ∈ R3 is the 3D coordinate of the i-th atom.

As shown in Figure 3, the decomposition of polymer con-
formation corresponds to a series of repeating unit confor-
mations. Here, to model polymer structures effectively, we
extend the standard definition of repeating units in polymer
science, incorporating the two key atoms from the neigh-
boring repeating units (i.e., the atom-1 and atom-4 in
Figure 3) into the conformation of the current repeating
unit. In this context, inspired by the modeling strategy of
protein residue (Jumper et al., 2021), we further extract the
frame from the corresponding repeating unit conformation.
In particular, for the i-th repeating unit, its frame contains
the corresponding orientation transformation 3, denoted as

3The corresponding orientation transformation is relative to the
standard coordinate system.
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R

Figure 3. The illustration of frame-based polymer representation.
In particular, the 1D polymer SMILES string represents the
monomer’s SMILES string with two “*” symbols marking poly-
merization sites. The 3D polymer conformation comprises a series
of repeating unit conformations with identical SMILES strings but
distinct 3D structures, overlapping at key atoms (e.g., atom-1 aligns
with atom-3 of the previous repeating unit). The orientation trans-
formation, derived from the key atoms within the corresponding
frame, is denoted as O = (R, t) where the rotation R ∈ R3×3 is
calculated through the GramSchmidt operation (Leon et al., 2013)
on vectors v1 and v2, and the translation t ∈ R3 corresponds to
the 3D coordinate of atom-3.

Oi = (Ri, ti), where Ri ∈ R3×3 denotes the rotation and
ti ∈ R3 denotes the translation. In this context, the polymer
conformation can be further denoted as

C = {Cu,O} = {{Cu
i }Nu

i=1, {Oi}Nu
i=1}, (1)

where Cu
i = [cui,j ] ∈ R( N

Nu
+2)×3 is the i-th repeating unit’s

conformation 4, Oi = (Ri, ti) is the i-th repeating unit’s ori-
entation transformation, and Nu is the number of repeating
units in this polymer. For the j-th atom in the i-th repeating
unit’s conformation, its corresponding 3D coordinates in the
polymer conformation can be expressed as Ric

u
i,j + ti.

Please note that since each repeating unit involves 2 over-
lapping atoms from previous and next units, the number of
atoms in one unit is not N

Nu
but rather N

Nu
+ 2.

Hierarchical Generative Modeling. The task of polymer
conformation generation is a conditional generative problem,
which aims to learn a generative model p(C|G) to model
the empirical distribution of polymer conformations C (i.e.,
the stable 3D polymer structures) conditioned on the corre-
sponding 2D polymer graph G. Combined with Eq. (1), this
generative model p(C|G) can be expressed as follows:

p(C|G) = p(Cu,O|G) = p(Cu|G) · p(O|G, Cu), (2)

where Cu = {Cu
i }Nu

i=1 is the set of repeating unit conforma-
tions, and O = {Oi}Nu

i=1 is the set of their corresponding
orientation transformations.

4The repeating unit conformation is in the standard coordinate
system through applying the inverse orientation transformation to
the corresponding sub-structure within the polymer conformation.

Therefore, the polymer conformation generation task can
be naturally denoted as a hierarchical generative process:
(1) generating repeating unit conformations Cu based on the
corresponding 2D polymer graph G, i.e., p(Cu|G), and (2)
then generating corresponding orientation transformations
O of these repeating units given G and Cu, i.e., p(O|G, Cu).

This hierarchical generative process further leads to the pro-
posed PolyConf model and its two-phase learning strategy,
as illustrated in Figure 2. In the following subsections, we
will introduce them in detail.

3.2. Phase 1: Repeating Unit Conformation Generation

In this first phase, we employ the masked autoregressive
model (Li et al., 2024) with a diffusion procedure to gener-
ate repeating unit conformations in random order, capturing
their complex interactions rather than simple sequential de-
pendencies. The distribution p(Cu|G) in Eq. (2) is therefore
rewritten as follows:

p(Cu|G) = p({Cu
i }Nu

i=1|G)
= p({Cu

k }Kk=1|G)

=
∏K

k=1
p(Cu

k |G, {Cu
i }k−1

i=1 ),

(3)

where Cu = {Cu
i }Nu

i=1 is the set of repeating unit conforma-
tions, and Cu

k is the corresponding subset of Cu that contains
Nu

K repeating unit conformations generated at the k-th step.
Since these repeating unit conformations exist in continuous
3D space, we generate them in random order. Here, we
define a random permutation π to model this random order,
and Cu

k can be expressed as:

Cu
k = {Cu

π(i) | i ∈ {(k − 1)m+ 1, . . . , km}}, (4)

where Cu
π(i) is the corresponding conformation of the π(i)-

th repeating unit, m = Nu

K is the size of the subset, and π
ensures a random sampling order.

