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Abstract

Graph neural networks stand as the predominant technique for graph representation learning
owing to their scalability and end-to-end learning, yet the performance highly depends on
the availability of high-quality labels in an end-to-end manner. Thus the pretraining and
fine-tuning paradigm has been proposed to mitigate the label cost issue. Subsequently, the
gap between the pretext tasks and downstream tasks has spurred the development of graph
prompt learning which inserts a set of graph prompts into the original graph data with minimal
parameters while preserving competitive performance. However, the current exploratory
works are still limited since they all concentrate on learning fixed task-specific prompts which
may not generalize well across the diverse instances that the task comprises. To tackle this
challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper,
aiming to generate distinct prompts tailored to different input instances. The process involves
generating intermediate prompts for each instance using a lightweight architecture, quantizing
these prompts through trainable codebook vectors, and employing the exponential moving
average technique to ensure stable training. Extensive experiments conducted on multiple
datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-
art baselines. The code is publicly available: https://github.com/lijiazheng0917/IA-GPL.

1 Introduction

Graphs function as pervasive data structures employed across various real-world applications, including
but not limited to social networks refsocial,refsocial2, molecular structures refmole,refmole2, and knowledge
graphs refkg, due to their efficacy in modeling intricate relationships. With the rise of deep learning, Graph
Neural Networks (GNNs) have emerged as a formidable technique for analyzing graph data.

Nevertheless, GNNs trained end-to-end exhibit a strong dependency on large-scale high-quality labeled data
for supervision, which can be challenging to obtain in real-world scenarios. To overcome this challenge,
researchers have explored self-supervised or pre-trained GNNs gca, edgepred, xia2022simgrace, gcl, yu2022sail,
ju2023multi, wencoarse inspired by the advancements in vision fan2021multiscale and language bao2021beit
domains. The pre-training methodologies using readily accessible label-free graphs aim to capture intrinsic
graph properties (e.g., node features, node connectivity, or sub-graph pattern) that exhibit generality across
tasks and graphs within a given domain. The acquired knowledge is then encoded in the weights of pre-trained
GNNs. When it comes to downstream tasks, the initial weights can be efficiently refined through a lightweight
fine-tuning step, leveraging a limited set of task-specific labels. However, as discussed in sun2023all, the
"pre-train and fine-tuning" paradigm is susceptible to the negative transfer problem.

Specifically, pre-trained GNN models focus on preserving the intrinsic graph properties, while fine-tuning
seeks to optimize the weights on the downstream tasks, which may significantly differ from the pretext tasks
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employed in pre-training. For instance, consider the scenario where a GNN is pre-trained using link prediction
objective kipf2016variational, a prevalent pretext task that aims to bring the representations of adjacent
nodes closer in latent space. Subsequently, fine-tuning is performed using the node classification objective. In
such a case, the model might exhibit suboptimal performance or even break down, especially if the graph
dataset is heterophilic, where adjacent nodes may have different labels.

Consequently, in an effort to narrow the gap between pre-training and downstream tasks, several ex-
ploratory graph prompting learning frameworks graphprompt, sun2023all have been introduced. The
concept of prompt tuning initially found application in the language domain ptuning, softprompt2, bhard-
waj2022vector. In general, a piece of fixed or trainable prompt text is appended to the input text, aligning
the downstream task with the text generation capabilities of pre-trained large language models (LLMs).

(b) NC(N)=Nc1nc(-c2cccc(N)c2)cs1(a) CCc1ccccc1

Figure 1: Two example molecules from the BBBP dataset. Molecule
(a) with simple structures suffices with a universal prompt. However,
molecule (b) with diverse atoms and intricate structures requires the
use of instance-aware prompts.

This approach not only preserves performance
but also contributes to a reduction in training
resource consumption. In the graph domain,
prompt learning has recently demonstrated its
potential as an alternative to fine-tuning, exem-
plified by methods such as GPPT gppt, Graph-
Prompt graphprompt, GPF gpf, and All-in-
One (Sun et al., 2023). Similar to language
prompts, these methods modify the original
input graphs into prompted graphs which are
further fed into frozen pre-trained graph models.
The distinctions among these methods lie in the
approach of inserting prompts into graphs and detailed training strategies. Nevertheless, the existing graph
prompt learning approaches collectively operate under an assumption: that the learned task-specific prompts
perform well across all input instances within the task. In other words, these prompts are considered static
concerning the input, a limitation that we deem critical. We argue that the dependency of prompts on
the input instance is an essential characteristic that aids in generalization over unseen samples. Using two
molecules from the BBBP dataset as an example, as shown in Figure 1, for molecule (a), since the atoms
are all carbons, it is acceptable to use one universal prompt vector for all the atoms (nodes). However, for
molecule (b) with complex structures, it is evident that these highlighted atoms with red circles (i.e., S, C,
and N), contain distinct features and should be prompted in different ways.

