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ABSTRACT

Clustering is a widely deployed unsupervised learning tool. Model-based clustering
is a flexible framework to tackle data heterogeneity when the clusters have different
shapes. Likelihood-based inference for mixture distributions often involves non-
convex and high-dimensional objective functions, imposing difficult computational
and statistical challenges. The classic expectation-maximization (EM) algorithm
is a computationally thrifty iterative method that maximizes a surrogate function
minorizing the log-likelihood of observed data in each iteration, which however
suffers from bad local maxima even in the special case of the standard Gaussian
mixture model with common isotropic covariance matrices. On the other hand,
recent studies reveal that the unique global solution of a semidefinite programming
(SDP) relaxed K -means achieves the information-theoretically sharp threshold for
perfectly recovering the cluster labels under the standard Gaussian mixture model.
In this paper, we extend the SDP approach to a general setting by integrating
cluster labels as model parameters and propose an iterative likelihood adjusted SDP
(iLA-SDP) method that directly maximizes the exact observed likelihood in the
presence of data heterogeneity. By lifting the cluster assignment to group-specific
membership matrices, iLA-SDP avoids centroids estimation — a key feature that
allows exact recovery under well-separateness of centroids without being trapped
by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to
initialization and more stable on high-dimensional data. Our numeric experiments
demonstrate that iLA-SDP can achieve lower mis-clustering errors over several
widely used clustering methods including K -means, SDP and EM algorithms.

1 INTRODUCTION

Clustering analysis has been widely studied and regularly used in machine learning and its applications
in network science (Girvan & Newman, [2002)), computer vision (Shi & Malik, 2000; Joulin et al.|
2010), manifold learning (Chen & Yang, 2021a) and bioinformatics (Karim et al., 2020). Perhaps by
far the most popular clustering method is the K-means (MacQueen, 1967) partially because there
are computationally convenient algorithms such as Lloyd’s algorithm and K -means++ for heuristic
approximation (Lloyd, [1982; |Arthur & Vassilvitskii, [2007). Mathematically, K -means aims to find
the optimal partition of data to minimize the total within-cluster squared Euclidean distances, which
is equivalent to the maximum profile likelihood estimator under the standard Gaussian mixture model
(GMM) with common isotropic covariance matrices (Chen & Yang, 2021b)). Nevertheless, real data
usually exhibit various degrees of heterogeneous features such as the cluster shapes may vary from
component to component, which renders K-means as a sub-optimal clustering method.

Another popular clustering method is the classic expectation-maximization (EM) algorithm, which
is a computationally thrifty method based on the idea of data augmentation to iteratively optimize
the non-convex observed data likelihood (Dempster et al.,|1977)). Theoretical investigations reveal
that the EM algorithm suffers from bad local maxima even in the one-dimensional standard GMM
with well-separated cluster centers (Jin et al.,[2016)). Thus practically even when applied in highly
favorable separation-to-noise ratio settings, careful initialization, often through multiple random
initializations or a warm-start by another heuristic method such as hierarchical clustering (Fraley:
& Raftery, [2002)), is the key for the EM algorithm to find the correct cluster labels and model
parameters. With a reasonable initial start, the EM algorithm has been shown to achieve good
statistical properties (Balakrishnan et al.,[2017;|Wu & Zhoul 2019).
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In this paper, we consider the likelihood-based inference to tackle the problem of recovering cluster
labels in the presence of data heterogeneity. Our motivation stems from the recent progress in
understanding the computational and statistical limits for convex relaxation methods of the K-
means clustering. Since K -means is a worst-case NP-hard problem (Aloise et al., 2009), various
heuristic approximation algorithms such as Lloyd’s algorithm (Lloyd, |1982; Lu & Zhou, 2016), and
computationally tractable relaxations such as spectral clustering (Meila & Shi, [2001}; |[Ng et al., [2001}
Vempala & Wang|, [2004; |Achlioptas & McSherryl 2005} von Luxburg, 2007; [von Luxburg et al.,
2008)) and semidefinite programs (SDP) (Peng & Weil 2007; Mixon et al.,|2016; L1 et al., 2017; Fe1
& Chen, 2018} |Chen & Yang, 2021a; Royer, 2017} |Giraud & Verzelen, 2018; |Bunea et al.,|2016;
Zhuang et al 2022a)), have been proposed in literature. Among the existing solutions, the SDP
approach is particularly attractive in that it attains information-theoretically optimal threshold on
centroid separations for exact recovery of cluster labels (Chen & Yang, 2021b).

Our contributions. We extend the SDP approach to a general setting with heterogeneous features by
integrating cluster labels as model parameters (together with other component-specific parameters)
and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the
exact observed data likelihood. Our idea is to tailor the strength of SDP relaxation of the K -means
clustering method in the isotropic covariance case for likelihood-awareness inference. On one hand,
iLA-SDP has a similar flavor as the EM algorithm by maximizing the likelihood function of the
observed data. On the other hand, different from the EM framework, iLA-SDP treats the cluster
labels as unknown parameters while profiles out the cluster centers (i.e., centroids), which brings
several statistical and algorithmic advantages.

First in the arguably simplest one-dimensional GMM setting, EM is known to fail in certain configura-
tions of centroids even when they are well-separated (Jin et al.,[2016). In other words, EM is sensitive
to initialization and model configuration. The main reason is due to the effort for estimating the cluster
centers during the EM iterations. In iLA-SDP, cluster centers are regarded as nuisance parameters
and profiled out to obtain a likelihood function in component-specific parameters including only the
cluster covariance matrices. Thus iLA-SDP is more stable and performs empirically better than EM.

Second, cluster labels in EM are latent variables that are estimated by their posterior probabilities and
the observed log-likelihood for component parameters and mixing weights are optimized through
minorizing functions during iterations. In iLA-SDP, cluster labels are regarded as parameters
optimized through the likelihood function jointly in the labels and covariance matrices. Thus iLA-
SDP is a more direct approach than EM for taming the non-convexity in the observed log-likelihood
objective and we prove that it perfectly recovers the true clustering structure if the clusters are
well-separated under a lower bound without concerning the configurations of centroids.

The rest of the paper is organized as follows. In Section 2] we review some background on partition-
based formulation for model-based clustering. In Section [3] we introduce the likelihood adjusted SDP
for recovering the true partition structure and discuss its connection to the EM algorithm. In Section [}
we compare the performance of several widely used clustering methods on two real datasets.

