
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DON’T SETTLE TOO EARLY: SELF-REFLECTIVE RE-
MASKING FOR DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

https://github.com/iiiutch-ii/RemeDi

ABSTRACT

Mask-based Diffusion Language Models (DLMs) struggle to revise incorrect to-
kens: once a token is generated, it typically remains fixed. The key challenge
is to identify potential errors in the inputs. In this paper, we propose Remasking-
enabled Diffusion Language Model (RemeDi), a mask-based DLM that introduces
remasking as another fundamental mechanism, enabling more flexible text refine-
ment in diffusion-based text generation. To achieve this, RemeDi jointly predicts
token distributions and per-token confidence scores at each step. The confidence
scores determine which tokens to be unmasked after the current step, allowing
the model to identify tokens with low quality and remask them. These remasked
tokens can be resampled with richer context in subsequent steps. We design a
remask-aware pipeline to train this ability, including supervised fine-tuning which
teaches the model to detect and remask incorrect tokens in addition to predict mask
tokens, and reinforcement learning which optimizes full generation trajectories to-
ward higher rewards. Experiments show that RemeDi achieves the state-of-the-art
results among open-source DLMs on multiple datasets.

1 INTRODUCTION

Diffusion Language Models (DLMs) have recently emerged as a promising alternative to autore-
gressive language models (Nie et al., 2025; Ye et al., 2025; Lou et al., 2024; Arriola et al., 2025). A
DLM defines a forward process that gradually corrupts text into a noise prior, and learns a reverse
process to recover clean text (Campbell et al., 2022; Lou et al., 2024). Unlike autoregressive models,
DLMs do not commit to a fixed left-to-right order, offering greater flexibility in generation and an
inherent ability to predict multiple tokens in parallel.

A dominant variant is the mask-based DLM (Nie et al., 2025; Ye et al., 2025), where the noise is
represented by a special mask token. Under this formulation, the model learns to recover masked
tokens during training, while assuming that once tokens are unmasked, they are supposed to be cor-
rect without having to clean them later. This assumption is problematic: the model may generate
wrong tokens, which should be revealed and corrected in later steps when more contexts are avail-
able. However, most existing DLMs (Nie et al., 2025; Ye et al., 2025) keep already unmasked tokens
fixed, preventing them from being revised by self-reflecting on errors.

To address this, several works have explored methods to revise generated tokens. von Rütte et al.
(2025) defines a new noise schedule by interpolating between masking and uniform noise, enabling
revision of wrong tokens on small-scale models. Wang et al. (2025a) applies predictor-corrector
samplers by stochastically remasking a subset of tokens only at inference time, where the remasking
is performed randomly without training the model how to find and remask incorrect tokens. For
large-scale DLMs, Seed Diffusion (Song et al., 2025) allows all tokens to be resampled at every step.
However, it lacks a mechanism to ensure that the number of mask tokens decreases monotonically
— it is a key feature for diffusion models to ensure decreasing noise levels over steps (Guo et al.,
2025), so that the mask tokens will eventually vanish at the final step to complete the generation.

In this paper, we propose a self-reflective remasking approach to train DLMs. As illustrated in
Fig. 1a, it aims to train DLMs with the ability of finding wrong tokens and turning them back to mask
ones so that they can be resampled with richer context in later steps. Based on this, we introduce
Remasking-enabled Diffusion Language Model (RemeDi), a mask-based DLM that incorporates
self-reflective remasking to revise already generated but incorrect tokens. RemeDi jointly predicts

1

https://github.com/iiiutch-ii/RemeDi

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

211, 212, 213, 222

step 193

step 212

step 213

step 221

EvalResult/0913/MixData-block-remask-llada-base-low-temp-
gsm8k-step32-2025-09-15-00000-gpus32-batch1-bf16-v2.8-no-
general-exact-split-resume-no-optim-ckpt-000146，
rank4_iter176_index0_reward1.0

de
no

is
in

g
st

ep
s

(a) Green and Red tokens are already unmasked in the input se-
quence of the current step. Red tokens are remasked. Blue tokens
are unmasked in the outputs. Gray tokens keep masked in the out-
puts, and we display the token with the highest probability at these
positions.

16

32

48

64

80

16

32

48

64

80

20 40 60 80 100

20

40

60

80

100

6

12

18

24

30

20
40

60
80

100

12
24

36
48

60

HumanEval

MBPP

ARC-C

IFEval

AlpacaEval

GSM8K

MATH

LLaDA
Dream
RemeDi

Code

General Ta
sks

M
athem

atics

(b) Radar plot comparing the perfor-
mance of RemeDi with other DLMs
across various evaluation benchmarks.

Figure 1: (a) Illustration of remasking for quality improvement: RemeDi initially predicts the token
“left”, but later identifies a semantic mismatch in the phrase “left for the pies”. The model then
remasks this token and corrects it to the more appropriate “used”. (b) RemeDi outperforms existing
DLMs in various tasks, including math, code and general benchmark.

token distributions and per-token confidence scores. At each diffusion step, high-confidence tokens
are unmasked while low-confidence ones are (re-)masked, regardless of whether they have been
previously unmasked.

The key challenge is to train the model how to remask incorrect tokens in a self-reflective manner.
To this end, we design a remask-aware training pipeline in two stages: 1) Remask SFT, where
the model learns to identify and remask incorrect tokens, while predicting masked tokens. We
construct an input sequence for Remask SFT by randomly masking its tokens or replacing them
with random alternatives to simulate the noise. The noise schedule deciding how many tokens
are masked or randomly replaced is designed to follow the criterion that the noise level should
monotonically decrease over steps. The model is then trained to remask and revise incorrect tokens
over noisy input sequences. 2) Remask RL, where the model is further fine-tuned with outcome-
based reinforcement learning. It seeks to optimize the entire generation trajectories toward final
outputs with higher rewards by considering how to remask and predict tokens in each step.

As shown in Fig. 1b, RemeDi achieves the state-of-the-art performance among open-source DLMs,
achieving competitive results on various benchmark datasets, including math problems (89.1% on
GSM8K (Cobbe et al., 2021), 52.9% on MATH (Hendrycks et al., 2021)), code generation (73.2%
on HumanEval (Chen et al., 2021), 59.4% on MBPP (Austin et al., 2021)), and general tasks (24.5%
on AlpacaEval (Dubois et al., 2024), 85.4% on IFEval (Zhou et al., 2023), and 87.7% on ARC-C
(Clark et al., 2018)).

2 RELATED WORK

2.1 MASK-BASED DIFFUSION LANGUAGE MODELS

Diffusion language models (DLMs) have emerged as promising alternatives to auto-regressive (AR)
models for text generation. Among them, mask-based DLMs (Nie et al., 2025; Ye et al., 2025;
Zheng et al., 2023; Ou et al., 2024) dominate, generating text by progressively denoising mask
tokens. Recent studies(Arriola et al., 2025; Fathi et al., 2025; Huang & Tang, 2025; Sahoo et al.,
2025; Wang et al., 2025b; Gat et al., 2025) have increasingly explored the fusion of AR and diffusion
models, often through an iterative block-wise decoding strategy: inference proceeds by iteratively
appending a block of mask tokens to the input sequence and denoising it, repeating until the EOS
token is generated. This paradigm inherits the strengths — flexible generation order and parallel
decoding from DLMs, and cache efficiency from AR — yielding faster inference without sacrificing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

quality. In our work, we adapt LLaDA-8B-Instruct (Nie et al., 2025) to variable-length block-by-
block generation, serving as the backbone for our remasking mechanism.

2.2 REVISING ERRORS IN DIFFUSION LANGUAGE MODELS

A key limitation of mask-based DLMs is their inability to revise tokens once unmasked, even if they
are incorrect. Existing efforts to address this fall into two categories. The first category (Campbell
et al., 2022; Wang et al., 2025a) applies predictor-corrector samplers without training, for example
by stochastically remasking a subset of tokens during inference. These methods lack a mechanism
to identify which tokens are actually wrong. As a result, they have to rely on many extra sampling
steps to take effect, which are inefficient and hard to optimize. The second category modifies the
diffusion process to enable revision during the reverse diffusion process, e.g., combining mask diffu-
sion process with either the uniform diffusion process (von Rütte et al., 2025) or edit-based diffusion
process (Havasi et al., 2025; Song et al., 2025).

In short, none of these approaches provides a principled way to detect and selectively correct errors
during generation. In contrast, RemeDi fulfills self-reflection by identifying and remasking error-
prone tokens through a two-stage learning pipline, and jointly training the model to resample the
remasked tokens in later steps.