To this end, our paper delves into the exploration of instance-aware prompt learning for the graph domain. This
non-trivial research problem raises two questions: (1) what model should we use to generate instance-aware
prompts with additional use of a minimal number of parameters? It is important to identify an effective and
parameter-efficient method to transform the feature space into the prompt space, as the primary advantage of
prompting lies in the minimization of trainable parameters. (2) how can we ensure the instance-aware prompts
are meaningful and distinctive as expected? Employing parameterized methods for prompt generation runs
the risk of converging to trivial solutions, where all prompts collapse into a singular solution. Consequently,
guaranteeing the generation of diverse and meaningful prompts becomes a pivotal aspect of the entire pipeline.

In response to these challenges, we introduce a novel instance-aware graph prompt learning framework
named IA-GPL designed to generate distinctive prompts for each instance by leveraging its individual
information. Specifically, to tackle the first question, we feed the representations of the input instance into
parameterized hypercomplex multiplication layers (Zhang et al., 2020) which transform the feature space
into the prompt space with minimal parameters. To solve the second question, we resort to the vector
quantization (VQ) (GRAY, 1998) technique. VQ discretizes the continuous space of intermediate prompts,
mapping each prompt to a set of learnable codebook vectors. The mapped vectors after VQ then replace
the original prompts and are incorporated into the original features. To train the codebook, the exponential
moving average technique is utilized to prevent from converging to trivial solutions. To summarize, our main
contributions are as follows:

• We propose IA-GPL, a novel instance-aware graph prompting framework. To the best of our knowledge,
IA-GPL is the first graph prompting method capable of generating distinct prompts based on different
instances within the dataset.
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• In IA-GPL, we utilize a parameter-efficient bottleneck architecture for prompt generation followed by the
vector quantization process via a set of codebook vectors and the exponential moving average technique to
ensure effectiveness and stability.

• We conduct extensive experiments under different settings to evaluate the performance of IA-GPL. Our
results demonstrate its superiority over other state-of-the-art competitors.

2 Related Work

Graph Representation Learning. The objective of graph representation learning is to proficiently
encode sparse high-dimensional graph-structured data into low-dimensional dense vectors. These vectors are
subsequently employed in various downstream tasks, such as node/graph classification and link prediction. The
methods span from classic graph embeddings (Grover & Leskovec, 2016) to recent graph neural networks (Kipf
& Welling, 2016; Veličković et al., 2017; Yun et al., 2019; Zhang et al., 2019; Fan et al., 2022) with the
remarkable success of deep learning. GNNs, which derive node representations by recursively aggregating
information from neighbor nodes, have emerged as a predominant standard for graph representation learning.
GNNs find applications in diverse areas, such as social network analysis (Guo & Wang, 2020; Li et al., 2023),
bioinformatics (Mercado et al., 2021; Guo et al., 2021; Wen et al., 2023), recommendation systems (Fan et al.,
2019; Tian et al., 2022), and fraud detection (Dou et al., 2020; Liu et al., 2021). This is attributed to the fact
that many real-world datasets inherently possess a graph structure, making GNNs well-suited for effectively
modeling and extracting meaningful representations from such data. We refer the readers to a comprehensive
survey (Ju et al., 2023) for details.
GNN Pre-training. Supervised learning methods applied to graphs heavily depend on graph labels,
which may not always be adequate in real-world scenarios. To overcome this limitation, a pre-training and
fine-tuning paradigm has been introduced. In this approach, GNNs are initially pre-trained to capture
extensive knowledge from a substantial volume of labeled and unlabeled graph data. Subsequently, the
implicit knowledge encoded in the model parameters is transferred to a new domain or task through the
fine-tuning of partially pre-trained models. Existing effective pre-training strategies can be implemented at
node-level like GCA (Zhu et al., 2021), edge-level like edge prediction (Jin et al., 2020; Zhao et al., 2023), and
graph-level such as GraphCL (You et al., 2020) and SimGRACE (Xia et al., 2022). However, these methods
overlook the gap that may exist between the pre-training phase and downstream objectives, limiting their
overall generalization ability.
Graph Prompt Learning. Prompt Learning seeks to bridge the gap between pre-training and fine-tuning
by formulating task-specific prompts that guide downstream tasks, with the pre-trained model parameters
usually kept static during downstream applications. Many effective prompt methods were initially proposed
in the natural language processing community, including hand-crafted prompts (Gao et al., 2020; Schick
& Schütze, 2020) and continuous prompts (Gu et al., 2021; Li & Liang, 2021; Liu et al., 2022). Drawing
inspiration from these works, several exploratory graph prompt learning methods, such as GPPT (Sun et al.,
2022), GraphPrompt (Liu et al., 2023), GPF (Fang et al., 2023), All-in-One (Sun et al., 2023), GFT (Wang
et al., 2024a), and GIT (Wang et al., 2024b) have been proposed in the last two years. These existing
methods introduce virtual class-prototype nodes or graphs with learnable links into the input graph or
directly incorporate learnable embeddings into the representations, facilitating a closer alignment between
downstream applications and the pretext tasks. However, all existing graph prompt tuning methods have
predominantly concentrated on task-specific prompts, failing to generate instance-specific prompts which
are critical since a universal prompt template may not effectively accommodate input nodes and graphs
with significant diversity as shown in Figure 1. Note that while GPF-plus (Fang et al., 2023) also
incorporates different prompts for different nodes using the attention mechanism, our method
has several advantages over GPF-plus: (1) our method includes a lightweight down- and up-sample projector
model that transforms the node hidden representations to another prompt vector space, while GPF-plus
directly computes attention in the original feature space and then averages the weighted candidate prompts.
An additional alignment between these two spaces is beneficial for the disentanglement of distinct information.
(2) instead of using original node features to compute similarities, we use node features after the frozen GNN,
which contain rich neighbor-aware information, further aiding in the prompt generation process. Thus in this
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Figure 2: Comparison between different paradigms of graph representation learning.