2 MODEL-BASED CLUSTERING: A PARTITION FORMULATION

We consider the model-based clustering problem. Suppose the data points X;,...,X,, € RP
are independent random variables sampled from K -component Gaussian mixture model (GMM).
Specifically, let G, ..., G} be the true partition of the index set [n] := {1,...,n} such that if
i € G, then

Xi = . + €, ey

where i, € RP is the center of the k-th cluster and ¢; is an i.i.d. random noise term following the
common distribution N (0, X). Here we focus on the most general and realistic scenario where
the within-cluster covariance matrices X1, . .., Xk are heterogeneous. In our formulation of the
GMM, the true partition (G;)K_, is treated as a unknown parameter in model , along with
the component-wise parameters (ui, Zk)szl. With this parameterization (G, ik, Ek.)kK:l, the
log-likelihood function for observing the data X = { X4, ..., X, } is given by

Z Z — )T (X — ),

G
(G i S | X) = Z Gl 1 og (254 ]) -
k=1

l\'> \
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where |G| is the cardinality of G, and |2y is the determinant of matrix X. Since we are primarily
interested in recovering the clustering labels (or equivalently the assignment matrix, cf. Section
below) in the presence of cluster heterogeneity, we can first profile out the nuisance parameters
1 in closed form and the resulting objective function as a profile log-likelihood for the remaining
parameters (after dropping constants) is given by

K
(G, Sy | X) = Z\Gmog |S) ZZHXH Z Z (X, Xj)5,
1 Gy

k=1ieGy
@)
where (v, u)y := vTXu and |jul|% := (u,u)x, for any u,v € RP and & = 0. This leads us to a
combinatorial optimization problem for the profile log-likelihood function
maX{ ((GrBr)izy 1 X) - |_|ka Ek>'0} 3

where the disjoint union |_|,€K:1 G), = [n] means that Uk:1 Gr=[nJand G; NG = 0 if j # k.
Note that the constrained optimization problem in (3) in the special case ¥y = - -- = X = ¢°1d,,
reduces to the K-means clustering method, which is known to be worst-case NP-hard (Dasgupta,
2007; [Mahajan et al.| 2009). To overcome such computational difficulty, semidefinite program
(SDP) relaxation is a tractable solution that achieves information-theoretically optimal exact recovery
under the standard GMM with identical and isotropic covariance matrices (Chen & Yang [2021al).
Nevertheless, all existing formulations of various SDP relaxations of the standard GMM critically
depend on the assumption that 1 = --- = ¥, = 0°1d,, with a known noise variance parameter
o2 (Fei & Chenl 2018 Li et al.| 2017 Peng & Wei, [2007; |Chen & Yang, [2021a). This motivates
us to seek alternative SDP formulations adjusting the (full) information coming from the likelihood
function for the observed data X.

3 LIKELIHOOD ADJUSTED SDP FOR CLUSTERING HETEROGENEOUS DATA

In this section, we introduce the likelihood adjusted SDP (LA-SDP) for recovering the true partition
structure G7, . .., G by applying convex relaxation to the profile log-likelihood function (3).

3.1 ORACLE LA-SDP UNDER KNOWN COVARIANCE MATRICES

In this subsection, we consider the oracle case where the covariance matrices X1, ..., X are known.
Let us start with a well-studied SDP relaxation formulation (Peng & Wei, [2007) for approximating
the combinatorial optimization problem of maximizing the profile log-likelihood function under the
isotropic setting with known ¥ = ... = X = azldp, which is known (Chen & Yang, [2021b)) to
attain the information-theoretically optimal threshold on centroid separations for exact recovery of
cluster labels. Note that there is a one-to-one correspondence between any given partition (Gj,)%_,
of [n] and a binary assignment matrix H = (h;;,) € {0,1}"*% (up to cluster labels permutation)
such that h;, = 1if i € Gy, and h;, = 0 otherwise for ¢ € [n] and k € [K]. Because each row of H
contains exactly one non-zero entry, the recovery of the true clustering structure (or its associated
assignment matrix) by maximizing the profile log-likelihood function (after dropping constants) can
be re-expressed as a (non-convex) mixed integer program:

1
> (Xi,X;), subjectto H € {0,1}" and Hlx = 1,, (4)

™
max (A, HBH E ‘ -
4,j€EGE

|
where A = X T X isthen x n similarity matrix, 1,, denotes the n-dimensional vector of all ones, and
Bisthe K x K diagonal matrix whose k-th diagonal component is |G| ™" = (Y1, hix) ' Here,
we have used the key identity S5, wg >ijec, @ij = (A, HBHT) that holds for any diagonal
matrix B = diag(ws, ..., wk) and similarity matrix A = (a;;);';—;. Relaxing the above mixed

integer program by lifting the assignment matrix H into Z = HBH ", we arrive at its SDP
relaxation as

Z =arg max (A,Z), subjecttoZ =0, tr(Z)=K, Z1,=1,, Z >0, 5)
ZERTLXTL



Under review as a conference paper at ICLR 2023

where Z > 0 means each entry Z;; > 0 and Z > 0 means the matrix Z is symmetric and positive
semi-definite. This SDP formulation relaxes the integer constraint on H into two linear constraints
tr(Z) = K and Z > 0 that are satisfied by any Z = HBH?” as H ranges over feasible solutions of

problem (@).

Now let us consider the general heterogeneous setting with (possibly) different and non-isotropic

covariance matrices X1,..., X, and extend the SDP relaxation to this setting. Two technical

difficulties arise by examining the previous argument. First, the first two terms in the profile log-

likelihood function are no longer independent of the assignment matrix, and is therefore not

negligible. In particular, they also provide partial information about the cluster labels when the

covariance matrices are different: || X; ||22,1 in the second term quantifies how well X; aligns with
k

the covariance matrix 35 encoding second-order information of the k-th cluster; while the first term

plays the role of balancing the cluster sizes and favors assigning more points to clusters with smaller
shapes (since density is expected to be high). Second, the similarity (X;, X j>2k‘,1 within cluster G,

in the third term now depends on k, making the key identity Zszl W Zi,jeGk a;; = (4, HBHT)
for connecting the profile log-likelihood function with the objective function of the mixed integer
program (&) no longer applicable.

To solve the two aforementioned difficulties, we propose to augment the single variable Z in the SDP
relaxation (5) to K variables (Z;)X_,, where Zj, can be interpreted as the lifting of the k-th column
H, of the assignment matrix H via Zj, = ‘G—lk‘HkHT, |Gi| = >, hir = H 1,,, that encodes the
cluster membership associated with the k-th cluster. More specifically, by extending the key identity

in the isotropic setting to 34w Y, ., al(-?) =S8 (A®) Hywy H,) for any weight vector
(’?))n

w = (wg)j—; and K similarity matrices (4y, = (a,;’)';_1),_,» we can analogously express the
maximizing profile log-likelihood problem as the following (non-convex) mixed integer program:

K K
max kZﬂ(A(k'),kakH,D, subject to Hy, € {0,1}"*! and ;Hk =1,, 6)

where wy, = |G|t = (X0 hik) ~! and the k-th cluster-specific similarity matrix A®*) is

AP = —log(|x])1,1F — = [diag(XTE, ' X)1T + 1,diag(XTE, ' X)T] + XT8. ' X, (D)

1
2
Here, diag(A) stands for the column vector composed of all diagonal entries of a matrix A. Now
by lifting Hy, into Zy, = HpwipH ];r , we arrive at the following SDP relaxation for the profile
log-likelihood objective function (2)):

K

Zy,...,ZKk) = argmax A, Z1),
(24 K) zl,A..zKeankZ:f ks Zk)

K K (3)
subject to Z;, = 0, Ztr(Zk) =K, (sz)ln =1,, Z; >0, Vk € K],
k=1 k=1
which relaxes the integer constraint on H = (Hy, Hs,--- , Hy) into (K + 1) linear constraints

Zle tr(Zy) = K and Z;, > 0 for k € [K] that are satisfied by any Z, = Hjwy H,| as H ranges
over feasible solutions of problem ().

