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ABSTRACT

Mask-based Diffusion Language Models (DLMs) struggle to revise incorrect to-
kens: once a token is generated, it typically remains fixed. The key challenge
is to identify potential errors in the inputs. In this paper, we propose Remasking-
enabled Diffusion Language Model (RemeDi), a mask-based DLM that introduces
remasking as another fundamental mechanism, enabling more flexible text refine-
ment in diffusion-based text generation. To achieve this, RemeDi jointly predicts
token distributions and per-token confidence scores at each step. The confidence
scores determine which tokens to be unmasked after the current step, allowing
the model to identify tokens with low quality and remask them. These remasked
tokens can be resampled with richer context in subsequent steps. We design a
remask-aware pipeline to train this ability, including supervised fine-tuning which
teaches the model to detect and remask incorrect tokens in addition to predict mask
tokens, and reinforcement learning which optimizes full generation trajectories to-
ward higher rewards. Experiments show that RemeDi achieves the state-of-the-art
results among open-source DLMs on multiple datasets.

1 INTRODUCTION

Diffusion Language Models (DLMs) have recently emerged as a promising alternative to autore-
gressive language models (Nie et al., 2025} [Ye et al., 2025} [Lou et al.| 2024} |Arriola et al.|[2025). A
DLM defines a forward process that gradually corrupts text into a noise prior, and learns a reverse
process to recover clean text (Campbell et al.,2022;|Lou et al., 2024). Unlike autoregressive models,
DLMs do not commit to a fixed left-to-right order, offering greater flexibility in generation and an
inherent ability to predict multiple tokens in parallel.

A dominant variant is the mask-based DLM (Nie et al., 2025} Ye et al., 2025), where the noise is
represented by a special mask token. Under this formulation, the model learns to recover masked
tokens during training, while assuming that once tokens are unmasked, they are supposed to be cor-
rect without having to clean them later. This assumption is problematic: the model may generate
wrong tokens, which should be revealed and corrected in later steps when more contexts are avail-
able. However, most existing DLMs (Nie et al.,[2025;|Ye et al.,|2025) keep already unmasked tokens
fixed, preventing them from being revised by self-reflecting on errors.

To address this, several works have explored methods to revise generated tokens. |[von Riitte et al.
(2025)) defines a new noise schedule by interpolating between masking and uniform noise, enabling
revision of wrong tokens on small-scale models. Wang et al.| (2025a) applies predictor-corrector
samplers by stochastically remasking a subset of tokens only at inference time, where the remasking
is performed randomly without training the model how to find and remask incorrect tokens. For
large-scale DLMs, Seed Diffusion (Song et al.,|2025)) allows all tokens to be resampled at every step.
However, it lacks a mechanism to ensure that the number of mask tokens decreases monotonically
— it is a key feature for diffusion models to ensure decreasing noise levels over steps (Guo et al.,
2023)), so that the mask tokens will eventually vanish at the final step to complete the generation.

In this paper, we propose a self-reflective remasking approach to train DLMs. As illustrated in
Fig.|14] it aims to train DLMs with the ability of finding wrong tokens and turning them back to mask
ones so that they can be resampled with richer context in later steps. Based on this, we introduce
Remasking-enabled Diffusion Language Model (RemeDi), a mask-based DLM that incorporates
self-reflective remasking to revise already generated but incorrect tokens. RemeDi jointly predicts
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Figure 1: (a) [lustration of remasking for quality improvement: RemeDi initially predicts the token
“left”, but later identifies a semantic mismatch in the phrase “left for the pies”. The model then
remasks this token and corrects it to the more appropriate “used”. (b) RemeDi outperforms existing
DLMs in various tasks, including math, code and general benchmark.

token distributions and per-token confidence scores. At each diffusion step, high-confidence tokens
are unmasked while low-confidence ones are (re-)masked, regardless of whether they have been
previously unmasked.

The key challenge is to train the model how to remask incorrect tokens in a self-reflective manner.
To this end, we design a remask-aware training pipeline in two stages: 1) Remask SFT, where
the model learns to identify and remask incorrect tokens, while predicting masked tokens. We
construct an input sequence for Remask SFT by randomly masking its tokens or replacing them
with random alternatives to simulate the noise. The noise schedule deciding how many tokens
are masked or randomly replaced is designed to follow the criterion that the noise level should
monotonically decrease over steps. The model is then trained to remask and revise incorrect tokens
over noisy input sequences. 2) Remask RL, where the model is further fine-tuned with outcome-
based reinforcement learning. It seeks to optimize the entire generation trajectories toward final
outputs with higher rewards by considering how to remask and predict tokens in each step.

As shown in Fig.[Tb] RemeDi achieves the state-of-the-art performance among open-source DLMs,
achieving competitive results on various benchmark datasets, including math problems (89.1% on
GSMSK (Cobbe et al.,[2021), 52.9% on MATH (Hendrycks et al.,[2021))), code generation ( 73.2%
on HumanEval (Chen et al.,|[2021)), 59.4% on MBPP (Austin et al.||2021)), and general tasks (24.5%
on AlpacaEval (Dubois et al., [2024)), 85.4% on IFEval (Zhou et al., 2023), and 87.7% on ARC-C
(Clark et al., [2018))).

2 RELATED WORK

2.1 MASK-BASED DIFFUSION LANGUAGE MODELS

Diffusion language models (DLMs) have emerged as promising alternatives to auto-regressive (AR)
models for text generation. Among them, mask-based DLMs (Nie et al., 2025} [Ye et al.| 2025
Zheng et al., 2023} |Ou et al., |2024) dominate, generating text by progressively denoising mask
tokens. Recent studies(Arriola et al.| [2025}; [Fathi et al., 2025}; Huang & Tang| [2025; |Sahoo et al.,
2025;[Wang et al.,2025b; |Gat et al.,|2025) have increasingly explored the fusion of AR and diffusion
models, often through an iterative block-wise decoding strategy: inference proceeds by iteratively
appending a block of mask tokens to the input sequence and denoising it, repeating until the EOS
token is generated. This paradigm inherits the strengths — flexible generation order and parallel
decoding from DLMs, and cache efficiency from AR — yielding faster inference without sacrificing
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quality. In our work, we adapt LLaDA-8B-Instruct (Nie et al.| [2025) to variable-length block-by-
block generation, serving as the backbone for our remasking mechanism.

2.2 REVISING ERRORS IN DIFFUSION LANGUAGE MODELS

A key limitation of mask-based DLMs is their inability to revise tokens once unmasked, even if they
are incorrect. Existing efforts to address this fall into two categories. The first category (Campbell
et al} [2022; Wang et al.| [2025a)) applies predictor-corrector samplers without training, for example
by stochastically remasking a subset of tokens during inference. These methods lack a mechanism
to identify which tokens are actually wrong. As a result, they have to rely on many extra sampling
steps to take effect, which are inefficient and hard to optimize. The second category modifies the
diffusion process to enable revision during the reverse diffusion process, e.g., combining mask diffu-
sion process with either the uniform diffusion process (von Riitte et al., 2025)) or edit-based diffusion
process (Havasi et al.l 2025} Song et al.| [2025).

In short, none of these approaches provides a principled way to detect and selectively correct errors
during generation. In contrast, RemeDi fulfills self-reflection by identifying and remasking error-
prone tokens through a two-stage learning pipline, and jointly training the model to resample the
remasked tokens in later steps.