work, we introduce IA-GPL, a novel methodology designed to address the aforementioned issue by generating
prompts that leverage the distinctive features in individual instances.

3 Preliminaries

Graphs. Let G = (V, E, X, A) represent an undirected and unweighted graph, where V is the set of nodes
and E is the set of edges. X ∈ R|V |×d is the node feature matrix where the i-th row xi is the d-dimensional
feature vector of node vi ∈ V . A ∈ R|V |×|V | denotes the binary adjacent matrix with Ai,j = 1 if ei,j ∈ E and
Ai,j = 0 otherwise. N (v) = {u ∈ V |(v, u) ∈ E} represents the neighboring set of node v.

Graph Neural Networks. Generally, GNNs with a message-passing mechanism can be divided into two
steps. First, the representation of each node is updated by aggregating messages from its local neighboring
nodes. Second, the aggregated messages are combined with the node’s own representation. Given a node v,
these two steps are formulated as:

m(l)
v = AGGREGATE(l){h(l−1)

u , ∀u ∈ N (v)}, (1)

h(l)
v = COMBINE(l){h(l−1)

v , m(l)
v }, (2)

where m
(l)
v and h

(l)
v denote the message vector and representation of node v in the l-th layer, respectively. In

the first layer, h0
v is initialized as the node features Xv and the output of the last layer hl

v can be used in
downstream tasks.

GNN Pre-training and Fine-tuning. Given a pre-trained GNN model fθ(·) parameterized by θ, a learnable
projection head parameterized by ϕ and a downstream graph dataset G = {(G1, y1), (G2, y2), · · · , (Gn, yn)},
we update the parameters of the pre-trained model and the projection head to maximize the likelihood of
predicting the correct labels Y of the dataset G:

max
θ,ϕ

Pθ,ϕ(Y |G). (3)

Specifically, if we only update the parameters of the projection head, it is referred to as linear probing:

max
ϕ

Pθ,ϕ(Y |G). (4)

Graph Prompt Learning. Compared with fine-tuning, prompt learning introduces a prompt generation
model that aims to obtain a prompted graph gΦ : G → G parameterized by Φ. This model transforms an
input graph G to a prompted graph gΦ(G) which replaces the original graph and is fed into the pre-trained
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graph model as normal. The pre-trained graph model is fixed while only the parameters of the projection
head and the prompt generation model are updated:

max
ϕ,Φ

Pθ,ϕ(Y |gΦ(G)}). (5)

A visual comparison of these methods is presented in Figure 2. Note that, unlike other prevailing prompting
frameworks that employ a universal prompt, our model integrates instance-aware prompts.

4 METHODOLOGY

In this section, we introduce the proposed framework of IA-GPL, as depicted in Figure 3. Firstly, we present a
conceptual overview of the entire framework in section 4.1. Subsequently, we delve into the key components of
IA-GPL - a lightweight bottleneck architecture consisting of PHM layers in section 4.2, a prompt quantization
process via a set of codebook vectors in section 4.3, and model optimization with the exponential moving
average technique in section 4.4.