Since solving (8) requires the knowledge of the true covariance matrix for each component, we call
the solution (Zk)szl as the oracle likelihood adjusted SDP (LA-SDP) for estimating the cluster
membership matrix of data points. In the special case of isotropic covariance matrices ¥y = --- =
Yk = 0°1d,, Proposition below shows that LA-SDP reduces to become equivalent to the previous
SDP formulation ().

Proposition 1 (SDP relaxation for K -means is a special case of LA-SDP). Suppose ), = ¢°1d,
forall k € [K]. Let Z be the solution to H that achieves maximum M; and Zy, k = 1,..., K, be
the solution to with maximum M5. Then M; = M. And 7 = Zszl Zk, if 7 is unique in .
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. N
Note that the SDP relaxed K-means in (3) LA-SDP output Z=2+25+2+7 *
is originally proposed in (Peng & Wei, E ..

2007) and has been extensively studied L

in literature. In particular, it achieves the - overal membe:hip
information-theoretical limit for exact re- Z, Z, Eigenvectors of 2

covery under the standard GMM (Chen & —]

Yang| 2021a) and it is robust against out-
liers and adversarial attack (Fei & Chen, |
2018)). In the case of exact recovery where
Z = Z* and Z* is the true cluster mem—
bership matrix such that Z}; = |G|7!if J e

i,j € Grand Z}; =0 0therw1se then we
can easily recover the true partition struc-
ture G7, ..., G} or its associated assign-
ment matrix from the block diagonal ma-
trix Z. Thus it is an interesting theoretical question of when the partition structure induced by

Z = Z Zk from the LA-SDP (see Figure 1| for an illustration) can achieve exact recovery.
Theorem below gives a lower bound of the separation signal-to-noise ratio for achieving exact
recovery in the presence of data heterogeneity.

L]
- .
] Rounding

Figure 1: LA-SDP membership matrices to cluster la-
bels via spectral rounding.

P o ) .

For each distinct pair (k,1) € [K], let D ;) = Zi:lﬁ‘gﬁ;?lgﬁ“”)) characterize the closeness

between X; and Y;, where Aq,..., A\, enumerate all elgenvalues of (21/222123/2 —1Id,). If

Xi =0, Vi € [p],welet Dy = 0. Let A? := ming |2, & — 11)||? denote a covariance
) (k1) # k /~L H

adjusted centroid separation, n;, := |G| the size of true cluster G}, m = ming 721”_’;_2’ the least

pairwise harmonic mean over cluster sizes, n = ming ny the minimal cluster size, and M :=

mMaxy4| ||Ell/22;1211/2 |lop (matrix operator norm).

Theorem 2 (Exact recovery for LA-SDP). Suppose there exist constants § > 0, 8 € (0,1) and
€ (0,1) such that

(1-5)? (1=80-nK* | Cin B2 CoM'/? 41+ 6)2
p? ’ﬁQmaxﬂM—l)?,l}} I T LR O SR

Then the LA-SDP achieves exact recovery, or 7=2 *, with probability at least 1 — C7 K 30 if

logn > max {

A? > (Ey + E»)logn, and I]?;IllD(kJ) > C5(1+1logn/p+p/n), )

where concrete expressions of F; and Fs (depending on 6, 3, n) are provided in Appendix and
C4,...,Cy are universal constants.

Our definition of the centroid separation A extends the separation-to-noise ratio (SNR) for the exact
recovery under the isotropic covariance setting (Chen & Yang) 2021a) to the heterogeneous setting
by taking into account the cluster shapes (i.e. second order information). From (I8), we see that
our theoretical centroid separation lower bound consists of two parts E; and E5: E; reduced to
the information-theoretically optimal threshold when M = 1, corresponding to same covariance
matrices; E> tends to vanish for small M close to one and satisfying M = 1 + o(1/y/nlogn) or
remains as an extra term for large /. From our numerical results summarized in Figure[2] we can
observe that our defined centroid separation A indeed captures the accuracy of cluster label recovery
using LA-SDP—the mis-clustering error curves display almost identical patterns under different
settings of the GMM. In comparison, the performance of the (original) SDP (3] and the K -means
clustering method designed for the isotropic case become significantly worse as the condition number
of the cluster covariance matrices increases. More details about implementation and model setups are
provided in Appendix [A3]

3.2 ITERATIVE LA-SDP UNDER UNKNOWN COVARIANCE MATRICES: AN ALTERNATING
MAXIMIZATION ALGORITHM

Since the oracle LA-SDP relies on the knowledge of covariance matrices X1, . .., X i, We propose
a simple and practical data-driven algorithm for approximating LA-SDP when these covariance
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Figure 2: Mis-clustering error (with shaded error bars) vs centroid separation A under different
conditional numbers of cluster covariance matrices X1 = Yo = - -+ = X (M = 1). The left (right)
plot corresponds to a moderate (large) condition number of the common covariance matrix. Here,
KM refers to K-means method; SDP refers to the original SDP (3)).

matrices are unknown. The idea is to alternate between the SDP relaxation given a current estimate
of the component covariance matrices and updating covariance matrices according to the maximum
(penalized) likelihood given the new membership estimate. The next lemma gives a closed-form
formula for updating covariance matrices given a current estimate of the assignments 21, ..., Zx
based on their (unconstrained) MLEs on the observed data.

Lemma 3 (Updating formula for covariance matrices under alternating maximization). For any

feasible matrices Z1, . . ., Zk satisfying the constraints of @),
. 1 "1
Ski= g > [Q(XiXiT +X;X]) - XiX] ] Zyij, k€ [K], (10)
n =1

solve the following optimization problem

K
21,...,2K:arg21,§g§t0§<x4k,zk>, (1)
where recall that A®*) := A*)(%,) is the ¥j-dependent similarity matrix defined in .

Based on the lemma, we propose an iterative LA-SDP (iLA-SDP) by alternating maximization of
the profile log- hkehhood . for estimating the lifted cluster membership matrices (Zj )% , from
LA-SDP (8) and the component covariance matrices (X5)%_,, as summarized in Algonthm In the
special case where the lifted membership matrix Zj, is of rank one, which holds for true lifted cluster
membership matrices (Z;)X_,, the covariance matrices produced by iLA-SDP can be interpreted as
within-cluster sample covariance matrices under soft clustering.