3 METHODS

3.1 PRELIMINARIES: MASK-BASED DIFFUSION LANGUAGE MODELS

Diffusion Language Models (DLMs) aim to model text generation by approximating the probabil-
ity distribution pgy, over a finite vocabulary V = {1,2,...,V}. They define a discrete diffusion
process in which the unknown data distribution pgu, at ¢ = 0 gradually evolves into a simple prior
distribution pyrier at £ = 1" (Lou et al.,[2024). At intermediate times ¢, we denote the distribution as
p;. Formally, this diffusion process can be described by a linear ODE involving a diffusion matrix
Q:

dp

7; = Qtpta Po = Pdata, PT = Pprior- (D
While ¢ can be defined continuously as in Eq. (1), in practice we work with discrete timesteps tg. -

In this paper, we focus on mask-based DLMs, where pyrior is a distribution that puts all its mass
on the mask state, denoted as [M]. Given a clean sequence xg ~ pgata, @ corrupted sequence ¢ is
obtained by randomly replacing part of the tokens with the mask token [M]. The model is trained to
recover xg by predicting each mask token x} with the output probability p}(z{|x;). The objective
is:
1L
Ldiffusion(a) = Et,wo,xt |: - % Z 1(33@ = [M]) InglQ(xth) ’ (2)

i=1

where z; is a sequence of length L, sampled from the forward process, 1(-) is an indicator function
ensuring that the loss is computed only on mask tokens, following|Nie et al.| (2025).

During inference, the reverse diffusion process begins with a sequence of only mask tokens and
proceeds for N steps at monotonically decreasing timesteps to.y. At step t,,—1, the model takes the
partially masked sequence z;, , as input and predicts all mask tokens simultaneously. A subset of
tokens is unmasked to obtain z; according to the noise schedule and the unmasking policy (e.g.,
unmasking tokens with the highest confidence), while the remaining predictions are remasked and
deferred to later steps.

A limitation of this paradigm is that once a token is unmasked, it remains fixed in subsequent steps.
In early stages, limited unmasked tokens often lead to unreliable predictions, resulting in errors
that persist through the remainder of the generation process. As generation progresses, additional
context may reveal these errors, but current paradigm offers no way to correct them. This motivates
the ability to remask tokens, allowing the model to remask earlier predictions back to the mask token
and predict them again using richer context in later steps.
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Figure 2: The structure of RemeDi, including Unmasking Policy Stream (UPS) to predict confi-
dences hg for selecting the set of unmasking tokens /,, and Token Prediction Stream (TPS) to
predict the token value when unmasking a masked position.

3.2 REMEDI

We propose RemeDi, a DLM that can identify and remask low-confidence tokens during generation
to enable iterative self-reflection. We extend the standard transformer into a dual-stream transformer
architecture as shwon in Fig. [2] which comprises:

* Token Prediction Stream (TPS): A stack of transformer blocks that predict probabilities
ph(-|x¢) for masked tokens as in a typical DLM (Nie et al., 2025).

* Unmasking Policy Stream (UPS): Another stack of transformer blocks that output token-
wise confidence score hjj. It represents the model’s confidence over the output tokens,
indicating if they should be unmasked with high confidence. Otherwise, if the confidence
is too low for a token, it should be kept masked or remasked so that it could be sampled or
resampled later.

The two streams run in parallel. During inference, UPS is inserted periodically and receives hidden
states from TPS as input, producing an auxiliary representation fyps for confidence scoring. The
two streams perform bidirectional feature sharing: UPS layers are conditioned on frps, and their
outputs also feed back into TPS to enrich its representations. At the final layer, p and h are produced
simultaneously using two independent linear heads applied to frps and fyps, respectively. More
details about the model structure for these two streams can be found in Appendix [B.1]

The token generation proceeds through iterative denoising steps. Given x;,, , as the input, UPS first
predicts a confidence score h};’n at each position 7, and select a subset of positions I/,, to unmask at
the current step. Then, for the positions selected to be unmasked, if they have already been unmasked
in z;, ,, they remain unchanged; otherwise they are sampled from pj(-|z:, ,) predicted by TPS.
Unlike existing mask-based DLMs where tokens are fixed once being unmasked, RemeDi re-decides
a token to be unmasked or (re-)masked at each step by its trained confidence score. Thus, it is
possible that an already generated token is assigned with a low confidence and remasked, allowing
it to be resampled in later steps. A noise schedule controls that the total number of unmasked tokens
increases linearly from 0 to L (Nie et al., [2025)), so that the number of mask tokens approaches zero
at the final step.

In the following sections, we elaborate on how to train RemeDi with Remask SFT and Remask RL
algorithms.
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3.2.1 REMASK SFT

Traditional mask-based DLMs conduct SFT with randomly masked input sequences (Nie et al.,
20255 [Lou et al.l [2024), while RemeDi needs to detect and remask possible incorrect tokens that
arise during the reverse diffusion process, so they can be resampled in later steps. To achieve this,
in SFT we treat such incorrect tokens as a second noise type in addition to the first noise type of
mask tokens in mask-based DLMs, and train the model to recover mask tokens as well as identify
unmasked tokens that should be remasked.

To simulate inference inputs at a diffusion time ¢, we construct training samples x; from clean text
Zo by applying two types of noise: given a randomly sampled diffusion time ¢ € (0, 1), we set the
corresponding mask ratio p¢ mask, alongside the incorrect token ratio py incorrect- With both ratios, we
randomly mask tokens with p¢ mask. Then, among the remaining unmasked positions, we sample a
subset with the ratio p; incorrect and replace each selected token with a random alternative to simulate
the incorrect tokens that may occur in the reverse diffusion process.

As aforementioned, during the reverse diffusion process, the noise level, defined as the number of
mask tokens, should decrease monotonically (Guo et al., 2025) . Since all incorrect tokens in an
input sequence of length L must be remasked as designed below for the SFT, we require:

’—pt,incorrecl : (1 - pt,mask) . L~| < |—pt,mask : L—‘ (3)

to ensure a monotonically decreasing number of mask tokens as outputs. Otherwise, remasking all
incorrect tokens would increase the total number of masks in the next step, violating the principle
that the number of mask tokens should decrease at each diffusion step.

Considering the above inequality, we choose p; mask = t and py incorrect = 47-t(1—1) (7 is a constant)
following (Nie et al.;,|2025; \von Riitte et al.| 2025). We set » = 0.1 in our experiments, under which
it is not hard to see that the inequality [[always holds on ¢ € [0,1].

Remask SFT Algorithm. During training, in addition to the typical diffusion loss in Eq. [2} we
supervise the unmasking score hy with a binary cross-entropy (BCE) objective across all token
positions. We construct the training label y based on different token types:

* A clean token (i € Sgean = {i | @} = x})}) receives a positive unmask label y* = 1,
indicating they should remain unmasked.

* An incorrect token (i € Sincomeet = {i | % # xf, 2} # [M]}) receives a negative unmask
label y* = 0, indicating that they should be remasked.

* Amask token (i € Spask = {i | i = [M]}) is assigned a soft unmask label y* = p§ (z§ |z:),
equal to the predicted probability of the ground-truth token z}. A higher probability indi-
cates a higher likelihood that the predicted token is correct and thus should be unmasked.

With unmask labels assigned above, we seek to minimize

Lups(0) = > BCE(c(hp), y') . )

where o (-) is the sigmoid function. Thus, the overall Remask SFT objective is:

L(0) = Laitrusion(¢) + Aups Lups (0), 5)
where Ayps balances the two losses.
Finally, we summarize the Remask SFT in Algorithm[I] where we elaborate on how to construct the

input sequence and calculate the loss function for the Remask SFT.