3 METHODS

3.1 PRELIMINARIES: MASK-BASED DIFFUSION LANGUAGE MODELS

Diffusion Language Models (DLMs) aim to model text generation by approximating the probabil-
ity distribution pdata over a finite vocabulary V = {1, 2, . . . , V }. They define a discrete diffusion
process in which the unknown data distribution pdata at t = 0 gradually evolves into a simple prior
distribution pprior at t = T (Lou et al., 2024). At intermediate times t, we denote the distribution as
pt. Formally, this diffusion process can be described by a linear ODE involving a diffusion matrix
Qt:

dpt
dt

= Qtpt, p0 = pdata, pT = pprior. (1)

While t can be defined continuously as in Eq. (1), in practice we work with discrete timesteps t0:N .

In this paper, we focus on mask-based DLMs, where pprior is a distribution that puts all its mass
on the mask state, denoted as [M]. Given a clean sequence x0 ∼ pdata, a corrupted sequence xt is
obtained by randomly replacing part of the tokens with the mask token [M]. The model is trained to
recover x0 by predicting each mask token xi

t with the output probability piθ(x
i
0|xt). The objective

is:

Ldiffusion(θ) = Et,x0,xt

[
− 1

t

L∑
i=1

1(xi
t = [M]) log piθ(x

i
0|xt)

]
, (2)

where xt is a sequence of length L, sampled from the forward process, 1(·) is an indicator function
ensuring that the loss is computed only on mask tokens, following Nie et al. (2025).

During inference, the reverse diffusion process begins with a sequence of only mask tokens and
proceeds for N steps at monotonically decreasing timesteps t0:N . At step tn−1, the model takes the
partially masked sequence xtn−1

as input and predicts all mask tokens simultaneously. A subset of
tokens is unmasked to obtain xtn according to the noise schedule and the unmasking policy (e.g.,
unmasking tokens with the highest confidence), while the remaining predictions are remasked and
deferred to later steps.

A limitation of this paradigm is that once a token is unmasked, it remains fixed in subsequent steps.
In early stages, limited unmasked tokens often lead to unreliable predictions, resulting in errors
that persist through the remainder of the generation process. As generation progresses, additional
context may reveal these errors, but current paradigm offers no way to correct them. This motivates
the ability to remask tokens, allowing the model to remask earlier predictions back to the mask token
and predict them again using richer context in later steps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Transformer Block

Transformer Block

Transformer BlockTransformer Block

Transformer Block

……

UPS
TPS

Transformer Block

zero init

zero init

3 [M] 4 [M] 8 …[M]…

3 4 8 …

Sample 𝒰𝒰𝑛𝑛 ∼ Plackett-Luce ℎ𝜃𝜃,𝑛𝑛,𝐾𝐾𝑛𝑛
[M]…

    

ℎ𝜃𝜃,𝑛𝑛

3 + 4 = [M] …𝑥𝑥𝑡𝑡𝑛𝑛 [M]…

sample 𝑥𝑥𝑡𝑡𝑛𝑛
𝑖𝑖 from 𝑝𝑝𝜃𝜃,𝑛𝑛

𝑖𝑖 ⋅ |𝑥𝑥𝑡𝑡𝑛𝑛−1 ,
∀ 𝑖𝑖 ∈ 𝒰𝒰𝑛𝑛 and 𝑥𝑥𝑡𝑡𝑛𝑛−1

𝑖𝑖 = [M]

𝑥𝑥𝑡𝑡𝑛𝑛−1

? ?

𝑝𝑝𝜃𝜃,𝑛𝑛

Rebuttal Version

Linear Linear & SoftmaxRemeDi

Input Embedding

𝒰𝒰𝑛𝑛

𝑓𝑓UPS
𝑓𝑓TPS

Figure 2: The structure of RemeDi, including Unmasking Policy Stream (UPS) to predict confi-
dences hθ for selecting the set of unmasking tokens Un, and Token Prediction Stream (TPS) to
predict the token value when unmasking a masked position.

3.2 REMEDI

We propose RemeDi, a DLM that can identify and remask low-confidence tokens during generation
to enable iterative self-reflection. We extend the standard transformer into a dual-stream transformer
architecture as shwon in Fig. 2, which comprises:

• Token Prediction Stream (TPS): A stack of transformer blocks that predict probabilities
piθ(·|xt) for masked tokens as in a typical DLM (Nie et al., 2025).

• Unmasking Policy Stream (UPS): Another stack of transformer blocks that output token-
wise confidence score hi

θ. It represents the model’s confidence over the output tokens,
indicating if they should be unmasked with high confidence. Otherwise, if the confidence
is too low for a token, it should be kept masked or remasked so that it could be sampled or
resampled later.

The two streams run in parallel. During inference, UPS is inserted periodically and receives hidden
states from TPS as input, producing an auxiliary representation fUPS for confidence scoring. The
two streams perform bidirectional feature sharing: UPS layers are conditioned on fTPS, and their
outputs also feed back into TPS to enrich its representations. At the final layer, p and h are produced
simultaneously using two independent linear heads applied to fTPS and fUPS, respectively. More
details about the model structure for these two streams can be found in Appendix B.1.

The token generation proceeds through iterative denoising steps. Given xtn−1 as the input, UPS first
predicts a confidence score hi

θ,n at each position i, and select a subset of positions Un to unmask at
the current step. Then, for the positions selected to be unmasked, if they have already been unmasked
in xtn−1

, they remain unchanged; otherwise they are sampled from piθ(·|xtn−1
) predicted by TPS.

Unlike existing mask-based DLMs where tokens are fixed once being unmasked, RemeDi re-decides
a token to be unmasked or (re-)masked at each step by its trained confidence score. Thus, it is
possible that an already generated token is assigned with a low confidence and remasked, allowing
it to be resampled in later steps. A noise schedule controls that the total number of unmasked tokens
increases linearly from 0 to L (Nie et al., 2025), so that the number of mask tokens approaches zero
at the final step.

In the following sections, we elaborate on how to train RemeDi with Remask SFT and Remask RL
algorithms.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.1 REMASK SFT

Traditional mask-based DLMs conduct SFT with randomly masked input sequences (Nie et al.,
2025; Lou et al., 2024), while RemeDi needs to detect and remask possible incorrect tokens that
arise during the reverse diffusion process, so they can be resampled in later steps. To achieve this,
in SFT we treat such incorrect tokens as a second noise type in addition to the first noise type of
mask tokens in mask-based DLMs, and train the model to recover mask tokens as well as identify
unmasked tokens that should be remasked.

To simulate inference inputs at a diffusion time t, we construct training samples xt from clean text
x0 by applying two types of noise: given a randomly sampled diffusion time t ∈ (0, 1), we set the
corresponding mask ratio ρt,mask, alongside the incorrect token ratio ρt,incorrect. With both ratios, we
randomly mask tokens with ρt,mask. Then, among the remaining unmasked positions, we sample a
subset with the ratio ρt,incorrect and replace each selected token with a random alternative to simulate
the incorrect tokens that may occur in the reverse diffusion process.

As aforementioned, during the reverse diffusion process, the noise level, defined as the number of
mask tokens, should decrease monotonically (Guo et al., 2025) . Since all incorrect tokens in an
input sequence of length L must be remasked as designed below for the SFT, we require:

⌈ρt,incorrect · (1− ρt,mask) · L⌉ < ⌈ρt,mask · L⌉ (3)

to ensure a monotonically decreasing number of mask tokens as outputs. Otherwise, remasking all
incorrect tokens would increase the total number of masks in the next step, violating the principle
that the number of mask tokens should decrease at each diffusion step.

Considering the above inequality, we choose ρt,mask = t and ρt,incorrect = 4r ·t(1−t) (r is a constant)
following (Nie et al., 2025; von Rütte et al., 2025). We set r = 0.1 in our experiments, under which
it is not hard to see that the inequality 3 always holds on t ∈ [0, 1].

Remask SFT Algorithm. During training, in addition to the typical diffusion loss in Eq. 2, we
supervise the unmasking score hθ with a binary cross-entropy (BCE) objective across all token
positions. We construct the training label y based on different token types:

• A clean token (i ∈ Sclean = {i | xi
t = xi

0}) receives a positive unmask label yi = 1,
indicating they should remain unmasked.

• An incorrect token (i ∈ Sincorrect = {i | xi
t ̸= xi

0, x
i
t ̸= [M]}) receives a negative unmask

label yi = 0, indicating that they should be remasked.