The key modules shown in Figure 2 are introduced below.

Multi-modal Repeating Unit Encoder. The multi-modal
repeating unit encoder M comprises two parts: the 2D en-
coder M2d for the whole polymer graph G, and the 3D
encoder M3d for each repeating unit conformation Cu

i in
the polymer conformation. The embedding extraction pro-
cess can be expressed as follows:

Xu = M(G, {Cu
i }Nu

i=1)

= Concat1(M2d(G),Concat0({M3d(Cu
i )}Nu

i=1))

= Concat1(X2d,Concat0({X3d
i }Nu

i=1)),

(5)

where Xu ∈ RNu×Du is the multi-modal repeating unit
embeddings, X2d ∈ RNu×D2d is the 2D embedding of
the whole polymer graph G, X3d

i ∈ R1×D3d is the 3D em-
bedding of the i-th repeating unit conformation Cu

i , and
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Figure 4. The illustration of the masked autoregressive modeling in
the second phase, where grey blocks represent the corresponding
embeddings of masked repeating units.

Concati(·) represents the corresponding concatenation op-
erator in the i-th dimension.

In this work, our PolyConf adopts the encoder architecture
from MolCLR (Wang et al., 2022) as its 2D encoder M2d

and the Uni-Mol (Zhou et al., 2023) as its SE(3)-invariant
3D encoder M3d. Besides, the entire multi-modal repeating
unit encoder M is trainable in the first phase and remains
frozen in the second phase.

Masked Autoregressive Modeling. As shown in Figure 2,
to generate a random subset of unknown repeating unit con-
formations based on known/predicted repeating unit con-
formations iteratively (i.e., Eq. (3)), we employ the masked
autoregressive modeling in the latent space of the multi-
modal repeating unit encoder.

During training, given the random permutation π and multi-
modal repeating unit embeddings Xu ∈ RNu×Du , we ran-
domly sample a masking ratio τ from the range [0, 1], and
then mask the corresponding repeating units, i.e.,

Xu
known = Concat0({Xu

π(i) | i ∈ [(τNu + 1), Nu]}), (6)

where π(i) is the permuted repeating unit index used in
Eq. (4), Xu

known ∈ R(Nu−τNu)×Du is the embeddings of
unmasked repeating units with known conformations, and
Xu

π(i) ∈ R1×Du refers to the π(i)-th row of multi-modal
repeating unit embeddings Xu obtained through Eq. (5).

Furthermore, as illustrated in Figure 4, we use the MAR en-
coder Φ to encode Xu

known and then use the MAR decoder Ψ
to obtain the corresponding representations Zu

mask of masked
repeating units, i.e.,

Zu
mask = Ψ(Φ(Xu

known)), (7)

where Zu
mask ∈ RτNu×Dm is the decoded representations

of masked repeating units, the MAR encoder Φ and MAR
decoder Ψ are the standard Transformer architecture with
the bidirectional attention mechanism.

Diffusion Loss. The goal of the masked autoregressive
modeling is to generate repeating unit conformations based
on the probability distribution of masked repeating unit con-
formations Cu

mask conditioned on the corresponding decoded

representations Zu
mask. As shown in Figure 3, repeating unit

conformations are a specialized form of molecular confor-
mations, characterized by the added complexity of interac-
tions between repeating units. Given the recent success of
diffusion models in generating molecular conformations,
leveraging a diffusion model to represent this conditional
probability distribution for each repeating unit is highly suit-
able. Following previous works (Xu et al., 2022; Li et al.,
2024), the corresponding loss function can be formulated as
a denoising criterion, i.e.,

Lphase-1 = Eε,t

[
∥ε− εθ(C

u
t |t, zu)∥2

]
,

with Cu
t =

√
ᾱtC

u +
√
1− ᾱtε,

(8)

where Cu ∈ R( N
Nu

+2)×3 is the conformation of one masked
repeating unit (i.e., one element in Cu

mask), zu ∈ RDm is
the corresponding decoded representation of this masked
repeating unit (i.e., the corresponding row of Zu

mask), ᾱt

is the predefined noise schedule, t is the time step of this
predefined noise schedule, ε is the noise sampled from the
predefined prior distribution, and εθ is the parameterized
denoising network for noise estimator.

