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Abstract

The classification of pathogenicity in gene sequences plays
an important role in deciphering genetic disorders and for-
mulating precise medical treatments. Traditional methods for
this classification task often involve an extensive analysis of
several genomic attributes and complex predictive models,
leading to a process that is both complex and computation-
ally intensive. Recently, Large Language Models (LLMs),
also known as Genomic Foundation Models, have been in-
troduced, and their full potential in clinical applications is
yet to be explored. In this work, we experiment with sev-
eral such models, including HyenaDNA, GenalLM, and Nu-
cleotide Transformer on the task of classifying pathogenic
gene variants, benchmarking them against previous classifi-
cation methods that rely on traditional feature extraction tech-
niques. Our evaluation of fine-tuned models on the ClinVar
dataset shows that the Nucleotide Transformer achieves an
accuracy rate of 90%, which is on a par with some traditional
pathogenicity prediction tools, yet it notably relies solely on
genomic sequences, eschewing the need for additional data
such as pathogenicity scores, conservation scores, or allele
frequencies. These results indicate a potential for Genomic
Foundation Models for a more streamlined and scalable gene
sequence classification.

Introduction

Genome sequencing is experiencing a rapid and dynamic
evolution, revolutionizing our understanding of genetics
and its impact on human health. Technological advance-
ments have led to substantial growth in sequencing capacity
while reducing costs, making it increasingly accessible (Qin
2019). This progress has allowed researchers to delve deeper
into the intricate variations within our DNA. One of the most
remarkable outcomes of this evolution is the identification of
numerous genetic variants and their associated pathogenic-
ity. Through comprehensive analyses, scientists can now
unravel the genetic underpinnings of various diseases, en-
abling personalized medicine approaches and targeted ther-
apies. Additionally, large-scale collaborative efforts, such
as the Human Genome Project (Hood and Rowen| 2013)
and initiatives like the 100,000 Genomes Project (100,000
Genomes Project Pilot Investigators|2021)), have contributed

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to the compilation of extensive genetic databases, fostering a
deeper understanding of rare and common genetic variations
and their role in health and disease. However, due to present
limitations, researchers are unable to examine the effects of
each and every one of the approximately 20,000 rare mis-
sense variants in the human genome. Consequently, in or-
der to help physicians and researchers assess the pathogenic-
ity of missense variants, new technologies that are effective,
scalable, and interpretable are required.

Supervised Learning approaches have shown promising
results in the avenue of distinguishing pathogenic variants.
Research on predictive algorithms has helped classify so
many missense variants which otherwise would have been
very difficult to classify (Evans et al.|2019). The recent
work SNPred (Molotkov, Koboldt, and Artomov|2023) is
an ensemble model specifically developed for predicting
the pathogenicity of nonsynonymous single nucleotide vari-
ants (nsSNVs). This tool stands out for its ability to consis-
tently outperform other state-of-the-art tools by combining
so many pathogenicity prediction tools in an ensemble, es-
pecially when dealing with rare and cancer-related variants,
as well as variants that are classified with low confidence by
most tools. To characterize each variant, the authors utilized
33 pathogenicity prediction scores, 7 conservation scores,
and 42 gnomAD and EXaC allele frequencies from dbNSFP
as features. However, no existing technique uses the genome
sequences as their direct input. Consequently, this creates a
significant gap in our ability to comprehend the genome data
in its pure, unprocessed state. The absence of direct genome
sequence utilization hinders a more comprehensive under-
standing of the underlying genetic information and its true
nature. To comprehend genomic sequences more effectively,
foundational models tailored for genomic data are gaining
prominence in research. One such model is DNABert (Ji
et al.||2021), which utilizes a transformer-based architec-
ture to generate embeddings for genome sequences. Nev-
ertheless, its limitation in processing sequences longer than
500 tokens has posed challenges to its broader applicabil-
ity in research. In response to this limitation, models like
HyenaDNA (Nguyen et al.|2023), GenaLM (Fishman et al.
2023)), and Nucleotide Transformer (Dalla-Torre et al.|[2023)
have emerged, each addressing the input length constraint in
unique ways, thus expanding the scope and potential of ge-
nomic data analysis. These models have been pretrained on



vast and diverse genomic datasets, further enhancing their
utility in understanding and analyzing genomic information.
However, the utility of these genomic foundation models
in impactful real-world applications has not been fully ex-
plored.