4.1 Naive Approach

In this section, we present an initial, high-level overview of our method, and then delve into more detailed
aspects in the subsequent sections. To generate prompts associated with input instances, the first step
involves obtaining specific representations of these instances. So naturally we employ the pre-trained graph
model fθ(·) as an encoder to generate the hidden embeddings:

H = fθ(G), z = ReadOut(H), (6)

where G = (X, A) is the input graph, H ∈ R|V |×d is the obtained node representations and z ∈ Rd is the
graph representation after ReadOut operation which summarized node representations to form a graph-level
representation by pooling or aggregation functions.

In IA-GPL, we consider node-level instance-aware prompts which means we generate different prompts
for each node, as we unify different tasks into a general graph-level task following Sun et al. (2023); Liu
et al. (2024). Thus, after getting the node representations H, we employ an efficient bottleneck multi-layer
perceptron architecture as the prompt generation model to project them into the prompt space. Specifically,
we first project H ∈ R|V |×d from d to d

′ dimensions (d′
< d) followed by a nonlinear function. Then it is

projected back to d dimensions to get instance-aware prompts P ∈ R|V |×d, matching the same shape as X so
that they can be added back to the original node features. Mathematically it can be formulated as:

P = gΦ(H), Xp = X + P, (7)

gΦ(·) = UpProject(ReLU(DownProject(·))), (8)
where gΦ(·) represents the prompt generation model, X is the original node features while Xp is the prompted
node features which contain instance-dependent information. So far, we have established a general yet naive
instance-aware prompt learning framework by replacing G = (X, A) with Gp = (Xp, A), and train the
prompt generation model and the projection head using the back-propagation algorithm. To expand on this
simple concept, the following sections will elaborate on the details of the lightweight prompt generation model
and the optimization process.

4.2 Lightweight Bottleneck Architecture

The prompt generation model which transforms H from the feature space into the prompt space consists of a
down-sample projector and an up-sample projector. Instead of the common option, FCN layers, we adopt
PHM layers (Zhang et al., 2020) which are more parameter-efficient.
FCN layers. One straightforward approach for implementing these two projectors is through fully connected
layers (FCNs) which transform an input x ∈ Rd into an output y ∈ Rk by:

y = FC(x) = Wx + b, (9)
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Figure 3: Overall Framework of IA-GPL.

where the weight matrix W ∈ Rk×d and the bias vector b ∈ Rk are trainable parameters. We can control the
number of parameters by controlling the hidden dimension d

′ , but it is a trade-off between performance and
efficiency. In other words, it contradicts the original objective of prompt learning, which aims to reduce the
number of trainable parameters, if we set d

′ large to maintain performance.
PHM layers. To mitigate this problem, we turn to parameterized hyper-complex multiplication (PHM)
layers as a compromise solution which can also be written in the similar way:

y = PHM(x) = Mx + b, (10)

where the replaced parameter matrix M ∈ Rk×d is constructed by a sum of Kronecker products of several
small matrices. The Kronecker product X ⊗ Y is defined as a block matrix:

X ⊗ Y =

 x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 ∈ Rmp×nq, (11)

where xij is the element of X ∈ Rm×n at its i-th row and j-th column and Y ∈ Rp×q. Given a user-defined
hyperparameter n ∈ Z>0, for i = 1, 2, . . . , n, let each parameter matrix be denoted as Ai ∈ Rn×n and
Si ∈ R k

n × d
n . Finally the parameter M is calculated by:

M =
n∑

i=1
Ai ⊗ Si. (12)

By replacing W with M, the number of trainable parameters is reduced to n × (n × n + m
n × d

n ) = n3 + m×d
n .

As n is usually set as a small number (e.g., 2, 4, 8), the parameter size of a PHM layer is approximately 1
n of

that of an FCN layer.

In the case of our approach, after we have node representations H through the pre-trained graph model, we
feed them into the parameter-efficient PHM layers instead of standard FCN layers to generate instance-aware
intermediate prompts Pc.

4.3 Prompt Quantization

Directly using Pc as prompts suffers from the high variance problem where the model that is overfitting the
training data, thus Vector Quantization (VQ) (GRAY, 1998) is utilized to discretize the intermediate prompt
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space Pc to Pq. VQ is a natural and widely used method in signal processing and data compression that
represents a set of vectors by a smaller set of representative vectors. It offers several advantages, including
regularization, improved clustering, better interpretability, enhanced robustness to noise, and support for
transfer learning, among others. This approach not only mitigates the high variance introduced by the PHM
layers but also groups similar hidden prompt representations, thereby promoting the beneficial property of
clustering.