• A mask token (i ∈ Smask = {i | xi
t = [M]}) is assigned a soft unmask label yi = piθ(x

i
0|xt),

equal to the predicted probability of the ground-truth token xi
0. A higher probability indi-

cates a higher likelihood that the predicted token is correct and thus should be unmasked.

With unmask labels assigned above, we seek to minimize

LUPS(θ) =
∑
i

BCE
(
σ(hi

θ), y
i
)
, (4)

where σ(·) is the sigmoid function. Thus, the overall Remask SFT objective is:

L(θ) = Ldiffusion(θ) + λUPS LUPS(θ), (5)

where λUPS balances the two losses.

Finally, we summarize the Remask SFT in Algorithm 1, where we elaborate on how to construct the
input sequence and calculate the loss function for the Remask SFT.

3.2.2 REMASK RL

After training with Remask SFT, we further fine-tune the model with outcome-based reinforcement
learning (RL) to optimize the full generation trajectory (Huang et al., 2025). Specifically, we rein-
force the generation process with N denoising steps, beginning from an all-mask prior xt0 ∼ pprior
at t0 = 1 and proceeding through timesteps t0:N .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Input sequence construction and loss calculation in Remask SFT

Require: Clean sequence x0 = [x1
0, . . . , x

L
0] of length L. Model M with learnable parameters θ.

1: Sample t ∈ (0, 1) according to the noise schedule, obtaining ρt,mask and ρt,incorrect.
2: Construct noisy input xt:
3: For each position i, replace xi

0 with [M] w.p. ρt,mask
4: Among remaining positions, replace xi

0 with a random alternative token w.p. ρt,incorrect
5: Define index sets:

Smask = {i | xi
t = [M]}, Sincorrect = {i | xi

t ̸= xi
0 ∧ xi

t ̸= [M]}, Sclean = {i | xi
t = xi

0}

6: Get model outputs: [pθ, hθ] = M(xt; θ)
7: Calculate the diffusion loss, on mask tokens only: Ldiffusion(θ) = − L

|Smask|
∑

i∈Smask
log piθ(x

i
0|xt)

8: Get labels for UPS: yi =


1 i ∈ Sclean

0 i ∈ Sincorrect

stopgrad
(
piθ(x

i
0|xt)

)
i ∈ Smask

9: UPS BCE loss: ▷ σ(·) represents the sigmoid function

LUPS(θ) = − 1

L

L∑
i=1

(
yi log σ(hi

θ) + (1− yi) log
(
1− σ(hi

θ)
))

10: Total loss: L(θ) = Ldiffusion(θ) + λUPS LUPS(θ)

At each step tn, RemeDi generates xtn from xtn−1
by invoking two coupled policies: an unmasking

policy that chooses a subset of positions Un = [un(1), . . . , un(Kn)] to unmask, and a token predic-
tion policy that samples tokens at the chosen positions. Unlike standard DLMs, which never remask
revealed tokens, RemeDi allows previously unmasked tokens to be remasked, enabling revision of
earlier predictions.

Unmasking policy. The UPS produces a per-token confidence score hi
θ, indicating how strongly

the model believes token at position i is correct (if unmasked) or predictable (if masked). At infer-
ence, we rank tokens by their confidence scores and prioritize high-confidence ones to unmask. The
number of unmasked tokens Kn at each diffusion step is determined by linearly increasing from 0
to L. During RL training, we construct an unmasking policy to sample Un = [un(1), . . . , un(Kn)]
using the Plackett–Luce model (Plackett, 1975): based on hθ, we use a multinomial distribution and
sequentially sample Kn positions from {1, . . . , L} without replacement. Formally, the probability
of sampling Un is:

πunmask
θ,n (Un | xtn−1

) =

Kn∏
k=1

exp(h
un(k)
θ,n)∑

j /∈{un(1),...,un(k−1)} exp(h
j
θ,n)

. (6)

Token prediction policy. For each position i ∈ Un, if xi
tn−1

= [M], the model samples token from
piθ(·|xtn−1); otherwise, the token remains unchanged as in the input. The probability of generating
xtn given xtn−1

and Un is:

πtoken
θ,n (xtn | xtn−1 ,Un) =

∏
i∈Un, xi

tn−1
=[M]

piθ(x
i
tn | xtn−1). (7)

Joint policy. Thus, the probability of transitioning from xtn−1
to xtn is the product of the unmask-

ing probability and the token prediction probability:

πθ,n(xtn | xtn−1) = πunmask
θ,n (Un | xtn−1) · πtoken

θ,n (xtn | xtn−1 ,Un). (8)

With the probability defined in Eq. 8, we apply outcome-based reinforcement learning to encourage
generation trajectories xt0:N that lead to correct final responses xtN . Specifically, we adopt GRPO
(Shao et al., 2024), a scalable RL paradigm for language models. The reward is defined according
to task type: verifiable correctness for math and code, and reward-model evaluation for open-ended
questions. Further details on datasets and reward design are provided in Appendix B.2.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

As shown in Fig. 11 of Appendix A, after Remask SFT and RL training, the learned hθ serves
as a reliable indicator to assess the quality of input tokens. Tokens already unmasked in the input
typically receive high confidence scores. However, when certain tokens are assigned low confidence,
they are more likely to be inadequate and are remasked for re-prediction in subsequent steps. It
suggests that the UPS-predicted confidence scores provide a reliable estimate of per-token quality
for the unmasking policy.

4 EXPERIMENTS

RemeDi enables remasking on a DLM capable of variable-length block-wise generation (Arriola
et al., 2025) to support variable-length generation, a key feature for enabling the real-world DLM
to generate an unfixed number of blocks (see Appendix B.2.2 for details). Since there are no open-
source large-scale variable-length block-wise DLMs, we adapt our model from LLaDA, a widely
used benchmark DLM. Starting from LLaDA’s model weights as initialization, RemeDi undergoes
two stages of supervised fine-tuning and RL. We detail the training configurations in Appendix B.2,
and the evaluation metrics in Appendix B.3.2.

Table 1: Model performance on math and code generation benchmarks. We highlight the best-
performing model among compared DLMs in bold. “-” indicates unknown cases not mentioned in
original papers.

Method Math Code
GSM8K MATH GPQA HumanEval MBPP

Diffusion Language Models

Dream (Ye et al., 2025) 82.1 49.6 30.6 59.8 59.6
LLaDA (Nie et al., 2025) 78.3 38.9 28.1 45.7 39.0
LLaDA + ReMDM (Wang et al., 2025a) 81.4 38.5 - 44.5 37.8
d1-LLaDA (Zhao et al., 2025) 82.1 - - 37.8 44.7
wd1-LLaDA (Tang et al., 2025) 82.3 - - - -
LLaDA 1.5 (Zhu et al., 2025) 83.3 42.6 36.9 52.4 42.8
LLaDOU (Huang et al., 2025) 88.1 44.6 - 59.1 51.6

RemeDi (+ Remask SFT) 86.3 51.4 32.6 71.3 57.8
RemeDi (++ Remask RL) 89.1 52.9 29.5 73.2 59.4

Auto-regressive Models

LLaMA2 7B (Touvron et al., 2023) 14.6 2.5 28.4 12.8 20.8
MetaMath 7B (Yu et al., 2023) 66.5 19.8 - - -
CodeLLaMA 7B (Roziere et al., 2023) - - - 34.8 44.4

Deepseek 7B (Bi et al., 2024) 63.0 15.8 - 48.2 35.2
DeepseekMath 7B (Shao et al., 2024) 88.2 51.7 - - -
DeepseekCoder 7B (Guo et al., 2024) - - - 66.1 65.4

LLaMA3 8B (Dubey et al., 2024) 78.3 29.6 31.9 59.8 57.6
Gemma2 9B (Team, 2024) 76.7 44.3 32.8 68.9 74.9

4.1 RESULTS

To evaluate various capabilities of RemeDi in different aspects, we conducted detailed comparisons
against existing large language models of comparable scale in Tab. 1 and Tab. 2, including both
DLMs and auto-regressive models. We select nine popular benchmarks across general tasks, math-
ematics, coding, and human preference domains.

After Remask SFT, RemeDi demonstrates high performance on almost all these benchmarks. It not
only achieves the state of the art performance among existing DLMs, but also outperforms auto-
regressive models of similar model size. On math benchmarks, RemeDi after Remask SFT achieves
86.3% on GSM8K and 51.4% on MATH, surpassing MetaMath with math-specific instruction tun-
ing. It is even on par with DeepseekMath using math-specific reinforcement learning. On code
generation benchmarks, RemeDi achieves 71.3% on HumanEval, outperforming CodeLLaMA and
Deepseek Coder. For general natural language tasks, RemeDi also demonstrates strong performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Model performance on general tasks. We highlight the best-performing model among
compared DLMs in bold. “-” indicates unknown cases not mentioned in original papers.

