
MLEP: Multi-granularity Local Entropy Patterns for
Generalized AI-generated Image Detection

Lin Yuan, Xiaowan Li, Yan Zhang∗, Jiawei Zhang, Hongbo Li, Xinbo Gao∗∗

Chongqing Key Laboratory of Image Cognition,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

yuanlin@cqupt.edu.cn, s230201063@stu.cqupt.edu.cn,
{yanzhang1991, zhangjw, lihongbo, gaoxb}@cqupt.edu.cn

Abstract

Advances in image generation technologies have raised growing concerns about
their potential misuse, particularly in producing misinformation and deepfakes.
This creates an urgent demand for effective methods to detect AI-generated images
(AIGIs). While progress has been made, achieving reliable performance across
diverse generative models and scenarios remains challenging due to the absence
of source-invariant features and the limited generalization of existing approaches.
In this study, we investigate the potential of using image entropy as a discrimina-
tive cue for AIGI detection and propose Multi-granularity Local Entropy Patterns
(MLEP), a set of feature maps computed based on Shannon entropy from shuffled
small patches at multiple image scales. MLEP effectively captures pixel depen-
dencies across scales and dimensions while disrupting semantic content, thereby
reducing potential content bias. Based on MLEP, we can easily build a robust CNN-
based classifier capable of detecting AIGIs with enhanced reliability. Extensive
experiments in an open-world setting, involving images synthesized by 32 distinct
generative models, demonstrate that our approach achieves substantial improve-
ments over state-of-the-art methods in both accuracy and generalization. Our code
and models are available at https://www.github.com/fkeufss/MLEP/.

1 Introduction

The rapid development of generative technologies has transformed image synthesis, with models
like GAN [1], diffusion model [2], and their variants achieving impressive realism. While enabling
new applications in creative industries, these advancements have also raised concerns over misuse
in misinformation and deepfakes [3, 4], prompting an urgent need for reliable AI-generated image
(AIGI) detection methods. Researchers have leveraged spatial [5, 6, 7, 8] and frequency-domain
cues [9, 10, 11, 12], as well as high-level knowledge from pretrained diffusion models [13, 14] and
LLMs [15, 16, 17] for AIGI detection. Yet, the lack of source-invariant representations still limits the
cross-domain detection robustness, especially when across different models and content types.

To address this challenge, we aim to identify a generalized, content-agnostic pattern that can reliably
distinguish AIGIs from real photographs. Inspired by recent studies [7, 8], our work builds on two
key observations. Tan et al.[7] found that generative models typically involve internal upsampling
operations and propose Neighboring Pixel Relationships (NPR) to capture resulting structural artifacts.
However, NPR operates on small local patches and retains visible semantic structures, introducing
bias that may hinder generalization. Zheng et al.[8] emphasized the impact of “semantic artifacts” on
detection and propose disrupting image semantics by shuffling 32× 32 patches. While this improves

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://www.github.com/fkeufss/MLEP/


Real AI-generated

AttGAN

52.4%
48.0%

StarGAN

45.6%43.9%

Stable Diffusion v1

64.2%63.1%

Stable Diffusion v2

64.2%
61.0%

Figure 1: Comparison of local entropy distributions between real and AI-generated images using
2 × 2 patches, with entropy values from {0, 0.8, 1.0, 1.5, 2.0}. Real images consistently show a
higher likelihood of entropy reaching 2.0.

cross-scene generalization, the relatively large patch size still preserves semantic information. We
argue that such artifacts persist and continue to limit content-agnostic detection.

Through large-scale subjective observation, we noticed a distinct “glossy and smooth” texture in
AI-generated images, prompting an investigation into their entropy characteristics, a statistical
measure of pixel randomness [18]. We conducted a preliminary study comparing local entropy
distributions (using 2× 2 patches) between real and AI-generated images. As shown in Fig. 1, real
images consistently exhibit a higher probability of maximum entropy (2.0), suggesting the potential
of entropy as a discriminative feature for AIGI detection. Motivated by this, we propose using
image entropy as an alternative to pixel differences as proposed by NPR [7]. Entropy captures pixel
relationships while reducing semantic dependency by focusing on pixel value distributions rather
than contrasts. To further suppress semantic artifacts, we adopt fine-grained patch shuffling (smaller
than the 32 × 32 patches used in [8]), which also reduces the computational overhead of entropy
computation. Additionally, we incorporate multi-scale resampling and an overlapping sliding window
to enhance the granularity of entropy patterns. Our contributions are summarized as follows:

• To the best of our knowledge, it is the first attempt to explore the potential of image entropy
as a cue for detecting AI-generated images. Using image entropy not only enhances detection
accuracy and generalization compared to state-of-the-art methods but also highlights intrinsic
differences between real and AI-generated images in terms of pixel randomness, as quantified
by image entropy.

• We propose Multi-granularity Local Entropy Patterns (MLEP), a set of feature maps
with entropy computed from shuffled small patches across multiple resampling scales.
MLEP effectively disrupts image semantics to mitigate content bias, while capturing pixel
relationships across both spatial and scale dimensions. Using MLEP as input, a standard
CNN classifier can be trained for robust and generalized AIGI detection.

• Extensive quantitative and qualitative analyses validate the effectiveness of the MLEP
design, showing significant improvements over state-of-the-art methods across multiple
AI-generated image datasets.

2 Related Work

Spatial-domain Detection Spatial-domain methods typically rely on handcrafted spatial features,
local patterns, or pixel statistics to distinguish between real and generated images. The representative
methods include generalized feature extraction from CNN-based model [5] and inter-pixel correlation
between rich and poor texture regions [6]. Tan et al. [7] observed that upsampling operations are
prevalent in image generation models and proposed utilizing neighboring pixel relationships (NPR),
computed through local pixel differences, as a simple yet effective cue for AIGI detection. Zheng et
al. [8] discovered that image semantic information negatively impacts detection performance and
proposed a simple linear classifier that utilizes image patch shuffling to disrupt the original semantic
artifacts. Cozzolino et al. [19] proposed a zero-shot detection method that models the distribution
of real images using lossless coding with multi-resolution prediction, identifying AI-generated
images by detecting higher-than-expected coding costs that indicate deviations from real-image

2



statistics. Yang et al. [20] proposed Discrepancy Deepfake Detector (D3), which enhances cross-
generator generalization by introducing a parallel branch that extracts a discrepancy signal from
distorted features to complement the original representation, achieving better robustness without
compromising in-domain performance.

