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Figure 1: Setup: A 4-fingered 16-DoF tactile robot hand attached to a URS performing multi-axis
in-hand object rotation (fop), experimented in six key hand orientations with respect to gravity: palm
up, palm down, thumb up, thumb down, base up and base down (bottom).

Abstract: We present AnyRotate, a system for gravity-invariant multi-axis in-
hand object rotation using dense featured sim-to-real touch. We tackle this in-
hand object rotation problem by training a dense tactile policy in simulation and
present a sim-to-real method for rich tactile sensing to achieve zero-shot policy
transfer. Our formulation allows the training of a unified policy to rotate unseen
objects about arbitrary rotation axes in any hand direction. In our experiments,
we highlight the benefit of capturing detailed contact information when handling
objects of varying properties. Interestingly, we found rich multi-fingered tactile
sensing can detect unstable grasps and provide a reactive behavior that improves
the robustness of the policy.
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1 Introduction

In-hand manipulation with multi-fingered hands can be hugely challenging due to the high degree
of actuation, fine motor control, and large environment uncertainties. Recently, researchers have
begun to explore the object rotation problem with proprioception and touch sensing, treating it as a
representative task of general in-hand manipulation [1-5]. The ability to rotate objects around any
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Figure 2: Overview of the approach. Left: The object rotation problem is formulated as an object
reorientation to a moving goal. Auxiliary goal keypoints are used to define target poses about the
chosen rotation axis. Right: training a policy using teacher-student policy distillation. The teacher
is trained using privileged information with RL and the student aims to imitate the teacher’s action
given real-world observations. Privileged information and real-world observation are shown.

chosen axis in any hand orientation displays a useful set of primitives for manipulating objects freely
in space. However, this can be challenging as the object is in an intrinsically unstable configuration
without any supporting surfaces [6, 7], and requires high-precision control of secure grasps in the
presence of gravity (i.e. gravity invariant): it is harder to hold an object while manipulating it if
the palm is not facing upwards. Tactile sensing is expected to play a key role here as it enables
the capture of detailed contact information to better control the robot-object interaction. However,
rich tactile sensing for in-hand dexterous manipulation has not yet been fully exploited due to the
large sim-to-real gap, often leading to a reduction of high-resolution tactile data to low-dimensional
representations [8, 9]. One might expect that a more detailed tactile representation could increase
in-hand dexterity and enable new tasks.

In this paper, we introduce AnyRotate: a robot system for performing multi-axis gravity-invariant in-
hand object rotation with dense featured sim-to-real touch. Here, we propose to tackle this task with
sim-to-real RL and rich tactile sensing. We present a goal-conditioned RL formulation and dense
tactile representation to train an accurate and precise policy for multi-axis object rotation. We then
train a tactile perception model to simultaneously predict continuous contact pose and contact force
readings to bridge the sim-to-real gap between the simulated tactile representation and real tactile
images. In the real world, we mount tactile sensors onto the fingertips of a four-fingered fully-
actuated robot hand to provide rich tactile feedback for performing stable in-hand object rotation.
Our rich tactile policy demonstrates strong robustness across various hand directions and rotation
axes for unseen objects and maintains high performance when deployed on a rotating hand.

2 Method

2.1 Object Rotation as Reorientation

When training a unified policy for multi-axis object rotation, a reward formulation using angular
velocity can lead to inefficient training and convergence difficulties. Instead, we formulate the ob-
ject rotation problem as object reorientation to a moving target. Targets are generated by rotating
the current object orientation about the desired rotation axis in regular intervals. When a target is
reached, a new one is generated about the desired rotation axis.

Observations and Action Space. The observation O, contains the current and target joint position
qt,q; € RIS, previous action a;_; € RIS, fingertip position ff € R'? and orientation f; € R°,
binary contact ¢; € {0, 1}4, contact pose P; € S®, contact force F;, € R*, and the desired rotation
axis k € S2. We provide privileged object and goal information to the agent (Table 4). The action
output from the policy is the relative joint positions of the robot hand, a, := A € R'6. We apply
an exponential moving average to compute the target joint positions which is updated at 20 Hz.
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Figure 3: Tactile prediction pipeline; a) tactile images are preprocessed to grey-scale filtered images,
b) models extract explicit contact features, c) visualization of the tactile features: contact pose and
contact force are represented by the center and area of the shaded circle respectively.
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Reward Design. We design a goal-based reward for learning multi-axis object rotation (with full
details in Appendix B):

T = Trotation T )\rew (Tcontact + Tstable) + Tterminate (1)

