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Abstract
Molecular datasets often suffer from a lack of
data. It is well-known that gathering data is dif-
ficult due to the complexity of experimentation
or simulation involved. Here, we leverage mutual
information across different tasks in molecular
data to address this issue. We extend an algo-
rithm that utilizes the geometric characteristics of
the encoding space, known as the Geometrically
Aligned Transfer Encoder (GATE), to a multi-task
setup. Thus, we connect multiple molecular tasks
by aligning the curved coordinates onto locally
flat coordinates, ensuring the flow of information
from source tasks to target data to support the
performance.

1. Introduction
The quantity of data is a crucial factor in machine learning.
However, it is not always feasible to acquire the necessary
amount of data in practice. Many efforts have been made to
address the data issue. One direct approach is data genera-
tion, which aims to generate plausible data (such as through
reference augmentations or generation). Another approach
is transfer learning, which is more indirect as it leverages
mutual information from different source tasks (Zhuang
et al., 2011; Long et al.; Zhuang et al., 2013; 2014; Pan
et al., 2020; Quattoni et al., 2008; Kulis et al., 2011; Raghu
et al., 2019; Yu et al., 2022; Wang et al., 2019; Peng et al.,
2021). Lastly, there is multi-task learning, which shares a
latent space across given tasks (Caruana, 1997; Zhang &
Yang, 2018; Liu et al., 2022; Allenspach et al., 2024).

Despite these achievements, the data issue remains particu-
larly pronounced in scientific endeavors. Scientific exper-
iments or simulations often require significant amounts of
time and effort, making it challenging to amass abundant
data in the field. Since, our main focus is on molecular
property prediction tasks (Scarselli et al., 2009; Bruna et al.,
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2013; Duvenaud et al., 2015; Defferrard et al., 2016; Jin
et al., 2018; Coley et al., 2019; Ko et al., 2023a), we aim
to address this issue by utilizing various molecular property
datasets.

Our starting point is a transfer algorithm, namely the Ge-
ometrically Aligned Transfer Encoder (GATE), which is
based on differential geometry (Ko et al., 2023b). This algo-
rithm utilizes the concept of curved geometry in a Rieman-
nian scheme. The key idea of this algorithm is to align the
geometrical shapes of the underlying latent spaces of source
and target tasks. In general, it is extremely complicated
to compute their geometrical characteristics analytically.
However, the algorithm bypasses this issue by introducing
one crucial mathematical characteristic of Riemannian ge-
ometry: diffeomorphism invariance, which guarantees the
freedom of coordinate choices at any point on the manifold.
Additionally, it ensures that one can always find a locally
flat frame under any circumstances. If one can find a lo-
cally flat frame over any task, then it is possible to impose a
constraint that restricts the geometric shape of coordinates
over source and target tasks. If the underlying geometry
can be matched, the mutual information across tasks will
flow to one another and support model performance on the
target task side. However, GATE is proven to work in a
two-task setting, with one target and one source task. Yet,
theoretically, it is not restricted to two tasks. Therefore, we
extend the concept of GATE to multiple sources.

The fundamental concept remains unchanged. Since most
molecular properties can be effectively computed from a
common representation called SMILES (Weininger, 1988),
it is natural to assume that there exists a common mani-
fold for any tasks in molecular property prediction. Since
this manifold is curved, imposing constraints to match the
shapes of geometries of tasks requires a mapping from task
coordinates to their corresponding locally flat frames. With
multiple source tasks now present, it is mandatory to find
mapping functions over task spaces for each one, as shown
in Figure 1. This amplifies the leveraging effect of GATE,
as mutual information now flows not only from one source
task but also from multiple other sources.

We established an experimental setup based on the extended
GATE algorithm with multiple molecular property predic-
tion regression tasks from a number of different sources. We
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Figure 1. Four different coordinate frames are demonstrated in the figure, with coordinate transformation maps to each pair of tasks.
One can interpret each coordinate frame as task-specific coordinates and map them with transfer models. An arbitrary point in the
overlapping region of the manifold can be transformed from one task coordinate to another by combining mapping functions ϕ. Moreover,
by introducing perturbation points, one can define the distance between points to match the geometrical shape in the overlapping region.

have shown that the extended GATE outperforms conven-
tional multi-task learning schemes in terms of performance.
Additionally, we conducted ablation test to demonstrate that
our algorithm is robust and reliable in multiple combinations
of tasks.