Proposition 4 (Covariance estimation in iLA-SDP via soft clustering). If rank(Z) = 1, then there

exists weights (wy 1, . .., Wk, ) such that these ik in Lemmacan be written as
1 n 1 n n
= o D wii (X — i) (Xs — i) T, where jiy, = o > wpiXiand ng =Y we,. (12)
i=1 " i=1 i=1

It is further noted from the proof of Proposition [] that when Zj has rank one, the weights
Wk, 1, - - -, Wk, are proportional to the leading non-zero eigenvector of Z;. Thus the alternating
maximization step for updating the covariance matrices in iLA-SDP can be interpreted as a soft
clustering technique that resembles the EM algorithm. Specifically, the E-step estimates the (hard)
cluster label Y; € {0, 1} associated with X; by the posterior probabilities 7,1, := p(Yix | X;,0)

where 6(t) = (7 (/t), ﬂgf), E(t)) denotes the estimated GMM parameters at the ¢-th iteration in the

EM. Then the M-step updates the parameters via 7r( T / n with m(t) Dy 1(,?,
(41 1 , & (t+1 (t+1 < (t+1
ety = ) ZTz'(Iz)Xi and BTV = 1(1? — (X - aT) T a3)
k=1
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Note that and (T3) represent different weighting schemes in the soft clustering rule for obtaining
an estimate for the cluster labels. In iLA-SDP, the weight wy, ; for X; belonging to component k is
determined by the SDP in (). Once the weights are calculated, remaining parameter updates in both
iLA-SDP and EM boil down to simple averages with effective component sample sizes ng and my,
respectively. In Section [3.3]to follow, we provide deeper comparison between iLA-SDP and EM.
Remark 5. In Appendix we further propose two variations of iLA-SDP that can handle
high-dimensional and large-size data with better computational and statistical efficiency. For high-
dimensional data, we apply Fisher’s LDA with an initial estimate of the cluster labels to find an
optimal feature subspace that increases the SNR for better clustering, and for large-size data we
combine the subsampling idea with iLA-SDP to reduce computational cost (Zhuang et al.| [2022b)).

Algorithm 1: The iterative likelihood adjusted SDP (iLA-SDP) algorithm

Input: Data matrix X € RP*™ containing n points. Initialization of assignments G 50), RN Ggg)
(0)

or covariance matrices X 29 The stoppi iteri S
1 ey 2 pping criterion parameters €, 5.
(Assignments to covariance matrices) If we have the initialization of assignments, let
-1 _ _
E,&O) = \GSCO)| > X; — X&) (X; — Xi)7T to be the sample covariance of each cluster
_ 0y —1

k € [K], where X}, := |G,(c )\ Ziecf) X;.
fors=1,...,S5do
(Adjusted-SDP) Solve the Adjusted-SDP in (8) using X and £, ... 567V (0 get

solution Zf), el Z;f-).
Compute the sum Z(*) := Zszl VA ,is) and the relative norm

r) = || Z() — Z6=D| /| 25~V || for s > 2. We will break the loop if 7(*) < €.
(Assignments to covariance matrices) Use formula in Lemmato get covariance matrices

s 88 from 2 289

ieG;")(

Perform the spectral decomposition of Z(%) and take the top K eigenvectors (1, ..., K)-

Run K -means clustering on (41, . . ., i ) and extract the cluster labels Gy, .. ., Gk asa
partition estimate for [n].

Output: A partition estimate G'1, . . ., G for [n].

3.3 CONNECTIONS BETWEEN ILA-SDP AND EM ALGORITHMS

It is interesting to observe that our proposed iLA-SDP algorithm is closely connected to the classic
EM algorithm, which approximates the maximum likelihood estimation (MLE) of the observed data
in statistical models with latent variables (Dempster et al.,[1977). The key idea of EM algorithm
in the model-based clustering context is data augmentation where the latent variables represent the
cluster labels. More specifically, for each data point X; € RP, we associate with an unobserved
one-hot encoded cluster label Y; := {Yi1,...,Y;x} € {0,1}¥. Then the EM algorithm aims to
iteratively maximize the expected log-likelihood of the complete data (X;,Y;)"_; given by

plt+D) — arg max {Q(e | 6®) := Ey.og(.ix.00) (0 | X,Y)]}v (14)

where 0 = ((mg, ftk, k)i, ) contains parameters in the GMM, (7, )K_, are the weight parameters
such that 7, > 0 and 22{:1 7, = 1, and the complete log-likelihood function is

1w _
(0| X, Y) = p(XY | 0) = =5 D> Vi [log(2m|S]) — (X — pue) "85 (X3 — )] -
i=1 k=1
Alternatively, the EM algorithm (T4) can be interpreted as minorize-maximization (MM) that maxi-
mizes a best lower bound for the log-likelihood of the observed data

(0 X) = logp(X | 6) = log 3 p(X, Y | 0) > 3" a(Y | X)log PO LD _ 1y )
Y

> q(Y | X)
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Figure 3: Mis-clustering error (with shaded error bars) vs «y (captures the signal strength of GMM)
and « (perturbation percentage of initialization). mEM (SDP) refers to the reduced version of EM
(LA-SDP) where we consider covariance matrices as fixed and equal to identity. The first plot
compares the performance of mEM and SDP when separation is large with random initialization;
the second plot compares all methods when we enlarge the perturbation percentage « applied to the
random initialization from hierarchical clustering (HC).

for any posterior distribution ¢(Y | X). Under this perspective, the EM algorithm can be expressed
as an alternating maximization algorithm on £(q, #) between E-step ¢t = arg max, £(q,6")
and M-step (*+1) = arg max, £(¢**1), ). Thus, give any ¢(Y | X), the M-step maximizes the
expected complete log-likelihood as a surrogate function that minorizes ¢(¢ | X) because £(g,6) =
Ey g 1x)[c(0|X,Y)] = H(q(Y | X)) where H(q) denotes the relative entropy of distribution

q, while given the current parameter estimate #(*), the E-step is maximized at ¢*t1)(Y |X) =
p(Y | X, 6®) because

00" | X) > L(p(Y [ X,01),000) => " p(Y | X,00) logp(X | 61)) = £(6) | X),

Y
where the first inequality is actually an equality at p(Y | X, H(t)). Even though the EM and iLA-SDP
are both alternating maximization algorithms aiming to solve the MLE for the observed data log-
likelihood and both can be viewed as soft clustering methods (cf. Proposition ), there are several
important differences we would like to highlight.

First, cluster labels are (random) latent variables and they are estimated via posterior probabilities in
the EM algorithm, while the labels are treated as unknown parameters in iLA-SDP that are estimated
via direct maximization of the observed data likelihood.

Second, the EM algorithm is a special case of the minorization-maximization (MM) algorithm (Hunter|
& Lange, 2000) by iteratively performing the coordinate ascent on the expected complete data log-
likelihood as a minorizing surrogate function, while our iLA-SDP is exact in the sense that it directly
optimizes the observed data log-likelihood via a convex relaxation formulation. Thus iLA-SDP is a
more direct approach than EM for tackling the non-convex observed log-likelihood objective and it is
principled to perfectly recover the true clustering structure if the clusters are well-separated under an
SNR lower bound in Theorem[2] As in the EM algorithm, iLA-SDP monotonically maximizes the
observed data log-likelihood over iterations; cf. Figure[7]in Appendix.