The object rotation objective is defined by 7.otation. We use a keypoint formulation to define the
target poses of the auxiliary goals [10]. We augment this reward with a sparse bonus reward and a
delta rotation reward to encourage continuous rotation. We also use 7contact t0 maximize contact
sensing. The remaining terms encourage stable rotations rgap1e COmMprising: an object angular ve-
locity penalty; a hand-pose penalty; a controller work-done penalty; and a controller torque penalty.
An early termination penalty 7crminate 1 induced if the object falls out of the grasp or the rotation
axis deviates too far from the desired axis. The reward terms rcontact and rsiaple are beneficial for
the sim-to-real transfer but can hinder the learning process during the early stages of training. To
alleviate this issue, we apply a reward curriculum A, during training, which increases linearly with
the average number of rotations achieved per episode.

Simulated Touch. We approximate the sensor as a rigid body and fetch the contact information
from its sensing surface; the local contact position (c., ¢y, ¢;) for computing contact pose, and the
net contact force (Fy, F,, F;) for computing contact force magnitude. We apply an exponential
moving average on the contact force readings to simulate sensing delay due to elastic deformation
and saturate and re-scale the contact values to the sensing ranges experienced in reality.

2.2 Teacher-Student Policy Distillation

Similar to previous work [2, 8], we use policy distillation to train a student policy that only relies on
proprioception and tactile feedback. The student is trained simultaneously to reconstruct the latent
encoding of the privileged information z; = ¢(Oy, O¢—_1,...,0—,) and to imitate the teacher’s
action a; = 7p(O¢, at—1, 2¢), as shown in Fig. 2. The encoder is randomly initialized while the
policy network is initialized with the weights from the teacher policy. We train via supervised
learning to minimize the mean squared error (MSE) of the latent vectors and negative log-likelihood
loss (NLL) of the action distributions.

2.3 Sim-to-Real Dense Featured Touch

For sim-to-real transfer of tactile observations, we train a perception model to extract contact features
from real tactile images [11]. The dense tactile features consist of contact pose and contact force.
To collect data, we use a 6-DoF URS robot arm with the tactile sensor attached to the end effector
and a F/T sensor placed on the workspace platform. The tactile sensor is moved on the surface of
the flat stimulus at randomly sampled poses. For each interaction, we store tactile images with the
corresponding pose and force labels. We then train a CNN model to extract these explicit features
of contact from tactile images. Given tactile images on each fingertip, we use the tactile perception
models to obtain the dense contact features. This is then used as tactile observations for the policy.
An overview of the tactile prediction pipeline is shown in Figure 3.



3 Experiments and Analysis

3.1 Simulation Results

The results for in-hand object rotation

K K R Tactile Observation OOD Mass OOD Shape
about randomized rotation axes in ran- Rot  Eplen(s)  Rot  Eplen(s)
dom hand orientations are shown in Ta- Proprioception 1.343007 215405 0.821002 25.1i03
ble 1. We observe a general trend of Binary Touch 1904004 208105 1.5710.05 25.3402
improved performance with more detailed Discrete Touch 1954015 222404 1674008 26:540.

. . . Dense F Pose)  2.05 2. 16 2.
tactile sensing. The dense touch policy ense Force (w/o Pose)  2.0540.04 220105  1.60z002  25.5104

trained with dense contact pose and force
features outperformed policies that used
simpler, less detailed touch. Our ablation Table 1: Comparison of different tactile policies on test
study for each tactile modality showed objectsets in simulation. We report on average rotation

that contact force can provide useful infor- achieved per episode (Rot) and average episode length
mation regarding the interaction physics (EpLen) for arbitrary rotation axis and hand direction.

when handling objects with different mass properties; contact pose is beneficial when handling
unseen shapes; and excluding either feature of dense touch resulted in suboptimal performance.

Dense Pose (w/o Force) 2.0540.05 21.9401 1.7310.03 26.7+0.0
Dense Touch (Ours) 2.1840.05 22.840.8 1.77+0.01 27.240.3

3.2 Real-world Results

We deploy the dense touch policy in the real world using our sim-to-real approach and examine
the performance over a range of rotation axes and hand directions for unseen objects. The result is
shown in Table 2. The dense touch policy also performed the best here, demonstrating a successful
transfer of the proposed tactile representation. The proprioception and binary touch policies were
less effective at maintaining stable rotation, often resulting in loss of contact or getting stuck.

Emergent Behavior. An analysis of the tactile predictions during a perturbed rollout is shown
Figure 13. Given rich tactile sensing on a multi-fingered hand, the policy can detect unstable grasps
under boundary contact and provide reactive finger-gaiting motions that prevent the object from
slipping further. This emergent behavior was not seen when using proprioception or binary touch.