Our main contribution of the article is as follows.

• We extend the GATE to encode multiple source tasks
setup.

• Extension to multiple tasks provides a positive leverag-
ing effect.

• Proposed model outperforms conventional method in
multi-task molecular property setup.

2. Multi-Task Extension of Geometrically
Aligned Transfer Encoder

Since the latent vector is believed to capture the essence of
information for a given task, it is crucial to understand the
geometrical characteristics of the latent spaces where the
latent vector resides. If two different tasks share common
factors in their property inference processes, then one may
assume that the geometrical shapes of their latent spaces
should be similar. Therefore, if one can align the geomet-
rical shapes of tasks, mutual information will flow through
mapping functions, thereby supporting the performance of
the target task.

Here, we utilize the GATE algorithm and aim to extend its
architecture to accommodate multiple source tasks.1

In Figure 2 we first take an input SMILES and embed it into
the corresponding vector. After embedding, latent space is
formulated by encoders, which consist of DMPNN(Yang
et al., 2019) and MLP layers. The latent vector is fed into
task-corresponding heads for inference properties. Here we
utilize MSE for basic regression loss in the training scheme
as follows:

lreg =
1

N

N∑
i

(yi − ŷi)
2 (1)

Where N , yi, and ŷi represent the number of data points,
target, and predicted value, respectively. The difference
now is that there exist multiple tasks, hence, there are also
multiple instances of the regression loss.

To align the geometrical shapes of tasks, it is necessary to
establish a mapping relation between the latent space and the
locally flat frame of the universal manifold. The coordinate
mapping can be induced by a Jacobian at an arbitrary point:

z′i ≡
∑
j

∂z′i

∂zj
zj (2)

The model should always be able to differentiate in order
to learn via a gradient descent scheme. Hence, we design a

1For basic assumptions and detailed explanation of GATE, refer
to (Ko et al., 2023b).
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Figure 2. Schematic diagram for the Extended GATE algorithm. The algorithm consists of a number of Regression Units. Each Regression
Unit corresponds to an individual task. The universal manifold covers the entire coordinate space of RU’s, and the transfer model T maps
a vector from each RU to a locally flat frame on the universal manifold. One can take the reverse path from the manifold to reconstruct the
original vector. Furthermore, one can also transfer a vector to another RU coordinate by utilizing a different task’s inverse transfer module.

mapping function with an autoencoder model. The encoder
indicates mapping from latent space to universal manifold,
and the decoder indicates mapping the other way around.

z′α = Transferα→LF (zα) (3)

ẑα = Transfer−1
LF→α(z

′
α) (4)

z′t = Transfert→LF (zt) (5)

ẑt = Transfer−1
LF→t(z

′
t) (6)

Where t and α indicate the target task and source number of
tasks, respectively. If there are k numbers of source tasks,
the Greek alphabet runs from 1 ∼ k, and numbers indicate
the source task number. For instance, Transfert→LF (zt)
means transformation from target latent to universal man-
ifold and Transfer5→LF (z5) means transformation from
source task number 5 to universal manifold. We indeed uti-
lize MSE loss for the autoencoder which consists of transfer
and its inverse modules.

lauto =
∑
α

MSE(zα, ẑα) (7)

Now, everything is set to match the geometrical shapes of la-
tent spaces. Since the encoder maps the latent vector on the
latent space to a locally flat frame on the universal manifold,
it is straightforward to impose a constraint that matches the
latent vector from the target task and the source task. To
define the consistency loss, we should recall the definition of
the transfer model from the equations mentioned in 3 and 5.
As depicted in the equations, Modelt→LF and Modelα→LF

indicate a model from the target to the locally flat (LF) frame
and from the source to the LF frame, respectively. Here, we
can impose a series of constraints to align the geometrical
shapes from the source and target. One of these constraints

requires that the latent vectors from the source and target
should have the same value on the universal manifold. This
constraint is referred to as the consistency loss.

lcons =
∑
α

MSE(z′α, z
′
t) (8)

This loss equalizes the target latent and source latent vec-
tors in a locally flat frame on the universal manifold. The
latent spaces are also aligned by latent vectors. Furthermore,
one can induce another form of constraint to maximize the
alignment of latent spaces.

z′α = Transferα→LF (zα) (9)