In this work, we fine-tune selected genomic founda-
tion models, namely HyenaDNA, GenalLM, and Nucleotide
Transformer on genomic sequences for pathogenicity pre-
diction. We benchmarked these models using the filtered
ClinVar (Landrum et al.|[2014) dataset based on the state-
of-the-art model SNPred (Molotkov, Koboldt, and Arto-
movl|[2023) criteria to ensure data reliability. Additionally,
we showcase the embeddings produced by these models to
demonstrate their problem understanding and capabilities in
a visually interpretable manner. To the best of our knowl-
edge, this study is the first to benchmark foundation models
capabilities in gene pathogenicity prediction.

Related Work

In this section, we start by examining the existing genomic
and variant datasets. Following this, we discuss the tradi-
tional supervised learning techniques for gene pathoginicity
prediction. The final section reviews some of the existing
genomic foundation models used in this research.

Genomic and Variant Datasets

Genome databases represent a cornerstone of modern biol-
ogy, offering comprehensive repositories of genetic informa-
tion. Among the most significant are the Human Genome
(HG) builds (Nurk et al.|[2022), which have mapped the
entire human genome in successive iterations, each build
enhancing the precision and completeness of the previous.
These databases, like NCBI’s GenBank (Benson et al.[2012)
and the EMBL-EBI’s Ensembl (Howe et al.|2021), provide
not only the raw sequence data but also annotations and
functional information. Integral to these resources are vari-
ant databases, which catalog genetic variations such as sin-
gle nucleotide polymorphisms (SNPs) and structural vari-
ants. These databases, like dbSNP (Sherry et al.|2001) and
ClinVaIF_-], are essential for understanding genetic diversity
and disease associations. They enable researchers to corre-
late specific genetic variations with phenotypic traits, of-
fering invaluable insights into human genetics, evolution,
and personalized medicine. The synergy between HG builds
and variant databases continually drives advancements in
genomics, offering a comprehensive picture of the human
genetic landscape. In particular, ClinVar has been used in
developing and benchmarking models for predicting vari-
ant pathogenicity, a key factor in understanding genetic dis-
orders and developing targeted treatments. One of Clin-
Var’s most valuable features is its extensive collection of ge-
netic variant data, each meticulously annotated with clinical
significance. This includes detailed classifications of vari-
ants as benign, likely benign, uncertain significance, likely
pathogenic, or pathogenic. These annotations are derived
from a wide array of sources, including clinical laborato-
ries, research institutions, and literature reviews, ensuring a

"https://www.ncbi.nlm.nih.gov/clinvar/intro/

rich and diverse dataset. The comprehensiveness of Clin-
Var’s data makes it a suitable reference for the develop-
ment and validation of computational algorithms designed
to predict the pathogenicity of genetic variants. These al-
gorithms, often based on machine learning or bioinformat-
ics techniques, can help navigate the complexity of genomic
data. They seek to automatically distinguish harmful muta-
tions from benign genetic variations, a task crucial in clinical
genetics and personalized medicine. By benchmarking these
algorithms against ClinVar’s well-curated and clinically an-
notated database, researchers can rigorously test the accu-
racy and reliability of their predictive models. This process
ensures that these tools can accurately identify potentially
disease-causing variants, a task that has direct implications
for patient diagnosis and treatment planning. Furthermore,
the continuous updating of ClinVar with new data and re-
vised classifications allows for the ongoing refinement of
these algorithms. As our understanding of genetic variants
evolves, so too can the predictive models, ensuring they re-
main aligned with the latest clinical insights and genomic
research.