Frequency-domain Detection To tackle the subtlety of spatial artifacts in AI-generated images,
frequency-domain methods analyze image frequency components, enabling more effective real vs.
fake differentiation. The study in [9] found that GAN-generated images exhibit generalized artifacts in
discrete cosine transform (DCT) spectrum, which can be readily identified. Qian et al. [10] proposed
a face forgery detection network based on frequency-aware decomposed image components and local
frequency statistics. Luo et al. [11] proposed a feature representation based on high-frequency noise
at multiple scales and enhanced detection performance by integrating it with an attention module.
Liu et al. [12] utilized noise patterns in the frequency domain as feature representations for detecting
AI-generated images. Tan et al. [21] proposed FreqNet toward detection generalizability, which
focuses on high-frequency components of images, exploiting high-frequency representation across
spatial and channel dimension.

Detection leveraging Pretrained Models This group of methods aims to derive generalized fea-
tures for AIGI detection by leveraging the knowledge learned by large models pretrained on extensive
datasets. Wang et al. [13] proposed an artifact representation named DIffusion Reconstruction Error
(DIRE), which obtains the difference between the input image and its reconstructed object through
a pretrained diffusion model. Chen et al. [14] proposed utilizing pretrained diffusion models to
generate high-quality synthesized images, serving as challenging samples to enhance the detector’s
performance. Ojha et al. [15] utilized representations from a fixed pretrained CLIP model as gen-
eralized features for detection. Chen et al. [22] introduced ForgeLens, a data-efficient CLIP-ViT
framework that enhances generalization to unseen forgeries by using proposed lightweight weight
shared guidance module (WSGM) and forgery-aware feature integrator (FAFormer) to guide frozen
features toward forgery-relevant information. Zhang et al. [23] proposed VIB-Net, which employs
variational information bottlenecks to enforce authentication task-related feature learned from pre-
trained CLIP encoder, significantly improving generalization across different generative model types.
Similar methods such as [16, 17] also leveraged textual information from vision-language models to
further enhance detection performance.

3 The Approach

The proposed approach leverages entropy-based feature extraction to analyze local pixel randomness
in a multi-granularity, semantic-agnostic manner. It begins by dividing the image into small patches
and applying random shuffling to reduce semantic bias. A multi-scale pyramid is then constructed
by downsampling and upsampling the scrambled image, introducing resampling artifacts. Local
entropy is computed using a 2 × 2 sliding window across the entire image, capturing complexity
across intra-block, inter-block, and inter-scale levels. The resulting multi-granularity local entropy
patterns (MLEP) are used as input to a standard CNN classifier for distinguishing AI-generated from
real images. An overview of the method is shown in Fig. 2, with key components detailed below.

3.1 Semantic Suppression via Patch Shuffling

Inspired by previous work [6, 8] that mitigates semantic bias via patch-based processing, we adopt
finer patch shuffling to further disrupt image content. Given an input image X ∈ RH×W×C , we first
partition it into patches of uniform size of L× L:

X = {Xi,j ∈ RL×L×C}1≤i≤H
L ,1≤j≤W

L
, (1)

where L is a small integer (typically < 8), and H,W are assumed divisible by L. The patches are
then randomly permuted, resulting in a visually scrambled image denoted as X̃:

X̃ = {X̃π(i,j) = Xi,j}1≤i≤H
L ,1≤j≤W

L
, (2)

where π is a bijection defining the patch permutation. Note that partitioning and shuffling are applied
independently to each color channel.

3



Partition and Shuffling Multi-Scale Resampling Local Entropy Patterns

Partition

Sliding window: 2×2
Sliding stride: 1×1

CNN
Real

or
Fake

Patch Size: 𝑙×𝑙

LEP

…

Down- / Up-sample/

𝑠!
𝑠"

𝑠#

Patch Shuffling

…

𝑋 𝑋%𝑋& 𝑋'

Figure 2: Illustration of AI-generated image detection using multi-granularity local entropy patterns
(MLEP), which involves three core steps to obtain the MLEP feature: Patch Shuffling, Multi-Scale
Resampling, and Local Entropy Pattern computation. The resulting MLEP features are then fed into
a CNN-based classifier (e.g., ResNet) to effectively identify AI-generated images.

3.2 Multi-Scale Resampling

Inspired by [7] showing that generative models often use upsampling to produce high-resolution
outputs, we propose detecting generation artifacts via multi-scale analysis. We hypothesize that
resampling generated images reveals distinctive patterns useful for detection. To this end, we first
construct a multi-scale pyramid by resampling the scrambled image X̃ with scale factors S =
{s1, s2, . . . , sK}, with each scale sk ∈ (0, 1] applied using an interpolation function Down(·, sk):

X̃
(k)
∨ = Down(X̃, sk), X̃

(k)
∨ ∈ R⌊sk·H⌋×⌊sk·W⌋×C , (3)

which are then upsampled back to its original shape using an interpolation function Up(·,H,W ):

X̃
(k)
∧ = Up(X̃

(k)
∨ , H,W ), X̃

(k)
∧ ∈ RH×W×C . (4)

The resulting multi-scale resampling image X̂ is created by concatenating all the upsampled images
along the channel dimension:

X̂ = Concat(X̃
(1)
∧ , X̃

(2)
∧ , . . . , X̃

(K)
∧ ), X̂ ∈ RH×W×(C·K). (5)

3.3 Multi-granularity Local Entropy Patterns

The core of our approach is the design of Local Entropy Patterns (LEP), which quantify textural
randomness using a 2× 2 sliding window over pixel sets X̂i,j = {xm,n}m∈{i,i+1},n∈{j,j+1}, based
on Shannon’s definition of information entropy [18]:

LEP
(
X̂i,j

)
= −

∑
m,n

p(xm,n) · log2 p(xm,n), (6)

where p(xm,n) represents the probability of occurrence of the pixel value xm,n within that specific
patch X̂i,j . By restricting the sliding window to 2×2 (four pixels), entropy values are confined to five
discrete levels: V = {0, 0.8, 1.0, 1.5, 2}, as shown in Fig. 3c. The proof and an efficient computation
algorithm for LEP on a 2× 2 window are provided in the supplementary material. With a stride of
1, the 2 × 2 sliding window introduces overlap in LEP computation. Due to patch shuffling, this
captures both intra-patch and inter-patch entropy—reflecting local randomness within and across
original image regions—as illustrated in Fig. 3b. Applied across multiple scales, LEP further captures
inter-scale entropy, forming the basis of the final Multi-granularity Local Entropy Patterns (MLEP).