Specifically, we maintain k trainable codebook vectors E = (e1, e2, . . . , ek) ∈ Rk×d shared across all the
intermediate prompts Pc. For every prompt pc ∈ Pc, we sample M codebook vectors from E corresponding
to pc to obtain the quantized pq. Please note that the quantization process for each intermediate prompt
pc operates independently of other prompts. In detail, we first compute the squared Euclidean distance di

c

between the prompt pc and every codebook vector ei, and the corresponding sampling logits li
c:

di
c = ∥pc − ei∥2

2, li
c = − 1

τ
di

c, (13)

where τ is a temperature coefficient used to control the diversity of the sampling process. Then we sample M
latent codebook vectors with replacement for prompt pc from a Multinomial distribution over the logits li

c:

z1
c , z2

c , . . . , zM
c ∼ Multinomial(l1

c , l2
c , . . . lK

c ). (14)

Finally, the quantized prompt pq can be computed by averaging over the M sampled vectors:

pq = 1
M

M∑
i=1

ezi
c
. (15)

After the VQ process, we ensure that for semantically similar instances, the quantized prompts will also
have similar representations by treating VQ as a clustering mechanism. In the meanwhile, the limited set
of learnable codebook vectors explicitly constrains the information capacity of prompt representations pq,
reducing the variance w.r.t. the output of PHM layers, pc.

Notably, we also introduce a learnable instance-agonist prompt ps which is shared across all instances and
incorporated into each quantized prompt pq to have the final prompts pf :

pf = pq + βps, (16)

where β is a balancing hyperparameter. This allows us to effectively fuse the learned information from the
input-dependent aspects captured by pq with the input-agnostic prompt ps.

In summary, given the high-variance prompts pc after PHM layers in the last section, the application of VQ
discretizes them into robust quantized prompts pq that encapsulate intrinsic clustering property.

4.4 Model Optimization

The PHM layers PHM(·), instance-independent static prompt ps, codebook vectors E and the projection
head ϕ comprise the trainable parameters while we freeze the pre-trained GNN backbone fθ(·). The loss
function is defined as:

L = LCE(Y, Yp) + λ

n∑
i=1

∥pqi − pci∥2
2, (17)

which consists of two parts: (1) Cross-entropy loss between the ground truth Y and the predicted labels
Yp with prompted graphs as input. (2) Consistency loss that encourages the quantized prompts pq to be
consistent with the intermediate prompts pc after PHM layers for all the n instances (nodes) in the graph.
These two terms collectively aim to preserve performance while minimizing information loss during the vector
quantization process. λ is a hyperparameter used to balance the two loss terms which is set to 0.01.

However, a potential limitation of directly training the model using back-propagation (BP) is representation
collapse where all prompts become a constant vector that disregards the input, causing our model to degrade
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to GPF (Fang et al., 2023). To solve this problem, we still use the standard BP algorithm to update the PHM
layers PHM(·), instance-independent static prompt ps and the projection head ϕ but adopt the exponential
moving average (EMA) strategy to update the codebook vectors E following Angelidis et al. (2021); Roy
et al. (2018). Specifically, for each batch in the training process, we perform the following two steps:

Step 1: Count the number of times the j-th codebook vector is sampled and update the count cj :

cj(new) = α · cj(old) + (1 − α) ·
n∑

i=1

m∑
k=1

I[ezk
i

= ej ]. (18)

Step 2: Update the embedding of j-th codebook vector ej by calculating the mean of PHM layer outputs
for which that codebook vector was sampled during Multinomial sampling:

ej(new) = α · ej(old) + (1 − α) ·
n∑

i=1

m∑
k=1

I[ezk
i

= ej ]pc
i

cj
, (19)

where n and m stand for batch size and sample number, α is a hyperparameter set to 0.99 and I[·] is the
indicator function. By incorporating the EMA mechanism, we can avoid the representation collapse problem
and also obtain a more stable training process than gradient-based methods.

5 Experiments

5.1 Experimental Setup

Tasks and datasets. We evaluate IA-GPL using both node-level and graph-level tasks. Following Sun et al.
(2023); Liu et al. (2024), we unify these tasks into a general graph-level task by generating local subgraphs
for the nodes of interest. For graph-level tasks, we use eight molecular datasets from MoleculeNet (Wu et al.,
2018). For node-level tasks, we use three citation datasets from Yang et al. (2016). These datasets vary
in size, labels, and domains, serving as a comprehensive benchmark for our evaluations. A comprehensive
description of these datasets can be found in Appendix A.