Third, the EM algorithm in each iteration must estimate the cluster center parameters (g )%_,, while
our iLA-SDP profiles out the effect of centroid estimation and leverages only pairwise Mahalanobis
distances between data to accommodate the heterogeneity of cluster shapes. Partly because the error
in estimating the centroids propagates to other parameters, EM is more sensitive to initialization with
inaccurate labels and the centroid configurations even in the standard GMM (Jin et al.| 2016)), and
iLA-SDP behaves better than EM, an observation we empirically verify in our simulation experiments;
cf. Figure [3|for comparison between iLA-SPD and EM algorithms. From the first plot we can observe
that LA-SDP with isotropic known covariance matrices, which reduces to the K-means SDP in @),
performs stable and achieves exact recovery when the separation is large. However, EM fails with
random initialization in this adversarial centroids configuration. Moreover, from the second figure we
can see that LA-SDP is fairly stable with perturbation of initialization if the separation is large while
EM can go worse as the perturbation percentage of initialization o approaches 1, i.e., all the labels
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Figure 4: Box plots of difference of mis-clustering error (with means) for different methods to
iLA-SDP. The left (right) plot summarizes the results for the banknote authentication dataset (landsat
satellite dataset). Here SC refers to spectral clustering method.

are selected randomly. In other words, EM is more sensitive to initialization and iLA-SDP is more
stable if the signal is strong. More details of the settings in Figure[3|can be found in Appendix

4 REAL-DATA APPLICATIONS

In this section, we test the performance of iLA-SDP against several widely used clustering methods
on two real datasets from the UCI machine learning repository.

Banknote authentication dataset. We first look at the performances of our methods for a banknote
authentication dataset where the separation of clusters are not large. The images were taken from
genuine and forged banknote-like specimens, where the features were extracted by Wavelet Transform
tool. It contains 1372 samples and p = 4 attributes with K = 2 clusters. We choose total n = 1000
samples randomly and equally from two clusters to make cluster sizes balanced among total 200
replicates. HC is used as initialization for EM, KM and iLA-SDP. If the initialization for the
assignments GEO), G(ZO) is highly unbalanced, i.e., ||G§O)||/HG§0)|| > 4 if ||G§O)|| > ||Gg0)||, then
the covariance matrices of two clusters should differ significantly and we calculate the covariance
estimation for unconstrained optimization problem; Otherwise we will calculate the estimation of
the covariance matrices through graphical lasso with parameter A = 2 since the similarity shows
that we could reduce the estimation of parameters. Then we run Algorithm [T]to get the results for
iLA-SDP. The comparison of those four methods can be found from the left plot in Figure[d where
we can observe that the separation between two clusters is not well in the sense that the medians of
all methods are similar. Nevertheless, iLA-SDP can achieve better performance than other methods
for most of the time. The reason iLA-SDP has lower mean is that sometimes iLA-SDP can achieve
nearly exact recovery in the sense that there are 36 out of 200 times when the mis-clustering error
for iLA-SDP are below 0.05, while EM can only hit around 0.25. This indicates that there are
more chances for iLA-SDP to sort two clusters with fairly good performance even the separation is
problematic.

Landsat satellite dataset. This database was generated from landsat Multi-Spectral Scanner image
data. The test set includes 2000 satellite images, 6 different clusters with 36 attributes (36 = 4
spectral bands x 9 pixels in neighbourhood). Every attribute is an integer from 0 to 255 indicating
the color for certain pixel. We performed 4 methods on the transformed dataset with total 300
replicates. For each repetition, we draw total n = 1200 samples randomly and equally from clusters
to make cluster sizes balanced. And for each attribute, we scale its range to [0, 1] and then take the
function f(z) = log(1/z — 1) entry-wise to transform the range to R.. Then, we run Algorithm 3]
on the transformed dataset X to get the results for iLA-SDP with € = 102, po = K = 6, and
R = 50. From the results we can see that our method iLA-SDP performs the best for all four methods.
Especially, iLA-SDP out-performs EM since the initialization (HC) is rough, which results in both
biases of the estimations of group means and covariance matrices for EM while iLA-SDP only uses
the group covariance matrices as its initialization.
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A APPENDIX

A.1 FURTHER RESPONSE TO REVIEWERS

Sample complexity bound. To verify the sample complexity bound for LA-SDP in Theorem
(O(log(n))) is tight, we will change n and adjust the squared distance between clusters by multiplying
log(n). More precisely, we let d = Ay/log(n), A > 0. The diagonal of the covariance matrices
are placed at a simplex of RP that are not identical to the corresponding centers. i.e. ux = A - e,
Y, = L-diag(ex+1), VI € [K], where e 11 = e;. This guarantees the symmetry of the construction.
We set L =10, p = 4, K = 4. Each time we draw the n = 120/240/480 data from the GMM. The
results of the simulation for the second plot in Figure [5]are obtained through 20 total replicates, where
we can observe the same pattern across different settings for n. This shows that the order log(n) for
separation bound in Theorem 2] should be tight.

Mis-clustering error when X changes for different n
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Figure 5: Mis-clustering error (with shaded error bars for the left plot) vs A for iLA-SDP for different
n.

Computational complexity for banknote authentication dataset. Now if we look at the results of
time cost for clustering banknote authentication dataset in Table|l} we can observe that the time cost
for iLA-SDP is relatively high and to reduce the time cost, we could consider sub-sampling methods,
e.g., the subsampling idea (Zhuang et al.,[2022b). This will be set as our future goal.

Table 1: Time cost (SD) for clustering banknote authentication dataset for 20 replicates.

EM KM iLA-SDP sC
0.1719 (0.0853) 0.0013 (0.0013) 2100 (1882) _0.0395 (0.0959)

A.2 ENHANCED ILA-SDPS FOR HIGH-DIMENSIONAL AND LARGE-SIZE DATA

In this section, we propose two variations of iLA-SDP that can handle high-dimensional and large-size
data with better computational and statistical efficiency.

High dimensional data. If the number attributes of the data are large, it would be hard to approximate
the true covariance matrices since there are O(p?) many unknown parameters. Thus, we propose two
dimension reduction procedures that based on hierarchical clustering, Fisher’s LDA and F-test. The
detailed algorithm have been shown in Algorithm[2]and Algorithm 3] To reduce the dimension, we
proposed two procedure.

1. If the number of clusters K is small and the difference between centers are sparse, we shall use
HC as a benchmark method for feature selection and assume the group means according to HC

12
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as ground true. Specifically, for ¢-th attribute, we calculate the F-statistics and its p-value based
on the Hj that all group means w.r.t. i-th attribute are the same. At last, each attribute would
likely to be selected if the p-value P; for ¢-th attribute is significantly small among p-values for all
attributes.