Given the computed MLEP feature maps denoted as X̄ ∈ V(H−1)×(W−1)×(C·K), a representative
CNN-based classifier can be trained to differentiate between photographic and AI-generated images.
Denoting the classifier as f , the training objective is defined using the binary cross-entropy loss:

LBCE = − 1

N

N∑
i=1

[
yi log(f(X̄i)) + (1− yi) log(1− f(X̄i))

]
, (7)

where yi represents the true labels, f(X̄i) the predictions, and N the number of training samples.

4



𝑥!"

𝑥","

Window: 2×2
Stride: 1×1

𝑥$,$ 𝑥$,!

𝑥!,$ 𝑥!,!

𝑥$,"

𝑥!,"

𝑥",$ 𝑥",!

LEP

𝑒!!𝑒!$

𝑒$$ 𝑒$!
𝑒!!	= LEP(𝑋!,!)

𝑋!,!
𝐻 − 1 ×(𝑊 − 1)

𝐻×𝑊

𝑋 𝑋'

(a) LEP computation based a 2 × 2 window
sliding over the entire image.

2×2
patch
shuffle

Intra-block LEP

Inter-block LEP

(b) Illustration of intra-block and inter-
block LEP due to image patch shuffling.

0 0.8 1.0 1.5 2.0

LEP calculation Different pixel intensities

(c) Five possible LEP values corresponding to different pixel occurrences within a 2×2 window.

Figure 3: Illustration of the MLEP computation.

4 Experiments

4.1 Experimental Settings

Datasets We adopt the cross-dataset setup from [7], using the ForenSynths [5] dataset for training,
which includes 20 content categories with 18,000 ProGAN [24] generated images and an equal
number of real images from LSUN [25]. Following [7], we train only on four categories: cars,
cats, chairs, and horses, posing a challenging cross-scene setting. Following [5, 13, 7, 8], we
evaluate on synthesized images from 32 image generation models (16 GAN-based and 16 Diffusion-
based, including variants). The GAN-Set includes ProGAN [24], StyleGAN [26], StyleGAN2 [27],
BigGAN [28], CycleGAN [29], StarGAN [30], GauGAN [31], AttGAN [32], BEGAN [33], Cramer-
GAN [34], InfoMaxGAN [35], MMDGAN [36], RelGAN [37], S3GAN [38], SNGAN [39], and
STGAN [40], with the former seven obtained from the dataset ForenSynths [5] and the latter nine
from the dataset GANGen-Detection [41]. The Diffusion-Set contains DDPM [2], IDDPM [42],
ADM [43], LDM [44], PNDM [45], VQ-Diffusion [46], Stable Diffusion (SD) v1/v2 [44], DALL·E
mini [47], three Glide [48] variants2, and two LDM [44] variants3. Of these models, the first eight are
sourced from the DiffusionForensics dataset [13], while the remainder are from the UniversalFakeDe-
tect dataset [15]. Furthermore, we include images from two commercial models, Midjourney and
DALL·E 2, sourced from the social platform Discord4 as provided by [7]. Each above AIGI subset
comprises an equal number of real samples paired with the corresponding generative counterparts.
All test images were obtained according to the instructions provided by [7].

Implementation details All images were resized to 224× 224, with random cropping for training
and center cropping for testing. Multiple variants of the patch size (L), resampling scales (S), and the
classifier backbone were tested with results shown in the ablation study. The training was performed
using the Adam optimizer (learning rate of 0.002, batch size of 64). All experiments ran on a server
with two NVIDIA RTX A5000 GPUs.

Baseline methods We compare against representative baselines, including CNNDet [5], F3Net [10],
LGrad [49], UnivFD [15], CLIPping [16], NPR [7], Zheng [8], FreqNet [21], FatFormer [17],

2Glide-100-10, Glide-100-27, and Glide-50-27, where Glide-k-l means k steps in the first stage and l steps
in the second stage of diffusion models.

3LDM-200 (LDM with 200 steps) and LDM-200-CFG (LDM with 200 steps with classifier-free diffusion
guidance).

4https://discord.com/

5

https://discord.com/


Table 1: Detection performance in terms of Acc.(%) and A.P.(%) on the GAN-based datasets.

Method ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN AttGAN

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet [5] 91.4 99.4 63.8 91.4 76.4 97.5 52.9 73.3 72.7 88.6 63.8 90.8 63.9 92.2 51.1 83.7
F3Net [10] 99.4 100.0 92.6 99.7 88.0 99.8 65.3 69.9 76.4 84.3 100.0 100.0 58.1 56.7 85.2 94.8
LGrad [49] 99.0 100.0 94.8 99.9 96.0 99.9 82.9 90.7 85.3 94.0 99.6 100.0 72.4 79.3 68.6 93.8
Ojha [15] 99.7 100.0 89.0 98.7 83.9 98.4 90.5 99.1 87.9 99.8 91.4 100.0 89.9 100.0 78.5 91.3
Zheng [8] 99.7 100.0 90.7 95.3 97.6 99.7 67.0 67.6 85.2 92.6 98.7 100.0 57.1 56.8 79.4 87.7
CLIPping [16] 99.8 100.0 94.3 99.4 83.5 98.7 93.8 99.4 95.4 99.9 99.1 100.0 93.4 99.9 91.3 97.4
NPR [7] 99.8 100.0 96.3 99.8 97.3 100.0 87.5 94.5 95.0 99.5 99.7 100.0 86.6 88.8 83.0 96.2
FreqNet [21] 99.6 100.0 90.2 99.7 87.9 99.5 90.5 96.0 95.8 99.6 85.6 99.8 93.4 98.6 89.8 98.8
FatFormer [17] 99.9 100.0 97.1 99.8 98.8 99.9 99.5 100.0 99.4 100.0 99.8 100.0 99.4 100.0 99.3 100.0
ForgeLens [22] 99.9 100.0 90.3 98.7 94.2 98.8 98.9 99.0 99.6 99.6 99.8 100.0 99.1 99.4 90.1 90.0
D3 [20] 99.4 100.0 94.9 99.2 95.6 99.4 99.1 100.0 92.6 98.5 95.7 99.3 97.9 99.9 84.8 92.9
VIBAIGC [23] 99.9 100.0 89.0 98.5 87.0 97.2 95.3 99.1 98.7 99.7 97.7 99.6 99.3 99.9 93.4 98.1
Ours 99.6 100.0 99.6 100.0 99.9 100.0 87.1 93.6 98.3 99.3 100.0 100.0 82.0 87.9 100.0 100.0