Pathogenicity Prediction Models

(Samocha et al||2014) pioneered pathogenicity prediction
in genomics, particularly for diseases like autism spectrum
disorders (ASDs) with complex genetic factors. It intro-
duced a statistical framework to analyze de novo muta-
tions (DNMs) and identified key genes related to ASD,
shedding light on neurodevelopmental processes. However,
their work only tackled the problem at coding regions while
98.5% of the Human Genome is made up of non-coding
regions. Notable approaches like CADD (Rentzsch et al.
2019) emerged as standards for identifying pathogenicity in
non-coding sequences of the genome, although their accu-
racy faced challenges. GAVIN (van der Velde et al.[[2017)
improved accuracy by gene-specific adjustments and intro-
duced clear Pathogenic and Benign labels. FATHMM (Shi-
hab et al.|[2013) with an extended feature set (FATHMM-
XF) provides highly accurate genome-wide SNV predic-
tions with confidence scores for simplified interpretation
and cautious classification. To further enhance accuracy,
(Ioannidis et al.[|2016)) introduced REVEL. It is an ensem-
ble model that incorporates scores from multiple prediction
tools, including namely MutPred (Mort et al.[|2014), VEST
(Carter et al.[|2013)), PolyPhen (Adzhubei, Jordan, and Sun-
yaev|[2013) etc as its features. The current state of the art
method SNPRed (Molotkov, Koboldt, and Artomov|[2023)
makes an ensemble combination of so many of the above
listed methods. SNPred’s evaluation involved using six dis-
tinct validation datasets derived from ClinVar and BRCAI
Saturation Genome Editing (SGE) data. The results showed
that SNPred had a significant edge over other tools in various
validation scenarios. Moreover, the study conducted by the
authors of SNPred highlighted the limitations of using Clin-
Var data for evaluating the effectiveness of SNV pathogenic-
ity tools, suggesting that such methods often lead to over-
stated performance estimates.
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Model Architecture Pretraining Size Max. Context | Resolution Training Data
length

HyenaDNA Tiny Stacked Hyena Op- | Next  Nucleotide | 1M 1,000 bp Single Nu- | Human Refer-
erator layers Prediction cleotide token ence Genome

GenalLM Bert | Transformer with | Masked Language | 110M 4,500 bp 3-mers to 6- | Human Refer-

based large 2t BPE Tokenization Modeling mers ence Genome

Nucleotide Trans- | Transformer Masked Language | 100M 12,000 bp 6-mers Human and

former 100M Modeling other species

Table 1: Comparison of best performing versions of the Foundation Models in terms of architecture, pretraining data, etc.

Genomic Foundation Models

Recently, genomic foundation models such as HyenaDNA,
GenalLM, and Nucleotide Transformer have been making
headways in computational genomics. These models, draw-
ing inspiration from breakthroughs in large-scale language
processing, encode complex genomic sequences using self-
supervised learning. Some details of the model variants used
in this study are shown in Table 1.

HyenaDNA. HyenaDNA (Nguyen et al.|2023) is a ge-
nomic foundation model pretrained on the human reference
genome. It extends context length up to 1 million tokens
at single nucleotide-level, a significant leap over previous
models. In addition, it scales sub-quadratically in sequence
length, enabling faster training. Unlike previous models that
used tokenizers to aggregate DNA sequences into larger
units, HyenaDNA operates at single nucleotide resolution
and incorporates full global context at each layer. It en-
ables in-context learning for easy adaptation to new tasks
without updating pretrained weights. HyenaDNA offers var-
ious model sizes to accommodate different computational
needs and applications. These range from smaller versions
like the tiny—-1k and small-32k to larger ones like
the medium-450k and the large—1m. The large—-1m
model, as the name suggests, can handle up to 1 million
tokens. In benchmark applications, HyenaDNA has shown
remarkable performance, achieving state-of-the-art results
on 12 out of 18 basic genomic benchmarks, outperforming
existing models in tasks like species classification and en-
hancer identification by significant accuracy margins.

