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ABSTRACT

We investigate the impact of the source domain in supervised transfer learning,
focusing on image classification. In particular, we aim to assess to which extent
a fine-tuned model can still recognize the classes of the source domain. Further-
more, we want to understand how this ability impacts the target domain. We
demonstrate how the retained knowledge about the old classes in a popular foun-
dational model can interfere with the model’s ability to learn and recognize the
new classes. This interference can incur significant implications and highlights an
inherent shortcoming of supervised transfer learning.

1 INTRODUCTION

Transfer learning (TL) has played a substantial role in successful application of deep neural net-
works in data-lacking domains such as medical diagnosis (Das et al., 2020; Jaiswal et al., 2021)
and autonomous driving (Sumanth et al., 2022). The prevalent TL paradigm in computer vision and
image processing is to fine-tune a foundation model on the downstream task. Foundation models are
able to recognize various visual features and are typically pre-trained on large-scale image datasets
such as ImageNet. Pre-trained models are usually available for popular architectures such as ResNet
(He et al., 2016) and VGGNet (Simonyan & Zisserman, 2014).

Despite the tremendous popularity of the above-mentioned approach, potentially negative transfer
is often overlooked. It is not always well understood to which extent the retained knowledge about
the source domain might negatively impact the target task. In particular, when the target dataset is
limited, we expect the retrained knowledge to be significant. Negative transfer can hence take place
when such knowledge interferes with the model’s ability to adequately learn the target domain.

Various studies have focused on the effectiveness of TL (Huh et al., 2016; Kornblith et al., 2019; He
et al., 2019; Yamada & Otani, 2022), aiming to shed light into its benefits and limitations. Notably,
Kornblith et al. (2019) found that the pre-trained features are less general than previously suggested.
A number of studies have focused specifically on the issue of negative transfer (Chen et al., 2019;
Ganin et al., 2016; Liu et al., 2017; Zoph et al., 2020) and on exploring avenues to mitigate it.

We provide new means to analyze negative transfer in TL, by focusing on potential interference
between the source and target domains. Our analysis demonstrates how this interference can be
quantified and subsequently uncovers inherent weaknesses of models trained under the prevalent
TL paradigm. This helps us predict which inputs are likely to be impacted by negative transfer and
surface subtle failure cases of these models.

2 METHODOLOGY AND INSIGHTS

We design three experiments to shed light into domain interference in TL. These experiments are
summarized in Figure 1. We demonstrate our approach on image classification with two architec-
tures, ResNet-18 and VGG-16. We use ImageNet classification (Deng et al., 2009) as the source
domain and classification of the Hymenoptera dataset (Chilamkurthy) as the target domain. This
dataset contains 240 images in the training set, distributed equally between its two classes: ants and
bees. We denote by CS

i : 1 ≤ i ≤ 1000 and by CT
j : j ∈ {a,b} the categories of the source and

target domains (ants and bees) respectively.
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Figure 1: Illustrating our approach on a TL example from ImageNet to an ants-vs-bees classifier.
(a) To expose the retained knowledge in the fine-tuned model, we replace its 2-way head with the
ImageNet head, and use it to classify the source validation set. (b) To explore possible interference
between the source and target domains, we feed the fine-tuned model with images from the source
domain, keeping its 2-way head. (c) To measure such interference, we feed the fine-tuned model
with images that contain the target categories in addition to potentially-confusing source categories.

We utilize four sets of models in our analysis:

• ImageNet classifiers: We use two ImageNet classifiers one based on ResNet-18 (RN-18
for short) and VGG-16, available as pretrained models in PyTorch (Paszke et al., 2019).

• SimCLR backbones: For further experimentation, we also use a ResNet-18 backbone
pre-trained under SimCLR (Chen et al., 2020) in a self-supervised manner.

• Fine-tuned models: We fine-tune the above-mentioned three pre-trained models on the
Hymenoptera dataset. The following table reports the accuracy of the fine-tuned models
on the validation set. Appendix A.2 provides the training parameters used for fine-tuning.

Model RN-18 (ImageNet) VGG-16 (ImageNet) RN-18 (SimClr) Baseline

Accuracy 96% 95% 88% 79%

• Baseline classifier: This model serves as a baseline that is not exposed to ImageNet. Due to
the limited training set, we train a small convolutional network to classify the Hymenoptera
dataset from scratch (refer to Appendix A.1 for details on the architecture).

2.1 EXPOSING THE RETAINED KNOWLEDGE

We aim to assess the source-domain knowledge retained by the pre-trained models after finetuning.
For this purpose, we follow the process illustrated in figure 1a where we simply use the ImageNet
head with the fine-tuned backbone instead of the pre-trained backbone. By feeding the validation set
of ImageNet, we can calculate the recall of each ImageNet category. A high recall indicates that the
category is preserved after fine-tuning. Table 1 summarizes the number of ImageNet classes having
different ranges of recall. Evidently, the fine-tuned models are able to predict about half (resp. third)
of the source-domain classes at a recall ≥ 50%. This indicates the strong retention of memories
about the source domain.