Gravity Invariance. We also show the policy adapting to a rotating hand. Sample performance for
three hand trajectories is provided in the Appendix K.5. This capability to manipulate objects during
angular movements of the hand enables general 6D reorientation of objects in hand. This gives a
new level of dexterity that could be beneficial in many tasks, e.g. general pick-and-place.

Tactile Observation Palm Up Palm Down Base Up Base Down Thumb Up Thumb Down
Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s)
Proprioception 1.47+0.60 27.6138 1.05+0.37 25.3+4.0 0.8410.30 26.8436 0.87+0.46 22.849.6 0.78+053 20.319.9 0.51+0.65 9.504s8.9
Binary Touch 1.32+0.52 255465 0.8910.28 23.8+46 0.861032 253162 0.77x0.28 23.0447 0.831049 22.6400 0.471032 13.2457

Dense Touch (Ours) 1.57+0.57 30.040.0 1.33+0.44 28.243.1 1.3240.32 29.840.6 1.17+0.38 29.44+1.8 1.0840.47 27.943.1 0.9110.33 29.242.0

Table 2: Real-world results of policies trained on different observations for rotating about the z-axis
in different hand directions. We report on average rotation count (Rot) and time to terminate (TTT)
per episode over all test objects.

4 Conclusion and Limitations

In this paper, we demonstrated the capability of a general policy leveraging rich tactile sensing to
perform in-hand object rotation. This marks a significant step toward more general tactile dexterity
with fully-actuated multi-fingered robot hands. To improve the performance further, a richer tactile
representation and perception model can be used to better capture these precise geometric features,
such as the pose of an edge feature. Also, the actuation of the Allegro Hand was significantly weak-
ened under certain hand orientations. Therefore, designing low-cost and more capable hardware is
crucial for advancing dexterous manipulation with multi-fingered robotic hands.
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A Observations and Privileged Information

The full list of real-world observations o, and privileged information x; used for the agent is pre-
sented in Tables 3 and 4 respectively. The proprioception and tactile dimensions are in multiples of
four, representing four fingers.

Name Symbol Dimensions
Proprioception Name Symbol Dimensions
Joint Position q 16 Object Information
Fingertip Position fP 12 Position Do 3
Fingertip Orientation fe 16 Orientation To 4
Previous Action at—1 16 Angular Velocity Wy 3
Target Joint Positions q 16 Dimensions dim, 2
Tactile Center of Mass  COM, 3
Binary Contact c 4 Mass Mo 1
Contact Pose P 8 Gravity Vector g 3
Contact Force Magnitude F 4 Auxiliary Goal Information
Task Position Dg 3
Target Rotation Axis k 3 Orientation rg
Table 3: Full list of observations o, avail- Table 4: Full list of privileged information x;
able in simulation and the real world used for only available in simulation.

teacher and student policy.

The privileged information is used to train the teacher with RL and for obtaining the target latent
vector Z during student training. Whilst the gravity vector can be inferred using the end effector pose
of the robot arm, we did not find any benefit of explicitly including this information in the policy.
We suspect that using a history of observation, which includes proprioception and contact forces,
can also implicitly infer the gravity direction.

B Reward Function

B.1 Base Reward
We use the following reward function for learning multi-axis in-hand object rotation:

T = Trotation T Tcontact T T'stable 1 Tterminate (2)
where,

Trotation = Akprkp + )\rotrrot + Agoalrgoal;
Tcontact = /\rew(/\gcrgc + )\bcrbc)v
T'stable = )\rew<)\wrw + )\poserpose + AWorkrwork + )\torquertorque)7

Tterminate = )\penalty Tpenalty

The key terms for defining the object rotation task are 7;otation and Tpenalty. We include contact
terms to encourage fingertip dexterity and tactile sensing. We also include various stability terms
commonly used in previous work [4, 8] to obtain natural-looking policies and aid the sim-to-real
transfer. In the following, we explicitly define each term of the reward function.

Keypoint Distance Reward:
dx
° 3)

Tkp = (ea:c +b+ e—ax)

where the keypoint distance kpaiss = =7 Zfil ||k9 — k£||, k° and k9 are keypoint positions of the
object and goal respectively. We use N = 6 keypoints placed 5 cm from the object origin in each of
its principle axes, and the parameters a = 50, b = 2.0.



Rotation Reward.: .
Trot = clip(A® - k; —cq,¢1) ())

The rotation reward represents the change in object rotation about the target rotation axis. We clip
this reward in the limit ¢; = 0.025rad.