3.2.2 REMASK RL

After training with Remask SFT, we further fine-tune the model with outcome-based reinforcement
learning (RL) to optimize the full generation trajectory (Huang et al., 2025). Specifically, we rein-
force the generation process with NV denoising steps, beginning from an all-mask prior x4, ~ Dprior
at to = 1 and proceeding through timesteps ¢g. .
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Algorithm 1 Input sequence construction and loss calculation in Remask SFT

Require: Clean sequence o = [z, . . ., z&] of length L. Model M with learnable parameters 6.
1: Sample ¢ € (0, 1) according to the noise schedule, obtaining p¢ mask and pt,incorrect-
2: Construct noisy input z;: _
3 For each position 4, replace x with [M] W.p. ot mask
4: Among remaining positions, replace xg with a random alternative token w.p. Py incorrect
5 Define index sets:

Smask = {74 | :E;Lg = [M]}, Sincorrect = {74 | :C;Lf 7é xZO A m’tL 7é [M]}7 Sclean = {Z | l'z = m’(L)}

6: Get model outputs: [pg, hg] = M(z+;0)
7: Calculate the diffusion loss, on mask tokens only: Laifrusion (6) = —m D e S,y 108 Py (xh|ze)
1 1 € Sclean
8: Get labels for UPS: ' = ¢ 0 i € Sincorrect
stopgrad (pj (z6|+)) i € Smask
9: UPS BCE loss: > o(-) represents the sigmoid function

Lups(0) = f% Z (yi log o (hj) + (1 —y") log (1- a(hé)))

10: Total loss: L(@) = ,Cdiffusion(e) + Aups Lups (9)

At each step ¢,,, RemeDi generates x;,, from x,__, by invoking two coupled policies: an unmasking
policy that chooses a subset of positions Uy, = [un (1), ..., u, (K, )] to unmask, and a token predic-
tion policy that samples tokens at the chosen positions. Unlike standard DLMs, which never remask
revealed tokens, RemeDi allows previously unmasked tokens to be remasked, enabling revision of
earlier predictions.

Unmasking policy. The UPS produces a per-token confidence score h, indicating how strongly
the model believes token at position 7 is correct (if unmasked) or predictable (if masked). At infer-
ence, we rank tokens by their confidence scores and prioritize high-confidence ones to unmask. The
number of unmasked tokens K, at each diffusion step is determined by linearly increasing from 0
to L. During RL training, we construct an unmasking policy to sample U, = [un (1), ..., un(Ky)]
using the Plackett-Luce model (Plackett, |1975): based on hgy, we use a multinomial distribution and
sequentially sample K, positions from {1, ..., L} without replacement. Formally, the probability
of sampling U,, is:

ﬁ exp(hy )

o™ (Un | 2t,_,) =
k

—. (6)
1 ng{unu),...,un(kq)} eXP(hé,n)

Token prediction policy. For each position ¢ € U,,, if xinil = [M], the model samples token from
py(-|zs, ,); otherwise, the token remains unchanged as in the input. The probability of generating
Ty, givenxy, , and U, is:

token

o (T, | Tty Un) = 11 Pylay, | e, ) (7

i€Uy, zj | =[M]

T

Joint policy. Thus, the probability of transitioning from x;, _, to x; is the product of the unmask-
ing probability and the token prediction probability:

Ton (e, | e, ) = 7o Un | 4, 1) - 7" (20, | Tty Un).- ®)

With the probability defined in Eq.[8] we apply outcome-based reinforcement learning to encourage
generation trajectories x4, that lead to correct final responses x, . Specifically, we adopt GRPO
(Shao et al.,[2024), a scalable RL paradigm for language models. The reward is defined according
to task type: verifiable correctness for math and code, and reward-model evaluation for open-ended
questions. Further details on datasets and reward design are provided in Appendix
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As shown in Fig. of Appendix |A] after Remask SFT and RL training, the learned hy serves
as a reliable indicator to assess the quality of input tokens. Tokens already unmasked in the input
typically receive high confidence scores. However, when certain tokens are assigned low confidence,
they are more likely to be inadequate and are remasked for re-prediction in subsequent steps. It
suggests that the UPS-predicted confidence scores provide a reliable estimate of per-token quality
for the unmasking policy.

4 EXPERIMENTS

RemeDi enables remasking on a DLM capable of variable-length block-wise generation (Arriola
et al., [2025)) to support variable-length generation, a key feature for enabling the real-world DLM
to generate an unfixed number of blocks (see Appendix [B.2.2|for details). Since there are no open-
source large-scale variable-length block-wise DLMs, we adapt our model from LLaDA, a widely
used benchmark DLM. Starting from LLaDA’s model weights as initialization, RemeDi undergoes
two stages of supervised fine-tuning and RL. We detail the training configurations in Appendix[B.2]
and the evaluation metrics in Appendix [B.3.2]

Table 1: Model performance on math and code generation benchmarks. We highlight the best-
performing model among compared DLMs in bold. “-” indicates unknown cases not mentioned in
original papers.

Method Math Code
GSM8K MATH GPQA | HumanEval MBPP
Diffusion Language Models
Dream (Ye et al.| 2025) 82.1 49.6 30.6 59.8 59.6
LLaDA (Nie et al.| [2025) 78.3 38.9 28.1 45.7 39.0
LLaDA + ReMDM (Wang et al., [2025a) 81.4 38.5 - 44.5 37.8
d1-LLaDA (Zhao et al.|[2025) 82.1 - - 37.8 447
wdl-LLaDA (Tang et al.|[2025) 82.3 - - - -
LLaDA 1.5 (Zhu et al, 2025) 83.3 42.6 36.9 524 42.8
LLaDOU (Huang et al.,[2025) 88.1 44.6 - 59.1 51.6
RemeDi (+ Remask SFT) 86.3 514 32.6 71.3 57.8
RemeDi (++ Remask RL) 89.1 52.9 29.5 73.2 594
Auto-regressive Models
LLaMAZ2 7B (Touvron et al., 2023) 14.6 2.5 284 12.8 20.8
MetaMath 7B (Yu et al.||2023) 66.5 19.8 - - -
CodeLLaMA 7B (Roziere et al., |2023) - - - 34.8 44 .4
Deepseek 7B (Bi et al.;[2024) 63.0 15.8 - 48.2 35.2
DeepseekMath 7B (Shao et al., [2024) 88.2 51.7 - - -
DeepseekCoder 7B (Guo et al.|[2024) - - - 66.1 65.4
LLaMA3 8B (Dubey et al.|[2024) 78.3 29.6 31.9 59.8 57.6
Gemma2 9B (Teaml |[2024) 76.7 443 32.8 68.9 74.9

4.1 RESULTS

To evaluate various capabilities of RemeDi in different aspects, we conducted detailed comparisons
against existing large language models of comparable scale in Tab. |I| and Tab. |2} including both
DLMs and auto-regressive models. We select nine popular benchmarks across general tasks, math-
ematics, coding, and human preference domains.

After Remask SFT, RemeDi demonstrates high performance on almost all these benchmarks. It not
only achieves the state of the art performance among existing DLMs, but also outperforms auto-
regressive models of similar model size. On math benchmarks, RemeDi after Remask SFT achieves
86.3% on GSMS8K and 51.4% on MATH, surpassing MetaMath with math-specific instruction tun-
ing. It is even on par with DeepseekMath using math-specific reinforcement learning. On code
generation benchmarks, RemeDi achieves 71.3% on HumanEval, outperforming CodeLLaMA and
Deepseek Coder. For general natural language tasks, RemeDi also demonstrates strong performance
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Table 2: Model performance on general tasks. We highlight the best-performing model among

compared DLMs in bold. “-” indicates unknown cases not mentioned in original papers.

