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Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems traditionally treat retrieval and generation003
as separate processes, requiring explicit textual004
queries to connect them. This separation can005
limit the ability of models to generalize across006
diverse tasks. In this work, we propose a query-007
free RAG system, named ImpRAG, which in-008
tegrates retrieval and generation into a unified009
model. ImpRAG allows models to implicitly010
express their information needs, eliminating the011
need for human-specified queries. By dividing012
pretrained decoder-only language models into013
specialized layer groups, ImpRAG optimizes014
retrieval and generation tasks simultaneously.015
Our approach employs a two-stage inference016
process, using the same model parameters and017
forward pass for both retrieval and generation,018
thereby minimizing the disparity between re-019
trievers and language models. Experiments on020
8 knowledge-intensive tasks demonstrate that021
ImpRAG significantly enhances both retrieval022
and generation performance, with exact match023
scores increasing by 3.6-11.5 points and re-024
trieval recalls improving by 5.0-23.2 points for025
unseen tasks with diverse formats, highlighting026
its effectiveness in enabling models to articu-027
late their own information needs and generalize028
across tasks. Our analysis underscores the im-029
portance of balancing retrieval and generation030
parameters and leveraging generation perplexi-031
ties as retrieval training objectives for enhanced032
performance.033

1 Introduction034

Retrieval-Augmented Generation (RAG; Guu et al.,035

2020; Lewis et al., 2020; Shi et al., 2024) typi-036

cally involves two key operations: retrieval and037

generation. RAG systems retrieve relevant infor-038

mation to enhance generation models, enabling039

them to respond more effectively to prompts by040

providing long-tail knowledge or up-to-date infor-041

mation. While effective, traditional approaches042
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Figure 1: Diagram illustrating the inference process of
ImpRAG on the entity linking task. We divide decoder-
only LLMs into three layer groups for specialized fine-
tuning: bottom (green), middle (red), and top (blue).
The bottom layers are optimized for retrieval tasks. The
middle and top layers handle the reading of retrieved
passages, with cross-attention disabled in the top layers
to reduce memory consumption. Standard RAG sys-
tems would require a task-specific design of queries
(e.g., use the substring “British” as the query in the
shown example). In contrast, ImpRAG uses implicit
queries, eliminating the need for explicit specification
of queries and allowing models to generalize across un-
seen tasks with varied formats.

often treat retrieval and generation as separate pro- 043

cesses, connected by queries.1 Consequently, these 044

approaches usually require explicit specification of 045

textual queries. By definition, queries express one’s 046

uncertainties; however, in RAG systems, instead of 047

models expressing their information needs, humans 048

must do this for them. This separation can lead to 049

a disconnect between what large language models 050

1In this work, we use the term “queries” to refer to textual
queries used in an information retrieval setup, unless otherwise
specified. This is distinct from queries in the context of self-
attention within Transformer architectures.
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(LLMs) require and what retrievers assume is nec-051