Specifically, we employ the diffusion process defined in the
torsion angle space to model this probability distribution,
and adopt the corresponding diffusion model architecture
used in (Jing et al., 2022) as the denoising network εθ.

3.3. Phase 2: Orientation Transformation Generation

As expressed in Eq (2), after generating repeating unit con-
formations Cu conditioned on the corresponding polymer
graph G in the first phase, we still need to generate the cor-
responding orientation transformations O of these repeating
units based on G and Cu in the second phase.

In particular, as illustrated in Figure 3, repeating unit con-
formations within the polymer partially overlap (e.g., the
atom-1 of the current repeating unit aligns with the atom-3
of the previous repeating unit). Therefore, for each repeat-
ing unit’s orientation transformation, i.e., Oi = (Ri, ti),
we only need to consider the generation of rotation Ri as
the corresponding translation ti can be directly derived by
aligning those overlapping atoms after applying rotation Ri.

SO(3) Diffusion for Rotation Generation. According to
the above analysis, we can further simplify this problem
to generating Ri for each repeating unit, i.e., modeling
p(R|G, Cu), where R = [Ri] ∈ RNu×3×3. In this work,
we develop an SO(3) diffusion model to generate R, i.e.,

R̂(0) = φ(O(t), t,Eu), with O(t) = (R(t),T(t)). (9)

Here, φ denotes a denoising network, whose architecture
is the same as the model used in (Yim et al., 2023). Eu ∈
RNu×De is the output of the MAR encoder (i.e., the condi-
tion concerning G and Cu). R(t) = [R

(t)
i ] ∈ RNu×3×3 is
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obtained through forward diffusion processes on SO(3)Nu .
T(t) = [t

(t)
i ] ∈ RNu×3 is the translations calculated by

aligning the overlapping atoms after applying the rotation
transformations R(t) to the repeating units.

The denoising network φ takes the timestamp t, the trans-
formations at time t (i.e., O(t) = (R(t),T(t))), and the con-
dition information Eu as input, predicting rotation transfor-
mations for the repeating units, denoted as R̂(0) = [R̂

(0)
i ] ∈

RNu×3×3. Accordingly, we can learn it through minimizing
the following loss function:

Lphase-2 =
1

Nu

∑Nu

i=1
∥R̂(0)

i −Ri∥2, (10)

where Ri is the ground-truth rotation of the i-th unit.

3.4. Assembling for Polymer Conformation Generation

After generating the repeating unit conformations {Ĉu
i }Nu

i=1

in the first phase and the corresponding rotation transfor-
mations {R̂i}Nu

i=1 in the second phase, the last step is to
assemble these repeating unit conformations into the com-
plete polymer conformation.

As illustrated in Section 3.1, the orientation transformation
is relative to the standard coordinate system, meaning that
the generated rotation transformations {R̂i}Nu

i=1 are also
relative to the standard coordinate system. Therefore, we
first transform each generated repeating unit conformation
Ĉu

i back to the standard coordinate system, i.e.,

Ĉu,std
i = (Oc

i )
−1 · Ĉu

i = (Ĉu
i − tci ) · (Rc

i )
−1, (11)

where Oc
i = (Rc

i , t
c
i ) is the orientation transformation cal-

culated based on those key atoms of the corresponding frame
extracted from Ĉu

i , and the corresponding calculation pro-
cess has been illustrated in Figure 3.

Then we employ the generated rotation transformation R̂i

to the corresponding Ĉu,std
i , i.e.,

Ĉu,rot
i = Ĉu,std

i · R̂i. (12)

Furthermore, the corresponding translation transformations
of Ĉu,rot

i can be obtained through aligning the 3D coordi-
nates of those overlapping atoms, i.e.,

t̂i =

0, if i = 1,∑i−1

j=1
(ĉu,rot

j,3 − ĉu,rot
j+1,1), if i > 1.

(13)

where t̂i ∈ R3 represents the corresponding translation
transformation of Ĉu,rot

i , ĉu,rot
j,3 ∈ R3 represents the 3D

coordinate of atom-3 in Ĉu,rot
j , and ĉu,rot

j+1,1 ∈ R3 represents
the 3D coordinate of atom-1 in Ĉu,rot

j+1 .