ẑα→t = Transfer−1
LF→t(z

′
α) (10)

The equation above illustrates the transformation of a latent
vector from the source task to the target task. If the universal
manifold is well-defined and both latent spaces from the
source and target tasks are aligned properly, then a latent
vector transformed from the source to the target task and
a latent vector from the target task induced by the same
SMILES input should always be the same. Hence, it is
straightforward to imagine the specific form of the constraint
which is written as follows.

lmap =
∑
α

MSE(yt, ŷα→t) (11)

Here, yt represents the label for the target predicted value,
and ŷα→t indicates the predicted value from ẑα→t. The
above loss ensures mutual information flow by aligning
locally flat coordinates on the given latent vectors.

Unfortunately, these constraints are insufficient to align la-
tent spaces globally, as none of the introduced loss functions

3
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Figure 3. Regression performance of three-task GATE and two-task GATE in root mean square error (RMSE). For evaluating the regression
performance of two-task GATE, all three possible pairs of three tasks were trained separately and averaged.

have locally bounded properties. Yet, another constraint that
is not restricted to local properties is necessary.

In Riemannian geometry, it is common to attack geometric
equations to find a specific form of a metric of the given
space. If one can find the explicit form of a metric, then the
curvature of a given space can be identified, which can be
utilized to understand the global characteristics of the space.
Or, in other way around, if one has distance among points
on a manifold, it is possible to find a metric from a distance
equation.

S2 =

∫
l

∑
µ

∑
ν

gµνdx
µdxν (12)

However, in general, finding the analytic form of the metric
is extremely complicated (or impossible). Therefore, we
propose an idea to bypass this issue by utilizing the general
mathematical characteristic of Riemannian geometry. In
a curved space, distances between points are not intuitive
and simple to compute. The metric is necessary to find
finite distances. However, there is a wonderful invariance
known as diffeomorphism in Riemannian manifolds. This
invariance guarantees the freedom to fix coordinates by
transformations induced by the Jacobian of a vector. And it
is well-known that a locally flat frame is always possible to
find around a given vector on a manifold. The locally flat
frame, by its nature, is flat around the infinitesimal boundary
of a vector. Therefore, the distance equation can now be
reduced to a simpler form in local boundaries.

S2 =
∫
l

∑
µ

∑
ν gµνdx

µdxν

=
∫
l

∑
µ

∑
ν ηµνdx

µdxν

=
∫ b

a
dx2

(13)

Here, a indicates a given latent vector and b is a perturbation
around vector a. If this perturbation is infinitesimal, the
distance between the vector and its perturbation can be

simplified as follows.

S = |b− a| (14)

Now, for a given SMILES input and its infinitesimal pertur-
bations, the latent vectors from the source and target tasks
can be transformed into a vector on a universal manifold
where the locally flat frame resides. One can compute dis-
tances between the latent vector and its perturbations from
each task and require them to be the same. By doing so, the
locally flat latent spaces will align together on a universal
manifold and cover the overlapping region smoothly. Then,
the mutual information can naturally be transferred from
one to another, and the extrapolation performance of the
model will be boosted by source data. In an abstract form,
the distance loss can be expressed as follows.

ldis =
1

M

∑
α

Cα

M∑
i

MSE(siα, s
i
t) (15)

Where M is the number of perturbations, Cα is the given
distance ratio for source to target, and siα is the displacement
between pivot data points and their perturbations.

siα ≡ |(z′α)− (z′iα)| sit ≡ |(z′t)− (z′it )| (16)

z′iα = Transferα→LF (Encoderα(x
i)) (17)

z′it = Transfert→LF (Encodert(x
i)) (18)

Here xi denotes ith perturbation of embedded input x, and
Encoderα and Encodert are encoder parts of the source
and target model, respectively. Finally, by gathering all
losses with individual hyperparameters, we define the com-
plete form of the loss function used in the extended GATE
algorithm.

ltot = lreg + αlauto + βlcons + γlmap + δldis (19)
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Table 1. Regression performance of 10-task GATE, MTL, and STL in Pearson correlation.
Tasks GATE MTL STL

Parachor 0.9309±0.0073 0.9358±0.0060 0.9287±0.0086
Surface Tension 0.8440±0.0073 0.8195±0.0236 0.7171±0.0211