essary. More importantly, it restricts the models’052

ability to generalize across diverse, unseen tasks053

during testing. Therefore, in this work, we explore054

the development of a query-free RAG system, en-055

abling models to articulate their own information056

needs without additional human intervention.057

To achieve this, we introduce ImpRAG, a novel058

approach that integrates retrieval and generation059

into a unified model and process. This allows mod-060

els to convey their own information needs implic-061

itly, reducing the need for prior knowledge of test062

tasks and for humans to formulate explicit textual063

queries in advance. At its core, ImpRAG aims to064

enable retrieval capabilities through retrieval heads065

in self-attention. Building upon pretrained decoder-066

only language models, ImpRAG divides the layers067

into three groups: the bottom group for retrieval068

and the middle and top groups for reading and gen-069

eration.070

Figure 1 illustrates an example of applying Im-071

pRAG to the entity linking task, where models are072

tasked with linking the mention "British" to an en-073

tity in Wikipedia, given the context paragraph. A074

typical RAG model would require the design of075

a separate query template, such as using only the076

mention text, to achieve reasonable retrieval perfor-077

mance. In contrast, ImpRAG uses implicit queries078

and can perform retrieval and generation jointly079

without the need for additional template design,080

making it more generalizable.081

During training, we optimize two objectives si-082

multaneously: generation loss and retrieval loss.083

The generation loss is the standard causal language084

modeling loss, while the retrieval loss first utilizes085

pseudo labels generated by trained retrievers to086

warm up the retrieval ability and then self-improves087

using its own generation log likelihood for the re-088

mainder of the training.089

At inference time, we employ a two-stage pro-090

cess. First, we embed passages using the bottom091

layer for retrieval, and then utilize the top layer092

group to read the retrieved passages and generate093

the final responses. By leveraging the same forward094

pass and model parameters for both retrieval and095

generation, ImpRAG reduces the disparity between096

retrievers and LLMs.097

In experiments, we train models on datasets that098

either require retrieval or do not. The datasets re-099

quiring retrieval are used to enhance retrieval per-100

formance, while those not requiring retrieval are101

used to improve models’ instruction-following ca-102

pabilities. We evaluate the models on 8 knowledge- 103

intensive tasks, focusing on different aspects: ba- 104

sic question answering, multihop reasoning, and 105

instruction following. We also establish strong 106

baselines that perform RAG in the retrieve-then- 107

generate paradigm, including RA-DIT (Lin et al., 108

2024), a method that iteratively updates LLMs and 109

retrievers to better align the two. 110

Our experiments demonstrate that ImpRAG 111

achieves slightly better performance on 4 tasks with 112

formats similar to the training tasks, with an im- 113

provement of 0.2-0.6 points in exact match scores, 114

all without the need for additional model parame- 115

ters. Moreover, it significantly outperforms previ- 116

ous approaches on unseen test tasks with more di- 117

verse formats, achieving improvements of 3.6-11.5 118

points in exact match scores and 5.0-23.2 points in 119

retrieval recalls. This highlights the effectiveness 120

of enabling models to articulate their own informa- 121

tion needs. Our analysis indicates that carefully 122

selecting layer group boundaries that balance the 123

parameters used for retrieval and generation, using 124

both trained retrievers for warmup and then self- 125

improve by leveraging generation perplexities as 126

retrieval training objectives, and instruction tun- 127

ing training datasets is crucial for achieving supe- 128

rior performance in ImpRAG. Our analysis also 129

reveals that ImpRAG is effective in transferring 130

supervision from generation tasks to retrieval tasks, 131

showing the potential of using an unified model ar- 132

chitecture for performing retrieval and generation 133

jointly. 134

2 Related Work 135

There has been a lot of work on using the retrieve- 136

then-generate paradigm for RAG (Lewis et al., 137

2020; Shi et al., 2024, inter alia). Many efforts 138

in this line of work have focused on optimizing re- 139

trievers using training signals from generation mod- 140

els, and optionally, the reverse (Guu et al., 2020; 141

Lewis et al., 2020; Izacard et al., 2023; Shi et al., 142

2024). Although the specifics can differ, these ap- 143

proaches generally utilize distinct models and input 144

templates for the retrieval and generation phases. 145

A closely related study is that of Jiang et al. (2022), 146

which seek to use the same model for retrieval and 147

generation. However, their research primarily fo- 148

cuses on encoder-decoder style models and their 149

models still rely on separate input templates for 150

retrieval and generation. Another related work by 151

Zhang et al. (2024a) explores the use of special 152
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tokens for retrieval, but their study emphasizes in-153