Finally, we can obtain the complete polymer conformation
Ĉ ∈ RN×3 by employing the corresponding translation
transformation t̂i to Ĉu,rot

i , i.e.,

Ĉu,final
i = Ĉu,rot

i + t̂i,

Ĉ = {Ĉu,final
i \ {ĉu,final

i,1 , ĉu,final
i,4 }}Nu

i=1,
(14)

where Ĉ ∈ RN×3 is the complete polymer conformation,
Ĉu,final

i ∈ R( N
Nu

+2)×3 is the transformed repeating unit con-
formation obtained by employing the corresponding transla-
tion transformation t̂i, and \ is the set difference operation.

4. Proposed Benchmark
In this work, we have devoted considerable time and re-
sources to developing PolyBench, the first benchmark for
polymer conformation generation. Specifically, PolyBench
includes a high-quality polymer conformation dataset de-
rived from molecular dynamics simulations (Afzal et al.,
2020) and offers standardized evaluation protocols for vari-
ous methods, thus setting a foundation for progress in this
important yet largely unexplored research area.

4.1. Dataset

Since the scarcity of polymer conformation datasets is a
major factor causing this important research area to remain
largely unexplored, we have invested significant effort to
construct a high-quality dataset of over 50,000 polymers
with conformations (about 2,000 atoms per conformation)
through molecular dynamics simulations (Afzal et al., 2020).
In particular, the initial polymer structures of molecular
dynamics simulations are generated using RDKit (Landrum
et al., 2013) and AmberTools (Salomon-Ferrer et al., 2013),
followed by energy minimization and equilibration in the
NVT ensemble with a 1 fs time step for a total duration of
5 ns (5,000,000 steps). Besides, each simulation trajectory
is obtained using the General AMBER Force Field with
the GROMACS package (Van Der Spoel et al., 2005). In
addition, the number of repeating units within the polymer
conformation ranges from approximately 20 to 100 for most
polymers, with a small portion extending beyond 100. More
details about this dataset can be found in Appendix A.

4.2. Baseline Methods

As mentioned in Section 1 and Section 2.2, polymers signif-
icantly differ from proteins, thus rendering various protein-
specific conformation generation methods unsuitable. In
this context, we adapt various molecular conformation gen-
eration methods, including GeoDiff (Xu et al., 2022), Tor-
sionalDiff (Jing et al., 2022), MCF (Wang et al., 2024b),
and ET-Flow (Hassan et al., 2024), to the polymer domain
as our baseline methods. Specifically, these baseline meth-
ods are implemented using their default settings, treating
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Table 1. The performance comparison of various methods on the PolyBench benchmark

Method
Structure Energy

S-MAT-R ↓ S-MAT-P ↓ E-MAT-R ↓ E-MAT-P ↓
Mean Median Mean Median Mean Median Mean Median

GeoDiff (Xu et al., 2022) 93.119 89.767 95.259 91.869 21.249 18.106 64.871 58.711
TorsionalDiff (Jing et al., 2022) 53.210 38.710 70.679 60.744 2.605 1.034 8.402 6.851

MCF (Wang et al., 2024b) 248.432 242.866 258.891 253.239 > 1010

ET-Flow (Hassan et al., 2024) 94.057 90.475 96.896 92.877 6.733 5.186 53.528 30.125
PolyConf (ours) 35.021 24.279 46.861 37.996 0.933 0.359 6.191 4.122

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Average Generation Time (minute)

PolyConf

ET-Flow

MCF

TorsionalDiff

GeoDiff

0.40

0.40

1.12

0.45

3.54

Figure 5. The efficiency comparison (average time) of various
methods on the PolyBench benchmark, where we compare the
average time of generating polymer conformations.

polymers as large molecules containing more atoms. Please
note that TorsionalDiff requires an initial polymer struc-
ture as input, which cannot be directly generated like small
molecules using RDKit (Landrum et al., 2013), we have to
employ the initial polymer structure of the corresponding
simulation trajectory as its input, thus unintentionally giving
TorsionalDiff a biased advantage over other methods.