Goal Bonus Reward:

L if kpdist < dtol
Tgoal = . 5
goal {0 otherwise )
where we use a keypoint distance tolerance dy, to determine when a goal has been reached.
Good Contact Reward:
1 if Ttip_contact >2
Tgc = B - 6
£ {O otherwise ©)

where 7ip_contact = sum(c). This rewards the agent if the number of tip contacts is greater or equal
to 2 to encourage stable grasping contacts.

Bad Contact Penalty:

The = {1 if Tlnon_tip_contact > 0 (7)

0 otherwise
where npon _tip_contact 18 defined as the sum of all contacts with the object that is not a fingertip. We
accumulate all the contacts in the simulation to calculate this.

Angular Velocity Penality:
Tw = — Hlln(| |w0H — Wmax> 0) (8)

where the maximum angular velocity wmax = 0.6. This term penalises the agent if the angular
velocity of the object exceeds the maximum.

Pose Penalty:
Tpose = _||q_q0|| (9)
where ¢ is the joint positions for some canonical grasping pose.
Work Penalty:
Twork = _TT(j (10
Torque Penalty:
Twork = —||7]| (11)

where in the above 7 is the torque applied to the joints during an actioned step.

Termination Penalty:

{_1 (kpdist > dmax) or (I;o > fcmax)
Tterminate =

12
0 otherwise 12)

Here we define two conditions to signify the termination of an episode. The first condition represents
the object falling out of grasp, for which we use the maximum keypoint distance of dpax = 0.1.
The second condition represents the deviation of the object rotation axis from the target rotation axis
(I%O) beyond a maximum l;:max. We use l%max = 45°.

The corresponding weights for each reward term is: Axp, = 1.0, Arot = 5.0, Agoar = 10.0, Age = 0.1,
Ape = 0.2, Ay, = 0.5, Apose = 0.5, Awork = 0.1, Atorque = 0.05, Apenalty = 50.0.



B.2 Alternative Reward

We also formulate an alternative reward function consisting of an angular velocity reward and rota-
tion axis penalty to compare with our auxiliary goal formulation.

Angular Velocity Reward:
Fay = clip(w - k, —ca, ¢2) (13)
where co = 0.5.
Rotation Axis Penalty:
o
Taxis = 1— —— (14)
&[]kl

where ||k, || is the current object rotation axis.

We form the new riotation reward riotation = AavTav + ArotTrot- We provide an additional object
axis penalty AaxisTaxis i the 7s¢aple term and remove the angular velocity penalty, A\, = 0. The
weights are A,y = 1.5 and Aaxis = 1.0. We keep all other terms of the reward function the same.

B.3 Adaptive Reward Curriculum

The adaptive reward curriculum is implemented using a linear schedule of the reward curriculum
coefficient Ajew (Tcontact + Tstable) Which increases with successive goals are reached per episode,

)\rew — Geval — Imin (15)

9Imaz — Imin

where [gmin, gmaz| determines the ranges where the reward curriculum is active. This shifts the
learning objective towards more realistic finger-gaiting motions as the contact and stability reward
increases. We use [gmin, Gmaz] = [1.0,2.0].

C Grasp Generation

To generate stable grasps, we initiate the object at 13cm above the base of the hand at random
orientations and initialize the hand at a canonical grasp pose at the palm-up hand orientation. We
then sample relative offset to the joint positions &/(—0.3,0.3) rad. We run the simulation by 120
steps (6 seconds) while sequentially changing the gravity direction from 6 principle axes of the hand
(£zyz-axes). We save the object orientation and joint positions (10000 grasp poses per object) if
the following conditions are satisfied:

- The number of tip contacts is greater than 2.

- The number of non-tip contacts is zero

- Total fingertip to object distance is less than 0.2

- Object remains stable for the duration of the episode.

D System Identification

To reduce the sim-to-real gap of the allegro hand, we perform system identification to match the
simulated robot hand with the real hand. We model each of the 16 DoF of the hand with the pa-
rameters; stiffness, damping, mass, friction, and armature, resulting in a total of 80 parameters to
optimize. We collect corresponding trajectories in simulation and the real world in various hand
orientations and use CMA-ES [12] to minimize the mean-squared error of the trajectories to find the
best matching simulation parameters.



E Domain Randomization

In addition to the initial grasping pose, target rotation axis and hand orientation, we also include
additional domain randomization during teacher and student training to improve sim-to-real perfor-
mance (shown in Table 5).