2. First we use the hierarchical clustering to get the clustering results for all possible input cluster
number K € [p]. If we assume all the clusters have identical covariance matrices, then we may
use the assignments from HC to estimate the within-cluster covariance W (with group means
1) and get the signal-to-noise ratio A(f() = ming ||V~V_1/2(ﬂ;C — [17)]]. Here, HC serves as a
benchmark method for data initial processing. We will then choose the largest K within target
range such that the signal-to-noise ratio A(f( ) is maximized. Then it will lead to the new dataset
with dimension ¢ = K — 1 after running Fisher’s LDA on the assignments from HC with clusters

number equals K. Finally we perform Algorithm |lI{on the new dataset and extract the cluster
labels.

Large-size data. As we know that the time complexity for solving SDP is as high as O(n3-%). We
might use subsampling methods to bring down the time cost while maintain the superior behavior for
LA-SDP (Zhuang et al., 2022b). The proposed algorithm is shown in Algorithm [

Algorithm 2: Likelihood adjusted SDP based iterative algorithm with unknown covariance
matrices X1, . .., L for large p.

Input: Data matrix X € RP*™ containing n points. Cluster numbers K. The stopping criterion
parameters pg, € and S. « € [0,1], C > 0.
Run hierarchical clustering with data X, clusters number K and extract the cluster labels

G §°), cee Ggg) as prior assignments for [n]. Suppose the assignments have true centers
), ke (K],
fori=1,...,pdo

Calculate the p-value P; of the F-test F; under Hy: ug?i) == u&??i, where pgg
L corresponds to the i-th component of ugo).

Keep po attributes with py smallest p-values P;.
if there is no clear cutoff between P;’s, i.e. max;c,) P;/ minep, P; < C, then
L we further keep other p — py attributes with probability o > 0.
Get dimension reduced data X .
Run AlgorithmlIIon X with initialization obtained from K clusters of HC and stopping criterion
parameters € and S. Then extract the cluster labels Gy,...,Ggasa partition estimate for [n].
Output: A partition estimate G, . . ., G for [n].

A.3 EXPERIMENT RESULTS

In this section, we provide more details of the settings and post the results for simulation experiments.
For all the dimension reduction procedures used in the simulation experiments, we perform step 1-7
in Algorithm 2] followed by Algorithm 3| with input parameters o = 0.7, C' = 10, py = 2K, p; =
15 € = 1072, S = 50. The initialization we use is hierarchical clustering from mclust package in
R. Here we test our algorithm on Gaussian mixture models and real datasets. We compared our
algorithm iLA-SDP (HC as initialization) with HC, EM algorithm (HC as initialization), K-means
(HC as initialization) and original SDP.

Improvements of iLA-SDP over SDP. Recall in Theorem 2] we define the signal-to-noise ratio as
A? ;= ming4 HZ,:I/Q (pr — )| To verify the validity of the definition and compare iLA-SDP
and SDP, we change the conditional number for covariance matrices 1, ..., X 5. Here we choose
n =200, p =4, K = 4. Recall M := maxy \|El1/22,;12l1/2||0p, we choose all the covariance
matrices to be the same such that M is fixed. The covariance matrices are set to be identity matrix
except that the first entry at the diagonal are set to be L + 1, which refers to the condition number of
matrices. We consider two cases where L = 10, 100. Now denote ¢;, € RP? as the vector with k-th
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Algorithm 3: Likelihood adjusted SDP based iterative algorithm with unknown covariance
matrices X1, . .., L for large p.

Input: Data matrix X € RP*™ containing n points. Cluster numbers K. The stopping criterion
parameters pp, € and S.
Select a bench mark clustering method (HC) as a way to provide a prior assignments.

for K = K, K +1,...,p1 —1,p, do
Run hierarchical clustering with data X, clusters number K and extract the cluster labels
G EK), ceey G%f) as prior assignments for [n] and get the group means uéK), ke [K].
Calculate the within-cluster covariance matrix W, then get the signal-to-noise ratio
A(K) = mingz [ W72 (") = )]l
Choose K* such that A(K*) is maximized for K* = K, K +1...,P—1,P.
Perform the Fisher’s LDA with data X, assignments G gK*), cee G%(:) and get the transformed
data X € R9*" with ¢ = K* — 1.
Run Algorithmon X with initialization obtained from K clusters of HC and stopping criterion
parameters € and S. Then extract the cluster labels Gl, e G K as a partition estimate for [n].
Output: A partition estimate Gy, . .., G for [n].

Algorithm 4: Sketch and lift: Likelihood adjusted SDP based iterative algorithm with unknown
covariance matrices X1, . . ., L for large n.

Input: Data matrix X € RP*™ containing n points. Cluster numbers K. The stopping criterion
parameters P, € and S. Sampling weights (w1, . .., w,) with
wy = -+ =w, = € (0,1) being the subsampling factor.
(Sketch) Independent sample an index subset 7' C [n] via Ber(w;) and store the subsampled data
matrix V = (X;);er.
Run subroutine Algorithmwith input V to get a partition estimate Ri,..., Ry forT.

Compute the centroids X}, = |I:Zk|’1 > ek X and within-group sample covariance matrices
Sk =Rl X e, (X — X (X; - X)) for k € [K].

(Lift) For each i € [n] \ T, assign i € Gy, if
log || + 157 2(X; — Xp) |12 < log [S] + |57 2(X, — X2, VI#k, [ €[K]. And
randomly assign ¢ to any K clusters if such k£ doesn’t exist.

Output: A partition estimate G, . .., Gk for [n].

entry as 1, and 0 otherwise. The centers of clusters 1, ..., are placed on vertices of a regular
simplex, i.e., i, = Ay/1+ (1 + L)~ ley, k € [K]. This ensures that for any L, A = A\, V. From
Figures [2] we can observe that the signal-to-noise ratio we defined is reasonable. On the other hand,
the performance of SDP becomes worse as condition number of the group covariance matrices grows
since the assumption of isotropy group covariance matrices for SDP is violated and same reason for
K-means.

Impact of dimension reduction. Here we want to see the performance of iLA-SDP after
dimension reduction. The covariance matrices of GMM are drawn independently following
Y = UpAU ,CT , Vk € [K]. Here Uy, is a random orthogonal matrix, Ay is a diagonal matrix
with entries drawn from Z =1+ 87 - 1(Z > 0), where Z is standard Gaussian distribution, 8 > 0
controls the condition number of ;. Here we choose n = 200, p = 20, K = 4, 8 = 5. The
covariance matrices are fixed once chosen and we perform Algorithm [I] on the dataset directly to
get the results of iLA-SDP for each replicates. For dimension reduction, we follow the procedure
of dimension reduction introduced in Algorithm [2and Algorithm [3]in Appendix and get the
transformed dataset X with lower dimension. Then the results of pLA-SDP is obtained from running
Algorithm with HC as initialization on X. The results in FigureE] shows that after reduction of
dimension in our procedure, the performance of iLA-SDP becomes significantly better when the
separation is large. This is because in our setting, the difference between centers dy, ;) := pg — fu, is
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sparse for all distinct pairs. And after performing the F-test on the covariates, the noisy terms get
eliminated which results in better performance.