Method ‘ Hellaswag ARC-C IFEval AlpacaEval
Diffusion Language Models
Dream (Ye et al., [2025) 70.3 79.2 67.5 59
LLaDA (Nie et al.|[2025) 69.7 83.9 70.0 11.2
LLaDA 1.5 (Zhu et al | [2025) 70.5 83.5 73.5 13.9
RemeDi (+ Remask SFT) 71.1 85.2 81.9 12.5
RemeDi (++ Remask RL) 72.2 87.7 854 24.8
Auto-regressive Models

LLaMAZ2 7B (Touvron et al., 2023) 51.5 57.3 - -
Deepseek 7B (Bi et al.|[2024) 68.5 494 - -
LLaMA3 8B (Dubey et al.;[2024) 75.5 82.4 - -

...A statistical model is a mathematical representation that explains how data is generated, often
in a simplified and idealized way. It forms the foundation for understanding the data, making
hypotheses about, and making and and and population...

step 420

...A statistical model is a mathematical representation that explains how data is generated, often
in a simplified and idealized way. It forms the foundation for understanding the data, -making tests
and estimators, and making the inference inference...

step 424

...A statistical model is a mathematical representation that explains how data is generated, often
in a simplified and idealized way. It forms the foundation for understanding the data, developing
tests and estimators, and making the basis statistical...

step 425

Figure 3: An example of the step-by-step generation process. and Red are already unmasked
in the inputs. Red tokens are remasked. Blue tokens are unmasked in the outputs. Gray tokens
remain masked, and we display the token with the highest probability at these positions. More
examples can be found in Appendi)@

in common knowledge answering (85.2% on ARC-C) and instruction following (81.9% on IFEval)
tasks. It also aligns well with human preference (12.5% on AlpacaEval), outperforming other DLMs
such as Dream and LLaDA.

After Remask RL, RemeDi achieves further improvements across a wide range of math, coding and
general tasks. For example, the accuracies on GSM8K and MATH reach 89.1% and 52.9% respec-
tively, outperforming all compared DLMs and AR models. Among all the benchmarks, RemeDi
achieves its most substantial improvement on the AlpacaEval (Dubois et al.,[2024) benchmark, with
a +12.3% gain over the Remask SFT model. This demonstrates the effectiveness of our approach in
post-training the model’s ability for a broad range of tasks.

4.2 VISUALIZATION AND ANALYSIS

We visualize how remasking improves text generation in RemeDi in Fig.[3] The model initially gen-
erated the token “making.” After generating the object “tests and estimators,” it found that “making”
is not the proper verb in this verb-object structure. Thus, the model remasks it and opts for the
more appropriate “developing.” This example shows RemeDi’s ability to iteratively refine its output
content. We provide more examples in Appendix [A] demonstrating that RemeDi is able to perform
a variety of operations such as replacing, inserting and deleting with the remask mechanism.

To provide a quantitative analysis, we calculate the frequencies of remasking in a block of length
32 on MATH-500 (Lightman et al.| [2023)), HumanEval (Chen et al.,[2021)), and AlpacaEval (Dubois
et al.| [2024). In Fig. 4] we can see that remasking occurs most frequently in code generation, fol-
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Figure 4: Distribution of remasking frequencies per block across different evaluation datasets. The
numbers in parentheses indicate the mean and standard deviation for each dataset.

Table 3: Statistics of the remasking frequencies per block (block size is fixed to 32) when generating
responses to questions with different difficulty levels in MATH-500.

Difficulty Level \ Remasking Frequencies / Block ~ Accuracy

1 9.13+£9.54 86.04%
2 8.91£7.29 80.21%
3 10.13 £ 8.64 64.48%
4 1391 £11.44 50.00%
5 13.95 £11.12 19.25%

lowed by mathematical reasoning, and general tasks. This pattern may be attributed to differences in
structural constraints: code requires strict syntactic correctness, and mathematical solutions demand
formally structured derivations, whereas responses to open-ended problems allow more flexibility.

We also analyzed remasking frequencies across different difficulty levels on MATH-500, as shown
in Tab. 3] RemeDi tends to remask more frequently as the difficulty increases, rising from about 9
tokens per block at level 1-2 to nearly 14 tokens at level 4-5. This pattern suggests that iterative
refinement becomes increasingly necessary for harder problems.

4.3 ABLATION STUDIES

Remask SFT We compare the improvement brought by the Remask SFT (introduced in Sec.[3.2.1)
with that of vanilla SFT, under the same training configuration detailed in Appendix [B.2.35] We start
from a baseline model that has already completed the warm-up phase tuning for variable-length
block-wise generation, and perform training on the full code-category dataset and the open2math-
IM-gpt-4.1-mini dataset mentioned in Appendix As shown in Tab. ] Remask SFT outper-
forms vanilla SFT on all benchmarks, especially on MATH-500 (+2.6%) and HumanEval (+1.8%),
demonstrating that Remask SFT is an effective training method to improve DLM’s performance.

Remask RL. We compare Remask RL with LLaDOU RL (Huang et al} 2025)), another algo-
rithm that also reinforces the whole generation trajectories in the reverse diffusion process. Since
LLaDOU RL is developed on LLaDA, we also implement Remask RL on LLaDA for the sake of
fair comparison. All experiments are conducted on GSM8K with a generation length of 256, 64

Table 4: Experiment results after supervised tuning with different algorithms. The baseline model
is already tuned to be a variable-length block-wise generation DLM (see Appendix [B.2.2).

Method ‘ GSM8K  MATH-500 HumanEval MBPP
Baseline 80.3 347 41.5 42.6
Vanilla SFT 83.1 40.1 48.2 43.4
Remask SFT 83.6 42.7 50.0 44.0
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Table 5: GSM8K pass@1 accuracy comparison between Remask and LLaDOU RL

Training Steps Remask RL LLaDOU RL

50 80.00% 77.58%
100 81.40% 78.86%
150 81.59% 80.00%
200 83.33% 82.35%

denoising steps, a block length of 64, and temperature 0.7, while all other hyperparameters follow
the LLaDOU setup (see Appendix [B.2.3).

Remask RL demonstrates advantages in both convergence speed and performance. As shown in
Tab. 5] Remask RL achieves a higher final accuracy of 83.33%, with a particularly noticeable im-
provement in early training stages (e.g., 80.00% vs. 77.58% at step 50). This indicates that the more
flexible remask process contributes to both faster convergence and stronger model performance.

5 CONCLUSION

In this paper, we introduce the Remasking-enabled Diffusion Language Model (RemeDi), a new
self-reflective remasking mechanism to address the limitation of existing mask-based DLMs that
they cannot revise generated tokens. In RemeDi, remasking is achieved by predicting a confidence
score to identify noisy tokens, allowing them to be remasked and then resampled with richer context
in later steps.

Through a two-stage training pipeline of Remask SFT and Remask RL, RemeDi achieves the state-
of-the-art performance among open-source DLMs. Our analysis further shows that the learned con-
fidence scores provide a reliable signal of per-token quality during generation. RemeDi opens a
promising direction for self-reflective text generation, further releasing the full potentials of DLMs
to solve complex tasks with higher quality.

6 REPRODUCIBILITY STATEMENT

We provide an anonymous link containing the inference code and model weights, details of the
datasets and configurations used in both Remask SFT and RL in Appendix and the evaluation

settings in Appendix [B.3]
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A GENERATION PROCESS OF REMEDI

To better understand how RemeDi leverages the remasking mechanism, we visualize intermediate
steps when solving math, code, and open-ended problems. Since the full responses are usually
long, we focus on the token segment where critical remasking occurs. In the following figure,
boxes indicate already generated tokens, blue boxes represent tokens unmasked in this step, red
boxes denote tokens remasked in this step, and gray boxes represent tokens that remain masked,
showing the token with the highest probability. Key tokens are highlighted with bounding boxes.

We find that remasking enables diverse forms of revision beyond simple correction, including:
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* Correcting calculation errors: Remask can correct calculation errors. As shown in Fig.
the model initially predicted “\div” as the most probable operator and generated “0”.
However, since the actual operator generated was “\mod”, the model remasked the previ-
ous “0” and regenerated “5” as the correct result.

* Refining text quality: Remasking allows more precise wording. In Fig[6] the initially
generated phrase “methyl group” is not adequate when answering this problem. RemeDi
replaces them with more precise term “secondary carbon” by remasking.

* Merging adjacent tokens: When two consecutive tokens correspond to a single vocabu-
lary token, RemeDi may remask them and merge into one, thereby freeing a slot for sub-

sequent generation. In Fig.[7] the separate tokens “,” and “\”” were remasked and merged
into the single token “,\”, releasing one token slot.