Object Hand
Capsule Radius (m) [0.025, 0.034] PD Controller: Stiffness xU(0.9,1.1)
Capsule Width (m) [0.000, 0.012] PD Controller: Damping xU(0.9,1.1)
Box Width (m) [0.045, 0.06] Observation: Joint Noise 0.03
Box Height (m) [0.045, 0.06] Observation: Fingertip Position Noise 0.005
Mass (kg) [0.025, 0.20] Observation: Fingertip Orientation Noise 0.01
Object: Friction 10.0
Hand: Friction 10.0 Tactile
Center of Mass (m) [-0.01, 0.01] Observation: Pose Noise 0.0174
Disturbance: Scale 2.0 Observation: Force Noise 0.1
Disturbance: Probability 0.25
Disturbance: Decay 0.99

Table 5: Domain randomization parameters.

F Simulated Tactile Processing

To simulate our soft tactile sensor in a rigid body simulator, we process the received contact infor-
mation from the simulator to make up the tactile observations. We use contact force information to
compute binary contact signals:

¢ = {1if ||F|| > 0.25 N; 0 otherwise} (16)

A contact force threshold of 0.25 N was selected to simulate the binary contact detection of the real
sensor. For contact force information, we simulate sensing delay caused by elastic deformation of
the soft tip in the real world by applying an exponential average on the received force readings.

F=aoF,+(1-a)F_, (17)

We use o = 0.5. We then apply a saturation limit and re-scaling to align simulated contact force
sensing ranges with the ranges experienced in the real world.

F= BFCHP(F7 Fmin; Fmax) (18)

We use Sp = 0.6, Fiuin = 0.0N, F.x = 5.0N. We also apply the same saturation and rescaling
factor for the contact pose.
P= ﬁPChp(Pv -Pmin; Pmax) (19)

We use p = 0.6, Ppnin, = —0.53rad, Pp.x = 0.53rad. We use binary contact signals to mask
contact pose and contact force observations to minimize noise in the tactile feedback. The same
masking technique was applied in the real world.

G Architecture and Policy Training

The network architecture and training hyperparameters are shown in Table 6. The proprioception
policy uses an observation input dimension of N = 79, the binary touch N = 83, and the full touch
N = 95. We use a history of 30 time steps as input to the temporal convolutional network (TCN)
and encode the privileged information into a latent vector of size n = 8 for all the policies.

10



Teacher Student

MLP Input Dim 18 TCN Input Dim [30, N]
MLP Hidden Units [256, 128, 8] TCN Hidden Units [N, N]
MLP Activation ReLLU TCN Filters [N, N, N]
Policy Hidden Units  [512, 256, 128] TCN Kernel [9,5,5]
Policy Activation ELU TCN Stride [2,1,1]
Learning Rate 5x 1073 TCN Activation ReLU
Num Envs 8192 Latent Vector Dim z 8
Rollout Steps 8 Policy Hidden Units  [512, 256, 128]
Minibatch Size 32768 Policy Activation ELU
Num Mini Epochs 5 Learning Rate 3x1074
Discount 0.99 Num Envs 8192
GAE 7 0.95 Batch Size 8192
Advantage Clip € 0.2 Num Mini Epochs 1
KL Threshold 0.02 Optimizer Adam
Gradient Norm 1.0 Goal Update dio1 0.25
Optimizer Adam
Goal Update do1 0.15

Table 6: Policy training parameters. Please refer to ref. [13] and [14] for a detailed explanation of
each hyperparameter.

H Tactile Perception Model

Data Collection. The setup for tactile feature extraction is shown in Figure 4. We collect data by
tapping and shearing the sensor on a flat stimulus fixed onto a force torque sensor and collect six
labels for training: contact depth z, contact pose in 2, contact pose in R,,, and contact forces F,
F, and F,. In order to capture sufficient contact features needed for the in-hand object rotation
task and stay within the contact distribution, we sample the sensor poses with the ranges shown in
Table 7. This provides sensing ranges for contact pose between [—28°, 28°] and contact force of up
to 5N, which are the largest ranges we could reasonably consider for this tactile sensor.

Training. The architecture and training parameters of the perception model are shown in Table 8.
For each fingertip sensor, we collect 3000 images (2400 train and 600 test) and train separate models.
The prediction error for one of the sensors is shown in Figure 5. The perception model does not
explicitly consider multiple contact points. In practice, we found this to be rare and by assuming
a single combined contact, the model was sufficient in producing consistent estimates that did not
affect the final performance of the in-hand rotation policy.

I Tactile Image Processing

The tactile sensors provide raw RGB images from the camera module. We use an exposure setting
of 312.5 and a resolution of 640 x 480, providing a frame rate of up to 30 FPS. The images are then
postprocessed. We convert the raw image to greyscale and resale the dimension to 240 x 135.
Binary Contact: We apply a medium blur filter with an aperture linear size of 11, followed by an
adaptive threshold with a block size of 55 pixels and a constant offset value of -2. These operations
improve the smoothness of the image and filter out noise. The postprocessed image is compared
with a reference image using the Structural Similarity Index (SSIM) to compute binary contact (0 or
1). We use an SSIM threshold of 0.6 for contact detection.