GenaLM. GenalM (Fishman et al.|[2023) is a genomic
foundation model inspired from natural language process-
ing models like BERT and GPT. It is a transformer model
with versions of both BERT and BigBird based architec-
tures that undergo extensive pretraining on a vast array of
unlabeled human genomic data, enabling it to encode com-
plex genetic sequences and structures, much like the way a
language model learns from text. It’s versions of BERT and
BigBird based models also have further last layer normal-
ization and multi species pretraining data versions. In basic
benchmark performances, GenaLM demonstrates its effec-
tiveness in tasks like gene expression prediction, regulatory
element identification, and genetic variant classification. Its
ability to handle long genomic sequences with single nu-
cleotide resolution gives it a substantial advantage in accu-
rately identifying and interpreting genetic variations.

Nucleotide Transformer. Trained on an extensive dataset
containing up to 174 billion nucleotides from various
species, the Nucleotide Transformer (NT) (Dalla-Torre et al.
2023)) is trained on Nvidia’s Cambridge-1 supercomputer.
This extensive training allows the model to handle a broad
range of inputs and perform exceptionally across multi-
ple benchmarks. The Nucleotide Transformer v2 notably
advances over vl by using a more extensive and diverse
dataset, including 3,202 human genomes and 850 genomes
from various species, enhancing its predictive capabilities
for molecular phenotypes and includes models with 50m,
100m, 250m, 500m, and 2.5b parameters. In its performance
evaluations, the Nucleotide Transformer was subjected to 19
different benchmarks to test its capabilities. Impressively,
in 15 out of these 19 benchmarks, it either matched or ex-
ceeded the performance of other models that were specifi-
cally trained for those tasks. This level of performance not
only demonstrates the model’s versatility but also its effec-
tiveness in translating DNA sequences into RNA and pro-
teins. One of the key strengths of the Nucleotide Trans-
former is its ability to focus attention on crucial genomic
elements, such as enhancers that regulate gene expression,
without any direct supervision. This capability is particu-
larly valuable for the accurate prediction of molecular phe-
notypes from DNA sequences alone.

Experiments and Results

In this work, the ClinVar dataset served as the source for
variant information based on the Hg38 human genome as-
sembly. Following the SNPred paper’s experimental set-
tings, we compiled a dataset containing 50,000 instances of
both Pathogenic and Benign Variants. For example, for the
HyenaDNA Tiny model, we extracted subsequences span-
ning 1,000 nucleotides — 500 on either side of each of the
variant — in alignment with the input size of the model. The
construction of our test set also follows the protocols de-
scribed in (Molotkov, Koboldt, and Artomov|2023)), incor-
porating variants added to ClinVar post-April 2022, while
our training set includes data prior to this date. Our early ex-
periments show that performance is highly sensitive to the
balance of samples per class in the training set. As all the
samples were already selected based on their ClinVar rating,
we randomly downsample the class with excess samples to
balance the training set. Regarding the experimental setup,
we fine-tuned 10 models from each of the three foundational
model families: HyenaDNA, GenalLM, and NT. Given the



Model Accuracy Precision Recall
HyenaDNA Tiny 56.65 66.59 43.37
GenalLM Bert 2t 60.58 81.56 69.52
GenalLM Bert based lastln t2t 67.81 94.80 79.07
GenalLM Bert Large t2t 68.74 87.16 76.86
GenalLM BigBird base t2t 66.03 89.51 76.00
Nucleotide Transformer 50m so 88.54 89.83 89.18
Nucleotide Transformer 100m so 90.62 91.17 90.89
Nucleotide Transformer 250m so 89.46 91.25 90.35
Nucleotide Transformer 500m so 78.24 82.15 80.15