Method BEGAN CramerGAN InfoMaxGAN MMDGAN RelGAN S3GAN SNGAN STGAN

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet [5] 50.2 44.9 81.5 97.5 71.1 94.7 72.9 94.4 53.3 82.1 55.2 66.1 62.7 90.4 63.0 92.7
F3Net [10] 87.1 97.5 89.5 99.8 67.1 83.1 73.7 99.6 98.8 100.0 65.4 70.0 51.6 93.6 60.3 99.9
LGrad [49] 69.9 89.2 50.3 54.0 71.1 82.0 57.5 67.3 89.1 99.1 78.5 86.0 78.0 87.4 54.8 68.0
Ojha [15] 72.0 98.9 77.6 99.8 77.6 98.9 77.6 99.7 78.2 98.7 85.2 98.1 77.6 98.7 74.2 97.8
Zheng [8] 67.4 98.0 74.2 93.8 71.0 93.1 68.4 89.4 98.4 99.9 70.8 69.9 72.4 94.0 92.3 100.0
CLIPping [16] 100.0 100.0 100.0 100.0 94.7 99.7 94.8 99.9 92.2 98.3 88.4 97.7 94.4 99.5 87.2 96.4
NPR [7] 99.0 99.8 98.7 99.0 94.5 98.3 98.6 99.0 99.6 100.0 79.0 80.0 88.8 97.4 98.0 100.0
FreqNet [21] 98.8 100.0 95.1 98.2 94.5 97.3 95.1 98.2 100.0 100.0 88.4 94.3 85.3 90.5 98.8 100.0
FatFormer [17] 99.9 100.0 98.4 100.0 98.4 100.0 98.4 100.0 99.5 100.0 99.0 100.0 98.3 99.9 98.8 99.8
ForgeLens [22] 88.4 97.0 87.2 93.1 87.6 92.6 87.5 92.3 92.6 93.1 98.7 99.3 86.7 91.7 90.0 95.2
D3 [20] 89.5 97.3 95.2 99.2 95.7 99.2 94.6 99.0 91.4 97.5 98.4 99.9 93.8 98.7 93.0 98.5
VIBAIGC [23] 96.7 99.5 95.3 99.0 90.5 96.5 95.3 98.7 94.7 98.7 94.6 98.9 93.4 98.2 82.4 92.5
Ours 99.4 100.0 98.5 99.8 98.0 99.8 98.9 99.8 100.0 100.0 83.4 91.7 97.6 99.7 99.9 100.0

Table 2: Detection performance in terms of Acc.(%) and A.P.(%) on the Diffusion-based datasets.

Method ADM DDPM IDDPM LDM PNDM VQ-Diffusion SDv1 SDv2

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet [5] 53.9 71.8 62.7 76.6 50.2 82.7 50.4 78.7 50.8 90.3 50.0 71.0 38.0 76.7 52.0 90.3
F3Net [10] 80.9 96.9 84.7 99.4 74.7 98.9 100.0 100.0 72.8 99.5 100.0 100.0 73.4 97.2 99.8 100.0
LGrad [49] 86.4 97.5 99.9 100.0 66.1 92.8 99.7 100.0 69.5 98.5 96.2 100.0 90.4 99.4 97.1 100.0
Ojha [15] 78.4 92.1 72.9 78.8 75.0 92.8 82.2 97.1 75.3 92.5 83.5 97.7 56.4 90.4 71.5 92.4
Zheng [8] 72.1 78.9 78.9 80.5 49.9 52.0 99.7 100.0 90.4 96.9 99.6 100.0 94.0 99.7 87.9 96.4
CLIPping [16] 78.9 93.8 80.3 85.7 82.4 94.4 90.2 97.6 81.7 93.7 96.3 99.3 58.0 93.1 82.6 94.9
NPR [7] 88.6 98.9 99.8 100.0 91.8 99.8 100.0 100.0 91.2 100.0 100.0 100.0 97.4 99.8 93.8 100.0
FreqNet [21] 67.2 91.3 91.5 99.8 59.0 97.3 98.9 100.0 85.2 99.8 100.0 100.0 63.9 98.1 81.8 98.4
FatFormer [17] 70.8 93.4 67.2 72.5 69.3 94.3 97.3 100.0 99.3 100.0 100.0 100.0 61.7 96.8 84.4 98.2
ForgeLens [22] 69.8 92.4 52.1 52.3 62.1 75.8 99.6 100.0 83.4 97.1 99.5 100.0 93.2 99.8 63.2 87.6
D3 [20] 89.0 97.8 85.2 94.4 87.7 96.2 88.2 96.4 90.0 96.8 96.1 99.9 98.0 99.8 93.6 98.8
VIBAIGC [23] 69.3 81.8 90.2 97.7 84.6 97.1 56.8 86.6 94.8 99.3 94.2 99.5 60.0 88.7 58.3 83.2
Ours 97.0 99.8 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 98.5 99.9 100.0 100.0

Method DALL·E mini Glide-100-10 Glide-100-27 Glide-50-27 LDM-200 LDM-200-cfg Midjourney DALL·E 2

Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet [5] 51.8 61.3 53.3 72.9 53.0 71.3 54.2 76.0 52.0 64.5 51.6 63.1 48.6 38.5 49.3 44.7
F3Net [10] 71.6 79.9 88.3 95.4 87.0 94.5 88.5 95.4 73.4 83.3 80.7 89.1 73.2 80.4 79.6 87.3
LGrad [49] 88.5 97.3 89.4 94.9 87.4 93.2 90.7 95.1 94.2 99.1 95.9 99.2 68.3 76.0 75.1 80.9
Ojha [15] 89.5 96.8 90.1 97.0 90.7 97.2 91.1 97.4 90.2 97.1 77.3 88.6 50.0 49.8 66.3 74.6
Zheng [8] 67.9 72.2 79.4 87.8 76.8 84.5 78.2 85.9 81.3 90.1 84.0 91.7 73.2 78.5 81.4 89.2
CLIPping [16] 91.1 98.6 92.0 98.6 91.2 98.8 94.3 99.3 92.8 98.9 77.4 94.3 51.1 50.7 62.6 72.3
NPR [7] 94.5 99.5 98.2 99.8 97.8 99.7 98.2 99.8 99.1 99.9 99.0 99.8 77.4 81.9 80.7 83.0
FreqNet [21] 97.4 99.8 88.1 96.4 84.5 96.1 86.7 96.3 97.5 99.9 97.4 99.9 55.5 65.3 52.9 61.8
FatFormer [17] 98.8 99.8 94.2 99.2 94.4 99.1 94.7 99.4 98.6 99.8 94.9 99.1 62.8 85.4 68.8 93.2
ForgeLens [22] 99.0 100.0 98.0 99.9 97.5 99.7 98.5 99.8 99.5 99.9 97.7 99.4 77.6 91.7 76.8 94.9
D3 [20] 92.8 98.3 94.4 98.8 94.7 98.8 94.9 98.9 94.8 99.4 88.3 95.9 92.5 98.6 78.0 94.6
VIBAIGC [23] 87.8 96.9 87.2 97.6 86.4 97.5 89.2 98.0 95.9 99.4 77.4 92.8 50.4 47.2 55.9 69.4
Ours 95.7 99.9 99.9 100.0 100.0 100.0 99.8 100.0 99.9 100.0 99.8 100.0 87.5 97.1 87.3 97.4

ForgeLens [22], D3 [20] and VIBAIGC [23]. Accuracy (Acc.) and average precision (A.P.) are used
as metrics. Following the same protocol, we re-evaluated CLIPping [16], Zheng [8], FreqNet [21],
FatFormer [17], ForgeLens [22], D3 [20], and VIBAIGC [23] using their official open-source
implementations, while results for the remaining baselines were taken from [7].

4.2 Overall Evaluation of Detection Generalizability

We evaluated the generalization performance of our AIGI detection method across datasets. Accuracy
(Acc.) and average precision (A.P.) compared to state-of-the-art GAN- and Diffusion-based methods
are reported in Tables 1 and 2, using patch size L = 2, resampling scales S = {1, 1/2, 1/4}, with a

6



Table 3: Mean Acc. and A.P. over 16 GAN-based, 16 Diffusion-based, and all 32 datasets.

Method GAN-Set Diff.-Set Mean

Acc. A.P. Acc. A.P. Acc. A.P.

CNNDet [5] 65.4 86.2 51.4 70.7 58.4 78.4
F3Net [10] 78.7 90.6 83.0 93.6 80.8 92.1
LGrad [49] 78.0 86.9 87.2 95.2 82.6 91.1
Ojha [15] 83.2 98.6 77.5 89.5 80.4 94.1
Zheng [8] 80.6 89.9 80.9 86.5 80.8 88.2
CLIPping [16] 93.9 99.1 81.4 91.5 87.7 95.3
NPR [7] 93.8 97.0 94.2 97.6 94.0 97.3
FreqNet [21] 93.1 98.2 81.7 93.8 87.4 96.0
FatFormer [17] 99.0 100.0 84.8 95.6 91.9 97.8
ForgeLens [22] 93.2 96.2 85.5 93.0 89.4 94.6
D3 [20] 94.5 98.7 91.1 97.7 92.8 98.2
VIBAIGC [23] 93.5 98.1 77.2 89.8 85.4 94.0
Ours 96.4 98.2 97.8 99.6 97.1 98.9

ResNet-50 backbone, which yield the optimal validation results. MLEP consistently achieves top
performance across most datasets. Remarkably, it generalizes well to diffusion-generated images,
despite being trained solely on GAN-based data (ProGAN [24]). Even on datasets with entirely
different content (e.g., face-centric sets like StarGAN, InfoMaxGAN, and AttGAN), MLEP maintains
strong performance, underscoring its cross-scene robustness. Table 3 further shows that MLEP
outperforms NPR [7], with average gains of 3.1% in Acc. and 1.6% in A.P., despite NPR’s already
strong results.

4.3 Ablation Study

We next conducted a series of ablation studies to evaluate the effectiveness of key components and
hyperparameters in the proposed approach.

Table 4: Ablation study on the impact of key components,
where PS represents patch shuffling and MR denotes multi-
scale resampling.

LEP PS MR GAN-set Diff.-set Mean

Acc. A.P. Acc. A.P. Acc. A.P.

✓ 93.6 94.1 94.9 95.7 94.3 94.9
✓ ✓ 93.4 94.1 95.8 96.9 94.6 95.5
✓ ✓ 95.7 98.2 97.5 99.6 96.6 98.9
✓ ✓ ✓ 96.4 98.2 97.8 99.6 97.1 98.9

Effectiveness of patch shuffling and
multi-scale resampling We first as-
sessed the impact of two key com-
ponents: patch shuffling and multi-
scale resampling. Ablation results
in Table 4 show that removing either
component noticeably reduces perfor-
mance, with patch shuffling contribut-
ing more. Even without both, LEP
alone achieves over 94.3% accuracy,
higher than NPR (94.0%) [7], high-
lighting the effectiveness of entropy-
based features.

Table 5: Impact of the interpolation method.

Interp. GAN-set Diff.-set Mean
Acc. A.P. Acc. A.P. Acc. A.P.

Bilinear 96.4 98.2 97.8 99.6 97.1 98.9
Bicubic 96.2 97.9 97.9 99.3 96.9 99.1
Nearest 94.6 97.4 96.8 99.2 95.7 98.3

Impact of the resampling interpola-
tion method We also evaluated the
impact of interpolation methods, com-
paring bilinear, bicubic, and nearest-
neighbor (Table 5). Bilinear outper-
forms nearest-neighbor and performs
comparably to bicubic. This might
be because bilinear and bicubic blend
neighboring pixel values, introduc-
ing richer entropy variations, while
nearest-neighbor simply copies pixel values, resulting in limited entropy diversity.

7



Table 6: Impact of patch size L and resampling scaling factors S.