Method Hellaswag ARC-C IFEval AlpacaEval

Diffusion Language Models

Dream (Ye et al., 2025) 70.3 79.2 67.5 5.9
LLaDA (Nie et al., 2025) 69.7 83.9 70.0 11.2
LLaDA 1.5 (Zhu et al., 2025) 70.5 83.5 73.5 13.9
RemeDi (+ Remask SFT) 71.1 85.2 81.9 12.5
RemeDi (++ Remask RL) 72.2 87.7 85.4 24.8

Auto-regressive Models

LLaMA2 7B (Touvron et al., 2023) 51.5 57.3 - -
Deepseek 7B (Bi et al., 2024) 68.5 49.4 - -
LLaMA3 8B (Dubey et al., 2024) 75.5 82.4 - -

alpaca-eval：
-1
424，425 ,428
humaneval
1,
208 ，209，216

step 424

step 425

step 428

step 251

step 252

step 253

step 208

step 209

step 216

step 208

step 209

step 216

step 424

step 425

step 428

step 420

step 424

step 425

Figure 3: An example of the step-by-step generation process. Green and Red are already unmasked
in the inputs. Red tokens are remasked. Blue tokens are unmasked in the outputs. Gray tokens
remain masked, and we display the token with the highest probability at these positions. More
examples can be found in AppendixA.

in common knowledge answering (85.2% on ARC-C) and instruction following (81.9% on IFEval)
tasks. It also aligns well with human preference (12.5% on AlpacaEval), outperforming other DLMs
such as Dream and LLaDA.

After Remask RL, RemeDi achieves further improvements across a wide range of math, coding and
general tasks. For example, the accuracies on GSM8K and MATH reach 89.1% and 52.9% respec-
tively, outperforming all compared DLMs and AR models. Among all the benchmarks, RemeDi
achieves its most substantial improvement on the AlpacaEval (Dubois et al., 2024) benchmark, with
a +12.3% gain over the Remask SFT model. This demonstrates the effectiveness of our approach in
post-training the model’s ability for a broad range of tasks.

4.2 VISUALIZATION AND ANALYSIS

We visualize how remasking improves text generation in RemeDi in Fig. 3. The model initially gen-
erated the token “making.” After generating the object “tests and estimators,” it found that “making”
is not the proper verb in this verb-object structure. Thus, the model remasks it and opts for the
more appropriate “developing.” This example shows RemeDi’s ability to iteratively refine its output
content. We provide more examples in Appendix A, demonstrating that RemeDi is able to perform
a variety of operations such as replacing, inserting and deleting with the remask mechanism.

To provide a quantitative analysis, we calculate the frequencies of remasking in a block of length
32 on MATH-500 (Lightman et al., 2023), HumanEval (Chen et al., 2021), and AlpacaEval (Dubois
et al., 2024). In Fig. 4, we can see that remasking occurs most frequently in code generation, fol-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) MATH-500 (11.81± 10.23) (b) HumanEval (28.52± 12.04) (c) Alpaca-Eval (2.78± 5.33)

Figure 4: Distribution of remasking frequencies per block across different evaluation datasets. The
numbers in parentheses indicate the mean and standard deviation for each dataset.

Table 3: Statistics of the remasking frequencies per block (block size is fixed to 32) when generating
responses to questions with different difficulty levels in MATH-500.

Difficulty Level Remasking Frequencies / Block Accuracy

1 9.13± 9.54 86.04%
2 8.91± 7.29 80.21%
3 10.13± 8.64 64.48%
4 13.91± 11.44 50.00%
5 13.95± 11.12 19.25%

lowed by mathematical reasoning, and general tasks. This pattern may be attributed to differences in
structural constraints: code requires strict syntactic correctness, and mathematical solutions demand
formally structured derivations, whereas responses to open-ended problems allow more flexibility.

We also analyzed remasking frequencies across different difficulty levels on MATH-500, as shown
in Tab. 3. RemeDi tends to remask more frequently as the difficulty increases, rising from about 9
tokens per block at level 1–2 to nearly 14 tokens at level 4–5. This pattern suggests that iterative
refinement becomes increasingly necessary for harder problems.

4.3 ABLATION STUDIES

Remask SFT We compare the improvement brought by the Remask SFT (introduced in Sec. 3.2.1)
with that of vanilla SFT, under the same training configuration detailed in Appendix B.2.5. We start
from a baseline model that has already completed the warm-up phase tuning for variable-length
block-wise generation, and perform training on the full code-category dataset and the open2math-
1M-gpt-4.1-mini dataset mentioned in Appendix B.2.1. As shown in Tab. 4, Remask SFT outper-
forms vanilla SFT on all benchmarks, especially on MATH-500 (+2.6%) and HumanEval (+1.8%),
demonstrating that Remask SFT is an effective training method to improve DLM’s performance.

Remask RL We compare Remask RL with LLaDOU RL (Huang et al., 2025), another algo-
rithm that also reinforces the whole generation trajectories in the reverse diffusion process. Since
LLaDOU RL is developed on LLaDA, we also implement Remask RL on LLaDA for the sake of
fair comparison. All experiments are conducted on GSM8K with a generation length of 256, 64

Table 4: Experiment results after supervised tuning with different algorithms. The baseline model
is already tuned to be a variable-length block-wise generation DLM (see Appendix B.2.2).

Method GSM8K MATH-500 HumanEval MBPP

Baseline 80.3 34.7 41.5 42.6
Vanilla SFT 83.1 40.1 48.2 43.4
Remask SFT 83.6 42.7 50.0 44.0

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: GSM8K pass@1 accuracy comparison between Remask and LLaDOU RL

Training Steps Remask RL LLaDOU RL
50 80.00% 77.58%
100 81.40% 78.86%
150 81.59% 80.00%
200 83.33% 82.35%

denoising steps, a block length of 64, and temperature 0.7, while all other hyperparameters follow
the LLaDOU setup (see Appendix B.2.5).

Remask RL demonstrates advantages in both convergence speed and performance. As shown in
Tab. 5, Remask RL achieves a higher final accuracy of 83.33%, with a particularly noticeable im-
provement in early training stages (e.g., 80.00% vs. 77.58% at step 50). This indicates that the more
flexible remask process contributes to both faster convergence and stronger model performance.

5 CONCLUSION

In this paper, we introduce the Remasking-enabled Diffusion Language Model (RemeDi), a new
self-reflective remasking mechanism to address the limitation of existing mask-based DLMs that
they cannot revise generated tokens. In RemeDi, remasking is achieved by predicting a confidence
score to identify noisy tokens, allowing them to be remasked and then resampled with richer context
in later steps.

Through a two-stage training pipeline of Remask SFT and Remask RL, RemeDi achieves the state-
of-the-art performance among open-source DLMs. Our analysis further shows that the learned con-
fidence scores provide a reliable signal of per-token quality during generation. RemeDi opens a
promising direction for self-reflective text generation, further releasing the full potentials of DLMs
to solve complex tasks with higher quality.

6 REPRODUCIBILITY STATEMENT

We provide an anonymous link containing the inference code and model weights, details of the
datasets and configurations used in both Remask SFT and RL in Appendix B.2, and the evaluation
settings in Appendix B.3.

REFERENCES

ajibawa 2023. Maths-college. Hugging Face Datasets. URL https://huggingface.co/
datasets/ajibawa-2023/Maths-College.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
ald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria

10

https://huggingface.co/datasets/ajibawa-2023/Maths-College
https://huggingface.co/datasets/ajibawa-2023/Maths-College

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
don Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary,
Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry
Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
sandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
https://arxiv.org/abs/2505.00949.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Nima Fathi, Torsten Scholak, and Pierre-André Noël. Unifying autoregressive and diffusion-based
sequence generation. arXiv preprint arXiv:2504.06416, 2025.

