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ABSTRACT

Radiologist-AI interaction is a novel area of research of potentially great impact. It has been observed in the
literature that the radiologists’ performance deteriorates towards the shift ends and there is a visual change in
their gaze patterns. However, the quantitative features in these patterns that would be predictive of fatigue
have not yet been discovered. A radiologist was recruited to read chest X-rays, while his eye movements were
recorded. His fatigue was measured using the target concentration test and Stroop test having the number of
analyzed X-rays being the reference fatigue metric. A framework with two convolutional neural networks based
on UNet and ResNeXt50 architectures was developed for the segmentation of lung fields. This segmentation was
used to analyze radiologist’s gaze patterns. With a correlation coe�cient of 0.82, the eye gaze features extracted
lung segmentation exhibited the strongest fatigue predictive powers in contrast to alternative features.
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1. INTRODUCTION

Medical imaging is the main tool in the work of the radiologist. In recent years, there has been no significant
reduction in errors in radiological studies.1 In addition, workload increases without a growth in the number
of sta↵, which impacts a decrease in the quality of diagnostics.2 Modern advances in artificial intelligence
technologies make it easier for the radiologist to work, which was especially clearly demonstrated during the
COVID-19 pandemic.3 Nevertheless, today it is necessary to better understand the process of visual perception
by a radiologist for to improve modern computer-aided detection systems.4

The quality of radiation diagnostics depends on many factors, including fatigue.5 Modern methods of mea-
suring fatigue are based on electrocardiograms, electromyograms, galvanic skin reactions and electroencephalog-
raphy,6 but these methods require mounting sensors on the participant’s body. The main advantage of using eye
tracking is the study of neurophysiology and human psychology without attaching special sensors to the body. In
this paper we present approach for estimation fatigue of radiologist based on eye-tracking data and deep learning
methods. We assume that the reference fatigue level decreases linearly over time, and comparison the proposed
approach with Stroop and target concentration test.

2. METHODOLOGY

2.1 Experiment setting

Chest X-rays from three public databases were used in this study. In particular, 400 X-rays were randomly
sampled from the databases CheXpert,7 RSNA,8 and SIIM-ACR9 databases. From these databases, 60 X-rays
with pneumonia, 60 X-rays with pneumothorax, 120 X-rays with various other abnormalities, and 160 X-rays
with no abnormality labels were extracted.
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An in-house framework mimicking a radiologist workstation was installed at our research facility. A practicing
radiologist with experience in X-ray analysis was recruited to participate in the gaze analysis experiment. The
radiologist was unaware of the experiment’s aims except that we wanted to record his eye movements during
work. The framework was equipped with a diagnostic graphical user interface (GUI) and performed eye movement
recording using Tobii Eye Tracker 4C and voice recording to collect radiologist activity data. The radiologist could
use the mouse controller to adjust image contrast during reading, which was also recorded by the framework.
The radiologist used GUI to select the appropriate diagnosis and his confidence level. Fig.1 (left) shows an
example of a gaze path and gaze heatmap over the chest X-ray.

2.2 Experiment execution

The radiologist did not have a night shift before the experiment to ensure that he was fresh at the experiment
start and his fatigue built up mainly due to X-ray reading. The X-rays were analyzed in batches of 100 X-rays
separated by fatigue measurements and short breaks with documented duration. The level of fatigue was also
measured at the start and end of the experiment. After the analysis of 200 X-rays, the radiologist had a lunch
break. Three types of fatigue evaluation were documented.

The first evaluation was performed using the target concentration test.10 The radiologist looked at a target
– a set of colored concentric circles – and tried to focus his gaze on the most inner circle for a predefined time.
The inner, middle and outer circles were of radius 5 mm, 17.5 mm, and 35 mm, respectively. The eye-tracking
equipment measured the focusing concentration. The second evaluation was performed using the Stroop color-
word test. The radiologist was iteratively shown 40 samples of colored words ‘red’, ‘green’, ‘blue’ and ‘yellow’.
The word coloring could be congruent or incongruent. For each word, the radiologist was asked to select its color.
The time needed to give a correct answer to the word coloring was recorded. The reference fatigue evaluation
was derived from the cumulative number of the analyzed X-rays, i.e., the first and last X-rays are assigned the
lowest and highest fatigue value, respectively.

Figure 1. (left) Radiologist’s gaze heatmap and gaze path superimposed over the chest X-ray. (right) Histogram with 
the cumulative percentage of the gaze hitting areas located in 5-40mm proximity of the target center.