Baselines. To evaluate the effectiveness of IA-GPL, we compare it with state-of-the-art approaches
across three primary categories. (1) Supervised learning: we employ GCN (Kipf & Welling, 2016), Graph-
SAGE (Hamilton et al., 2017) and GIN (Xu et al., 2018). The base models and the projection head are
all trained end-to-end from scratch. (2) Pre-training and fine-tuning: The base model is pre-trained using
edge prediction (Jin et al., 2020) for molecular datasets and graph contrastive learning (You et al., 2020)
for citation datasets. For the complete fine-tuning (FT), the pre-trained model is fine-tuned along with the
projection head. For linear probing (LP), we freeze the pre-trained model and exclusively train the projection
head. (3) Prompt learning: All in One (Sun et al., 2023), GPF (Fang et al., 2023) and GPF-plus (Fang et al.,
2023) are included. They all freeze the pre-trained base model while training the projection head and their
respective prompt generation models.

Settings and implementations. To evaluate the performance of IA-GPL in both in-domain and out-of-
domain scenarios, we split the molecular datasets in two distinct manners: random split and scaffold split.
Scaffold split is based on the scaffold of the molecules so that the train/val/test set is more structurally
different, making it appropriate for evaluating the model’s generalization ability. In contrast, the random
split is used to assess the model’s in-domain prediction ability. We test IA-GPL using 5 different pre-training
strategies: edge prediction (Jin et al., 2020) (denoted as EdgePred), Deep Graph Infomax (Veličković et al.,
2018) (denoted as InfoMax), Attribute Masking (Hu et al., 2020a) (Denoted as AttrMasking), Context
Prediction (Hu et al., 2020a) (Denoted as ContextPred) and Graph Contrastive Learning (You et al., 2020)
(Denoted as GCL) methods to demonstrate our model’s robustness. We report results in both full-shot and
few-shot settings, utilizing the ROC-AUC score as the metric. The few-shot setting is tested because prompt
learning with fewer parameters is naturally less susceptible to the risk of overfitting when given limited
supervision. We perform five rounds of experiments and report the mean and standard deviation. GCN is
adopted as our backbone model for a fair comparison with other baselines. For the baselines, based on the
authors’ code and default settings, we further tune their hyperparameters to optimize their performance.
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Table 1: 50-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks using random
split. Bold numbers represent the best results in the graph prompting field (shaded region) to which our
method belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 80.20±1.70 64.55±1.14 53.77±2.32 52.11±1.51 52.68±4.62 69.14±1.17 62.87±2.52 49.17±5.92 60.56
GCN 83.97±0.86 64.65±0.73 51.35±1.43 48.54±0.75 59.22±2.64 71.91±1.74 59.91±1.06 50.85±4.02 61.3

GraphSAGE 80.72±1.37 63.91±1.08 52.09±0.43 49.14±1.19 59.57±2.40 71.33±0.97 61.06±1.34 53.08±5.38 61.36
Pre-training+
Fine-tuning

Linear Probing 79.67±1.31 69.99±0.27 61.74±0.48 52.61±0.39 70.33±3.76 76.17±0.77 65.04±1.49 59.12±1.33 66.83
Fine Tuning 88.30±3.09 69.25±0.73 60.42±0.55 52.32±0.10 72.09±2.74 74.97±0.62 64.12±0.90 54.17±2.11 66.95
All in One 49.49±5.32 52.45±2.23 50.33±5.05 51.24±2.06 57.65±11.11 53.22±7.14 46.31±7.50 - 51.52

GPF 82.86±1.98 69.56±2.50 61.11±0.43 52.24±0.16 73.31±4.08 76.54±1.76 63.21±0.53 59.14±1.02 67.24Prompt
Learning GPF-plus 83.08±1.57 71.31±0.80 60.85±1.69 52.44±0.83 73.85±2.15 76.02±0.99 64.49±1.19 59.93±0.83 67.74

IA-GPL 85.62±0.52 72.55±0.40 61.63±0.40 52.85±0.84 74.50±0.76 76.64±0.83 64.60±0.95 59.32±1.13 68.46

Table 2: 50-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks using scaffold
split. Bold numbers represent the best results in the graph prompting field (shaded region) to which our
method belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 56.92±2.54 46.83±1.51 52.50±0.68 48.85±2.16 50.00±7.53 51.08±2.14 68.09±3.89 49.11±2.45 52.92
GCN 57.05±5.50 47.40±3.56 49.67±0.61 49.93±1.06 59.84±5.54 61.84±2.12 62.82±2.56 42.44±3.40 53.87