domain task performance rather than unseen task154

generalization.155

This work is also related to research on query156

formulation in the context of multihop question157

answering, where previous studies typically gener-158

ate textual queries by prompting LLMs, followed159

by retrieval using a separate retriever (Lazaridou160

et al., 2022; Khattab et al., 2022; Press et al., 2023;161

Trivedi et al., 2023; Jiang et al., 2023, inter alia).162

Chen et al. (2024) enable LLMs to generate textual163

queries through synthetic data generation. Addi-164

tionally, this work is connected to memory archi-165

tectures in RAG (Yang et al., 2024; Lu et al., 2024),166

which aim to utilize the key-value (KV) caches of167

LLMs to reduce computational costs, rather than168

focusing on minimizing the disparities between169

generation and retrieval.170

Another relevant area of research is instruction171

tuning for RAG. Lin et al. (2024) perform instruc-172

tion tuning for both retrievers and LLMs and then173

align them through iterative updates. Wang et al.174

(2024) conduct instruction tuning for RETRO-like175

models (Borgeaud et al., 2022; Wang et al., 2023).176

Zhang et al. (2024b) align retrievers with LLMs177

using synthetic data generated by LLMs. Unlike178

our work, these studies still treat retrieval and gen-179

eration as separate processes. In a similar vein,180

researchers have tried to teach retrievers to follow181

instructions for building general-purpose informa-182

tion retrieval systems (Asai et al., 2023; Lee et al.,183

2024; Oh et al., 2024; Weller et al., 2025). Since184

ImpRAG enables its retrieval capabilities by using185

self-attention, it is related to research on investigat-186

ing retrieval heads in the context of long context187

LLMs (Wu et al., 2024).188

3 Method189

We build on an autoregressive pretrained language190

model and enable it to perform retrieval and gen-191

eration jointly. Our model, ImpRAG, is based on192

the LLaMA 3 family (Grattafiori et al., 2024), with193

architectural modifications to support retrieval and194

retrieval-augmented generation. At a high level,195

the layer grouping strategy of ImpRAG is inspired196

by the observation that LLMs learn distinct func-197

tions at different layers (Zhao et al., 2024). Con-198

sequently, we have designed the layer groups to199

align with the capabilities required for retrieval-200

augmented generation, i.e., retrieval and genera-201

tion.202

3.1 Architecture 203

Layer Slicing. We partition an N -layer language 204

model vertically into three groups, as illustrated in 205

Figure 1. The bottom group, spanning layers 0 to b, 206

is denoted as LB. The middle group, from layer b to 207

t, is denoted as LM, and the top group, from layer 208

t+ 1 to N−1, as LT . Note that LB and LM share 209

layer b, while LM and LT are disjoint. The layer 210

boundaries b and t are treated as hyperparameters 211

and can be tuned to optimize performance across 212

different model configurations. 213

Bottom Layers as Retriever. We repurpose the 214

bottom group LB to act as a retriever, in addition to 215

its standard decoder functionality. Specifically, we 216

apply pooling last-token pooling over the attention 217

query or key states at the final layer b in LB. Unlike 218

prior work (Muennighoff et al., 2024), we retain 219

the original causal attention in the bottom layers 220

rather than enabling bidirectional attention, as we 221

do not observe any performance improvement from 222

this modification. 223

Let hk be the number of key attention heads, 224

g the number of query attention groups (as in 225

Grouped-Query Attention (Ainslie et al., 2023)), 226

and dh the head dimension. For a query input, we 227

apply last-token pooling by taking the query atten- 228

tion state of its final token, resulting in a grouped 229

query embedding Eg
q ∈ R(hkg)dh . We then average 230

the attention heads within each group to obtain the 231

final query embedding Eq ∈ Rhkdh .2 Similarly, 232

for each corpus passage, we extract the key atten- 233

tion state of its last token to compute the passage 234

embedding Ep ∈ Rhkdh . Similarity between 235

query and passage embeddings is computed via dot 236

product: 237

s(q, p) = Eq ·Ep (1) 238

We choose to pool over query and key attention 239

states based on the intuition that their dot prod- 240

uct underlies the attention mechanism and is pre- 241

trained to capture token-wise relevance. By ag- 242

gregating these signals across tokens, we aim to 243

capture query-passage-level semantic relevance. 244

Middle Layers as Reader. The middle layer 245

group LM functions as a reader by enabling cross- 246

attention from the input query tokens to the re- 247

trieved passage tokens, thereby incorporating ex- 248

ternal information into the query representation. 249

2Our preliminary results show that taking average heads
works slightly better than using individual heads.
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Given k retrieved passages, we jointly encode the250

concatenation of all k passages to form the key and251

value states for layers b through t. Cross-attention252

is then performed from the query’s attention states253

to these key and value states, allowing the model254

to read and integrate relevant content from the pas-255

sages. This aligns with prior findings that middle256

layers of language models are particularly effective257

at attending to and integrating long-range contex-258

tual information (Fang et al., 2024; Yang et al.,259

2024).260

Top Layers Disable Cross-Attention. In the261

top layer group LT , we optionally disable cross-262

attention from the input query tokens to the re-263

trieved passage tokens solely to reduce computa-264

tional and memory overhead. This design choice265

is made for efficiency purposes; empirically, we266

find it results in only a minor performance drop267

when the layer boundary t is properly tuned as a268

hyperparameter.269

Position IDs. Language models using RoPE (Su270

et al., 2024) are highly sensitive to position IDs. To271

prevent interference between the query and passage272

position encodings during reading, we shift the273

query’s position IDs to the right rather than starting274

from zero. Let lmax denote the maximum passage275

length and k the number of retrieved passages. We276

shift the query position IDs by k · lmax tokens to277

account for the total length.278

3.2 Training279

We train ImpRAG using a multi-task objective that280

jointly optimizes generation and retrieval:281

J = Jgen(r | q, C) + λ · Jret(q, C) (2)282

Here, Jgen(r | q, C) denotes the generation loss,283

implemented as the standard causal language mod-284

eling loss over the response tokens r, conditioned285

on the input query q and a set of sampled candi-286

date passages C. The term Jret(q, C) denotes the287

retrieval loss, computed over the query q and the288

same set of candidate passages C, and is further289

detailed in the two-stage formulation described in290

Section 3.2.1. The hyperparameter λ balances the291

relative importance of the retrieval loss, allowing us292

to control the trade-off between retrieval accuracy293

and generation quality during training.294

3.2.1 Retrieval Objective 295

While the overall training objective remains consis- 296

tent across both stages—combining generation and 297

retrieval losses as in (2)—the retrieval loss compo- 298

nent Jret varies depending on the training phase. In 299

this section, we describe the two-stage training pro- 300

cess used to endow ImpRAG with strong retrieval 301

capabilities. 302

Warmup. Since the pretrained language model 303

is not inherently optimized for retrieval, we begin 304

with a warmup stage that introduces basic retrieval 305

ability. We adopt a Multi-Label NCE loss (Zhang 306

et al., 2022) as the retrieval objective and con- 307

struct supervision using pseudo-labeled data gener- 308

ated by a strong off-the-shelf retriever, Contriever- 309

MSMARCO (Izacard et al., 2022). For each query 310

q, we retrieve the top-5 passages as pseudo-positive 311

examples, denoted by P(q). We then sample a 312

small set of pseudo hard negatives, denoted by 313

Nh(q) (e.g., |Nh(q)| < 10), from passages ranked 314

10–50.3 While these passages may still be some- 315

what relevant, they are less likely to contain the key 316

information necessary to answer the query. This 317

selection introduces meaningful retrieval difficulty. 318

We also use in-batch negatives across devices as ad- 319

ditional random negatives Nr(q). The full negative 320

set is N (q) = Nh(q) ∪ Nr(q), and the candidate 321

set is C = P(q) ∪N (q). The retrieval loss for this 322

stage is defined as: 323

Jret(q, C) = −
∑

p∈P(q) log
(

exp(s(q,p))
exp(s(q,p))+

∑
p′∈N (q) exp(s(q,p

′))