Recall (%) ≤ 50 [50, 60[ [60, 70[ [70, 80[ [80, 90[ [90, 100] All

RN-18 (ImageNet) 495 185 164 100 49 7 1000

VGG-16 (ImageNet) 671 128 97 63 33 7 1000

Table 1: A breakdown of ImageNet classes by their recall with the fine-tuned models.
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2.2 ANALYZING DOMAIN INTERFERENCE

We feed the fine-tuned model with images from the ImageNet validation set, instead of ones from
the Hymenoptera dataset (Figure 1b). Our hypothesis is that in the absence of domain interference,
the model predictions for a source category CS

i will be random, given that CS
i is not semantically

related with any target category CT
j . For example, the “apiary (bee house)” and the “bee eater”

ImageNet categories are semantically related with bees, with their image samples often including
bees. In contrast, “street sign” and “traffic light” are semantically unrelated with bees.

In the presence of domain interference, the fine-tuned model tends to predict a specific target cate-
gory CT

j , often with high confidence, when fed with instances of a semantically unrelated category
CS

i . In that case we consider that CS
i interferes with the predictions of the fine-tuned model, and

can potentially be problematic when present in the input images, causing it to erroneously favor CT
j .

To quantify domain interference in our models, we compute the bias Bi
a = 1−Bi

b of each ImageNet
category CS

i towards either one of the two target categories CT
a (ants) and CT

b (bees). For this
purpose, we feed with the validation set instances Xval

i of this category to the fine-tuned model M
and compute the bias based on its predictions as follows:

Bi
j =

∣∣x ∈ Xval
i : M(x) = CT

j

∣∣
|Xval

i |
(1)

Table 2 shows for each of the four models we studied, a breakdown of ImageNet classes into five
groups, depending on how highly they are biased toward either target class. It is evident that the
two models that were pretrained on ImageNet exhibit significantly higher interference between its
categories and the target ones, compared with the SimCLR model and our baseline model. By
examining the interfering classes CS

i in the former two models that exhibit high bias (Bi
a > 0.8 or

Bi
b > 0.8) we found that the majority of them were semantically unrelated with the target classes.

This indicates that the prediction of these two models might indeed be influenced by knowledge
retained about various unrelated ImageNet classes (see Appendix A.3 for further analysis).

Bi
a (%) 0 to 20 20 to 40 40 to 60 60 to 80 80 to 100

Model (pertaining) High bees bias Slight bees bias Neutral Slight ants bias High ants bias

RN-18 (ImageNet) 59 176 247 290 228

VGG-16 (ImageNet) 67 152 339 310 132

RN-18 (SimCLR) 3 118 503 355 21

Baseline (scratch) 13 103 628 253 3

Table 2: A breakdown of ImageNet classes by their bias toward the target classes with our classifiers.
We highlight in blue values where pretraining on ImageNet incurred significant bias.

2.3 CONFUSING THE FINE-TUNED MODEL

We demonstrate how domain interference can confuse the fine-tuned models, leading them to erro-
neously favor specific target categories even when they are not present in the input. For this purpose,
we feed the classifiers with images that contain the target categories superimposed as visual stimuli
over ImageNet images as illustrated in Figure 1c. Our hypothesis is that the decision of the baseline
model trained from scratch will not be strongly influenced by the background object, unlike the ones
fine-tuned from ImageNet.

Creating Combined Images We select 20 images {Y k
j : 1 ≤ k ≤ 20} of each target category

CT
j : j ∈ a, b that are recognizable by the classifiers with high scores. To test the detectability of CT

j

in the presence of an ImageNet category CS
i , we superimpose each image Y k

j at a random location
on top of each instance of CS

i in the ImageNet validation set, covering about 10% of the image area.
We repeat the process 5 times, creating a set of 20× 50× 5 = 5000 combined images I(i,j) having
CT

j as the ground-truth label. This set aims to test the source-target interference (CS
i , C

T
j ).
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Figure 2: Comparing the accuracy of our four ants-vs-bees classifiers on different sets of inputs,
curated to surface potential vulnerabilities of the two models pre-trained on ImageNet.

Figure 2 summarizes the accuracy of our models on various combined-image sets. We choose ten
ImageNet categories to use as background objects (see Appendix A.4). Three of these categories
demonstrate high bees bias (Bi

b ≥ 0.8) with the two models pretrained on ImageNet, namely “Shih-
Tzu”, “Leonberg”, and “Pekinese”. Likewise, three of the categories demonstrate high ants bias
(Bi

a ≥ 0.8) with both models, namely “oystercatcher”, “steel arch bridge”, and “grey whale”. The
remaining four categories are neutral (40 ≤ Bi

a < 60 and 40 ≤ Bi
b < 60). Predictably, the accuracy

of the models on superimposed images is lower than on the Hymenoptera validation set.