Failure of EM vs SDP. Recall the failure of EM for random initialization (Jin et al., 2016) in the
special case that covariance matrices equal to identity matrix and it assumes equal weights. Both
covariance matrices and weights are known. In this case, EM algorithm would be reduced to the
version that the weights and the mean update interactively. Meanwhile, iLA-SDP would be reduced
to SDP. The random initialization indicates that we pick any data point as initialization of the centers
uniformly. Following the same setting from the construction of the pitfall, we choose one dimension
GMM with three clusters such that the distance between two of the centers is much smaller than
others. More concisely, weletn = 300, K =3, p=1, uy =, po = —v, pus = 10-~. The
results can be observed from the first plot in Figure |3| with 300 replicates, where we denote the
reduced version of EM as mEM. From the figure we can observe that the reduced version of iLA-SDP,
which is SDP, performs stable and achieves exact recovery when the separation is large. However,
EM would fail for random initialization.

Perturbation of initialization assignments. To see how the performance of EM and iLA-SDP will
change when perturbing the initialization, we set HC as initialization and proportion « (« € [0, 1])
of the initialization labels will be perturbed. The diagonal of the covariance matrices are placed
at a simplex of RP that are not identical to the corresponding centers. i.e. ux = A - eg, 2 =
L - diag(er+1), VI € [K], where ex 11 = e1. This guarantees the symmetry of the construction. We
set L =10, p =4, K = 4 and the distance between centers d = 8. Each time we draw the n = 200
data from the GMM and run HC as initialization. Then we randomly assign « proportion of the
labels from HC to any cluster uniformly. The results of the simulation for the second plot in Figure
are obtained through 300 total replicates, where we can observe that iLA-SDP is fairly stable with
perturbation of initialization if the separation is large while EM can go worse as « approaches 1,
i.e., all the labels are selected randomly. In other words, EM is more sensitive to initialization and
iLA-SDP is more stable if the signal is strong.

Empirical evidence for monotone increasing of objective function for iLA-SDP. Here we provide
examples based on previous experiment settings where we set the distance between centers d =
1/3/5/10. and try to see how the log-likelihood function of given data changes as the iteration
proceeds. From Figure[7]in Appendix we can see that our algorithm guarantees that the log-likelihood
function of given data increases over iteration empirically. What is more, by our construction we can
show that the log-likelihood function will increase after each step for iLA-SDP theoretically.

Mis-clustering error when D changes

- = -LA-SDP
—e—plLA-SDP

0.7

Mis-clustering error

Figure 6: Mis-clustering error (with shaded error bars for the left plot) vs center distance D for
iLA-SDP before and after dimension reduction. pLA-SDP denotes the iLA-SDP after dimension
reduction.
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Figure 7: Log-likelihood (up to some constant) as iteration s grows for iLA-SDP.

A.4 PROOF OF THE THEOREMS AND PROPOSITIONS
In this section, we provide the proofs for the Proposition [T} Proposition f] and a sketch proof of

Theorem[2] The proof of the main theorem follows the track from the paper solving the exact recovery
for original SDP (Chen & Yang]|[2021b) and we will show the main differences in our proof.
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First, we provide explicit expressions of some constants appearing in Theorem [2 below:

4(1 + 20) M°/? 1— )2
E1:<+6><M+ M2+<16>p+03n>

(1-p5)%n? (1+6) mlogn = *
with
(1-8? (Vplogn _logn
"_(1+5)logn< n 0 n )
and
_Cs(M —1)3M? [ p CeK?*(1—p)
2= (1-8)(1-n) <10gn+1>+ 3

} 15)

Proposition|l| (SDP relaxation for K -means is a special case of LA-SDP). Suppose ), = 01d,
for all k € [K]. Let Z be the solution to H that achieves maximum M; and Z, Lk=1,...,K, be
the solution to with maximum Ms. Then M; = M>. And Z = Ele Zy, if Z is unique in .

Proof of Propositionlf Yk = 0%1d,, Vk € [K]. Then from (7) we have

. 1 n logp\ p (M -1)M? P’
. - 1 1
mm{ﬁ(M— 1)2m ( + logn> logn’ Jé] logn T Vplogn

A.4.1 PROOF OF PROPOSITION[]

3l

A= % [diag( X7 X)1T + 1,diag(X"X)"] + X7 X, Vk € [K].

This implies that () can be written as

K
Zuvo Tge = <XTX, 7z >
1 x=erg omex (kz_:l k)
B (16)

K
subject to Zx = 0, tr (D> Zx) = K, (Y Zi)1ln = 1o, Zx 20, Vk € [K],
k=1

Since <diag(XTX)1Z7 (S, Zk)> = tr(X7X), which is a constant in the optimization problem

|| Now suppose Z is a solution to (5)) that achieves maximum M, and Zk, k=1,...,K,isthe
solution to (T6) that achieves maximum My, then we have

(x7x, (izk)> < M1,

k=1
K
<XTX, (ZZk)> < M2,
k=1
where Zl = Z, 22 =...= ZK = 0. In other words, M7 = M, which finishes the proof. If 7 is
unique in , then we have Z = Zszl Z,, since both of them achieve the maximum in H |

A.4.2 PROOF OF PROPOSITION[4]

Proposition I 4| iILA-SDP is a soft clustering method). If rank(Z),) = 1, then there exists weights
(Wk,1, - - -, Wk ) such that Ek in Lemmalcan be written as

1 & 1 &
=N VXs— )T with ik = S X 17
- Z:: k k)( fi) Wi - Z:: 17)
where n = > 1 wg ;.

17
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Proof of Proposition If 7y, is rank 1, then there exists a € R” such that Z, = aa’. Let wy, :=
a™1 - a, then we have
wkwg

T b
wj, 1

Zy =
ie., Zyij = % Finally, by plugging in the expression of Zj, ;; with wy, ; we can get the target
expression for . ]

A.4.3 SKETCH PROOF OF THEOREM [2|

Theorem (Exact recovery for LA-SDP). Suppose there exist constants § > 0 and 8 € (0, 1) such
that

logan:amx{(l_ﬁ)2 (1= 5 - nK> }Cm < B> CoM'/? >M.

32 O BPmax{(M 121} m S a-p2 K T 5

If

A? > (Ey + FE»)logn, and rl?;,iérle(k’l) > C5(1+1logn/p+p/n), (18)
where

4(1 + 26)M>/? 1-8)2 p
By = T2 gz P
= oaoaee \ MV T T ) mloga T
with
B - (1-p8)?2 Vplogn = logn
n = + ;
(1+6)logn n n
and
E2 _ C5(M - 1)3M2 ( p 1) + C@Kz(l —/8)
(1=p8)(1—n) \logn B

19
wind L logp p o (MopME g e '( )
i B(M —1)2m logn ) logn’ &} logn plogn i (;

then the LA-SDP achieves exact recovery, or Z = Z*, with probability at least 1 — C7K3n =9 for
some universal constants C1, ..., Cy.