)
(3)

324

Self-Distillation. To further enhance retrieval 325

performance, we employ language model perplex- 326

ity distillation (Izacard et al., 2023), which as- 327

sesses how much each candidate passage improves 328

the language model’s likelihood of generating the 329

ground-truth response, conditioned on the query. 330

Specifically, for each candidate passage p ∈ C, we 331

compute the log-likelihood of the gold response 332

r given the concatenation of p and q, denoted as 333

logPLM(r | p, q). This defines a soft target distri- 334

bution over candidate passages: 335

PT (p | q, r) = exp(logPLM(r | p, q))∑
p′∈C exp(logPLM(r | p′, q))

(4)

336

3We find this approach effective in preliminary experi-
ments, though we did not perform extensive hyperparameter
tuning.
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We also define the retrieval model’s predicted337

distribution based on the similarity scores:338

PR(p | q) = exp(s(q, p))∑
p′∈C exp(s(q, p

′))
(5)339

The retrieval loss is then computed as the KL340

divergence between the target and predicted distri-341

butions:342

Jret(q, C) = KL
(
PT (p | q, r) ∥ PR(p | q)

)
(6)343

Here, PT (p | q, r) indicates that gradients are344

not backpropagated through the target distribution.345

Note that this stage also involves joint training; the346

only difference from the warmup phase lies in the347

retrieval loss Jret.348

3.3 Inference349

At inference time, we first embed all passages in the350

knowledge corpus using the bottom layer group LB351

of the model. These embeddings are stored in an352

approximate nearest neighbor (ANN) index (e.g.,353

FAISS (Douze et al., 2024)) hosted on a remote354

server for efficient retrieval.355

As illustrated in Figure 1, given a query, the356

ImpRAG model performs the following steps to357

generate a response:358

1. The bottom layers LB encode the input query359

and generate a query embedding, which is360

sent to the remote ANN search server.361

2. The ANN server retrieves the top-k most rele-362

vant passages based on the query embedding363

and returns their passage IDs.364

3. The middle layers LM continue processing365

the information by applying cross-attention to366

the KV states of the retrieved passages.367

4. The top layers LT complete the encoding and368

decoding process without cross-attention, gen-369

erating the next token.370

5. The above steps are repeated at each decoding371

step. Notably, the query embeddings are com-372

puted only once at the end of the input prompt,373

and passage retrieval is not re-triggered there-374

after.4 In subsequent decoding steps, cross-375

attention continues to use the cached key-376

value states, and this process repeats until the377

4While ImpRAG is general and can be adapted for iterative
retrieval, we intend to focus this work on the single retrieval
setup and will leave iterative retrieval for future work.

model reaches a stopping criterion (e.g., an 378

end-of-sequence token). 379

4 Experiment 380

4.1 Experimental Setup 381

Training. For training, we consider two types 382

of datasets: (1) datasets requiring retrieval knowl- 383

edge: NaturalQuestions (NQ; Kwiatkowski et al., 384

2019) and HotpotQA (Hopo; Yang et al., 2018); 385

and (2) datasets without requiring retrieval knowl- 386

edge, where we use the instruction tuning datasets 387

from Lin et al. (2024) (see Appendix D for a com- 388

plete list of these datasets). Inspired by Chen 389

et al. (2022), we also incorporate two synthetic, 390

retrieval-free tasks into the training to enhance 391

instruction-following capabilities: phrase denois- 392

ing, and next/previous sentence generation. The 393

training data for phrase denoising is generated by 394

prompting LLMs (we use Llama-3.1 70B) with a 395

paragraph from Wikipedia. For the sentence gener- 396

ation task, we construct it randomly using content 397

from Wikipedia. 398

For all these datasets, we use a subset of 5,000 399

examples from their training splits in each dataset. 400

In addition, we use 1,000 examples from the NQ 401

dev split as the development set. We use the De- 402

cember 2021 Wikipedia from Izacard et al. (2023) 403

as our knowledge corpus. Additionally, we spend 404

approximately 10% of training on plain text from 405

Wikipedia to prevent models from overfitting to the 406

downstream tasks. 407

Evaluation. We evaluate models on 8 different 408

knowledge-intensive tasks to assess their various 409

capabilities, specifically: 410

• Basic question answering: NQ, Sim- 411

pleQA (SQA; Wei et al., 2024); 412

• Multihop reasoning: Hopo, 2WikiMulti- 413

HopQA (2WQA; Ho et al., 2020); 414

• Instruction following: (1) relation extraction: T- 415

Rex (Elsahar et al., 2018), ZsRE (Levy et al., 416

2017), (2) fact checking: FEVER (FEV; Thorne 417

et al., 2018), and (3) entity linking: AIDA (Hof- 418

fart et al., 2011). 419

For all these datasets, we report exact matches 420

as the evaluation metric for generation tasks and 421

recall rates for retrieval tasks. The retrieval recall 422

is measured by the percentage of instances where 423

the top-retrieved results contain the answers as sub- 424

strings. We omit retrieval recall for FEV as it is 425
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Task Template
Knowledge-Intensive Tasks
NQ, Hopo, SQA, 2WQA Q: {question} A: {answer}
AIDA {context} Output the Wikipedia page title of the entity mentioned between