It is evident that the two models pre-trained on ImageNet have much lower accuracy than the other
two models on image sets I(i,j) when the background category CS

i is highly biased against the super-
imposed target category CT

j . In contrast, all four models have relatively comparable accuracy when
the background category is neutral. Remarkably, the ResNet-18 model fine-tuned from SimCLR is
less sensitive to the presence of background objects than the two models pre-trained on ImageNet,
suggesting that self-supervised learning can mitigate domain interference.

Takeway Analyzing domain interference helps us uncover potential negative transfer in models
trained under supervised TL. Besides synthetic test cases, we can predict actual failure cases in
real inputs. Figure 3 demonstrates how the models fine-tuned from ImageNet are mostly unable to
detect bees on street sign in real images, as well as bees with oystercatcher in generated
images, both categories incur high ants bias (Bi

a ≥ 0.8) within these models.

Baseline (scratch) Bees (99%) Bees (100%) Bees (100%) Bees (86%) Bees (75%) Bees (100%)

RN-18 (ImageNet) Ants (71%) Bees (56%) Ants (89%) Ants (96%) Ants (84%) Ants (79%)

VGG-16 (ImageNet) Bees (52%) Bees (67%) Ants (91%) Ants (92%) Ants (99%) Ants (86%)

RN-18 (SimCLR) Ants (85%) Bees (79%) Ants (76%) Bees (73%) Bees (73%) Bees (87%)

Real images (via Google search) Generated images (using Midjourney)

Figure 3: Model prediction on example images that contain bees along with ant-biased objects
(street sign and oystercatcher). While the baseline model is able to classify these exam-
ples as bees, the two models fine-tuned from ImageNet were frequently confused.
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A APPENDIX

A.1 BASELINE HYMENOPTERA CLASSIFIER

Our baseline network consists of three convolutional layers with strides equal to 1, and 32, 64, and
128 filters respectively, all the filters are of size 3 × 3. Each convolutional layer is followed by a
max pooling layer of size 2 × 2. The final two layers are dense layers with 512, and 128 neurons
respectively, and 0.5 dropout for each of them. The last layer performs a softmax function with two
categories (i.e. ants and bees). The model was trained using the configurations shown in table 3
and achieved 79% accuracy on the validation set.

Figure 4: The architecture of the baseline model we trained from scratch on the target dataset.

A.2 TRAINING HYPERPARAMETERS

LR decay

Model (pretraining) Optimizer LR momentum period gamma epochs

RN-18 (ImageNet) SGD 0.001 0.9 7 0.1 25

VGG-16 (ImageNet) SGD 0.001 0.9 7 0.1 25

RN-18 (SimCLR) RMSProp 1e− 4 - - - 50

Baseline (scratch) RMSProp 1e− 4 - - - 50

Table 3: The configurations used to train our models.

A.3 COMPARING BIAS ACROSS ARCHITECTURES

Figure 5: A scatter plot of ImageNet categories showing their recall (Section 2.1) in two models,
ResNet-18 vs. VGG-16. Both models are pretrained on ImageNet. The red line indicates a positive
correlation (R = 0.56), which suggests that the knowledge retained is, in part, architecture-agnostic.
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Figure 6: Scatter plots of ImageNet categories comparing their ant bias (Section 2.2) in ResNet-18
fine-tuned from ImageNet with the three other models in our study. Interestingly, this bias is highly
correlated between the two models pretrained on ImageNet (R = 0.72), which suggests that it does
not stem from the architecture, but is rather inherent to TL from ImageNet. Also remarkably, the
bias is not correlated between ResNet-18 (ImageNet) and the baseline model (R = 0.08). Finally,
the bias when finetuning from SimCLR is moderately correlated with the bias when finetuning from
ImageNet (R = 0.5).

A.4 ANT BIAS FOR SELECTED CATEGORIES

ImageNet Category RN-18 (ImageNet) VGG-16 (ImageNet) RN-18 (SimCLR) Baseline

oystercatcher 1 0.87 0.68 0.4

grey whale 1 0.92 0.7 0.32

steel arch bridge 0.98 0.82 0.74 0.41

Shih-Tzu 0.02 0.04 0.4 0.56

Leonberg 0.04 0.02 0.42 0.53

Pekinese 0.06 0.04 0.31 0.62

Ostrich 0.48 0.45 0.58 0.57

pop bottle 0.52 0.54 0.5 0.42

lynx 0.48 0.45 0.56 0.67

cradle 0.52 0.49 0.39 0.4

Table 4: The ant bias Bi
a of the ImageNet categories used in Section 2.3. Values colored in brown

indicate high ant bias. Values colored in yellow indicate low ant bias, and hence high bee bias.
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