Contact Pose and Force: We directly use the resized greyscale image for contact force and pose
prediction. From the target labels, we use contact pose (7., ;) and the contact force components
F, Fy, F. (to compute the contact force magnitude || F||) to construct the dense tactile representa-
tion used during policy training. We use the binary contact signal to mask contact pose and force,
thresholding the predictions at ~ 0.25N.
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Pose Component Sampled range

Depth z (mm) [-1, 4]
Shear S, (mm) (-2, -2]
Shear S, (mm) [-2,-2]

Rotation R, (deg) [-28, 28]
Rotation R, (deg) [-28, 28]

Table 7: Sensor pose sampling ranges used
during tactile data collection for training the
pose and force prediction models, relative to
the sensor coordinate frame.

Tactile Perception Model

Conv Input Dim [240, 135]
Conv Filters [32, 32, 32, 32]
Conv Kernel [11,9,7,5] . . . ..
Conv Stride [L1.1.1] Figure 4: Data collection setup for training

tactile perception model, including an F/T

Max Pooling Kernal  [2,2,2,2] sensor and a URS5 Robot arm.

Max Pooling Stride [2,2,2,2]

Output Dim 6 s . —
Batch Normalization True z . 1 z . -
Activation ReL.U I ‘E..,
Learning Rate 1x107* - 0
Batch Size 16 ;
Num Epochs 100 E’ i :;
Optimizer Adam £ £ £

Table 8: Tactile perception model training Figure 5: Error plots on test data for the per-
parameters.

ception model.
J Real-world Deployment

Tactile Sensor Design. This design of the sensor is based on the DigiTac version [15] of the Tac-
Tip [16, 17], a soft optical tactile sensor that provides contact information through marker-tipped
pin motion under its sensing surface. Here, we have redesigned the DIGIT base to be more compact
with a new PCB board, modular camera and lighting system (Figure 6). We also improved the mor-
phology of the skin and base connector to provide a larger and smoother sensing surface for greater
fingertip dexterity. The tactile sensor skin and base are entirely 3D printed with Agilus 30 for skin
and vero-series for the markers on the pin-tips and for the casings. Each base contains a camera

Tip Skin LED Driver Board

Target Joint Commands

Torque
PD Controller

Policy
(| Middle Shell  Camera Back Shell Fingertip pose,
X

Contact Information

Obsservation
models

Figure 6: CAD models of the fully-actuated
(Allegro) robot hand and integrated custom
tactile sensors.

Figure 7: Real-world robot hand control pipeline.
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Real-world Object Set

Dimensions (mm) Mass (g) Dimensions (mm) Mass (g)
Apple 75 x 75 x 70 60 Tin Cylinder 45 x 45 x 63 30
Orange 70 X 72 x 72 52 Cube 51 x 51 x 51 65
Pepper 61 x 68 x 65 10 Gum Box 90 x 80 x 76 89
Peach 62 X 56 x 55 30 Container 90 x 80 x 76 32
Lemon 52 x 52 X 65 33 Rubber Toy 80 x 53 x 48 27

Table 9: Dimensions and mass of real-world everyday objects.

driver board that connects to the computer via a USB cable and can be streamed asynchronously at
a frame rate of 30 FPS. We perform post-processing using OpenCV [18] in real-time.

Sensor Placement. A common limitation of unidirectional tactile sensors is that they are primarily
sensorized over a front-facing area. Contacts with the side of the sensor casing can be slippery
and result in unstable behaviors. To alleviate this issue, similar to [19], we adjusted the sensor
direction relative to the fingers to maximize contact with the sensing surface, and placed the tactile
fingertips with offsets (thumb, index, middle, ring) = (—45°, —45°, 0°, 45°). This allowed the
policies to achieve consistent and stable in-hand rotation performance, providing a basis to validate
our learning approach against baselines.

Control Pipeline. Each tactile perception model is  simuaion obiect e

deployed together with the policy as shown in Fig- i a e © 6 Q

ure 7. We stream tactile and proprioception read-

ings asynchronously at 20Hz. The joint positions & ﬁ a 8 ﬁ a

are used by a forward kinematic solver to compute -

fingertip position and orientation. The relative joint

positions obtained from the policy are converted to . . ' 0 Q
target joint commands. This is published to the Al- -

legro Hand and converted to torque commands by a ' . w @ -

PD controller at 300 Hz.