Dielectric Constant 0.9228±0.0169 0.9099±0.0176 0.9216±0.0070
Hydration Free Energy 0.9504±0.0107 0.9409±0.0160 0.9414±0.0097
Heat of Vaporization 0.8962±0.0057 0.9018±0.0067 0.8618±0.0160

Boiling Point 0.9113±0.0066 0.9076±0.0087 0.8847±0.0316
Refractive Index 0.9793±0.0025 0.9781±0.0030 0.9761±0.0009

Density 0.8581±0.0115 0.8512±0.0143 0.8237±0.0330
Melting Point 0.8739±0.0052 0.8714±0.0073 0.8901±0.0019

Viscosity 0.9105±0.0072 0.8952±0.0061 0.8967±0.0134
No. 1st 7 2 1

Avg. Rank 1.3 2.2 2.5

Hyperparameters play a crucial role in weighted summation
parameters, and by tuning them sophisticatedly, the model’s
performance will reach its peak. In most cases, many hyper-
parameters are sufficient to be set to a trivial number like
1, but for parameters γ, δ, and Cα, it is worthwhile to tune
them for optimal model performance. However, finding the
right combinations of parameters can be challenging due to
the immense search space. In such cases, we can rely on
scientific knowledge to guide us in tuning them.

3. Experiments
3.1. Experimental Setup

A total of 10 datasets curated from five different sources
named PubChem(Kim et al., 2022), Ochem(Sushko et al.,
2011), CCDDS, Yaws Handbook, and Jean-Claude Bradley
were used for these experiments. We prepared the training
and test sets by splitting each dataset according to the scaf-
fold of the molecular structure(Bemis & Murcko, 1996). A
single NVIDIA A40 was used for every experiment, and
four-fold cross-validation setting with uniform sampling and
a separate test set was used for the default setup. We used
the same model architecture and hyperparameters for GAM
model as described in Ko et al. (2023b). In all experiments,
the encoder and head architecture were identical for GAM,
MTL, and STL.

3.2. Effect of multi-task extension from two-task GATE
to three-task GATE

We first compared the regression performance of three-task
GATE and two-task GATE to assess the impact of multi-task
extension. In each experiment, we used refractive index
and heat of vaporization as pivot tasks and selected an ad-
ditional task to constitute three tasks. Overall three sets of
experiments were performed using hydration free energy,

surface tension or boiling point as an additional tasks respec-
tively. To assess the regression performance of the two-task
GATE, we separately trained and averaged all three possible
combinations of the three tasks.

As depicted in Figure 3, the results demonstrate a clear
synergy effect among the three tasks. Across all three exper-
iment sets, there is a consistent reduction in the root mean
square error (RMSE) of the three-task GATE compared to
the two-task GATE, even when different additional tasks are
included in the sets. This result indicates that the prediction
performance of molecular properties can be enhanced by in-
corporating suitable auxiliary tasks, and this synergy effect
can be achieved through the proposed multi-task extension
of the GATE.

3.3. Regression performance of many-task GATE

To assess the effectiveness of GATE for multi-task learning,
we also compared the regression performance of the many-
task GATE with that of classical multi-task learning (MTL)
techniques and single task learning (STL). As shown in
Table 1, Pearson correlation of GATE outperforms MTL and
STL for 7 out of 10 tasks, whereas MTL and STL perform
best for only 2 tasks and 1 task respectively. Moreover,
GATE’s regression performance ranks within the top 2 for
all tasks, demonstrating robust performance with an average
rank of 1.3.

The robustness of the GATE for many-task setup is even
more clearly shown in Table 2. Table 2 presents percentage
of improvement on regression performance of GATE and
MTL compared to STL. As shown in the table, in many
cases, multi-task setup enhances regression performance,
but in some cases, it can actually reduce regression perfor-
mance. This decline in performance can be attributed to
the negative transfer of undesired interfering information
among the tasks. As evident from the table, GATE shows a

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Multi-task Extension of Geometrically Aligned Transfer Encoder

reduction of performance in only one task, while classical
MTL exhibits a performance decrease in four tasks out of
ten tasks.

Table 2. Relative improvement of the regression performance of
10-task GATE and MTL over STL in percent.