4.3. Evaluation Metrics

To guarantee the comprehensive and fair comparison, we
evaluate various methods based on both structure and energy
perspectives. Here, Sg and Sr denote the sets of generated
and reference conformers, respectively. The structure met-
rics are defined as follows:

S-MAT-R =
1

|Sr|
∑

C∈Sr

min
Ĉ∈Sg

RMSD(C, Ĉ),

S-MAT-P =
1

|Sg|
∑

Ĉ∈Sg

min
C∈Sr

RMSD(C, Ĉ),

(15)

where the generated conformer Ĉ and reference conformer
C have already been aligned before computing their RMSD.

Meanwhile, the energy metrics are defined similarly by
replacing the structural difference RMSD(C, Ĉ) in Eq. (15)
with potential energy difference |E(C)− E(Ĉ)|.

Remark. We think the widely used Coverage metric (Xu
et al., 2022), relying on a fixed RMSD threshold δ for struc-
tural comparison in the small molecule domain, is unsuitable
for polymer conformation generation as polymers typically
exhibit a much larger conformational space with significant
diversity arising from their chain length, flexibility, and re-
peating units (Chen et al., 2021). Thus, we exclude it from
our evaluation metrics but still report the corresponding
performance under this metric in Appendix B for reference.

4.4. Main Results

Table 1 summarizes the performance of various methods
on the PolyBench benchmark, demonstrating that our Poly-
Conf consistently outperforms baseline methods across both
structure (S-MAT-R, S-MAT-P) and energy (E-MAT-R, E-
MAT-P) metrics with a significant margin. In particular,
compared to TorsionalDiff (i.e., the best baseline), our Poly-
Conf achieves substantial improvements with at least 25%
across all evaluation metrics, while eliminating the need
for a pre-determined polymer structure, highlighting its
effectiveness and practicability for generating polymer con-
formations that are both structurally accurate and energet-
ically realistic. Besides, the suboptimal performance of
baseline methods also underscores their limitations in cap-
turing the structural complexity of polymers. The above
results further validate and demonstrate the critical need for
designing tailored polymer conformation generation meth-
ods, such as our PolyConf, to accommodate the unique
conformational intricacies of polymer systems.

Meanwhile, we compare the efficiency of various methods
on the PolyBench benchmark, as illustrated in Figure 5. In
particular, the average time required to generate polymer
conformations across various methods is computed and com-
pared. Our PolyConf achieves the fastest generation time of
0.40 minutes, surpassing TorsionalDiff (0.45 minutes), MCF
(1.12 minutes), and GeoDiff, which is significantly slower at
3.54 minutes. Combined with Table 1, these results demon-
strate that our PolyConf is capable of both effective and
efficient polymer conformation generation.

In addition, we further present some visualization examples
of polymer conformations generated by our PolyConf and
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Reference                                          TorsionalDiff                                                PolyConf

Figure 6. Several visualization examples of our PolyConf and TorsionalDiff (i.e., the best baseline).

Table 2. The scalability evaluation of various methods, where the number of repeating units per polymer is doubled.

Method
Structure Energy

S-MAT-R ↓ S-MAT-P ↓ E-MAT-R ↓ E-MAT-P ↓
Mean Median Mean Median Mean Median Mean Median

GeoDiff (Xu et al., 2022) 184.668 175.607 186.861 177.645 52.614 47.872 112.883 105.197
TorsionalDiff (Jing et al., 2022) 119.289 94.075 146.816 126.932 5.219 2.216 11.692 9.227

MCF (Wang et al., 2024b) 227.691 252.796 280.805 260.882 > 1010

ET-Flow (Hassan et al., 2024) 186.132 176.370 188.725 178.977 15.331 12.465 65.116 41.642
PolyConf (ours) 65.040 41.992 84.626 64.445 1.259 0.609 5.785 4.434

the best baseline in Figure 6 to provide qualitative insights.
It demonstrates that our PolyConf produces polymer confor-
mations that more closely align with references, confirming
its capability to generate high-quality polymer conforma-
tions. In contrast, despite leveraging biased prior knowledge
of the initial polymer structure, TorsionalDiff (i.e., the best
baseline) still fails to capture the unfolded and relaxed poly-
mer conformations effectively.

4.5. Scalability Evaluation

As introduced in Section 1, polymers are macromolecules
formed by the covalent bonding of numerous identical or
similar monomers. Due to the nature of polymerization, a
single polymer chain can vary in length depending on spe-
cific reaction conditions, resulting in a chain length distribu-
tion rather than a uniform chain length. Consequently, the
same polymer can exhibit conformations at different scales,

determined by the number of repeating units incorporated
during polymerization. Given this inherent variability, it’s
also essential to evaluate the scalability of various methods,
particularly their ability to generate polymer conformations
with larger scales (i.e., more atoms or repeating units).