L S GAN-set Diff.-set Mean

Acc. A.P. Acc. A.P. Acc. A.P.

{1, 1/2} 95.8 97.8 97.5 99.6 96.6 98.7
2 {1, 1/2, 1/4} 96.4 98.2 97.8 99.6 97.1 98.9

{1, 1/2, 1/4, 1/8} 91.7 97.9 95.3 99.5 93.5 98.7

{1, 1/2} 94.5 96.6 95.5 98.8 95.0 97.7
4 {1, 1/2, 1/4} 94.5 96.8 96.6 99.1 95.5 97.9

{1, 1/2, 1/4, 1/8} 94.2 96.4 96.5 98.8 95.4 97.6

{1, 1/2} 93.9 95.8 95.4 97.7 94.7 96.7
8 {1, 1/2, 1/4} 94.0 96.5 95.8 99.1 94.9 97.8

{1, 1/2, 1/4, 1/8} 94.4 96.0 95.8 98.1 95.1 97.0

Impact of patch size and
scale factors We further
examined the effects of
patch size and resampling
scales by testing different
hyperparameter settings, as
shown in Table 6. The best
performance was achieved
with the smallest patch size
(l = 2), indicating that
stronger semantic scram-
bling improves detection.
Moderate multi-scale fu-
sion (S = {1, 1/2, 1/4})
also led to optimal results,
confirming the benefit of in-
corporating resampling artifacts.

Table 7: Impact of sliding window stride.

Stride GAN-set Diff.-set Mean
Acc. A.P. Acc. A.P. Acc. A.P.

1 96.4 98.2 97.8 99.6 97.1 98.9
2 94.9 97.3 97.0 99.5 95.9 98.4

Impact of sliding window stride We eval-
uated the effect of stride in the 2 × 2 sliding
window for LEP computation, testing strides of
1 and 2 (Table 7). A stride of 1 significantly out-
performs 2, highlighting the importance of inter-
block entropy in MLEP. This supports our multi-
granularity design, which captures both intra-
and inter-block texture patterns as depicted in
Fig. 3.

Table 8: Evaluation on various ResNets.

Backbone GAN-set Diff.-set Mean
Acc. A.P. Acc. A.P. Acc. A.P.

ResNet-18 96.0 97.9 97.7 99.5 96.8 98.7
ResNet-34 96.1 98.2 97.7 99.7 96.9 98.9
ResNet-50 96.4 98.2 97.8 99.6 97.1 98.9
ResNet-101 96.4 98.3 97.8 99.6 97.1 99.0

Compatibility with various back-
bones Lastly, we assessed the com-
patibility of MLEP with various
ResNet backbones [50], including
ResNet-18, 34, 50, and 101. As
shown in Table 8, all variants achieved
strong performance, with slight gains
from larger models. This confirms the
generality and scalability of the pro-
posed feature extraction method.

Influence of generation model’s text prompts In text-to-image diffusion models, the specificity
of input prompts may greatly affect the visual quality and details of generated images. To inspect the
influence of text prompts on AIGI detection performance, we conducted an additional experiment
using DiffusionDB[51], a large dataset with 14 million Stable Diffusion images generated from 1.8
million unique prompts. We randomly selected two subsets of 3,000 images, one set generated from
complex prompts (over 200 characters with keywords like “high quality,” “detailed,” and “realistic”)
and the other from simple prompts (under 100 characters and without those keywords). We evaluated
our trained detector on both subsets and found almost no difference in detection accuracy: 99.65%
accuracy on the simple set and 99.62% accuracy on the complex set. This further demonstrates the
generalizability of the proposed method over different types of AI-generated content.

4.4 Interpretability of MLEP

To illustrate the effectiveness of MLEP for AIGI detection, we conducted a set of qualitative analysis
detailed as follows.

Entropy patterns between real and AI-generated images We first visualize LEP maps for several
real–fake image pairs, along with their differences in the pixel, entropy, and Fourier domains. Here,
“fake” refers to AI-reconstructed images resembling the originals. Since LEP values are sparse and
capped at 2, we normalize them to [0, 255] for visualization. As shown in Fig. 4, LEP differences are

8



R
ea

l

Input LEP

St
ar

G
A

N
D

iff
.

FFT of input FFT of LEP

R
ea

l

Input LEP

St
ar

G
A

N
D

iff
.

FFT of input FFT of LEP

R
ea

l

Input LEP

A
D

M
D

iff
.

FFT of input FFT of LEP

R
ea

l

Input LEP

SD
v2

D
iff

.

FFT of input FFT of LEP

Figure 4: Visualization of local entropy patterns for several real–fake image pairs, along with their
differences in the pixel, entropy, and Fourier domains.

O
ri

g
in

a
l

Z
h

e
n

g
N

P
R

L
E

P
M

L
E

P

Figure 5: Qualitative comparison among Zheng [8], NPR [7], and our method. LEP preserves
minimal visible semantics, while MLEP (without resampling) further suppresses semantic content.

far more pronounced than pixel-level differences, especially for high-quality generations like Stable
Diffusion v2, where pixel differences are visually negligible. In the frequency domain, real–fake
differences show more consistent patterns than in the pixel space, supporting content-agnostic
detection. These results highlight LEP’s ability to amplify real–fake discrepancies while minimizing
semantic interference.

9



A
D
M

A
ttG
A
N

SD
v2

St
ar
G
A
N

FreqNet NPR LEP MLEP

Figure 6: t-SNE visualization of real vs. fake samples.

Semantic suppression capabil-
ity of MLEP We further ex-
amine the semantic suppression
capability of MLEP compared
to two competitive methods:
Zheng [8] and NPR [7]. Fig.5
visualizes feature maps of LEP
and MLEP (without multi-scale
resampling), alongside those
from Zheng [8] and NPR [7].
The 32 × 32 shuffled patches
in Zheng[8] still retain notice-
able semantic cues both locally
and globally. NPR [7] produces
edge-like features by computing
pixel differences, leaving much
of the original semantics intact.
In contrast, LEP substantially
suppresses semantic content by
highlighting pixel-level random-
ness, and MLEP further elim-
inates it through fine-grained
patch shuffling, enabling learn-
ing content-agnostic representa-
tion for AIGI detection.