 Splitting tokens: Conversely, the model can split a token into smaller parts to fill idle
positions, ensuring that no tokens remain unused and the denoising process can complete.
In Fig. [§] to fill in the slot before “Mish”, RemeDi remasks “Mish” and regenerates it as
two tokens, “M” and “ish”.

* Inserting tokens: Remasking also supports insertion. In Fig.[9] to add the word “again”
before “bounces”, the model first remasked the two tokens “b” and “ounces”, and then
regenerated the sequence with the insertion.

* Deleting tokens: Finally, remasking can delete tokens and replace them with nothing or
control symbols. In Fig. the phrase “per hour —” was removed and replaced with a line
break.

These cases illustrate that remasking gives RemeDi considerable freedom to revise its outputs in
multiple ways, greatly extending the flexibility of diffusion-based text generation.

Moreover, we illustrate the predicted confidence scores in Fig. [[T] In general, unmasked tokens
receive higher confidence scores hg than masked tokens, unless the model judges them as unreliable
and decides to remask them. For example, see the tokens “say” in Fig. [[Ibland “in” in Fig.
Interestingly, these tokens that are eventually remasked already exhibit relatively low confidence at
the step when they were first predicted, as reflected by the lighter background green shading. This
suggests that the model was uncertain about them from the start. Once more context is revealed
in subsequent steps, RemeDi is able to revise such low-confidence tokens into more appropriate
alternatives.

B EXPERIMENT DETAILS

B.1 DUAL-STREAM MODEL STRUCTURE

We construct TPS with the same transformer structure as LLaDA (Nie et al., [2025), comprising 32
transformer blocks. The model weights in this stream are initialized with LLaDA-8B-Instruct. For
the UPS, we stack four transformer blocks with the same hidden dimension to construct a smaller
network with random initialization. These two streams are weakly coupled via bi-directional con-
nections at TPS blocks 1, 11, 21, and 31. At each connection point, the output from the previous
TPS block is added to the current UPS feature to form the input for the next UPS block, while the
output of the current UPS block is added to the output of the corresponding TPS block before it is
passed onward. Thus, both streams enrich their representation with features from each other. To pre-
serve the TPS’s original capability inherited from the pretrained weights, we add a zero-initialized
projection (Zhang et al., [2023) on the connections from UPS to TPS. This ensures that the model’s
token prediction behavior is unchanged at the beginning of training, and gradually learns to predict
the confidence for unmasking tokens in a diffusion process. The model comprises a total of 8.9B
parameters.

B.2 TRAINING CONFIGURATIONS AND DATASETS
B.2.1 DATASETS

We use both high quality public datasets and in-house data for training, including four major cate-
gories: mathematics, code, general conversation, and science. The mathematics category includes
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\( N = 5 \ ): W 5 \ div 6
step 237
= o \\)
W N = 5 \ ): W 5 \ mod 6
step 238
= o \\)
W N = 5 \ ): W 5 \ mod 6
step 239
= o \
\( N = 5 \ ): W 5 A\} mod 6
step 240

Figure 5: An example of correcting calculation errors with remasking. Question: A group of N
students, where N < 50, is on a field trip. If their teacher puts them in groups of 8, the last group
has 5 students. If their teacher instead puts them in groups of 6, the last group has 3 students. What
is the sum of all possible values of N ?

The en ol group is at position 1 5 so brom
step 83 ine can attack either the “methyl group ( position 2 )
or the carbon group ( position 4 ).
The en ol group is at position 1 o so brom
step 8LI ine can attack either the methyl carbon ( position 2 )
or the methyl carbon ( position 4 ).
The en ol group is at position 1 5 so brom
step 91 ine can attack either the secondary carbon ( position 2
) or the tertiary carbon ( position 4 )

Figure 6: An example of refining text quality with remasking. Question: What is the major outcome
of the reaction between 4,4-dimethylcyclopent-1-enol and bromine?
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step 11 -

step 12 -

step 20 =

Given

Given

\

Given

the

H

frac

H

potential

potential

\n [ \n v

\n [ \n v (r A\ theta

\n \\[ \n v (r A\ theta

2 } kr r 2 o \ frac

(r o \\ theta

Figure 7: An example of merging adjacent tokens. Question: A quantum mechanical particle of
mass m moves in two dimensions in the following potential, as a function of (r,0) : V(r,0) =
1/2kr? + 3/2kr? cos?(0) Find the energy spectrum.

step 25 (o
step 26 o
M
step 27 x>
M

Let

Step

Let

Step

ish

Let

Step

ish

ka

calculate

bought

calculate

bought

calculate

bought

total cost for each item 4 \n
Calculate the cost for shorts e \n
3 pairs
total cost for each item : \n
Calculate the cost for shorts i \n
pairs
total cost for each item 4 \n
Calculate the cost for shorts ** \n
pairs

Figure 8: An example of splitting tokens. Question: Mishka bought 3 pairs of shorts, 3 pairs of
pants, and 3 pairs of shoes. One pair of shorts costs $16.50. One pair of pants costs $22.50 and one
pair of shoes costs $42. How many dollars did Mishka spend on all the clothing items?
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xE Step 3 3 Calculate the height after the second
step 198
bounce S \n \n - The ball b ounces to N\
K Step 3 g Calculate the height after the second
step 199
bounce o \n \n - The ball b ounces again to
*k Step 3 A Calculate the height after the second
step 201
bounce G \n \n = The ball - ounces again to
*k Step 3 7 Calculate the height after the second
step 203
bounce G \n \n = The ball again b again to
Hk Step 3 3 Calculate the height after the second
step 209
bounce i \n \n - The ball again b ounces to

Figure 9: An example of inserting tokens. Question: Nathan has a bouncy ball that bounces to
2/3rds of its starting height with each bounce. If he drops it from the third-floor balcony in the mall,
where each story is 24 feet high, how high does the ball go on its second bounce?
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After 2 months g raise of \$ o B 5 (1]
step 44
per “our — \$ 1 o + \$ o 5 (1}
After 2 months g raise of \$ 0 a 5 o
step 61
per \n \W( \$ 1 [} + \$ [} 5 (1]
After 2 months E raise of \$ o - 5 o
step 64
\n \$ 1 (1] + \$ o 5 ]

Figure 10: An example of deleting tokens. Question: When Billy was first hired, he was paid at a
rate of $10 per hour. After 2 months, he was given a raise of $0.50 per hour. On his first anniversary
at work, he was given a raise of $1.00 per hour. Sally just started working at a different business,
and her starting salary is $0.50 more per hour than Billy’s starting salary was. If both Billy and
Sally work 20 hours, how much more money will Billy earn than Sally, in dollars?

NuminaMath-CoT (LI et al.,|2024), MetaMathQA (Yu et al.,[2023)), orca-math-word-problems-200k
(Mitra et al.| [2024)), Maths-College (ajibawa 2023), DeepMath-103K (He et al.,[2025)), MathInstruct
(Yue et al., [2023)), and open2math-1M-gpt-4.1-mini (mlfoundations dev, 2025)). The code category
comprises evol-codealpaca-v1 (Luo et al.,|2023)), opc-sft-stagel (Huang et al.,2024), and KodCode-
V1-SFT-40 (Xu et al.| |2025)). General conversation data is drawn from open-perfectblend (Xu et al.,
2024) and Infinity-Instruct (Li et al., 2025)). The science category incorporates the science_qa (Mar-
czak} [2023) dataset. In total, the public datasets provide roughly 18.8M samples. The in-house data,
containing about 140K samples of prompt-response pairs, was primarily generated by GPT-4.1 and
covers mathematics, code, science, and instruction-following tasks. These generated samples went
through a human check to ensure overall quality.