Tasks GATE MTL
Parachor 0.24 0.78

Surface Tension 17.69 14.28
Dielectric Constant 0.13 -1.26

Hydration Free Energy 0.96 -0.06
Heat of Vaporization 3.99 4.64

Boiling Point 3.01 2.59
Refractive Index 0.32 0.21

Density 4.18 3.33
Melting Point -1.83 -2.09

Viscosity 1.54 -0.16

The result is well aligned with the experiments on stability of
the latent spaces introduced in the original GATE paper(Ko
et al., 2023b), which showed that the latent space of GATE
exhibits relatively stable characteristics compared to that
of MTL. Because the GATE is more resilient to interfering
information, it exhibits more robust regression performance
in a multi-task setup involving numerous tasks, where there
is complex information exchange among the tasks.

4. Discussion
The original GATE algorithm interprets the latent space as
a curved space and utilizes the mathematical concept of
differential geometry, particularly Riemannian manifolds.
Since the mathematical concept of GATE is not restricted
to the two-task case, it is straightforward to generalize the
algorithm to cover multiple source tasks without loss of gen-
erality. In this work, we designed the mathematical notion
of the extended GATE with newly introduced hyperparam-
eters and extended losses, and we have demonstrated the
superior performance of the model using numerous open
database datasets.

While our model outperforms conventional setups, there are
several areas for improvement. First, the model’s compu-
tational complexity grows significantly with the number of
source tasks. Since the distance and mapping losses must be
computed for every pair of source and target tasks, the com-
plexity is on the order of O(N2). Therefore, compactifying
the model architecture is one research direction to explore.

Second, the distance loss can potentially be omitted if one
can directly calculate the curvature of the space by finding
the analytic form of the metric tensor. While this is normally
impossible, by utilizing the notion of operator learning, it

can be achieved. After specifying the form of the metric
tensor, one can pre-calculate the Ricci scalar of the space
in advance. By matching the Ricci scalar from source and
target spaces, the distance loss can be omitted and replaced.
This idea can encode geometric information not restricted
to local geometry but global, potentially improving GATE’s
performance and robustness even further.
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Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan Adams. Convolutional net-
works on graphs for learning molecular fingerprints. Ad-
vances in Neural Information Processing Systems (NIPS),
13, 09 2015.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi
Jaakkola. Learning multimodal graph-to-graph transla-
tion for molecular optimization, 12 2018.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte,
Jia He, Siqian He, Qingliang Li, Benjamin A Shoemaker,
Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang,
and Evan E Bolton. PubChem 2023 update. Nucleic
Acids Research, 51(D1):D1373–D1380, 10 2022. ISSN
0305-1048. doi: 10.1093/nar/gkac956. URL https:
//doi.org/10.1093/nar/gkac956.

6

http://dx.doi.org/10.1039/C8SC04228D
http://dx.doi.org/10.1039/C8SC04228D
https://doi.org/10.1093/nar/gkac956
https://doi.org/10.1093/nar/gkac956


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Multi-task Extension of Geometrically Aligned Transfer Encoder

Sung Moon Ko, Sungjun Cho, Dae-Woong Jeong, Sehui
Han, Moontae Lee, and Honglak Lee. Grouping matrix
based graph pooling with adaptive number of clusters. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 8334–8342, 2023a.

Sung Moon Ko, Sumin Lee, Dae-Woong Jeong, Woohyung
Lim, and Sehui Han. Geometrically aligned transfer
encoder for inductive transfer in regression tasks, 2023b.

Brian Kulis, Kate Saenko, and Trevor Darrell. What you
saw is not what you get: Domain adaptation using asym-
metric kernel transforms. CVPR 2011, pp. 1785–1792,
2011. URL https://api.semanticscholar.
org/CorpusID:7419723.

Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, and
Jian Tang. Structured multi-task learning for molecular
property prediction. In International conference on arti-
ficial intelligence and statistics, pp. 8906–8920. PMLR,
2022.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei
Cheng, Xiang Zhang, and Wei Wang. Dual Transfer
Learning, pp. 540–551. doi: 10.1137/1.9781611972825.
47. URL https://epubs.siam.org/doi/abs/
10.1137/1.9781611972825.47.

Jianhan Pan, Teng Cui, Thuc Duy Le, Xiaomei Li, and Jing
Zhang. Multi-group transfer learning on multiple latent
spaces for text classification. IEEE Access, 8:64120–
64130, 2020. doi: 10.1109/ACCESS.2020.2984571.