Considering various models in Table 1 are trained on poly-
mer conformations comprising approximately 2,000 atoms,
we further apply these trained models to generate confor-
mations with roughly 4,000 atoms by simply doubling the
number of repeating units in the inference phase. Here, we
use the same pipeline of molecular dynamics simulations to
generate enlarged polymer conformations on the test set as
references. The corresponding evaluations are performed us-
ing both structural metrics (S-MAT-R, S-MAT-P) and energy
metrics (E-MAT-R, E-MAT-P), as summarized in Table 2.
Owing to the advantages of masked autoregressive mod-
eling, our PolyConf demonstrates excellent performance,
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significantly outperforming baseline methods across all eval-
uation metrics. In particular, compared to TorsionalDiff (i.e.,
the best baseline), our PolyConf improves energy metrics by
over 50%. These results validate and support the superior
scalability and generalization capabilities of our PolyConf,
thus setting it apart as an effective method for varying-scale
polymer conformation generation.

5. Conclusion
In this work, we successfully unlock a critical yet largely un-
explored task in the context of machine learning — polymer
conformation generation, which may further trigger a series
of downstream research directions. Specifically, we propose
PolyConf, the first tailored polymer conformation genera-
tion method that leverages hierarchical generative models
to tackle this task, and develop PolyBench, the first bench-
mark for polymer conformation generation, to overcome the
scarcity of polymer conformation datasets and boost subse-
quent studies. Extensive and comprehensive experiments
on the PolyBench benchmark consistently demonstrate that
our PolyConf significantly outperforms existing conforma-
tion generation methods in both quality and efficiency while
maintaining superior scalability and generalization capabil-
ities, thus highlighting its exceptional ability in polymer
conformation generation.

In the future, we will continue to explore this important
research area and further develop our method and bench-
mark, which may inspire broader research efforts and drive
progress in this research area. Moving forward, we aim to
extend our method to accommodate more intricate polymer
architectures, such as those with 2D topological structures
and those constructed by more than one kind of monomer.
Meanwhile, we will also consider integrating other advanced
deep generative models (e.g., flow-based generative models)
to refine polymer conformation generation.
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A. Dataset Details
In this work, considering the scarcity of polymer conformation datasets is a major factor causing this important research
area to remain largely unexplored, we have dedicated significant time and resources to developing a high-quality dataset
comprising over 50,000 polymers with their conformations (about 2,000 atoms per conformation) obtained through molecular
dynamics simulations (Afzal et al., 2020). Here, the specific pipeline of molecular dynamics simulations is described in
Appendix A.1, while Appendix A.2 provides detailed statistics of the obtained polymer conformation dataset.

A.1. Construction Pipeline

While previous studies have introduced DFT-based conformation datasets for polymers (Feng et al., 2023), these datasets
are limited to systems with no more than six repeating units, which is far from the realistic scenario where polymer systems
can consist of thousands of atoms. Besides, considering the prohibitively high computational cost of DFT calculations
for polymer systems of this size (about 2,000 atoms in our work), we employ force-field-based simulations for polymer
conformation generation. Although force fields may have some limitations in accurately predicting properties or energetics,
they are well-suited for efficiently exploring the conformational space of large polymer systems, thereby ensuring the
generated conformations are realistic representations of polymer structures without compromising the focus of our task.

In particular, polymer systems are constructed and prepared for molecular dynamics (MD) simulations through combining
various molecular modeling tools and custom Python scripts. Monomer structures are generated by RDKit (Landrum et al.,
2013) based on the corresponding SMILES strings and then processed to define chain termini and repeat units. The polymer
consists of a repeating PET unit, capped by head (HPT) and tail (TPT) units. RDKit is utilized to analyze atom connectivity
and identify key atoms for polymerization. Hydrogen atoms at the connection points are omitted, and chain termini are
explicitly parameterized. Atomic charges and topology files for the corresponding monomer units are generated using the
Antechamber and prepgen tools (Salomon-Ferrer et al., 2013), employing the General AMBER Force Field (GAFF). TLeap
is used to create AMBER-compatible topology and coordinate files for both individual monomers and polymer chains.
Polymer chains with a degree of polymerization (Nu) are constructed by repeating the PET unit Nu − 2 times and capping
the chain with HPT and TPT units at the termini. Chain lengths are chosen to achieve approximately 2,000 atoms per system.
AMBER topology and coordinate files are then converted to GROMACS-compatible formats using ACPYPE. The resulting
files are then organized for subsequent MD simulations.