B.2.2 VARIABLE-LENGTH BLOCK-WISE GENERATION

We first adapt LLaDA into a DLM capable of variable-length generation. The underlying archi-
tecture remains unchanged, but we fine-tune it for variable-length block-wise generation. During
inference, generation proceeds block by block, where each block consists of L = 32 tokens. For
each block, the model runs a full reverse diffusion process until the block is fully denoised, after
which the completed block is appended to the context. The next block is then generated in the same
manner, continuing until an <eos> token appears. Similar to auto-regressive (AR) models, we en-
force causality using a block-wise causal mask in the self-attention layers: each token can attend to
all tokens within its current block and all tokens in previously generated blocks, but never to tokens
in future blocks.

For supervised finetuning, the response part is divided into blocks of length L = 32, with the last
incomplete block padded by <eos> tokens. The training objective is to recover a noised version of
each block conditioned on all previous clean blocks. Following|Arriola et al.|(2025), we concatenate
both the clean blocks and their corresponding noised versions into a single input sequence, allowing
all blocks to be trained jointly in one forward—backward pass.

In this stage, we train variable-length block-wise generation with learning rate 2 x 10~°, batch
size 160, and a gradient threshold of 1.0. The baseline model in Table [ reports the results of the
variable-length block-wise model on several datasets, alongside the comparisons when Remask SFT
and Remask RL added to this baseline model.
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. Let \\( C_J \\) be the number of chairs Jenna has.\n\n**Step 1: Find Ophelia's number of\n.**\n\nia:ia

step 80 fewer22 than...

step 81 . Let \\( C_J \\) be the number of chairs Jenna has.\n\n**Step 1: Find Ophelia‘'s number of\n.**\n\nWe:iaia
fewer2 than...

step 85 . Let \\( C_J \\) be the number of chairs Jenna has.\n\n**Step 1: Find Ophelia's number of chairs.**\n\n

They knowia has fewer fewer than than...

. Let \\( C_J \\) be the number of chairs Jenna has.\n\n**Step 1: Find Ophelia's number of chairs.**\n\n

step 87 =
They each have 2 fewer sofas than chairs:...

(a) Question from GSM8K: Ophelia and Jenna are living in the same apartment building. They each have 2
fewer sofas than chairs. Jenna has 3 times as many chairs as Ophelia. If Ophelia has 20 sofas, calculate the
total number of sofas and chairs that they have.

step 389 ...**Example Calculation**\n\nLet's say: side length- Side length cm\n\n\notototot \n\n\n\n\n\n...
step 402 ...**Example Calculation**\n\nLet:s-say:\n\n* **Side Length:** 2 cm\n* **Apothem:** 1.5 cm\n\n...

step 408 ...**Example Calculation**\n\nLet's assume:\n\n* **Side Length:** 2 cm\n* **Apothem:** 1.5 cm\n\n...
step 411 ...**Example Calculation**\n\nLet's assume:\n\n* **Side Length:** 2 cm\n* **Apothem:** 0.5 cm\n\n...

(b) Question from Alpaca-Eval: Hi, I need to find the area of a 20-sided die for my math homework. Can you
help me do that?

. Some individuals may feel comfortable and valued in platonic relationships, while others may
step 100  feel pressure or attraction in romantic romantic..\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n and\n and and\n
friendship friendship\n...

. Some individuals may feel comfortable and valued in platonic relationships, while others may
step 108 | feel pressure or attraction-in romantic situations.\n\n**Important Considerations:**\n\n* **
Communication and:**:**:**  should to to and and and and...

. Some individuals may feel comfortable and valued in platonic relationships, while others may
feel pressure or attraction towards romantic relationships.\n\n**Important Considerations:**\n\n*

step 112
P **Communication:** Open's for communicate communicate communicate communicate about about about
feelings...
. Some individuals may feel comfortable and valued in platonic relationships, while others may
step 115 feel pressure or attraction towards romantic relationships.\n\n**Important Considerations:**\n\n*

**Communication:** Open's important for communicate about about feelings feelings feelings
feelings. ..

(c) Question from Alpaca-Eval: Can a boy and girl ever just be best friends?

Figure 11: Visualization of per-token confidence scores predicted by UPS. The darkness of the
background color indicates the value of ) — darker means larger. The font color indicates different
type of tokens: Green and red tokens are already unmasked in the input sequence of the current
step. Red tokens are remasked. Blue tokens are newly unmasked in the outputs. Gray tokens keep
masked in the outputs, and we display the token with the highest probability at these positions.
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B.2.3 REMASK SFT

After finetuning LLaDA for variable-length block-wise generation, we attach the Unmasking Policy
Stream (UPS) to construct the model architecture shown in Fig. [2| We then further train RemeDi
with Remask SFT with Ayps = 0.3. For optimization, we apply a learning rate of 2.0 x 1075 to
the newly intgoduced parameters in UPS, while keeping the learning rate for the original parameters
at 2.0 x 107°.

B.2.4 REMASK RL

To enable effective RL training, we curated a dataset spanning mathematics, coding, STEM,
instruction-following and preference-alignment tasks:

* Math: GSMS8K(Cobbe et al.| 2021), MATH(Hendrycks et al. [2021), DeepScaleR(Luo
et al.,[2025)

¢ Code: KodCode-V1-SFT-R1(Xu et al., 2025)), LeetCodeDataset(Xia et al., [2025])

* General: Skywork-Reward-Preference-80K-v0.2(Liu et al., [2024), Llama-Nemotron-
Post-Training-Dataset-RL (instruct-following)(Bercovich et al., [2025), Nemotron-Post-
Training-Dataset-v2 (stem)(Nathawani et al., [2025)

To ensure quality, we applied the following filters:

* Length: Since our RL training limits generation length to 1024 tokens, we discard any
sample—question plus answer or question alone—exceeding this bound.

* Verifiable: For math data, When both a short answer and a detailed response are available,
we keep the sample only if the two answers match; for code data, we require that the
provided solution passes all test cases.

* Deduplication: Given the diverse sources, we perform global deduplication using Min-
HashLSH .

Reward Design. Our reward function incorporates two distinct types of reward signals:

* Verifiable Reward: Verifiable rewards are widely used in mathematics, code, and STEM
domains, where the answer is first extracted and then verifies it: math and STEM via Math-
Verify (Kydlicek, [2025), and code via executing test cases and computing the pass rate. We
also incorporated verifiable instruction-following samples with IFEval (Zhou et al., [2023)
format to further improve the model’s ability to follow instructions.

* Model-based Reward: We incorporated the Skywork-Reward-V2-Llama-3.1-8B (Liu et al.,
2025)), which was trained on human preference data, to evaluate response quality. Each
response is assigned a scalar reward score reflecting human preference, thereby enhancing
the model’s ability to produce outputs that better align with human preference during RL
training.

We optimized the model using the AdamW optimizer with a learning rate of 5.0 x 107%, 8 =
(0.9,0.999) and a maximum gradient norm of 1.0, for a total of 100 training steps.

B.2.5 ABLATION SETUP

We provide detailed configurations for ablation studies in Sec.[4.3]

Remask SFT Both the vanilla SFT model and the Remask SFT model are trained with identical
hyper-parameters: block size 32, maximum generation length 1024, global batch size 80, and a total
of 3000 training steps. We use the AdamW optimizer with a learning rate of 2.0 x 10~° in newly
added parameters of UPS and of 2.0 x 10~ in original TPS parameters, 3 = (0.9,0.999), and a
maximum gradient norm of 1.
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Algorithm 2 Remask RL

Require: Model parameters 6, a dataset D, and reward_func.