Feature distribution of real and AI-generated images Finally, Fig.6 visualizes the t-SNE dis-
tribution [52] of real and fake samples based on the final feature layer of a ResNet-50 classifier,
comparing our method with two competitive baselines—NPR [7] and FreqNet [21]—which also use
ResNet-50. We showcase results on four generative models: StarGAN [30], AttGAN [32], ADM [43],
and SDv2 [44]. The proposed local entropy patterns (LEP) achieve noticeably cleaner real–fake
separation than the baselines, and MLEP further enhances this distinction, demonstrating stronger
discriminative capability for AIGI detection.

5 Conclusion and Limitations

This paper explores the use of entropy as a cue for detecting AI-generated images (AIGI) and
introduces Multi-granularity Local Entropy Patterns (MLEP), a set of entropy-based feature maps
derived from shuffled small patches across multiple image scales. MLEP captures pixel relationships
across spatial and scale dimensions while disrupting image semantics, thereby mitigating content bias.
Using MLEP as input, a CNN-based classifier (e.g., ResNet) achieves robust and highly generalizable
detection performance.

Limitations Nonetheless, limitations still remain. The paper does not explicitly address the ro-
bustness of the detector under common image post-processing operations. In fact, when applying
different levels of JPEG compression, blurring, or noise, we observe a 17% to 45% drop in detection
accuracy—performance that is less satisfactory compared to methods explicitly optimized for robust-
ness. This limitation stems from the fact that MLEP was not specifically designed to handle such
transformations, and no special data augmentation techniques were employed during training. Instead,
the paper is focused on exploring the potential of using information entropy as a discriminative signal
for AIGI detection and on revealing the intrinsic differences in local entropy patterns between real and
AI-generated images. Interestingly, the proposed method shows strong robustness to image rescaling:
when images are downsampled to half their original resolution, the mean detection accuracy remains
above 92.4% (only 4.7% drop). We attribute this to the multi-scale resampling strategy used during
training, which effectively introduced resolution variability as a form of implicit data augmentation.
Moreover, entropy is computed only within small 2× 2 windows, as using larger windows would
exponentially increase computational complexity. In the future, more efforts could be devoted to
improve the robustness and computation efficiency of entropy-based approach.

10



Acknowledgements

This work is supported by the National Natural Science Foundation of China under grants 62201107,
U22A2096, 62502060, 62402073, and 62221005, in part by the Natural Science Foundation of
Chongqing under grant CSTB2023NSCQ-LZX0061, in part by the Science and Technology Innova-
tion Key R&D Program of Chongqing under grant CSTB2023TIAD-STX0016, and in part by the
Science and Technology Research Program of Chongqing Municipal Education Commission under
grants KJQN202300606, KJQN202300619, and KJQN202500649. Special thanks are extended to
Prof. Nannan Wang, Prof. Xiuli Bi, Prof. Gwanggil Jeon, and Prof. Touradj Ebrahimi for their
invaluable guidance, insightful feedback, and continuous encouragement throughout this research.

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative Adversarial Nets,” in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 2, ser. NIPS’14, 2014, p. 2672–2680.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” Advances in neural
information processing systems, vol. 33, pp. 6840–6851, 2020.

[3] N. P. Howe and B. Thompson, “This isn’t the Nature Podcast-how deepfakes are distorting
reality.” Nature, 2023.

[4] D. Xu, S. Fan, and M. Kankanhalli, “Combating Misinformation in the Era of Generative AI
Models,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, p.
9291–9298.

[5] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-generated images are
surprisingly easy to spot... for now,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 8695–8704.

[6] N. Zhong, Y. Xu, S. Li, Z. Qian, and X. Zhang, “Patchcraft: Exploring Texture Patch for
Efficient AI-generated Image Detection,” arXiv preprint arXiv:2311.12397, 2024.

[7] C. Tan, Y. Zhao, S. Wei, G. Gu, P. Liu, and Y. Wei, “Rethinking the Up-Sampling Operations in
CNN-Based Generative Network for Generalizable Deepfake Detection,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2024, pp. 28 130–28 139.

[8] C. Zheng, C. Lin, Z. Zhao, H. Wang, X. Guo, S. Liu, and C. Shen, “Breaking Semantic Artifacts
for Generalized AI-generated Image Detection,” in The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[9] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz, “Leveraging
Frequency Analysis for Deep Fake Image Recognition,” in International Conference on Machine
Learning. PMLR, 2020, pp. 3247–3258.

[10] Y. Qian, G. Yin, L. Sheng, Z. Chen, and J. Shao, “Thinking in Frequency: Face Forgery
Detection by Mining Frequency-Aware Clues,” in European conference on computer vision.
Springer, 2020, pp. 86–103.

[11] Y. Luo, Y. Zhang, J. Yan, and W. Liu, “Generalizing Face Forgery Detection with High-
Frequency Features,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 16 317–16 326.

[12] B. Liu, F. Yang, X. Bi, B. Xiao, W. Li, and X. Gao, “Detecting Generated Images by Real
Images,” in European Conference on Computer Vision. Springer, 2022, pp. 95–110.

[13] Z. Wang, J. Bao, W. Zhou, W. Wang, H. Hu, H. Chen, and H. Li, “DIRE for Diffusion-Generated
Image Detection,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 22 445–22 455.

[14] B. Chen, J. Zeng, J. Yang, and R. Yang, “DRCT: Diffusion Reconstruction Contrastive Train-
ing towards Universal Detection of Diffusion Generated Images,” in Forty-first International
Conference on Machine Learning, 2024.

[15] U. Ojha, Y. Li, and Y. J. Lee, “Towards Universal Fake Image Detectors that Generalize Across
Generative Models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 24 480–24 489.

11



[16] S. A. Khan and D.-T. Dang-Nguyen, “CLIPping the Deception: Adapting Vision-Language
Models for Universal deepfake detection,” in Proceedings of the 2024 International Conference
on Multimedia Retrieval, 2024, pp. 1006–1015.

[17] H. Liu, Z. Tan, C. Tan, Y. Wei, J. Wang, and Y. Zhao, “Forgery-aware Adaptive Transformer
for Generalizable Synthetic Image Detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 10 770–10 780.

[18] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal,
vol. 27, no. 3, pp. 379–423, 1948.

[19] D. Cozzolino, G. Poggi, M. Nießner, and L. Verdoliva, “Zero-shot Detection of AI-generated
Images,” in European Conference on Computer Vision. Springer, 2024, pp. 54–72.