Figure 8: Top: Simulation test object set

Object Properties. W fund tal tri
) pert ¢ use fundamenta’ 8Omere from [20]. Bottom: Real everyday objects.

shapes in Isaac Gym (capsule and box) for training.
In simulation, we test on two out-of-distribution (OOD) object sets (see Figure 8): 1) OOD Mass,
training objects with heavier mass; 2) OOD shape, selection of unseen objects with different shapes.
In the real world, we select 10 objects with different properties (see Table 9) to test generalizability
of the policy.

K Additional Experiments

K.1 Training Performance

We compare our auxiliary goal formulation against angular rotation (”w/o auxiliary goal”), a com-
mon formulation for in-hand object rotation [2, 4, 8]. The learning curves are shown in Figure 9.
While the agent can learn in the single-axis setting using an angular rotation objective, it resulted in
much lower accuracy with near-zero successive goals reached. In the multi-axis setting, the training
was unsuccessful and the learning tends to get stuck where the object is stably grasped with minimal
rotation. We suspect this is due to the object being held in an intrinsically unstable configuration
whereby small random actions can lead to irrecoverable states, such as dropping the object, leading
to the agent taking overly conservative actions. During training, when the angular velocity is low
and the rotation axis can be noisy, an angular velocity reward cannot effectively guide the agent
out of this local optimum. Conversely, provided with privileged goals and a smoother goal-driven
reward, the objective becomes more conducive to learning the multi-axis in-hand rotation task. The
proposed adaptive curriculum also contributes positively to this.
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Figure 9: Learning curve for different training strategies. Left: Single-axis training fixed about
rotation in the z-axis. Right: Multiple-axis training for arbitrary rotation axis. We report on the
average rotation count and the number of successive goals reached.

K.2 Hyperparamters

We provide additional ablation studies to analyze the design choices for our axillary goal formula-
tion. The effect of goal update tolerance dy,,) for the student training and the auxiliary goal increment
intervals are shown in Table 10.

The performance can be significantly affected by the goal-update tolerance. As the tolerance reduced
during student training, the number of average rotations and successive goals reached per episode
also reduced. This suggests that the performance of the teacher policy was poorly transferred and the
student could not learn the multi-axis object rotation skill effectively. Increasing the goal increment
intervals also resulted in fewer rotations achieved.

Goal Update Tolerance Rot TTT(s) #Success Goal Increment Rot TTT(s) #Success

dio1 = 0.15 0.75 28.1 3.07 6 = 30° 1.77 27.2 5.26
dio1 = 0.20 1.36 27.7 4.48 0 = 40° 1.50 26.7 4.36
dio1 = 0.25 1.77 272 5.26 0 = 50° 1.30 27.1 3.86

Table 10: We compare the performance of policies trained with different design choices in the
auxiliary goal formulation. We compare goal update tolerance and goal increment intervals and

provide metrics for average successive goals reached, rotation count (Rot), and time to terminate
(TTT).

K.3 Sim-to-Real Tactile Sensing

We present the tactile readings of a similar policy rollout in simulation and real-world, in Figure 10
and 11 respectively. We observe a sim-to-real gap in the rotation speed as demonstrated by the higher
contact cycles obtained in simulation. However, a matching pattern can be seen from the recorded
contact features. By comparing the raw and processed contact readings in simulation, we see the
effect of the post-processing functions in Section F. This helped with aligning the simulated tactile
readings to that of the real sensors and smoothing out the noisy readings of the contact force. The
comparison also demonstrates a successful sim-to-real transfer of the proposed tactile representation.

K.4 Real-world Object Results

The real-world results for each object for varying rotation axes and hand orientations are shown in
Figure 12 and 11 respectively. We observed that larger objects resulted in fewer rotations, likely
due to the size and joint limits of the Allegro Hand, making smaller objects easier to maneuver.
Objects with sharp corners, such as the cube and gum box, sometimes caused the fingers to get stuck
around these points. We believe this is because navigating around these geometric features requires
additional finger extension during rotation, making it challenging for a general tactile policy to
handle such shapes effectively. The gum box was the most challenging due to its sharp corners, and
shifting mass (sloshing gum pieces). These factors led to the least stable rotation and the lowest time
to terminate (TTT).
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Figure 10: Simulated tactile readings during pol- Figure 11: Real tactile readings during policy
icy rollout. We plot raw and processed contact rollout. We plot the contact pose and con-
pose and contact force readings in simulation for tact force predictions from the tactile perception
rotating a ball in the palm-up orientation about model for rotating a ball in the palm-up orienta-
the z-axis. tion about the z-axis.
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Figure 13: Tactile features during rollout. The rotation component
of contact is seen in R, a repeated cycle of the object rolling along
Figure 12: Frames of in-hand the fingertips. A reactive behavior is seen in the blue-shaded region
object rotation for six distinct in R,,, where after boundary contact detection, the fingers extend
objects under six hand orien- to reduce contact angle in subsequent cycles to achieve more stable
tations relative to gravity. grasping. A demonstration is included on our website.