[START] and [END] in the given text A: {answer}
FEV Is this statement true? {statement} A: {answer}
T-Rex, ZsRE {entity} [SEP] {relation} Provide the answer corresponding to the relation

specified after [SEP] for the entity mentioned before [SEP] A: {answer}
Instruction-Tuning Tasks
Dialogue Completion {turn1} {turn2} {turn3} ...
Reading Comprehension {context} Q: {question} A: {answer}
Summarization {context} Summarize this article: {summary}
Phrase Denoising {context} Recover the original phrases marked between [START] and [END]

in the given text A: {answer}
Sentence Generation {context} [SEP] next/previous sentence Generate a sentence corresponding to

the relation specified after [SEP] for the context mentioned before [SEP] A:
{sentence}

Table 1: Prompt templates. We only use retrieval for knowledge-intensive tasks. For simplicity, we list task
categories for a subset of the instruction tuning datasets. See Appendix D for more detailed description.

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
Llama-3.23B
+RA-IT 43.2 (77.0) 38.1 (48.2) 35.9 (48.8) 33.4 (43.3) 54.2 (84.3) 58.1 (86.6) 79.2 (-) 40.1 (38.1) 47.8 (60.9)
+RA-DIT 43.4 (77.5) 38.8 (48.7) 36.4 (49.3) 34.0 (43.5) 55.0 (85.0) 59.0 (87.2) 80.5 (-) 41.0 (38.2) 48.5 (61.3)
+RA-DIT-Llama 43.9 (78.0) 39.8 (49.9) 37.0 (49.8) 35.1 (44.0) 55.8 (85.9) 60.0 (87.9) 80.2 (-) 41.1 (38.4) 50.4 (64.0)
+ImpRAG 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)
Llama-3.18B
+RA-IT 45.1 (77.0) 39.0 (48.2) 36.9 (48.8) 34.4 (43.3) 55.0 (84.3) 59.1 (86.6) 83.2 (-) 41.1 (38.1) 49.2 (60.9)
+RA-DIT 45.7 (77.7) 38.9 (48.9) 37.2 (49.1) 34.9 (44.0) 56.1 (85.4) 60.1 (87.8) 85.1 (-) 41.5 (38.8) 49.9 (61.7)
+RA-DIT-Llama 46.1 (78.7) 40.7 (50.3) 37.9 (50.2) 35.6 (44.8) 57.0 (86.1) 61.2 (88.1) 86.2 (-) 42.1 (39.2) 50.9 (62.5)
+ImpRAG 46.4 (79.1) 41.3 (51.2) 38.4 (50.9) 36.0 (45.2) 62.5 (92.7) 67.1 (94.0) 89.2 (-) 54.2 (62.4) 54.4 (67.9)

Table 2: Evaluation results for 8 knowledge-intensive tasks. We report exact match scores for generation tasks
and retrieval recall (shown in parentheses) for retrieval tasks. Retrieval recall is not reported for FEV, as it is a
classification task. All these methods use retrieval augmentation.

a classification task where the answer strings are426

either “True” or “False”.427

For Hopo, T-Rex, ZsRE, FEV, and AIDA,428

we use development sets from the KILT bench-429

mark (Lewis et al., 2020). For SQA and NQ, we430

use the official test set. For 2WQA, we use their431

development set. For all datasets, we utilize the432

entire input prompts as queries for the retrievers.433

We describe our task templates in Table 1.434

Baselines. We consider 3 baseline models:435

• Retrieval Augmented Instruction Tuning (RA-436

IT): This approach involves directly incor-437

porating retrieved passages from Contriever-438

MSMARCO into the context and fine-tuning the439

language models (LMs) on the training data;440

• Retrieval Augmented Dual Instruction Tuning441

(RA-DIT; Lin et al., 2024): In this method, we442

first fine-tune the Contriever-MSMARCO on443

the training subsets of NQ and HotpotQA us-444

ing Equation 6. Subsequently, we perform fine-445

tuning as in RA-IT, utilizing the fine-tuned re-446

triever;447

• RA-DIT with Llama as the Retriever (RA-DIT- 448

Llama): Here, we replace the Contriever used in 449

RA-DIT with the first 8 layers from the Llama 450

models.5 To ensure effective retrieval perfor- 451

mance, we initially warm up the Llama retriev- 452

ers with pseudo labels generated by Contriever- 453

MSMARCO using Equation 3. 454

Hyperparameters. We use Llama-3.2 3B and 455

Llama-3.1 8B as the base models for ImpRAG. For 456

both models, the layer boundary b is set to 7.6 For 457

Llama-3.2 3B, the layer boundary t is 19, while for 458

Llama-3.1 8B, it is 23. We train for 10 epochs and 459

perform the retrieval warmup in the first 3 epochs. 460

When retrieving passages, we take the top 10 most 461

relevant documents. 462

See Appendix E for more details on the baselines 463

and computational resources. 464

5We choose to use first 8 layers for fair comparison as
ImpRAG uses the same layers for retrieval.