GraphSAGE 59.13±7.28 48.42±3.01 51.90±1.43 49.60±1.92 40.53±4.25 59.28±1.60 64.28±1.09 49.11±2.90 52.78
Pre-training+
Fine-tuning

Linear Probing 52.54±5.77 64.40±0.42 57.46±0.33 50.76±0.74 62.54±4.26 59.75±4.23 61.89±4.10 63.07±3.09 59.05
Fine-tuning 48.88±0.68 60.95±1.46 55.73±0.43 51.30±2.21 57.78±4.03 61.27±6.10 62.20±4.95 64.75±2.03 57.85
All in One 53.46±7.98 56.19±4.96 55.35±2.12 51.51±2.82 48.91±16.03 52.90±7.90 39.89±6.09 - 51.17

GPF 52.13±1.21 63.48±0.41 57.60±0.19 51.07±1.08 65.18±1.76 58.78±5.04 65.59±2.31 66.94±3.91 60.09Prompt
Learning GPF-plus 54.73±5.20 63.29±0.55 57.19±0.67 50.31±1.60 64.14±2.95 55.87±7.40 61.4±4.30 67.11±2.09 59.25

IA-GPL 56.54±2.35 64.14±0.44 58.11±0.38 53.18±1.18 63.28±3.52 61.95±4.00 66.52±2.10 69.03±3.02 61.59

Additional implementation details are provided in Appendix C. For each experimental setting, we train and
test using 5 different random seeds and report the average value and the deviation, and the results passed
the significance test.

5.2 Performance Evaluation

Due to the page limit, we present the experimental results of 50-shot random split and scaffold split settings
on molecular datasets using edge prediction pre-training strategy in Table 1 and Table 2. The results
of full-shot learning, node-level tasks, larger graph datasets and more pre-training strategies
results are provided in Appendix B.

In-domain performance. Table 1 illustrates the results for 50-shot graph classification under the in-domain
setting (random split). We have the following observations: (1) Compared to the pre-training and fine-tuning
approach, IA-GPL achieves competitive results despite employing a significantly lower number of trainable
parameters. This underscores the key advantage of prompt learning, particularly when confronted with
limited supervision. (2) While fine-tuning outperforms IA-GPF on certain datasets, IA-GPF consistently
surpasses other graph prompt learning methods as shown in the shaded area, highlighting the significance of
employing instance-aware prompts. (3) Unexpectedly, the All-in-One approach lags behind other prompting
methods, exhibiting the highest variance. This discrepancy may be attributed to an unstable training process.

Out-of-domain performance. Table 2 illustrates the results for 50-shot graph classification under the
out-of-domain setting (scaffold split). We have the following observations: (1) Overall, IA-GPL attains optimal
results across these eight datasets, underscoring its efficacy even when confronting the out-of-distribution
(OOD) challenge. We attribute this success to the vector quantization process, which captures the clustering
property of molecules. The disentangled clustering information can enhance performance in the presence of
OOD samples by facilitating the transfer of learned knowledge. (2) Across different datasets, the performance
trends of supervised learning, pre-training and fine-tuning, and prompt learning paradigms vary a lot.
Training GCN, GIN, or GraphSAGE in an end-to-end manner yields the highest performance in the BBBP
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Figure 4: Codebook visualization.

dataset, whereas it performs less effectively in other datasets such as Tox21 and SIDER. These fluctuations
in performance may be attributed to the distinctive intrinsic properties characterizing each dataset.

When considering the broader context, several key observations emerge: (1) Comparing linear probing (LP)
and fine-tuning (FT), the performance trend differs between random and scaffold split. For random split, FT
outperforms LP, whereas the reverse is observed for scaffold split. This observation confirms the negative
transfer drawback associated with the "pre-training and fine-tuning" paradigm: the gap between pretext tasks
and downstream tasks leads to suboptimal performance. (2) The performance gain achieved by IA-GPL is
more pronounced in the out-of-domain scenario, emphasizing the importance of vector quantization within
our model. (3) The overall performance for in-domain classification remains significantly better than that for
out-of-domain classification, underscoring the need to design effective methods to address the OOD problem.

5.3 Model Analysis

Scalabilty on larger datasets. Beyond the results of the previous molecular datasets, here we show the
performance comparison of a large biological dataset, the PPI dataset, which has 88k graphs and 40 classes,
to showcase the scalability of our method. We tested it using the edge prediction pre-training strategy under
both few-shot and full-shot settings. The results are illustrated in Table 3. Clearly, IA-GPL outperforms all
these baselines.