Itai Gat, Heli Ben-Hamu, Marton Havasi, Daniel Haziza, Jeremy Reizenstein, Gabriel Synnaeve,
David Lopez-Paz, Brian Karrer, and Yaron Lipman. Set block decoding is a language model
inference accelerator. arXiv preprint arXiv:2509.04185, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

11

https://arxiv.org/abs/2505.00949

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhehao Guo, Jiedong Lang, Shuyu Huang, Yunfei Gao, and Xintong Ding. A comprehensive review
on noise control of diffusion model. arXiv preprint arXiv:2502.04669, 2025.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
operations. arXiv preprint arXiv:2506.09018, 2025.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu,
Zhenwen Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable mathemat-
ical dataset for advancing reasoning. 2025. URL https://arxiv.org/abs/2504.11456.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Chihan Huang and Hao Tang. Ctrldiff: Boosting large diffusion language models with dynamic
block prediction and controllable generation. arXiv preprint arXiv:2505.14455, 2025.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Hynek Kydlı́ček. Math-verify: A robust mathematical expression evaluation system. https:
//github.com/huggingface/Math-Verify, 2025.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Jijie Li, Li Du, Hanyu Zhao, Bo wen Zhang, Liangdong Wang, Boyan Gao, Guang Liu, and Yonghua
Lin. Infinity instruct: Scaling instruction selection and synthesis to enhance language models,
2025. URL https://arxiv.org/abs/2506.11116.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei
Shen, Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling
preference data curation via human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

12

https://arxiv.org/abs/2504.11456
https://arxiv.org/pdf/2411.04905
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2506.11116

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

Konstanty Marczak. science qa. Hugging Face Datasets, 2023. URL https://huggingface.
co/datasets/KonstantyM/science_qa.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math, 2024.

mlfoundations dev. open2math-1m-gpt-4.1-mini. Hugging Face Datasets, 2025. URL https:
//huggingface.co/datasets/mlfoundations-dev/open2math-1M-gpt-4.
1-mini.

Dhruv Nathawani, Shuoyang Ding, Vitaly Lavrukhin, Igor Gitman, Somshubra Majumdar,
Evelina Bakhturina, Boris Ginsburg, and Jane Polak Scowcroft. Nemotron-Post-Training-
Dataset-v2, August 2025. URL https://huggingface.co/datasets/nvidia/
Nemotron-Post-Training-Dataset-v2.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy opti-
mization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kaggle.
com/m/3301.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized interpolating discrete diffusion. arXiv preprint arXiv:2503.04482, 2025.

13

https://huggingface.co/datasets/KonstantyM/science_qa
https://huggingface.co/datasets/KonstantyM/science_qa
https://huggingface.co/datasets/mlfoundations-dev/open2math-1M-gpt-4.1-mini
https://huggingface.co/datasets/mlfoundations-dev/open2math-1M-gpt-4.1-mini
https://huggingface.co/datasets/mlfoundations-dev/open2math-1M-gpt-4.1-mini
https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v2
https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v2
https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025a.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025b.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
arXiv preprint arXiv:2504.14655, 2025.

Tengyu Xu, Eryk Helenowski, Karthik Abinav Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shao-
liang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou, et al. The perfect blend: Redefining rlhf with
mixture of judges. arXiv preprint arXiv:2409.20370, 2024.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
diverse, challenging, and verifiable synthetic dataset for coding. arXiv preprint arXiv:2503.02951,
2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

A GENERATION PROCESS OF REMEDI

To better understand how RemeDi leverages the remasking mechanism, we visualize intermediate
steps when solving math, code, and open-ended problems. Since the full responses are usually
long, we focus on the token segment where critical remasking occurs. In the following figure, green
boxes indicate already generated tokens, blue boxes represent tokens unmasked in this step, red
boxes denote tokens remasked in this step, and gray boxes represent tokens that remain masked,
showing the token with the highest probability. Key tokens are highlighted with bounding boxes.

We find that remasking enables diverse forms of revision beyond simple correction, including:

14

https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Correcting calculation errors: Remask can correct calculation errors. As shown in Fig. 5,
the model initially predicted “\div” as the most probable operator and generated “0”.
However, since the actual operator generated was “\mod”, the model remasked the previ-
ous “0” and regenerated “5” as the correct result.

• Refining text quality: Remasking allows more precise wording. In Fig 6, the initially
generated phrase “methyl group” is not adequate when answering this problem. RemeDi
replaces them with more precise term “secondary carbon” by remasking.

• Merging adjacent tokens: When two consecutive tokens correspond to a single vocabu-
lary token, RemeDi may remask them and merge into one, thereby freeing a slot for sub-
sequent generation. In Fig. 7, the separate tokens “,” and “\” were remasked and merged
into the single token “,\”, releasing one token slot.

• Splitting tokens: Conversely, the model can split a token into smaller parts to fill idle
positions, ensuring that no tokens remain unused and the denoising process can complete.
In Fig. 8, to fill in the slot before “Mish”, RemeDi remasks “Mish” and regenerates it as
two tokens, “M” and “ish”.

• Inserting tokens: Remasking also supports insertion. In Fig. 9, to add the word “again”
before “bounces”, the model first remasked the two tokens “b” and “ounces”, and then
regenerated the sequence with the insertion.

• Deleting tokens: Finally, remasking can delete tokens and replace them with nothing or
control symbols. In Fig. 10, the phrase “per hour →” was removed and replaced with a line
break.

These cases illustrate that remasking gives RemeDi considerable freedom to revise its outputs in
multiple ways, greatly extending the flexibility of diffusion-based text generation.

Moreover, we illustrate the predicted confidence scores in Fig. 11. In general, unmasked tokens
receive higher confidence scores hθ than masked tokens, unless the model judges them as unreliable
and decides to remask them. For example, see the tokens “say” in Fig. 11b and “in” in Fig. 11c.
Interestingly, these tokens that are eventually remasked already exhibit relatively low confidence at
the step when they were first predicted, as reflected by the lighter background green shading. This
suggests that the model was uncertain about them from the start. Once more context is revealed
in subsequent steps, RemeDi is able to revise such low-confidence tokens into more appropriate
alternatives.

B EXPERIMENT DETAILS

B.1 DUAL-STREAM MODEL STRUCTURE

We construct TPS with the same transformer structure as LLaDA (Nie et al., 2025), comprising 32
transformer blocks. The model weights in this stream are initialized with LLaDA-8B-Instruct. For
the UPS, we stack four transformer blocks with the same hidden dimension to construct a smaller
network with random initialization. These two streams are weakly coupled via bi-directional con-
nections at TPS blocks 1, 11, 21, and 31. At each connection point, the output from the previous
TPS block is added to the current UPS feature to form the input for the next UPS block, while the
output of the current UPS block is added to the output of the corresponding TPS block before it is
passed onward. Thus, both streams enrich their representation with features from each other. To pre-
serve the TPS’s original capability inherited from the pretrained weights, we add a zero-initialized
projection (Zhang et al., 2023) on the connections from UPS to TPS. This ensures that the model’s
token prediction behavior is unchanged at the beginning of training, and gradually learns to predict
the confidence for unmasking tokens in a diffusion process. The model comprises a total of 8.9B
parameters.

B.2 TRAINING CONFIGURATIONS AND DATASETS

B.2.1 DATASETS

We use both high quality public datasets and in-house data for training, including four major cate-
gories: mathematics, code, general conversation, and science. The mathematics category includes

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

step 238

step 239

step 240

step 237

EvalResult/0912/MixData-block-remask-llada-base-low-temp-MATH500-
step32-2025-09-11-00018-gpus32-batch1-bf16-block-remask-llada-general-
v2.7-ckpt-000111, only number, -9

Figure 5: An example of correcting calculation errors with remasking. Question: A group of N
students, where N < 50, is on a field trip. If their teacher puts them in groups of 8, the last group
has 5 students. If their teacher instead puts them in groups of 6, the last group has 3 students. What
is the sum of all possible values of N?

step 83

step 84

step 91

text refine

Figure 6: An example of refining text quality with remasking. Question: What is the major outcome
of the reaction between 4,4-dimethylcyclopent-1-enol and bromine?

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

合并 11，15，20

step 11

step 20

gpqa, rank6_iter1_index0_reward1.0

step 12

Figure 7: An example of merging adjacent tokens. Question: A quantum mechanical particle of
mass m moves in two dimensions in the following potential, as a function of (r, θ) : V (r, θ) =
1/2kr2 + 3/2kr2 cos2(θ) Find the energy spectrum.

拆分

MixData-block-remask-llada-base-low-temp-gsm8k-step32-2025-09-
15-00003-gpus32-batch1-bf16-v2.8-no-general-exact-split-add-
mmlu-arc-ckpt-000126/rank5_iter3_index0_reward1.0

step 27

step 26

step 25

Figure 8: An example of splitting tokens. Question: Mishka bought 3 pairs of shorts, 3 pairs of
pants, and 3 pairs of shoes. One pair of shorts costs $16.50. One pair of pants costs $22.50 and one
pair of shoes costs $42. How many dollars did Mishka spend on all the clothing items?