1: while 0 not converged and maximum epochs not reached do
2 Sample questions g ~ D
3 for g = 1to G do > Generate a group of G trajectories
4: Initialize 7, with ¢ and mask tokens.
S: forn = 1to N do > N denotes the number of denoising steps
6: Calculate the ranking score hyg , for each token
7 Sample K, positions to unmask in this step: U, ~ Plackett-Luce(hg,n, Kn)
8: Sample 7" ~ péjn(~|xfnil), Vi € Up,x]* | = [M]
9: end for
10: r¥ = reward_func(q, 7 ) > Compute the rewards
11: end for
12: for g = 1to G do > Compute the advantages as in GRPO
r9—mean(rt¢
13: AT = std('rlz(G) :
14: end for
15: forn =1to N do > Compute 7y and losses for each denoising step
16 mon(ed, o, ) = mERSNUIG ) w0 U > see B ]
wom(@d, lof )
17: Eﬁ,n - 7% 25:1 Wiﬁld,n(ztgn‘Zgn_ll)Ag
18: Calculate the gradient Vo Ly »,
19: end for

20: Update 6 with accumulated gradients Zf:]:l V¢ Ly, along the descent direction
21: end while

Remask RL.  Both Remask RL and LLaDOU RL are trained on LLaDA using identical RL hyper-
parameters. Specifically, roll-outs are generated with temperature 0.7, generation length 256, block
length 64, and N = 64 denoising steps. Each batch consists of 16 prompts, with each prompt
generating G = 16 roll-outs, for a total of 200 training steps. We use the AdamW optimizer with a
learning rate of 5.0 x 107%, 3 = (0.9,0.999), and a maximum gradient norm of 1. The complete
training algorithm is elaborated in Alg.

B.3 EVALUATION DETAILS
B.3.1 INFERENCE SETTINGS

RemeDi For evaluation, RemeDi uses a maximum generation length of 2048 on MATH and 1024
on all other datasets. At each step, only one token is unmasked, with a block size of 32 for genera-
tion. Both TPS and UPS adopt greedy sampling.

LLaDA The evaluation of LLaDA largely follows (Nie et al) 2025). On GSM8K and MATH,
we set the generation length to 256 with a block length of 8, unmasking one token per step in a
semi-autoregressive manner with greedy sampling. On HumanEval and MBPP, we use a generation
length of 512 with a block length of 32, while keeping all other settings unchanged.

LLaDA + ReMDM We implemented ReMDM (Wang et al.| 2025a)) on top of LLaDA(Nie et al.,
2025). Specifically, we adopted the “ReMDM-cap + Switch” configuration with 7., = 0.04 and
tswiteh = 0.55. For evaluation, we set the generation length to 256/256/512/512 and the block length
to 8/8/32/32 for GSM8K, MATH, HumanEval, and MBPP, respectively.

B.3.2 BENCHMARKS

Here we provide the detailed input prompts and how the metrics are computed for different bench-
marks:

GSM8K GSMBS8K evaluates multi-step mathematical reasoning in elementary problems (Cobbe
et al.,|2021). We illustrate below a zero-shot prompt used to evaluate the model. After generation, we
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extract the answer in “boxed { }”” from the response, and check if it is equivalent to the ground truth
with the scripts developed by Hendrycks et al.|(2021). We report the accuracy on this benchmark.

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market? (Please
put the final answer in \boxed{} tag, i.e. $\boxed{answer here}$)

MATH MATH contains 5,000 challenging competition mathematics problems (Hendrycks et al.,
2021). We evaluate the model in a zero-shot setting, with prompts like the one below. After gener-
ation, we extract the answer in “boxed{ }” from the response, and verify if it is equivalent to the
ground truth with the scripts developed by Hendrycks et al.|(2021).

Convert the point $(0,3)$ in rectangular coordinates to polar coordinates.
Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le
\theta < 2 \pi.$ (Please put the final answer in \boxed{} tag, i.e.
S\boxed{answer here}$s)

GPQA GPOQA is a challenging multiple-choice benchmark for testing LLM’s complex scientific
reasoning and specialized knowledge domains (Rein et al., 2023). We used all 448 questions from
the main version of GPQA and evaluated the model in a zero-shot setting with the prompt shown
below. We select the token with the highest probability at the <mdm_mask> position as the final
answer, and report the pass@1 on this benchmark.

<|startoftext|><|start_header_id|>user<|end_header_id|>

What is the correct answer to this question: A large gene has dozens of
exons, of which the central ones code for folded triple helical repeats
that connect the cytoskeleton with sarcolemma and extracellular space.

Each exon usually codes for one folded triple alpha helix. The most common
mutations of the gene are central exon deletions that create out-of-frame
peptides and progressive degenerative organ waste. A solution is to deliver
a Morpholino that recognizes the 5’ end of the out-of-frame exon in pre-
mRNA. The molecule prevents binding of the spliceosome and creates exon
skipping and in-frame joining. Several missing exons are well tolerated by
an organism. Which structure below is not involved in the proposed therapy?
Choices:

(A) lariat

(B) R-loops

(C) antisense

(D) polyA tail

Answer:Your answer should in the format ’The best answer is
[the_answer_letter]’ where the [the_answer_letter] is one of (A), (B), (C)
or (D) .<|eot_id|><|start_header_id|>assistant<|end_header_id|>

The best answer is <mdm_mask>.

MBPP MBPP consists of 500 python programming problems for entry level programmers (Austin
et al.| 2021). We evaluate the model with the prompt below in a zero-shot setting. After generation,
we extract the python code from the response, and check if it passes all test cases associated with
this problem, and report pass@1 on this benchmark.

You are an expert Python programmer.Your task is to complete the
implementation of a function named "~remove_Occ’ .

**x TARGET FUNCTION x*x

Write a python function to remove first and last occurrence of a given

character from the string.

*%x UNIT TESTS *%*
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Your code should pass unit tests like:
assert remove_Occ ("hello", "1") == "heo"
assert remove_Occ ("abcda", "a") == "bcd"
assert remove_Occ ("PHP", "P") == "H"

Here is the function to complete:
" “python
def remove_Occ (input_param.1, input_param-2):
"""Write a python function to remove first and last occurrence of a
given character from the string."""

HumanEval HumanEval consists of 164 hand-written programming problems (Chen et al.,[2021).
We evaluate the model on it with the prompt below in a zero-shot setting. After generation, we
extract the Python code from the response, and check whether the output function passes all the
provided test cases; we then report the pass@1 on this benchmark.

You are an expert Python programmer, Python code should be placed between

the line of " “python and the line of "°° for easy extraction later, and
here is your task:
" “python
from typing import List
def has_close_elements (numbers: List[float], threshold: float) -> bool:

"""Check if in given list of numbers, any two numbers are closer to
each

other than the given threshold.

Examples:

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

nnn

Hellaswag Hellaswag is a benchmark dataset specifically designed to evaluate machine common-
sense reasoning capabilities (Zellers et al.,2019). It primarily assesses a model’s ability to infer the
most plausible subsequent event based on given contextual information in natural language under-
standing tasks. We evaluate the model in a zero-shot setting on Hellaswag. We follow the approach
of (Nie et al., 2025), incorporating Classifier-Free Guidance (CFG) and set the CFG weight to 0.5.
Under CFG intervention, the model simultaneously computes conditional predictions (based on the
given context) and unconditional predictions (absent specific context), guiding the generation pro-
cess by scaling the difference between them. The final accuracy is calculated based on the model’s
normalized probability assigned to the correct option.

ARC-C ARC-C is a highly challenging benchmark dataset specifically designed to evaluate ma-
chine abstract reasoning and scientific problem-solving capabilities (Clark et al.|[2018). We evaluate
the model in a zero-shot setting on ARC-C, with the prompt below. After generation, we extract the
answer after *The best answer is’ , and report the pass@1 rate on this benchmark.

Given the following question and four candidate answers (A, B, C and
D), choose the best answer.

Question: An astronomer observes that a planet rotates faster after a
meteorite impact. Which is the most likely effect

of this increase in rotation?

A. Planetary density will decrease.

B. Planetary years will become longer.

C. Planetary days will become shorter.

D. Planetary gravity will become stronger.

Your response should end with "The best answer is [the_answer_letter]"
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where the [the_answer_letter] is one of A, B, C or D.