[20] Y. Yang, Z. Qian, Y. Zhu, O. Russakovsky, and Y. Wu, “D^3: Scaling Up Deepfake Detection
by Learning from Discrepancy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2025, pp. 23 850–23 859.

[21] C. Tan, Y. Zhao, S. Wei, G. Gu, P. Liu, and Y. Wei, “Frequency-Aware Deepfake Detection:
Improving Generalizability through Frequency Space Domain Learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 5052–5060.

[22] Y. Chen, L. Zhang, and Y. Niu, “Forgelens: Data-Efficient Forgery Focus for Generalizable
Forgery Image Detection,” 2025.

[23] H. Zhang, Q. He, X. Bi, W. Li, B. Liu, and B. Xiao, “Towards Universal AI-Generated Image
Detection by Variational Information Bottleneck Network,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2025, pp. 23 828–23 837.

[24] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of Gans for Improved
Quality, Stability, and Variation,” in International Conference on Learning Representations,
2018.

[25] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “LSUN: Construction of a
Large-Scale Image Dataset using Deep Learning with Humans in the Loop,” arXiv preprint
arXiv:1506.03365, 2015.

[26] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adver-
sarial Networks,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4396–4405.

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and Improving
the Image Quality of StyleGAN,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 8110–8119.

[28] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training for High Fidelity Natural
Image Synthesis,” in International Conference on Learning Representations, 2018.

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2223–2232.

[30] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified Generative
Adversarial Networks for Multi-Domain Image-to-Image Translation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 8789–8797.

[31] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic Image Synthesis with Spatially-
Adaptive Normalization,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 2337–2346.

[32] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “AttGAN: Facial Attribute Editing by Only
Changing What You Want,” IEEE transactions on image processing, vol. 28, no. 11, pp.
5464–5478, 2019.

[33] D. Berthelot, “BEGAN: Boundary Equilibrium Generative Adversarial Networks,” arXiv
preprint arXiv:1703.10717, 2017.

[34] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer,
and R. Munos, “The Cramer Cistance as a Solution to Biased Wasserstein Gradients,” in
International Conference on Learning Representations, 2018.

12



[35] K. S. Lee, N.-T. Tran, and N.-M. Cheung, “InfoMax-GAN: Improved Adversarial Image
Generation via Information Maximization and Contrastive Learning,” in Proceedings of the
IEEE/CVF winter conference on applications of computer vision, 2021, pp. 3942–3952.

[36] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos, “MMD GAN: Towards Deeper
Understanding of Moment Matching Network,” Advances in neural information processing
systems, vol. 30, 2017.

[37] W. Nie, N. Narodytska, and A. Patel, “RelGAN: Relational Generative Adversarial Networks
for Text Generation,” in International conference on learning representations, 2018.

[38] M. Lučić, M. Tschannen, M. Ritter, X. Zhai, O. Bachem, and S. Gelly, “High-Fidelity Image
Generation with Fewer Labels,” in International conference on machine learning. PMLR,
2019, pp. 4183–4192.

[39] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral Normalization for Generative
Adversarial Networks,” in International Conference on Learning Representations, 2018.

[40] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen, “STGAN: A Unified Selective
Transfer Network for Arbitrary Image Attribute Editing,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 3673–3682.

[41] C. Tan, R. Tao, H. Liu, and Y. Zhao, “GANGen-Detection: A Dataset Generated by GANs for
Generalizable Deepfake Detection,” github.com/chuangchuangtan/GANGen-Detection, 2024.

[42] A. Q. Nichol and P. Dhariwal, “Improved Denoising Fiffusion Probabilistic Models,” in Interna-
tional conference on machine learning. PMLR, 2021, pp. 8162–8171.

[43] P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image Synthesis,” Advances in
neural information processing systems, vol. 34, pp. 8780–8794, 2021.

[44] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image
Synthesis with Latent Diffusion Models,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 10 684–10 695.

[45] L. Liu, Y. Ren, Z. Lin, and Z. Zhao, “Pseudo Numerical Methods for Diffusion Models on
Manifolds,” in International Conference on Learning Representations, 2022.

[46] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and B. Guo, “Vector Quantized
Diffusion Model for Text-to-Image Synthesis,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 10 696–10 706.

[47] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-
Shot Text-to-Image Generation,” in International conference on machine learning. PMLR,
2021, pp. 8821–8831.

[48] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. Mcgrew, I. Sutskever, and
M. Chen, “Glide: Towards photorealistic image generation and editing with text-guided diffusion
models,” in International Conference on Machine Learning. PMLR, 2022, pp. 16 784–16 804.

[49] C. Tan, Y. Zhao, S. Wei, G. Gu, and Y. Wei, “Learning on Gradients: Generalized Artifacts Rep-
resentation for GAN-Generated Images Detection,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 12 105–12 114.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[51] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and D. H. Chau, “DiffusionDB:
A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models,” in Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2023, pp. 893–911.

[52] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning
Research, vol. 9, no. 11, 2008.

13

github.com/chuangchuangtan/GANGen-Detection


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction can accurately reflect the paper’s contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section, we discussed the technical limitations and possible
future directions of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: In this work, we not only present a complete implementation framework but
also validate our hypothesis through extensive experiments and ablation studies.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail all experimental settings, including parameters and configurations,
to ensure reproducibility. The code will be publicly released upon acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The entire source code and datasets for training and testing will be publicly
released upon acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the paper, the datasets, hyperparameter selection, and optimizer selection
are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This study focuses on average detection performance measured by accuracy,
with results reported per dataset. Therefore, including error bars is not strictly necessary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 provides details on the computing resources used in the experiments,
including GPU type and memory specifications.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes. The research fully complies with all provisions of the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction outlines the social issues this work aims to address and its
potential positive impact, while the conclusion discusses its limitations.

Guidelines:

17

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable. Our dataset contains only public, non-sensitive images with
CC licenses, and the model has no risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes. All third-party assets (code, data, models) are explicitly credited with
original sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	The Approach
	Semantic Suppression via Patch Shuffling
	Multi-Scale Resampling
	Multi-granularity Local Entropy Patterns

	Experiments
	Experimental Settings
	Overall Evaluation of Detection Generalizability
	Ablation Study
	Interpretability of MLEP

	Conclusion and Limitations