Table 2: Fine-tuned models performances (Accuracy (%),
Precision (%) and Recall (%).)
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Figure 1: t-SNE plots of embeddings from the best fine-
tuned variant of each model (O:Benign; 1:Pathogenic).
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compute constraints, we could only fine tune the tiny ver-
sion of HyenaDNA model family while we covered most
of the models from the other two families. The fine-tuning
process utilized default hyperparameters as outlined in their
respective publications. To assess the models, we employed
the average accuracy, precision and recall an evaluation met-
rics. We summarize these results in Table

NT achieved the best overall performance in terms of ac-
curacy and recall, while GenaLM models achieved higher
precision. We also see that the NT outperforms the other
model families in terms of AUC ROC and AUC PR scores,
as shown in Table 3] The table also shows, in order of de-
creasing performance, various other models previously re-
ported on this test set, reproduced from (Molotkov, Koboldt,
and Artomov|2023). While none of the LLMs reached the
performance of the best baselines, NT outperformed roughly
half of the traditional models, whereas the other models we
tested lagged behind. One possible reason for NT’s rela-
tively good performance in this benchmark is the fact that
it was massively pre-trained on over 3200 diverse human
genomes which helped it outperform so many other mod-
els on other genome benchmark datasets. Figure [T] shows

Model AUC ROC | AUCPR
SNPred 0.994218 | 0.993159
bayesdel.add_af 0.986162 | 0.985381
metarnn 0.977834 | 0.936478
clinpred 0.973365 | 0.924906
cadd 0.963422 | 0.959961
revel 0.961136 | 0.902031
mvp 0.943756 | 0.856274
eigen 0.931853 0.92528

deogen?2 0.93068 0.853016
m-cap 0.925593 | 0.799451
metasvm 0.921943 0.80297

vest4 0.919821 | 0.891856
mutpred 0.919708 | 0.876561
metalr 0.917977 | 0.817804
mutationassessor 0.909111 0.795324
polyphen2.hvar 0.896462 | 0.737596
Nucleotide Transformer 100M | 0.892019 | 0.851482
sift 0.880152 | 0.721437
siftdg 0.873966 | 0.692378
polyphen2.hdiv 0.873389 | 0.717018
mutationtaster 0.869145 0.878079
list-s2 0.86067 0.650734
primateai 0.848458 | 0.611447
mpc 0.818088 | 0.626343
fathmm-mkl 0.80056 0.736335
dann 0.775147 0.63381

Irt 0.745428 | 0.719936
GenalLM Large 0.7318050 | 0.717726
fathmm-xf 0.684203 | 0.606642
genocanyon 0.655255 | 0.640234
HyenaDNA tiny 0.608079 | 0.477324
hl-hesc 0.604735 | 0.637964
gm12878 0.602584 | 0.636317
huvec 0.601604 0.63633

integrated 0.601414 | 0.632413

Table 3: Comparative performances of various models based
on AUC ROC and AUC PR.

t-SNE plots representing the embeddings obtained from the
best fine-tuned variant of each model family. The plots show
a clear separation between phathogenic and benign variants
using the NT model, and to some extent the GenaLM model,
which is consistent with their classification performance.

Conclusion

We presented in this paper the first benchmarking study
of three different Genomic Foundation Models in predict-
ing gene pathogenicity. Namely, we tested the HyenaDNA,
GenalLM, and Neucleutide Transforemer (NT). The ability
of each model to interpret genomic data is significantly in-
fluenced by its preliminary training, its context length, and
resolution. Using these genomic foundation models enables
pathogenicity analysis directly from genome sequences.
Compared to previous pathogencity prediction models, our
experiments show that the NT is ranked in the 50th per-
centile, outperforming roughly half of the traditional meth-
ods. While still lagging segnificantly behind the state-of-the-
art methods, these results show some potential for genomic
foundation models to tackle challenges associated with hu-
man genomic data analysis.
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