6Since we label the first layer of a LLM as layer 0, a layer
boundary b of 7 means that the bottom layer group contains
the first 8 layers.
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Figure 2: Exact match and retrieval recall on the NQ dev set using Llama-3.2 3B with different values of b (left
side) and t (right side). When varying one layer boundary, we keep the other constant.

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
self-distillation only 29.9 (61.2) 30.1 (39.9) 29.8 (41.9) 27.5 (37.4) 35.6 (64.9) 40.9 (65.9) 67.7 (-) 28.3 (22.5) 36.2 (47.7)
warmup only 44.0 (78.3) 39.9 (50.0) 37.1 (50.0) 35.1 (44.2) 56.5 (87.0) 61.2 (88.3) 81.0 (-) 45.2 (42.9) 50.0 (63.0)
warmup+self-distillation 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)

Table 3: Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using Llama-3.2 3B as the base
model, trained with different retrieval objectives.

4.2 Experimental Result465

Table 2 presents our main evaluation results. Each466

model variant—RA-IT, RA-DIT, RA-DIT-Llama,467

and ImpRAG —exhibits different performance lev-468

els, with ImpRAG consistently achieving the high-469

est scores across all tasks. For Llama-3.2 3B, the470

average exact match score increases from 47.8 with471

RA-IT to 52.5 with ImpRAG, while for Llama-3.1472

8B, the score rises from 49.2 to 54.4. Although RA-473

DIT shows improvements over RA-IT, ImpRAG474

further enhances performance. Notably, ImpRAG475

significantly outperforms RA-DIT-Llama, indicat-476

ing that the improvements are not merely due to477

using a more powerful base model (i.e., the first478

8 layers of Llama models) for retrieval. Impor-479

tantly, the enhancements are evident in both exact480

match scores and retrieval recalls, demonstrating481

that ImpRAG improves both generation quality and482

retrieval performance. It is worth noting that com-483

pared to the baseline approaches, the most substan-484

tial improvements with ImpRAG are seen in tasks485

that queries need to be formulated more differently486

from input prompts, such as T-Rex, ZsRE, FEVER,487

and AIDA. Among these tasks, AIDA shows the488

most significant improvements, with over a 20-489

point increase in retrieval recall and more than a 10-490

point rise in exact match scores for both Llama-3.1491

3B and Llama-3.1 8B, likely due to the inadequacy492

of directly using input prompts as queries in AIDA.493

This underscores ImpRAG’s effectiveness in formu-494

lating implicit queries and embedding instruction- 495

following capabilities into retrievers. Overall, these 496

results demonstrate that ImpRAG significantly en- 497

hances the models’ ability to accurately retrieve 498

and apply knowledge, with improvements more 499

significant in tasks requiring diverse formats. 500

5 Analysis 501

5.1 Layer Group Boundary Ablation 502

In this section, we examine the effects of the layer 503

boundaries b and t. The findings are presented in 504

Figure 2. To facilitate comparison, we vary one 505

layer boundary while keeping the other constant. 506

We note that increasing b reduces the number of 507

layers allocated to the middle layer group, which 508

includes layers for reading and generation. Con- 509

versely, increasing t does not affect the retrieval lay- 510

ers. Overall, we find that increasing b enhances re- 511

trieval recall, with improvements leveling off once 512

b reaches 7. This plateau is likely due to dimin- 513

ished generation performance, which results in less 514

precise training signals for self-distillation. This 515

underscores the importance of balancing parame- 516

ters between retrieval and generation. On the other 517

hand, as expected, increasing t consistently yields 518

improvements. Although these improvements seem 519

to plateau at 19, we refrain from further increasing 520

t primarily due to memory constraints. We plan to 521

leave more memory-efficient training of ImpRAG 522

for future exploration. 523
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T-Rex ZsRE FEV AIDA avg
No templates 55.8 (85.9) 60.0 (87.9) 80.2 (-) 41.1 (38.4) 59.3 (70.7)
Oracle templates 61.4 (90.7) 66.0 (93.6) 83.9 (-) 66.1 (72.3) 69.4 (85.5)
ImpRAG 60.8 (90.2) 65.9 (93.5) 83.8 (-) 52.6 (58.3) 65.8 (80.7)

Table 4: Exact match scores and retrieval recall (shown in parentheses) for RA-DIT-Llama using Llama-3.2 3B as
the base model, evaluated with various query templates. In the case of “no templates”, the inputs to the LLMs are
used directly as queries.