Contact Surfaces. While we train the tactile perception models on a flat surface, we found that it
can generalize to other uneven contact surfaces, shown by various test object shapes in Figure 8,
demonstrating the robustness of the proposed tactile representation.

K.5 Rotating Hand

We test the robustness of the policy by performing in-hand object rotation during different hand
movements. In particular, we choose hand trajectories where the gravity vector is continuously
changing relative to the orientation of the hand, adding greater complexity to this task. Rollouts
for three different hand trajectories are shown in Figure 14. In particular, for the third hand trajec-
tory (iii), we demonstrate the capability of the robot hand to servo around the surface of the object
in different directions while keeping the object almost stationary in free space. This motion also
demonstrates the ability to command different target rotation axes during deployment, offering a
useful set of primitives for other downstream tasks.

15



Tactile Observation Apple Orange Pepper Peach Lemon

Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s)
Proprioception 0.9840.46 25.5+10.1 1.214051 25.3+79 1.5140.33 28.8422 1.544042 26.8425 1.114062 20.31+s85
Binary Touch 1214030 27.7T444 1264047 262466 1.2540.35 24.3+6.8 1.0640.40 23.2446 0.86+0.54 19.5+7.8
Dense Touch (Ours) 1.3710.33 30.040.0 1.541+0.38 30.010.0 1.5010.20 30.0+0.0 1.8910.26 30.0+0.0 1.57+0.32 29.541.1
Tactile Observation Tin Cylinder Cube Gum Box Container Rubber Toy
Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s)
Proprioception 0.48+0.3¢ 17.0411.5 0.80+0.56 19.0£12.0 0.57+0.46 19.2+105 0.36+0.26 17.7+11.3 0.49+0.31 17.7168
Binary Touch 0.4440.20 16.8485 0.58+0.30 16.8+9.1 0.4840.34 13.8475 0.5940.21 28.7+3.0 0.65+0.25 21.047.0

Dense Touch (Olll'S) 0.81:&0,24 28-3:&3.3 0.88;&0,48 23.0:&10,9 0.83:&0_45 24.2:&11.0 0.59:&0_19 27.8i3,1 1.0610_24 28.3:&2,1

Table 11: Hand orientation. Real-world results of policies trained on different tactile observations
for different objects. We report on average rotation count (Rot) and time to terminate (TTT) per
episode averaged over the 6 test hand orientations.

Tactile Observation Apple Orange Pepper Peach Lemon
Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s)
Proprioception 0.53+0.26 23.3494 0.681045 21.7197 0.494061 14.7411.0 1.004041 28.7+10 0.68+10.41 18.7190
Binary Touch 0.7840.43 28.3+24 0.904057 23.0499 0.7840.3s8 25.3433 0.921042 25.0441 0.8810.38 20.7+7.4
Dense Touch (Ours) 1.0310.34 30.04£0.0 1.20+0.50 30.040.0 1.17+0.31 30.0+0.0 1.8210.41 30.040.0 1.70+0.39 30.010.0
Tactile Observation Tin Cylinder Cube Gum Box Container Rubber Toy
Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s) Rot TTT(s)
Proprioception 0.28+0.25 10.0482 0.63+0.45 20.3+103 0.47+0.66 7.33+10.4 0.10+0.14 6.00185 0.35+0.38 14.0+12.8
Binary Touch 0.4940.20 19.342.9 0.7740.26 26.T4a7 042404 14.74107 0.2140.21 16.7412.5 0474041 15.7+15.0

Dense Touch (Ours) 0.924¢.42 29.7+0.5 1.0440.21 24.044.3 0.654+0.51 18.3+13.1 0.4240.12 25.047.1 1.2940.19 25.74+2.1

Table 12: Rotation-axis. Real-world results of policies trained on different tactile observations for
different objects. We report on average rotation count (Rot) and time to terminate (TTT) per episode
averaged over the 3 test rotation axes.

i) Hand rotation z-axis

Time

Figure 14: Examples of in-hand rotation for plastic apple on a moving hand. Rollouts for three
hand trajectories are shown: (i) object rotation about z-axis while the hand rotates about the z-axis
from O to 27; (ii) object rotation about z-axis while the hand rotates about the x-axis from —7 to 7;
(iii) object rotation about the y-axis while the hand rotates about the y-axis in the opposite direction
to keep the object pose stationary.
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