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

MixData-block-remask-llada-base-low-temp-gsm8k-step32-2025-09-15-00000-gpus32-batch1-bf16-
v2.8-no-general-exact-split-resume-no-optim-ckpt-000146, rank4_iter155_index0_reward1.0
插入：198，199，201，203.209

step 198

step 199

step 201

step 203

step 209

Figure 9: An example of inserting tokens. Question: Nathan has a bouncy ball that bounces to
2/3rds of its starting height with each bounce. If he drops it from the third-floor balcony in the mall,
where each story is 24 feet high, how high does the ball go on its second bounce?

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

EvalResult/0913/MixData-block-remask-llada-base-low-temp-
gsm8k-step32-2025-09-15-00000-gpus32-batch1-bf16-v2.8-no-
general-exact-split-resume-no-optim-ckpt-000146
rank0_iter114_index0_reward1.0
删除：44，61，64

step 44

step 61

step 64

Figure 10: An example of deleting tokens. Question: When Billy was first hired, he was paid at a
rate of $10 per hour. After 2 months, he was given a raise of $0.50 per hour. On his first anniversary
at work, he was given a raise of $1.00 per hour. Sally just started working at a different business,
and her starting salary is $0.50 more per hour than Billy’s starting salary was. If both Billy and
Sally work 20 hours, how much more money will Billy earn than Sally, in dollars?

NuminaMath-CoT (LI et al., 2024), MetaMathQA (Yu et al., 2023), orca-math-word-problems-200k
(Mitra et al., 2024), Maths-College (ajibawa 2023), DeepMath-103K (He et al., 2025), MathInstruct
(Yue et al., 2023), and open2math-1M-gpt-4.1-mini (mlfoundations dev, 2025). The code category
comprises evol-codealpaca-v1 (Luo et al., 2023), opc-sft-stage1 (Huang et al., 2024), and KodCode-
V1-SFT-4o (Xu et al., 2025). General conversation data is drawn from open-perfectblend (Xu et al.,
2024) and Infinity-Instruct (Li et al., 2025). The science category incorporates the science qa (Mar-
czak, 2023) dataset. In total, the public datasets provide roughly 18.8M samples. The in-house data,
containing about 140K samples of prompt-response pairs, was primarily generated by GPT-4.1 and
covers mathematics, code, science, and instruction-following tasks. These generated samples went
through a human check to ensure overall quality.

B.2.2 VARIABLE-LENGTH BLOCK-WISE GENERATION

We first adapt LLaDA into a DLM capable of variable-length generation. The underlying archi-
tecture remains unchanged, but we fine-tune it for variable-length block-wise generation. During
inference, generation proceeds block by block, where each block consists of L = 32 tokens. For
each block, the model runs a full reverse diffusion process until the block is fully denoised, after
which the completed block is appended to the context. The next block is then generated in the same
manner, continuing until an <eos> token appears. Similar to auto-regressive (AR) models, we en-
force causality using a block-wise causal mask in the self-attention layers: each token can attend to
all tokens within its current block and all tokens in previously generated blocks, but never to tokens
in future blocks.

For supervised finetuning, the response part is divided into blocks of length L = 32, with the last
incomplete block padded by <eos> tokens. The training objective is to recover a noised version of
each block conditioned on all previous clean blocks. Following Arriola et al. (2025), we concatenate
both the clean blocks and their corresponding noised versions into a single input sequence, allowing
all blocks to be trained jointly in one forward–backward pass.

In this stage, we train variable-length block-wise generation with learning rate 2 × 10−6, batch
size 160, and a gradient threshold of 1.0. The baseline model in Table 4 reports the results of the
variable-length block-wise model on several datasets, alongside the comparisons when Remask SFT
and Remask RL added to this baseline model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

EvalResult/0919/MixData-block-remask-llada-base-low-temp-gsm8k-step32-2025-09-
18-00011-gpus32-batch1-bf16-v2.8-no-general-exact-split-add-mmlu-arc-add-rstar-
ckpt-000101
5
80,81,85,87

step 80

step 81

step 85

step 87

alpaca-eval,7
389,401，408，411

step 389

step 402

step 408

step 411

Hi, I need to find the area of a 20 sided die for my
math homework. Can you help me do that?

(a) Question from GSM8K: Ophelia and Jenna are living in the same apartment building. They each have 2
fewer sofas than chairs. Jenna has 3 times as many chairs as Ophelia. If Ophelia has 20 sofas, calculate the
total number of sofas and chairs that they have.

EvalResult/0919/MixData-block-remask-llada-base-low-temp-gsm8k-step32-2025-09-
18-00011-gpus32-batch1-bf16-v2.8-no-general-exact-split-add-mmlu-arc-add-rstar-
ckpt-000101
5
80,81,85,87

step 80

step 81

step 85

step 87

alpaca-eval,7
389,401，408，411

step 389

step 402

step 408

step 411

Hi, I need to find the area of a 20 sided die for my
math homework. Can you help me do that?

(b) Question from Alpaca-Eval: Hi, I need to find the area of a 20-sided die for my math homework. Can you
help me do that?

alpaca-eval,9
100, 108，112，115

step 100

step 108

step 112

step 115

Can a boy and girl be just be
best friends only ever

(c) Question from Alpaca-Eval: Can a boy and girl ever just be best friends?

Figure 11: Visualization of per-token confidence scores predicted by UPS. The darkness of the
background color indicates the value of hi

θ — darker means larger. The font color indicates different
type of tokens: Green and red tokens are already unmasked in the input sequence of the current
step. Red tokens are remasked. Blue tokens are newly unmasked in the outputs. Gray tokens keep
masked in the outputs, and we display the token with the highest probability at these positions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.2.3 REMASK SFT

After finetuning LLaDA for variable-length block-wise generation, we attach the Unmasking Policy
Stream (UPS) to construct the model architecture shown in Fig. 2. We then further train RemeDi
with Remask SFT with λUPS = 0.3. For optimization, we apply a learning rate of 2.0 × 10−5 to
the newly introduced parameters in UPS, while keeping the learning rate for the original parameters
at 2.0× 10−6.

B.2.4 REMASK RL

To enable effective RL training, we curated a dataset spanning mathematics, coding, STEM,
instruction-following and preference-alignment tasks:

• Math: GSM8K(Cobbe et al., 2021), MATH(Hendrycks et al., 2021), DeepScaleR(Luo
et al., 2025)

• Code: KodCode-V1-SFT-R1(Xu et al., 2025), LeetCodeDataset(Xia et al., 2025)

• General: Skywork-Reward-Preference-80K-v0.2(Liu et al., 2024), Llama-Nemotron-
Post-Training-Dataset-RL (instruct-following)(Bercovich et al., 2025), Nemotron-Post-
Training-Dataset-v2 (stem)(Nathawani et al., 2025)

To ensure quality, we applied the following filters:

• Length: Since our RL training limits generation length to 1024 tokens, we discard any
sample—question plus answer or question alone—exceeding this bound.

• Verifiable: For math data, When both a short answer and a detailed response are available,
we keep the sample only if the two answers match; for code data, we require that the
provided solution passes all test cases.

• Deduplication: Given the diverse sources, we perform global deduplication using Min-
HashLSH .

Reward Design. Our reward function incorporates two distinct types of reward signals:

• Verifiable Reward: Verifiable rewards are widely used in mathematics, code, and STEM
domains, where the answer is first extracted and then verifies it: math and STEM via Math-
Verify (Kydlı́ček, 2025), and code via executing test cases and computing the pass rate. We
also incorporated verifiable instruction-following samples with IFEval (Zhou et al., 2023)
format to further improve the model’s ability to follow instructions.

• Model-based Reward: We incorporated the Skywork-Reward-V2-Llama-3.1-8B (Liu et al.,
2025), which was trained on human preference data, to evaluate response quality. Each
response is assigned a scalar reward score reflecting human preference, thereby enhancing
the model’s ability to produce outputs that better align with human preference during RL
training.

We optimized the model using the AdamW optimizer with a learning rate of 5.0 × 10−6, β =
(0.9, 0.999) and a maximum gradient norm of 1.0, for a total of 100 training steps.

B.2.5 ABLATION SETUP

We provide detailed configurations for ablation studies in Sec. 4.3.