NQ SQA Hopo 2WQA T-Rex ZsRE FEV AIDA avg
ImpRAG 44.1 (78.4) 40.3 (50.0) 37.3 (50.2) 35.5 (44.5) 60.8 (90.2) 65.4 (93.2) 83.8 (-) 52.6 (58.3) 52.5 (66.4)
w/o all IT tasks 42.9 (76.4) 38.1 (48.2) 35.2 (47.7) 33.7 (42.0) 43.5 (69.3) 49.5 (70.2) 76.2 (-) 25.4 (20.5) 43.1 (53.5)
w/o PD and SG 44.0 (78.5) 40.1 (50.1) 37.4 (50.3) 35.4 (44.4) 53.3 (82.8) 57.1 (84.9) 81.2 (-) 40.5 (41.2) 48.6 (61.7)

Table 5: Exact match scores and retrieval recall (shown in parentheses) for ImpRAG using Llama-3.2 3B as the base
model, trained with different combinations of instruction tuning datasets. IT tasks refer to instruction tuning tasks,
PD stands for phrase denoising, and SG denotes sentence generation.

5.2 Retrieval Objective Ablation524

We conduct experiments to compare the effects of525

different retrieval training objectives. The results526

are presented in Table 3. During training, we con-527

sistently apply each retrieval objective throughout528

the entire process. For instance, in the "warmup529

only" experiment, we extend the use of the warmup530

objective to 10 epochs instead of limiting it to531

the initial 3 epochs. Our findings indicate that532

the warmup objective provides a baseline perfor-533

mance across all tasks and is particularly beneficial534

for tasks with direct supervision. Self-distillation535

builds on this baseline, further enhancing model536

performance on unseen test tasks. Overall, the two537

training objectives complement each other effec-538

tively.539

5.3 Effect of Query Templates540

We also examine the impact of using different541

query templates for the baseline approach, RA-542

DIT-Llama. The results are detailed in Table 4.543

In these experiments, we omit QA tasks because544

their “no templates” and “oracle templates” setups545

are almost the same. Overall, “oracle templates”546

still provides the best performance. The improve-547

ments are particularly notable on AIDA. However,548

it is important to highlight that ImpRAG achieves549

highly competitive performance on 3 out of 4 tasks550

and already shows significant improvement on the551

remaining task compared to using “no templates.”552

5.4 Effect of Instruction Tuning for Retrieval553

In Table 5, we explore the effects of training on554

instruction tuning datasets. The table shows that555

omitting all instruction tuning datasets leads to a556

decline in model performance on both in-domain 557

tasks (NQ, SQA, Hopo, and 2WQA) and out-of- 558

domain tasks. Notably, removing only phrase de- 559

noising and sentence generation has a minimal 560

impact on in-domain tasks but causes more pro- 561

nounced negative effects on out-of-domain tasks, 562

except for FEV. This exception likely arises be- 563

cause FEV’s task format is more similar to the 564

in-domain tasks than other tasks. This suggests 565

that instruction tuning tasks aid models in under- 566

standing task formats, and ImpRAG can transfer 567

this knowledge from generation to retrieval due to 568

its unified model architecture. 569

6 Conclusion 570

We present ImpRAG, a query-free retrieval- 571

augmented generation (RAG) system that implic- 572

itly captures information needs without requiring 573

human-specified queries. Unlike prior work that 574

treats retrieval and generation as separate com- 575

ponents with independently trained models, Im- 576

pRAG unifies them within a single decoder-only 577

language model by partitioning it into specialized 578

layer groups and jointly optimizing for both re- 579

trieval and generation. The same model parame- 580

ters and forward pass are shared across retrieval 581

and generation, effectively minimizing the mis- 582

match between the retriever and the generator. Im- 583

pRAG demonstrates strong performance across 584

eight knowledge-intensive tasks, outperforming tra- 585

ditional RAG systems and delivering substantial 586

gains on unseen tasks with diverse formats. 587
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7 Limitations588

One limitation of this work is its focus on a single-589

pass retrieval setup; we do not explore iterative or590

multi-hop retrieval, which could further enhance591

performance on complex reasoning tasks. Adapting592

ImpRAG to iterative retrieval remains an important593

direction for future work.594

Our method is also evaluated exclusively using595

the LLaMA 3 family of models. While the ap-596

proach is broadly applicable, its generalizability to597

other architectures and model sizes has yet to be598

validated.599

Additionally, the warmup stage relies on pseudo-600

labeled data generated by Contriever-MSMARCO.601

Although this provides a strong starting point,602

we expect that using more powerful retrievers or603

human-labeled data could lead to further gains by604

offering higher-quality supervision early in train-605

ing.606
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A Passage Encoding965

Given k retrieved passages, we must obtain the key-966

value (KV) states from the middle layer group LM967

to enable cross-attention. We explore three passage968

encoding strategies, summarized in Table 6.969

First, we consider Independent Encoding, where970

each passage is encoded separately using position971

IDs starting from zero, following the parallel en-972

coding strategy in Yen et al. (2024). The resulting973

KV states are then concatenated across passages.974

Second, we examine Concatenated Encoding975

(Segmented), in which passages are concatenated976

into a single sequence, but attention across pas-977

sages is blocked to prevent inter-passage interac-978

tion.979

Third, we evaluate Concatenated Encoding (Full980

Attention), where passages are concatenated and981

full cross-passage attention is allowed throughout 982

the encoding. 983

We conduct these experiments by finetuning 984

Llama-3.1 8B model on the Natural Questions 985

(NQ) dataset using the top-10 passages retrieved by 986

Contriever-MSMARCO, and report Exact Match 987

(EM) scores on the development set. As shown in 988

Table 6, the two simpler strategies—Independent 989

Encoding and Segmented Concatenation—perform 990

similarly, while Full Attention Concatenation 991

yields a clear performance improvement, highlight- 992

ing the benefit of modeling inter-passage dependen- 993

cies. 994

Encoding Method Dev EM

Independent Encoding 51.7
Segmented Concatenation 51.4

Full Attention Concatenation 53.3

Table 6: Performance of different passage encoding
strategies.