The optimization and MD simulations are conducted using GROMACS (Van Der Spoel et al., 2005) as the usage of
GROMACS on polymer simulations has long been reported (Liu et al., 2024; Grünewald et al., 2022). Specifically, the
steepest descent method is applied to minimize the system energy, and then 5,000,000 steps (5ns) of MD calculations are
performed at 298 K and 1 atm using the NVT ensemble for equilibrium calculations.

A.2. Dataset Statistics

We collect 1D polymer SMILES strings from various publicly available sources, and further divide their corresponding 3D
conformations obtained through the molecular dynamics simulations into training, validation, and test sets. Specifically, the
training set comprises about 46k polymers with their corresponding conformations, the validation set comprises about 5k
polymers with their corresponding conformations, and the test set comprises about 2k polymers with their corresponding
conformations. Meanwhile, as illustrated in Figure 3, the polymer conformation can be decomposed into a series of repeating
unit conformation, so we visualize the distribution of the number of repeating units per polymer conformation in Figure 7 to
provide insights into the structural complexity and variability of the polymer conformations. As shown in this figure, the
number of repeating units ranges from approximately 20 to 100 for most polymers, with a small portion extending beyond
100. The distribution across the training, validation, and test sets demonstrates the ability of our dataset to capture a wide
variety of polymer structures, ensuring diverse and representative conformations for robust evaluation.

B. Additional Results
In the molecular conformation generation task (Xu et al., 2022), Coverage (COV) and Matching (MAT) metrics are widely
used to evaluate the diversity and quality of generated conformations. Through a fixed RMSD threshold, the Coverage
metric can measure the fraction of reference conformations captured by the generated conformations (recall perspective)
or the fraction of generated conformations captured by reference conformations (precision perspective). However, its
applicability to polymer conformation generation is limited due to the inherent flexibility, polydispersity, and amorphous
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Figure 7. The distribution of the number of repeating units per polymer conformation.

Table 3. The structural quality of generated polymer conformations in terms of Coverage (%) and Matching (Å). We compute Coverage
with a threshold of δ = 25 Å to better distinguish top methods.

Method
Recall Precision

S-COV-R ↑ S-MAT-R ↓ S-COV-P ↑ S-MAT-P ↓
Mean Median Mean Median Mean Median Mean Median

GeoDiff (Xu et al., 2022) 0.108 0.000 93.119 89.767 0.008 0.000 95.259 91.869
TorsionalDiff (Jing et al., 2022) 0.172 0.000 53.210 38.710 0.100 0.000 70.679 60.744

MCF (Wang et al., 2024b) 0.000 0.000 248.432 242.866 0.000 0.000 258.891 253.239
ET-Flow (Hassan et al., 2024) 0.089 0.000 94.057 90.475 0.064 0.000 96.896 92.877

PolyConf (ours) 0.515 1.000 35.021 24.279 0.336 0.100 46.861 37.996

nature of polymer systems. Therefore, we exclude the Coverage metric from our evaluation metrics in Section. 4.3, but still
report the corresponding performance of various methods under this metric for reference here.

As shown in Table 3, our PolyConf still significantly outperforms baseline methods in both structural Coverage (S-COV)
and Matching (S-MAT) metrics. In particular, our PolyConf achieves the highest S-COV-R (Recall) of 0.515 (mean) and
1.000 (median), demonstrating superior diversity and structural coverage over the reference set. Additionally, it achieves
the lowest S-MAT-R of 35.021 Å(mean) and 24.279 Å(median), indicating a closer match to the reference conformations
compared to baseline methods, which show much higher deviations. In terms of precision-based metrics (S-COV-P and
S-MAT-P), our PolyConf also maintains the strong superiority with 0.336 S-COV-P (mean) and 0.100 (median), while
achieving the best S-MAT-P of 46.861 Å(mean) and 37.996 Å(median). These results consistently indicate that our PolyConf
generates polymer conformation with both broader coverage and more accurate conformational matching, despite the
inherent difficulties posed by the flexibility and variability of polymer systems.
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