Sketch of the proof. Recall that we let G, ..., G be the true partition of the index set [n] :=
{1,...,n} such thatif i € G}, then

Xi = pi + €, (20)
where f1, € R? is the true center of the k-th cluster G (G, for simplicity) and ¢; is an i.i.d. random
Gaussian noise N (0, Xj). First we can write down the dual problem:

1
min MK +a’1,, subjectto By, >0, \d,, + = (a1l +1,a") — A, — By, = 0, Vk € [K].

AER,a€R”, 2
Bk ER’!LX‘IL
Denote Zj; := 1516, 1¢,. Vk € [K] then it can be shown that the sufficient conditions for the
solution of SDP to be Z), = Z;, Vk € [K] are
By > 0; (ChH
Lo T
Wi 1= Mld, + 5(a1] + 1,07) = A = By = 0; (C2)
tr(Wi Z5) = 0; (C3)
tr(ByZ) = 0. (C4)

It can be verified that if we can find symmetric By, such that

By.g.a, = 0;

18
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ne + ny
[Braciloi = ——5 — A
N —-1/2/ v —1/2 /v
+ Sl 2( — X2 + log [Si]) — (1273 (X; = X)) + log IZul):

[Br,ca:la i = [Aaialali — [Arvcialalss
[Br.c,c1a,)j = [Bra,alalj + [Ane,alali — [Arac,alals,

for any triple pairs (k, [, 1") that are mutually distinct and ¢ € G, j € G;. Then (C3) and (C4) hold.
In fact, the target matrices can be defined through

T
" Br.c,61a1g, Bra,a
Bk,Gl/Gl = 1T B 1 ) (21)
Gl/ kal/Gl Gy

forany k € [K], (I',1) # (k, k). Furthermore, the construction of By, shows that By1¢, = 0, V(k,[)
pairs.

The following two lemma gives the sufficient conditions for (C1).

Lemma 6 (Separation bound on the covariance matrices). Let )\, ..., \, correspond to the
eigenvalues of (X, /%5 1211/ 2—Idp) and define Dy, ;) := 2 1;;;;0‘g§1|+A )) . If there exists constant
C such that

min Dy > C(1+logn/p +p/n),
then

P([AlleGgGl] [Arcicila]; > 0, forall (k1) € [K]? and j € Gl) >1-CK?/n.

Lemma 7 (Separation bound on the centers). Letd > 0, 5 € (0,1), n € (0,1). If we have

a2 s AEOM s ooy 0 PPN p+ 2DIORR) + tlog(nE) |,
= (1= B2 1—|—§) mlogn o
and
Ars _MEM 1?2
T (=821 —n)?
2(1 - B)(1
<1+(€\)4(77)[310gM+4M( (p + 2¢/plog(nk) + 4log(nK)) )
then

~1/2, < —-1/2
]P’(HEz (X - X))|? +log [Zi]) — (155 (Xp — X)) + log |Tu])
2 _ _ _
- E‘[Az,cllczlcz]j — Ak alel;] > MHEI Y2 (= )PP+ (07 N p — s

for all triple (k, 1, 1') € [K]* with (k,1,1') # (k. k, k) and j € G,)

CK3
nd ’
where
log(nK) , -
Ty =4 %HEI 1/2(m )|+ 2(n;t +np )/ 2plog(nK) + 4ny, t log(nk).

for some large constant C.

The proof of Lemma [/| follows the similar steps from the original paper (Chen & Yang| 2021b).
The two lemmas imply that (C1) can hold with high probability if the separation condition in the
assumption holds. The remaining part is to verify the (C2).
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Denote I' = span{l¢, : k € [K]}* be the othogonal complement of the linear space spanned by
1g,, k € [K]. Note that Wy 1, = 0, V(k,1) € [K]?, we only need to check for v € T,

v Wi >0, Vk € [K].
Note that v 15, = 0, we have
VI Wiv = Mv||? = Se(v) — Ti(v),

where S (v) := vT Apv = vT XTE; ! Xv, and T}, (v) = vT Bv. By concentration bound we can get

K
P(Sk(v) < MK(vVn+ /p++/2logn), forallk € [K]) >1— —
For T}, (v), first we define
1 1/2
Vi = P = ), Y vies)
]EGL/
2 $l/25-1/2
V= - S e S o)
JEG
3 1 1/2 e 1/2
Vk(,l%’ Y Z G?Ez/ -y )El’/ €555
JEGy
1
4
V) = o > (Anepalel; — [Arcialalv - 10 £T).
JEGY

Then we can write T (v) as

— iy (1) (2) (3) (4) (5)
Ti(v) == Z 178, 1, T + T + Ty + Ty + T
AT

Where W e
TW' = sz' ) VkJ'l;
(2) ._ 1,2 (2) .
T = Vk w Vi k0
3 1 2 1
T/i,l)z' = Vk(lg’ 'Vk [ ian Vk( 12/ Vk(l2l7
4 3 4 2 1 2 4
Tlg,l)l’ = (Vk(,z;' + Vk(,lgf) : (Vk( 121 szz%) (Vk(,l;’ Vk( 12/) : (Vk( 121 szz%)
5 3
Tli,l)l’ = (Vk(,lg’ + Vk( l?’) : (Vk(,z?l + Vk( 121)
Now we choose A = p + %mAz, which implies that

iy B 2 1/2
1 By, 2 M a5 — )2 157 = )P},
From concentration bounds for Gaussians we have for all triple (k,1,1’) € [K]® such that (k,,1") #
(k. k, k),

mny CM?
> rm )| < B VEKTogn + 2K gl

Il
nyny CcM3
#T’f}l’ = 1—ﬁ'(5\/W0g”+ mplog” n/n)|vl|*;
14 ki
2
> i k] < 5 G+ M Iosp/log) + MO~ Dol

Or

nyny (5) CK 2M(l — B)(M — 1) p3 2
T T < . + vpml ,
2 lanln kil 3 ( log n m ogn)nHUH
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with probability > 1 — CK?/n® for some constant C.

Note that by assumption we have A% > %(p + logn) + (1 ﬂ) (1+9)plogn/m and

the fact that the remaining terms of T}, ;;» can be bounded by the above inequalities up to multiplied
by some constant, we can directly verify that (C2) is true under our assumptions.

Lemma @ (Separation bound on the covariance matrices). Let A1,..., )\, correspond to the
eigenvalues of (E;/QE;E;Q—I%) and define Dy, ;) := i 1;z1a;°f§1|+’\ )) . If there exists constant
C such that

?;?D(k,z) > C(1+logn/p+p/n),
then
]P)([ALGLGL]'GL] [Ak GlGl]‘Gl} > 0, for all (k,l) S [K]2 and j € Gl) >1-— CK2/TL

Sketch of the proof. Let T := [A; ¢,¢,1¢,]j — [Akcia1a], B = 21/2 1211/2 — Id,, then by
definition we have

p p
= —Zlog(/\i +1) +Z)‘i
i=1 i=1

1

§<B 6] j 7Idp>

1 T

S ly gty a)h
teG, teGl

41 (B ! > ael —1dy)

~(B. — el —

) ,nl A D/
teG

where the last three terms can be bounded by concentration bounds for Gaussians. ]
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