B Freezing Passage Representations 995

We investigate the impact of freezing passage rep- 996

resentations—either hidden states or key-value 997

(KV) states—during inference with a fixed retriever. 998

All experiments are conducted using a fine-tuned 999

LLaMA-3.1 8B model and the top-10 passages re- 1000

trieved by Contriever-MSMARCO on the Natural 1001

Questions (NQ) dataset. Results are reported in 1002

Table 7. 1003

We explore two freezing strategies, both using 1004

the Independent Encoding approach described in 1005

Appendix A. In the first variant, Frozen Hidden 1006

States, we freeze the hidden representations of re- 1007

trieved passages as produced by the initial (un- 1008

trained) LLaMA-3.1 8B model, and pass them 1009

through the trained key/value projection layers to 1010

generate the KV states used in cross-attention. 1011

In the second variant, Frozen KV States, we 1012

directly freeze the key and value attention states of 1013

the passages, also obtained from the initial LLama- 1014

3.1 8B model. 1015

We observe that both freezing methods yield 1016

comparable performance, slightly underperforming 1017

the fully dynamic setting where passage KV states 1018

are computed using the trained model. 1019

C Passage KV States Compression 1020

When we use independent encoding strategy in 1021

Appendix A, one benefit will be that we can save 1022
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Method Dev EM

No Freezing 51.4
Frozen Hidden States 50.8

Frozen KV States 50.7

Table 7: Performance of freezing different passage
representations on NQ dev set with top-10 Contriever-
MSMARCO retrieved passages.

the middle layer group key value states for all the1023

passages in knowledge corpus in disk and during1024

inference after retrieval we can load the key value1025

states from disk without recomputation. However,1026

this will result in a large amount of disk spaces.1027

Thus, we consider two compression strategies: to-1028

ken compression and product quantization and we1029

conduct experiments following the same setting1030

as the Frozen KV states in Appendix B. Specif-1031

ically, take for token compression, we use the1032

Heavy Hitter (Zhang et al., 2023) and only keep1033

half number of tokens for each passage. For pro-1034

duction quantization, we use FAISS codec with in-1035

dex type OPQ32x128-PQ32x8 for each key value1036

head, which is trained on 500k randomly sampled1037

wikipedia passages. The compression rate with1038

this quantization is 128×2
32 = 8 for original bfloat161039

state vector of each attention head. We report the1040

results in Table 8. We can see that both strategies1041

don’t hurt the performance much.1042

Compression Dev EM

No Compression 50.7
Heavy Hitter 49.9

Product Quantization 50.3

Table 8: The results for various compression techniques.

D Instruction-Tuning Datasets1043

We use OpenAssistant Conversations1044

Dataset (oasst1; Köpf et al., 2023), Conversational1045

Question Answering (CoQA; Reddy et al., 2019),1046

Discrete Reasoning Over Paragraphs (DROP; Dua1047

et al., 2019), NewsQA (Trischler et al., 2017),1048

PubMedQA (Jin et al., 2019), QA for Artificial1049

Intelligence (Quail; Rogers et al., 2020), SQuAD1050

v2 (Rajpurkar et al., 2018),7 and CNN Daily-1051

Mail (Chen et al., 2016) The templates for these1052

datasets are shown in Table 9.1053

7We only use answerable questions from SQuAD v2.

Task Template
Instruction-Tuning Tasks
oasst1 {turn1} {turn2} {turn3} ...
CoQA, DROP, NewsQA, PubMedQA,
SQuAD

{context} Q: {question} A: {answer}

CNN DailyMail {context} Summarize this article: {summary}

Table 9: Prompt templates. We only use retrieval for
knowledge-intensive tasks.

E Baselines and Computational 1054

Resources 1055

Discussions on Baselines. For all these baselines, 1056

we use the retrieve-then-generate paradigm, i.e., be- 1057

gin by retrieving candidates using the retrievers and 1058

then incorporate them into the context for training 1059

and inference. This implies that these baselines 1060

require an additional retriever, leading to increased 1061

computational costs and a higher number of model 1062

parameters compared to ImpRAG. However, since 1063

this is a standard practice for retrieval-augmented 1064

models, we continue to use them in the baselines 1065

to establish stronger comparisons. 1066

Computational Resources. We use NVIDIA 1067

H100 GPUs. Each training session requires 8 H100 1068

GPUs, and hosting the index also demands an ad- 1069

ditional 8 GPUs. Training the baseline approaches 1070

takes roughly 96 GPU hours, whereas our models 1071

require approximately 160 GPU hours. 1072
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