Remask SFT Both the vanilla SFT model and the Remask SFT model are trained with identical
hyper-parameters: block size 32, maximum generation length 1024, global batch size 80, and a total
of 3000 training steps. We use the AdamW optimizer with a learning rate of 2.0 × 10−5 in newly
added parameters of UPS and of 2.0 × 10−6 in original TPS parameters, β = (0.9, 0.999), and a
maximum gradient norm of 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 2 Remask RL
Require: Model parameters θ, a dataset D, and reward func.
1: while θ not converged and maximum epochs not reached do
2: Sample questions q ∼ D
3: for g = 1 to G do ▷ Generate a group of G trajectories
4: Initialize xg

t0
with q and mask tokens.

5: for n = 1 to N do ▷ N denotes the number of denoising steps
6: Calculate the ranking score hθ,n for each token
7: Sample Kn positions to unmask in this step: Un ∼ Plackett-Luce(hθ,n,Kn)

8: Sample xg,i
tn

∼ piθ,n(·|xg
tn−1

), ∀i ∈ Un, x
g,i
tn−1

= [M]
9: end for

10: rg = reward func(q, xg
tN

) ▷ Compute the rewards
11: end for
12: for g = 1 to G do ▷ Compute the advantages as in GRPO
13: Ag = rg−mean(r1:G)

std(r1:G)

14: end for
15: for n = 1 to N do ▷ Compute πθ and losses for each denoising step
16: πθ,n(x

g
tn
|xg

tn−1
) = πunmask

θ,n (Ug
n|xg

tn−1
) · πtoken

θ,n (xg
tn
|xg

tn−1
,Ug

n) ▷ see Eq. 8

17: Lθ,n = − 1
G

∑G
g=1

πθ,n(x
g
tn

|xg
tn−1

)

πold,n(x
g
tn

|xg
tn−1

)
Ag

18: Calculate the gradient ∇θLθ,n

19: end for
20: Update θ with accumulated gradients

∑N
n=1 ∇θLθ,n along the descent direction

21: end while

Remask RL Both Remask RL and LLaDOU RL are trained on LLaDA using identical RL hyper-
parameters. Specifically, roll-outs are generated with temperature 0.7, generation length 256, block
length 64, and N = 64 denoising steps. Each batch consists of 16 prompts, with each prompt
generating G = 16 roll-outs, for a total of 200 training steps. We use the AdamW optimizer with a
learning rate of 5.0 × 10−6, β = (0.9, 0.999), and a maximum gradient norm of 1. The complete
training algorithm is elaborated in Alg. 2.

B.3 EVALUATION DETAILS

B.3.1 INFERENCE SETTINGS

RemeDi For evaluation, RemeDi uses a maximum generation length of 2048 on MATH and 1024
on all other datasets. At each step, only one token is unmasked, with a block size of 32 for genera-
tion. Both TPS and UPS adopt greedy sampling.

LLaDA The evaluation of LLaDA largely follows (Nie et al., 2025). On GSM8K and MATH,
we set the generation length to 256 with a block length of 8, unmasking one token per step in a
semi-autoregressive manner with greedy sampling. On HumanEval and MBPP, we use a generation
length of 512 with a block length of 32, while keeping all other settings unchanged.

LLaDA + ReMDM We implemented ReMDM (Wang et al., 2025a) on top of LLaDA(Nie et al.,
2025). Specifically, we adopted the “ReMDM-cap + Switch” configuration with ηcap = 0.04 and
tswitch = 0.55. For evaluation, we set the generation length to 256/256/512/512 and the block length
to 8/8/32/32 for GSM8K, MATH, HumanEval, and MBPP, respectively.

B.3.2 BENCHMARKS

Here we provide the detailed input prompts and how the metrics are computed for different bench-
marks:

GSM8K GSM8K evaluates multi-step mathematical reasoning in elementary problems (Cobbe
et al., 2021). We illustrate below a zero-shot prompt used to evaluate the model. After generation, we

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

extract the answer in “boxed{}” from the response, and check if it is equivalent to the ground truth
with the scripts developed by Hendrycks et al. (2021). We report the accuracy on this benchmark.

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market? (Please
put the final answer in \boxed{} tag, i.e. $\boxed{answer here}$)

MATH MATH contains 5,000 challenging competition mathematics problems (Hendrycks et al.,
2021). We evaluate the model in a zero-shot setting, with prompts like the one below. After gener-
ation, we extract the answer in “boxed{}” from the response, and verify if it is equivalent to the
ground truth with the scripts developed by Hendrycks et al. (2021).

Convert the point $(0,3)$ in rectangular coordinates to polar coordinates.
Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le
\theta < 2 \pi.$ (Please put the final answer in \boxed{} tag, i.e.
$\boxed{answer here}$)

GPQA GPQA is a challenging multiple-choice benchmark for testing LLM’s complex scientific
reasoning and specialized knowledge domains (Rein et al., 2023). We used all 448 questions from
the main version of GPQA and evaluated the model in a zero-shot setting with the prompt shown
below. We select the token with the highest probability at the <mdm_mask> position as the final
answer, and report the pass@1 on this benchmark.

<|startoftext|><|start_header_id|>user<|end_header_id|>

What is the correct answer to this question: A large gene has dozens of
exons, of which the central ones code for folded triple helical repeats
that connect the cytoskeleton with sarcolemma and extracellular space.
Each exon usually codes for one folded triple alpha helix. The most common
mutations of the gene are central exon deletions that create out-of-frame
peptides and progressive degenerative organ waste. A solution is to deliver
a Morpholino that recognizes the 5’ end of the out-of-frame exon in pre-
mRNA. The molecule prevents binding of the spliceosome and creates exon
skipping and in-frame joining. Several missing exons are well tolerated by
an organism. Which structure below is not involved in the proposed therapy?
Choices:
(A) lariat
(B) R-loops
(C) antisense
(D) polyA tail
Answer:Your answer should in the format ’The best answer is
[the_answer_letter]’ where the [the_answer_letter] is one of (A), (B), (C)
or (D).<|eot_id|><|start_header_id|>assistant<|end_header_id|>

The best answer is <mdm_mask>.

MBPP MBPP consists of 500 python programming problems for entry level programmers (Austin
et al., 2021). We evaluate the model with the prompt below in a zero-shot setting. After generation,
we extract the python code from the response, and check if it passes all test cases associated with
this problem, and report pass@1 on this benchmark.

You are an expert Python programmer.Your task is to complete the
implementation of a function named `remove Occ`.

** TARGET FUNCTION **

Write a python function to remove first and last occurrence of a given
character from the string.

** UNIT TESTS **

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Your code should pass unit tests like:
assert remove Occ("hello", "l") == "heo"
assert remove Occ("abcda", "a") == "bcd"
assert remove Occ("PHP", "P") == "H"

Here is the function to complete:
```python
def remove Occ(input param 1, input param 2):

"""Write a python function to remove first and last occurrence of a
given character from the string."""

```

HumanEval HumanEval consists of 164 hand-written programming problems (Chen et al., 2021).
We evaluate the model on it with the prompt below in a zero-shot setting. After generation, we
extract the Python code from the response, and check whether the output function passes all the
provided test cases; we then report the pass@1 on this benchmark.

You are an expert Python programmer, Python code should be placed between
the line of ```python and the line of ``` for easy extraction later, and
here is your task:
```python
from typing import List
def has close elements(numbers: List[float], threshold: float) -> bool:

"""Check if in given list of numbers, any two numbers are closer to
each

other than the given threshold.

Examples:
>>> has close elements([1.0, 2.0, 3.0], 0.5)
False
>>> has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

```

Hellaswag Hellaswag is a benchmark dataset specifically designed to evaluate machine common-
sense reasoning capabilities (Zellers et al., 2019). It primarily assesses a model’s ability to infer the
most plausible subsequent event based on given contextual information in natural language under-
standing tasks. We evaluate the model in a zero-shot setting on Hellaswag. We follow the approach
of (Nie et al., 2025), incorporating Classifier-Free Guidance (CFG) and set the CFG weight to 0.5.
Under CFG intervention, the model simultaneously computes conditional predictions (based on the
given context) and unconditional predictions (absent specific context), guiding the generation pro-
cess by scaling the difference between them. The final accuracy is calculated based on the model’s
normalized probability assigned to the correct option.

ARC-C ARC-C is a highly challenging benchmark dataset specifically designed to evaluate ma-
chine abstract reasoning and scientific problem-solving capabilities (Clark et al., 2018). We evaluate
the model in a zero-shot setting on ARC-C, with the prompt below. After generation, we extract the
answer after ’The best answer is’ , and report the pass@1 rate on this benchmark.

Given the following question and four candidate answers (A, B, C and
D), choose the best answer.
Question: An astronomer observes that a planet rotates faster after a
meteorite impact. Which is the most likely effect
of this increase in rotation?
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Your response should end with "The best answer is [the_answer_letter]"

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where the [the_answer_letter] is one of A, B, C or D.