IFEval IFEval evaluates the model’s instruction-following capability with verifiable instructions
(Zhou et al., [2023). We use the official evaluation code provided by the IFEval Benchmark, and
compute the model’s accuracy based on the loose metric.

AlpacaEval AlpacaEval evaluates the model’s instruction-following capability with the LLM-
as-a-Judge methodology (Dubois et all [2024). As officially recommended by the AlpacaE-
val benchmark, we use GPT4-1106-preview as the baseline/reference model and the
weighted_alpaca_eval_gpt4_turbo as the evaluator/annotator, and assess the win rate of
the responses generated by RemeDi under length-controlled conditions to eliminate the confounding
effect of response length.

C MORE EXPERIMENTS

C.1 COMPARISON WITH SEED DIFFUSION

Since the official Seed Diffusion model and implementation are not publicly available, we do our
best to reproduce it. For a fair comparison, we train seed diffusion under the same base model and
identical training configuration as in Appendix As shown in Table [6] Remask SFT consis-
tently outperforms Seed Diffusion, demonstrating the advantage of learning an explicit remasking
policy during training.

Table 6: Unified head-to-head comparison with other training algorithms under identical settings.

Method GSMS8K MATH-500 HumanEval MBPP
Baseline 80.3 34.7 41.5 42.6
Vanilla SFT 83.1 40.1 48.2 43.4
Seed Diffusion 63.9 28.0 5.4 9.8
Remask SFT 83.6 42.7 50.0 44.0

C.2 PREDICTOR-CORRECTOR VS. LEARNED REMASK POLICY

We apply a representative predictor-corrector sampler, ReMDM (Wang et al., 2025a), to RemeDi-
Instruct. The evaluation setup is the same as in Appendix [B.3.1] The results in Table[7|show that our
learned remasking policy (via Remask SFT) is more effective than the random remasking strategy
employed in predictor-corrector samplers.

Table 7: Comparison between our learned remask policy in RemeDi and the ReMDM predictor-
corrector, both evaluated with RemeDi-Instruct.

Method GSMS8K MATH-500 HumanEval MBPP
RemeDi + predictor-corrector 58.3 38.7 39.6 54.2
RemeDi (Ours) 86.3 52.2 71.3 57.8

C.3 EFFECT OF DIFFERENT SAMPLERS
To isolate the effect of our multi-task objective and incorrect-token augmentation, we compared

vanilla samper, adaptive samper(Kim et al., 2025) and our remask sampler under the same Remask
SFT model in Table[8

C.4 MATCHED-COMPUTE ABLATION: EXTRA SFT vs. REMASK RL

To directly address whether performance gains come from RL or merely additional training time,
we conduct a matched-compute ablation: we continue training the RemeDi-Instruct model for an
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Table 8: Effect of different samplers under the same Remask SFT model.

Sampler GSMSK MATH-500 HumanEval MBPP IFEval
Vanilla 86.3 38.3 439 55.4 69.2
Adaptive(Kim et al.,[2025) 86.6 40.3 439 55.4 69.2
Remask (Ours) 86.3 52.2 71.3 57.8 81.9

extra 2,000 steps (which consumes approximately 32 H800-days, the same compute as used in the
RL stage) and evaluate its performance. The results are summarized in Table [0}

Table 9: Matched-compute ablation between extra SFT training and Remask RL.

GSMSK MATH-500 HumanEval MBPP

RemeDi-Instruct 86.3 52.2 71.3 57.8
+ ~32 H800-days SFT training 83.6 52.6 62.8 57.8
+ ~32 H800-days RL training 89.1 53.2 73.2 59.4

C.5 UPS STRUCTURE ABLATIONS

Table |10| reports ablations on UPS components, showing that removing either the bi-residual con-
nections or the zero-init bridge leads to clear performance degradation. We train all models under
the same base model and identical training configuration as in Appendix [B.2.5]

Table 10: UPS structure ablations. Removing either the bi-residual connections or the zero-init
bridge degrades performance

GSMS8K MATH-500 HumanEval MBPP

Baseline 83.6 42.7 50.0 44.0
w/o bi-residuals 76.6 43.1 45.7 42.2
w/o zero-init 75.2 42.7 45.1 44.8

C.6 EFFECTIVENESS OF RL

To assess the effect of RL, we compare the per-token remask frequencies between the SFT-only
model and the RL-trained model. Interestingly, the RL-trained model performs more remasking on
average. As shown in Table higher remask frequency correlates with improved performance,
suggesting that additional remasking provides more opportunities for RemeDi to detect and correct
early-step errors.

D EXTRA VISUALIZATION

Fig.|12|compares the per-token remask frequency of the SFT-only model and the RL-trained model
on GSMS8K. We observe that RL training consistently increases the remask frequency, suggesting
that the RL objective explicitly encourages the model to revise uncertain tokens more often, which
correlates with the observed improvement in final answer quality.

Fig. [I3] reports the remask ratios at different timesteps when inferencing on GSM8K. The ratio
first increases and then steadily decreases as the denoising process converges. Since the number of
unmasked tokens K, is explicitly controlled at each step, the process naturally terminates without
spikes of remasking in late stage.

Fig. |14] shows the throughput—performance trade-off of RemeDi compared to AR and DLM base-
lines. By adjusting the number of tokens denoised per step, RemeDi achieves acceleration in decod-
ing speed with only small drops in GSMS8K accuracy. It forms a better Pareto front than LLaDA,
Dream, and other auto-regressive models.
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Table 11: Average remask frequency (ARF) and performance across tasks. ARF measures how
many times each token is remasked on average during decoding.

GSMSK HumanEval  AlpacaEval
Model Acc ARF Acc ARF Acc ARF

RemeDi (+ Remask SFT) 86.3 0.16 71.3 0.070 12.5 0.012
RemeDi (++ Remask RL) 89.1 0.56 73.2 0.89 24.8 0.086
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Figure 12: Comparison of per-token remask frequency between the SFT-only (left) and the RL-
trained (right) model on GSM8K. The RL-trained model performs remasking more frequently on
average, indicating that RL encourages more remasking behavior.

Fig. [T3] shows the reward curve for Remask-RL and LLaDOU-RL on GSMS8K. Due to the larger
action space introduced by the remask operation, Remask-RL starts with a lower initial reward.
However, it quickly surpasses LLaDOU-RL within the early stages of training and maintains a
consistently higher reward thereafter. This trend is consistent with the accuracy comparison in Table
[l where Remask-RL demonstrates both faster convergence and a higher final performance.

THE USE OF LARGE LANGUAGE MODELS
We used large language models (LLMs) in two limited ways: (1) for minor English polishing of the

paper text, and (2) as required by the AlpacaEval benchmark, where LLMs are invoked for automatic
evaluation.
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Figure 13: Average remask ratio across diffusion timesteps when inferencing on GSM8K. The re-
mask ratio rises during early steps and then gradually declines as the process converges. Because the
number of unmasked tokens K, is explicitly defined at every diffusion step, the procedure ensures
stable remask termination and avoids late-stage re-emergence of remasking.
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Figure 14: Throughput—performance trade-off of RemeDi compared with other AR and DLM mod-

els.

By increasing the number of denoised tokens per step, RemeDi provides a smooth qual-

ity—latency trade-off. All results are measured with batch size 1 and sequence length 1024 on a
single H800 GPU.
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GSMB8k Reward (Remask-RL vs LLaDOU-RL)
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Figure 15: GSMSK training reward curves comparing Remask-RL and LLaDOU-RL. Solid lines
show EMA-smoothed rewards, and faint lines denote raw step-wise values. Remask-RL exhibits
faster early-stage improvement and ultimately reaches a higher reward, consistent with the perfor-
mance gains summarized in Table|§|
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