Minshi Peng, Yue Li, Brie Wamsley, Yuting Wei,
and Kathryn Roeder. Integration and transfer learn-
ing of single-cell transcriptomes via cfit. Pro-
ceedings of the National Academy of Sciences,
118(10):e2024383118, 2021. doi: 10.1073/pnas.
2024383118. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2024383118.

Ariadna Quattoni, Michael Collins, and Trevor Darrell.
Transfer learning for image classification with sparse
prototype representations. Proceedings / CVPR, IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2, 03 2008.
doi: 10.1109/CVPR.2008.4587637.

Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and
Samy Bengio. Transfusion: Understanding transfer
learning with applications to medical imaging. CoRR,
abs/1902.07208, 2019. URL http://arxiv.org/
abs/1902.07208.

Franco Scarselli, Marco Gori, Ah Tsoi, Markus Hagenbuch-
ner, and Gabriele Monfardini. The graph neural network

model. IEEE transactions on neural networks / a publi-
cation of the IEEE Neural Networks Council, 20:61–80,
01 2009. doi: 10.1109/TNN.2008.2005605.

Iurii Sushko, Sergii Novotarskyi, Robert Körner, Anil Ku-
mar Pandey, Matthias Rupp, Wolfram Teetz, Ste-
fan Brandmaier, Ahmed Abdelaziz, Volodymyr V
Prokopenko, Vsevolod Y Tanchuk, et al. Online chem-
ical modeling environment (ochem): web platform for
data storage, model development and publishing of chem-
ical information. Journal of computer-aided molecular
design, 25:533–554, 2011.

Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu,
Zilu Zhou, Chengzhong Ye, and Nancy Zhang. Data
denoising with transfer learning in single-cell transcrip-
tomics. Nature Methods, 16:875–878, 09 2019. doi:
10.1038/s41592-019-0537-1.

David Weininger. Smiles, a chemical language and informa-
tion system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer sci-
ences, 28(1):31–36, 1988.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Co-
ley, Philipp Eiden, Hua Gao, Angel Guzman-Perez,
Tim Hopper, Brian Kelley, Miriam Mathea, Andrew
Palmer, Volker Settels, Tommi Jaakkola, Klavs Jensen,
and Regina Barzilay. Analyzing learned molecular rep-
resentations for property prediction. Journal of Chem-
ical Information and Modeling, 59, 07 2019. doi:
10.1021/acs.jcim.9b00237.

Xiang Yu, Jian Wang, Qing-Qi Hong, Raja Teku,
Shui-Hua Wang, and Yu-Dong Zhang. Transfer
learning for medical images analyses: A survey.
Neurocomputing, 489:230–254, 2022. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2021.08.
159. URL https://www.sciencedirect.com/
science/article/pii/S0925231222003174.

Yu Zhang and Qiang Yang. An overview of multi-task
learning. National Science Review, 5(1):30–43, 2018.

Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong
Xiong, and Zhongzhi Shi. Exploiting associations be-
tween word clusters and document classes for cross-
domain text categorization†. Statistical Analysis and
Data Mining: The ASA Data Science Journal, 4
(1):100–114, 2011. doi: https://doi.org/10.1002/sam.
10099. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/sam.10099.

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, and
Zhongzhi Shi. Triplex transfer learning: Exploiting
both shared and distinct concepts for text classifica-
tion. In Proceedings of the Sixth ACM International

7

https://api.semanticscholar.org/CorpusID:7419723
https://api.semanticscholar.org/CorpusID:7419723
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118
http://arxiv.org/abs/1902.07208
http://arxiv.org/abs/1902.07208
https://www.sciencedirect.com/science/article/pii/S0925231222003174
https://www.sciencedirect.com/science/article/pii/S0925231222003174
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Multi-task Extension of Geometrically Aligned Transfer Encoder

Conference on Web Search and Data Mining, WSDM
’13, pp. 425–434, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450318693.
doi: 10.1145/2433396.2433449. URL https://doi.
org/10.1145/2433396.2433449.

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He,
Zhongzhi Shi, and Hui Xiong. Triplex transfer learn-
ing: Exploiting both shared and distinct concepts for text
classification. IEEE Transactions on Cybernetics, 44(7):
1191–1203, 2014. doi: 10.1109/TCYB.2013.2281451.

8

https://doi.org/10.1145/2433396.2433449
https://doi.org/10.1145/2433396.2433449