IFEval IFEval evaluates the model’s instruction-following capability with verifiable instructions
(Zhou et al., 2023). We use the official evaluation code provided by the IFEval Benchmark, and
compute the model’s accuracy based on the loose metric.

AlpacaEval AlpacaEval evaluates the model’s instruction-following capability with the LLM-
as-a-Judge methodology (Dubois et al., 2024). As officially recommended by the AlpacaE-
val benchmark, we use GPT4-1106-preview as the baseline/reference model and the
weighted_alpaca_eval_gpt4_turbo as the evaluator/annotator, and assess the win rate of
the responses generated by RemeDi under length-controlled conditions to eliminate the confounding
effect of response length.

C MORE EXPERIMENTS

C.1 COMPARISON WITH SEED DIFFUSION

Since the official Seed Diffusion model and implementation are not publicly available, we do our
best to reproduce it. For a fair comparison, we train seed diffusion under the same base model and
identical training configuration as in Appendix B.2.5. As shown in Table 6, Remask SFT consis-
tently outperforms Seed Diffusion, demonstrating the advantage of learning an explicit remasking
policy during training.

Table 6: Unified head-to-head comparison with other training algorithms under identical settings.

Method GSM8K MATH-500 HumanEval MBPP
Baseline 80.3 34.7 41.5 42.6
Vanilla SFT 83.1 40.1 48.2 43.4
Seed Diffusion 63.9 28.0 5.4 9.8
Remask SFT 83.6 42.7 50.0 44.0

C.2 PREDICTOR–CORRECTOR VS. LEARNED REMASK POLICY

We apply a representative predictor-corrector sampler, ReMDM (Wang et al., 2025a), to RemeDi-
Instruct. The evaluation setup is the same as in Appendix B.3.1. The results in Table 7 show that our
learned remasking policy (via Remask SFT) is more effective than the random remasking strategy
employed in predictor-corrector samplers.

Table 7: Comparison between our learned remask policy in RemeDi and the ReMDM predictor-
corrector, both evaluated with RemeDi-Instruct.

Method GSM8K MATH-500 HumanEval MBPP
RemeDi + predictor-corrector 58.3 38.7 39.6 54.2
RemeDi (Ours) 86.3 52.2 71.3 57.8

C.3 EFFECT OF DIFFERENT SAMPLERS

To isolate the effect of our multi-task objective and incorrect-token augmentation, we compared
vanilla samper, adaptive samper(Kim et al., 2025) and our remask sampler under the same Remask
SFT model in Table 8.

C.4 MATCHED-COMPUTE ABLATION: EXTRA SFT VS. REMASK RL

To directly address whether performance gains come from RL or merely additional training time,
we conduct a matched-compute ablation: we continue training the RemeDi-Instruct model for an

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 8: Effect of different samplers under the same Remask SFT model.

Sampler GSM8K MATH-500 HumanEval MBPP IFEval
Vanilla 86.3 38.3 43.9 55.4 69.2
Adaptive(Kim et al., 2025) 86.6 40.3 43.9 55.4 69.2
Remask (Ours) 86.3 52.2 71.3 57.8 81.9

extra 2,000 steps (which consumes approximately 32 H800-days, the same compute as used in the
RL stage) and evaluate its performance. The results are summarized in Table 9:

Table 9: Matched-compute ablation between extra SFT training and Remask RL.

GSM8K MATH-500 HumanEval MBPP
RemeDi-Instruct 86.3 52.2 71.3 57.8
+ ∼32 H800-days SFT training 83.6 52.6 62.8 57.8
+ ∼32 H800-days RL training 89.1 53.2 73.2 59.4

C.5 UPS STRUCTURE ABLATIONS

Table 10 reports ablations on UPS components, showing that removing either the bi-residual con-
nections or the zero-init bridge leads to clear performance degradation. We train all models under
the same base model and identical training configuration as in Appendix B.2.5

Table 10: UPS structure ablations. Removing either the bi-residual connections or the zero-init
bridge degrades performance

GSM8K MATH-500 HumanEval MBPP

Baseline 83.6 42.7 50.0 44.0
w/o bi-residuals 76.6 43.1 45.7 42.2
w/o zero-init 75.2 42.7 45.1 44.8

C.6 EFFECTIVENESS OF RL

To assess the effect of RL, we compare the per-token remask frequencies between the SFT-only
model and the RL-trained model. Interestingly, the RL-trained model performs more remasking on
average. As shown in Table 11, higher remask frequency correlates with improved performance,
suggesting that additional remasking provides more opportunities for RemeDi to detect and correct
early-step errors.

D EXTRA VISUALIZATION

Fig. 12 compares the per-token remask frequency of the SFT-only model and the RL-trained model
on GSM8K. We observe that RL training consistently increases the remask frequency, suggesting
that the RL objective explicitly encourages the model to revise uncertain tokens more often, which
correlates with the observed improvement in final answer quality.

Fig. 13 reports the remask ratios at different timesteps when inferencing on GSM8K. The ratio
first increases and then steadily decreases as the denoising process converges. Since the number of
unmasked tokens Kn is explicitly controlled at each step, the process naturally terminates without
spikes of remasking in late stage.

Fig. 14 shows the throughput–performance trade-off of RemeDi compared to AR and DLM base-
lines. By adjusting the number of tokens denoised per step, RemeDi achieves acceleration in decod-
ing speed with only small drops in GSM8K accuracy. It forms a better Pareto front than LLaDA,
Dream, and other auto-regressive models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Average remask frequency (ARF) and performance across tasks. ARF measures how
many times each token is remasked on average during decoding.

GSM8K HumanEval AlpacaEval
Model Acc ARF Acc ARF Acc ARF

RemeDi (+ Remask SFT) 86.3 0.16 71.3 0.070 12.5 0.012
RemeDi (++ Remask RL) 89.1 0.56 73.2 0.89 24.8 0.086

Figure 12: Comparison of per-token remask frequency between the SFT-only (left) and the RL-
trained (right) model on GSM8K. The RL-trained model performs remasking more frequently on
average, indicating that RL encourages more remasking behavior.

Fig. 15 shows the reward curve for Remask-RL and LLaDOU-RL on GSM8K. Due to the larger
action space introduced by the remask operation, Remask-RL starts with a lower initial reward.
However, it quickly surpasses LLaDOU-RL within the early stages of training and maintains a
consistently higher reward thereafter. This trend is consistent with the accuracy comparison in Table
5, where Remask-RL demonstrates both faster convergence and a higher final performance.

THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in two limited ways: (1) for minor English polishing of the
paper text, and (2) as required by the AlpacaEval benchmark, where LLMs are invoked for automatic
evaluation.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 13: Average remask ratio across diffusion timesteps when inferencing on GSM8K. The re-
mask ratio rises during early steps and then gradually declines as the process converges. Because the
number of unmasked tokens Kn is explicitly defined at every diffusion step, the procedure ensures
stable remask termination and avoids late-stage re-emergence of remasking.

Figure 14: Throughput–performance trade-off of RemeDi compared with other AR and DLM mod-
els. By increasing the number of denoised tokens per step, RemeDi provides a smooth qual-
ity–latency trade-off. All results are measured with batch size 1 and sequence length 1024 on a
single H800 GPU.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 15: GSM8K training reward curves comparing Remask-RL and LLaDOU-RL. Solid lines
show EMA-smoothed rewards, and faint lines denote raw step-wise values. Remask-RL exhibits
faster early-stage improvement and ultimately reaches a higher reward, consistent with the perfor-
mance gains summarized in Table 5

29

	Introduction
	Related Work
	Mask-based Diffusion Language Models
	Revising Errors in Diffusion Language Models

	Methods
	Preliminaries: Mask-based Diffusion Language Models
	RemeDi
	Remask SFT
	Remask RL

	Experiments
	Results
	Visualization and Analysis
	Ablation Studies

	Conclusion
	Reproducibility statement
	Generation process of RemeDi
	Experiment Details
	Dual-Stream Model Structure
	Training Configurations and Datasets
	Datasets
	Variable-Length Block-Wise Generation
	Remask SFT
	Remask RL
	Ablation Setup

	Evaluation Details
	Inference Settings
	Benchmarks

	More Experiments
	Comparison with Seed Diffusion
	Predictor–Corrector vs. Learned Remask Policy
	Effect of Different Samplers
	Matched-Compute Ablation: Extra SFT vs. Remask RL
	UPS Structure Ablations
	Effectiveness of RL

	Extra Visualization