2.3 Deep learning framework for radiologist’s gaze assessment

Despite the chest X-ray reading style is very personalized, international recommendations have been developed 
to ensure a comprehensive analysis of each X-ray, e.g. the ABCDE approach.11 The idea of our framework 
is to automatically recognize if all the lung field areas have been su�ciently viewed by the radiologist and to 
investigate if fatigue is manifested in abnormalities in the X-ray reading patterns.

We implemented a contour-aware lung segmentation algorithm,12 and trained it on a publicly available 
database.13 The database consists of 247 chest X-rays with both rights and left lungs manually segmented. 
A convolutional neural network (CNN) was designed to map a 1-channel input 2D chest X-ray with 2-channel



output where the channels represent the lung segmentation mask and lung segmentation borders, respectively.
The UNet14 segmentation architecture was used for the CNN.

3. EXPERIMENTS AND RESULTS

3.1 Numerical features for performance evaluation

The predictive powers of the proposed framework were evaluated in contrast to various numerical features that
characterize radiologists’ reading. Two time features were calculated, namely a) the time used to analyze an
X-ray, and b) the time spent on X-ray contrast adjustment. Four radiologist inputs were used as features, namely
a) the assigned presence of abnormality; b) the assigned presence of multiple pathologies; d) confidence in the
diagnosis. Five gaze features were used, namely a) blink rate; b) the gaze heatmap area, i.e., how large was the
X-ray part that received the radiologist’s attention; c) the total distance traveled by the radiologist’s gaze; d) the
average distance from the radiologist’s eyes and monitor e) the proportion of invalid eye-tracking timestamps,
e.g., when the eyes were not looking at the screen.

The correlation coe�cient between the reference fatigue levels and each numerical feature and features from
the anatomical descriptor was computed. The coe�cients were computed for all X-ray, only healthy X-ray, and
only pathological X-ray. Finally, we aggregated features for several consecutive image readings to compensate
for local fluctuations of gaze patterns. The obtained results are presented in Fig. 2.

Figure 2. (left) The correlation coe�cients between the reference label of radiologist fatigue and features computed for 
fatigue estimation. The first two features correspond to the radiologist’s gaze coverage of the lungs and outside area 
computed using the developed deep learning framework. (right) The relationships between cumulative number of X-ray 
viewed and lung coverage with radiologist’s gaze.

3.2 Comparison of fatigue metrics

After the target concentration test, the radiologist’s gaze was converted into a gaze heatmap with high intensities 
at the areas that received the most attention. The following numerical features were calculated: distance between 
the center of the heatmap and the target, standard deviation of heatmap and gaze coordinates. We computed the 
histogram with the cumulative percentage of the gaze hitting areas located in 5-40mm proximity of the target 
center (see Fig.1 (right)). Such a histogram is similar to a dose-volume histogram for radiotherapy planning. The 
volume of the histogram was used as a metric. From the Stroop test, we first computed the mean time needed for 
the correct answer for congruent and incongruent words. The di↵erence between the mean times –



called the Stroop e↵ect – was used as a metric. The metrics from the target concentration and Stroop tests were
compared to the reference fatigue metric. The corresponding correlation coe�cients were -0.53, 0.35, 0.39, 0.6,
and 0.13 for the distance between the target circle and heat map mass center, standard deviation of the heat
map, the standard deviation of the gaze, cumulative histograms volumes, and the Stroop e↵ect.

4. CONCLUSION

In this study, we presented a pilot work on the use of deep learning for the analysis of radiologist’s gaze coverage
and fatigue prediction. We conclude that the target concentration test could be used to measure fatigue level,
while the Stroop test does not exhibit predictive powers. The most critical conclusion goes to the fact that the
features generated from the proposed deep learning-based framework exhibited the strongest correlation with
the fatigue levels. From Fig. 2 (left) it is clear that the lung coverage estimated from the segmented lungs cannot
be replaced by simpler metrics such as the elapsed time, the gaze traveled distance, and the gaze heatmap area.
We hypothesize that a tired radiologist’s gaze becomes less focused on the objects of interest and travels over
other image parts.

We acknowledge that the use of a single radiologist in this pilot study is a limitation. This limitation is
partially compensated by the use of a very robust machine learning methodology for predictive feature selection.
The inclusion of additional radiologists and more X-rays is the direction for our future research.
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