Table 3: 50-shot and full-shot performances on large PPI dataset.

Setting GraphSAGE GCN GIN Linear Probing Fine Tuning All-in-One GPF GPF-plus IA-GPL
50-shot 37.20 40.75 39.56 49.70 46.23 42.90 50.64 52.56 53.13
full-shot 77.43 79.90 78.86 70.94 72.41 48.67 75.43 75.06 77.70

Codebook visualization and interpretability. We conduct a visualization and interpretability
analysis on the learned codebook using a molecule from the BACE dataset with the SMILES string
O=C1NC(=NC(=C1)CCC)N as an example. The model is configured to have 50 codebook vectors in the
VQ space. For every node (atom), we sample 5 vectors using Equation 14, which are then averaged and
used as quantized prompts. Figure 4 presents the t-SNE (Van der Maaten & Hinton, 2008) plots of the
samples of two carbon atoms and two nitrogen atoms in this molecule. Two characteristics of the learned
codebooks are observed: (1) Samples corresponding to different atoms manifest substantial distinctions (i.e.,
the regions of samples in the plot). However, samples corresponding to the same atoms tend to exhibit in
proximate regions in the codebook vector space. This observation affirms that IA-GPL effectively generates
instance-aware prompts. (2) Each atom’s samples also demonstrate a clustering property. This phenomenon
may be attributed to the disentanglement of representations for individual instances within the prompt space,
which potentially encompasses general information.

Ablation study. To assess the individual contributions of each component, we conduct an abla-
tion study by comparing IA-GPL with two different variants: (1) w/o VQ: After getting Pc through
the PHM layers, we directly use it as the final prompts without the vector quantization process.
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Figure 5: Ablation study.

(2) w/o PHM: We replace PHM layers in the
prompt generation model with the standard
MLP layers. Note that to maintain a fair com-
parison and ensure a roughly equivalent number
of trainable parameters, we reduce the size of
the hidden dimension to 1

n of that of PHM lay-
ers, as discussed in Section 4.2. We conduct the
ablation study under 50-shot learning with scaf-
fold split and illustrate the results in Figure 5.
We have the following observations: (1) Replac-
ing PHM layers with MLP layers of the same
parameter size adversely affects performance
to varying degrees across datasets. This result
highlights the advantage of PHM layers over
MLP layers when training resources are limited. (2) Without the VQ process, the results drop as there is no
constraint to prevent codebook vectors from collapsing which leads to inferior performance or an unstable
training process.

Table 4: Model efficiency analysis.

Models #Tuning
parameters

Relative
ratio

Training time
per epoch

GPU memory
consumption

Fine-tuning 1.86M 100% ∼0.68s ∼796MB
GPF 0.3K 0.02% ∼0.81s ∼768MB

GPF-plus 3-12K 0.16-0.65% ∼0.82s ∼740MB
All-in-One 3K 0.16% - -

IA-GPL (Ours) 20K 1.08% ∼0.86s ∼780MB

Efficiency and complexity analysis. We an-
alyze IA-GPL’s parameter efficiency and train-
ing efficiency in Table 4. In terms of parameter
efficiency, we compute the number of tunable
parameters for different strategies. (excluding
the task-specific projection head). Specifically,
fine-tuning demands the update of all param-
eters, making it the most time- and resource-
consuming process. In the prompt learning do-
main, GPF is the most efficient since it requires
only one universal prompt while GPF-plus incorporates multiple attentive prompts. All-in-One also utilizes
more than one prompt node to construct a prompt graph. In our model, the parameter size is predominantly
dominated by the prompt generation model (i.e., PHM layers), which aligns with the scale of other
graph prompt learning methods and is significantly smaller than the fine-tuning approach.
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Figure 6: Impact of shot numbers.

In terms of training efficiency, we compute
the training time per epoch and GPU mem-
ory consumption on the ToxCast dataset using
a single Nvidia RTX 3090. We keep all hyper-
parameters the same including batch size, di-
mensions, etc. All-in-One is omitted due to its
unsatisfactory performance and unstable train-
ing process. Generally, prompt-based methods
are slower than traditional fine-tuning due to
additional procedures such as computing at-
tention scores and sampling. Regarding GPU
memory consumption, prompt-based methods
occupy slightly less GPU space since they do
not need to save the gradients and optimizer
states like fine-tuning for the frozen GNN backbone. But all of them are roughly at the same level
considering the dominant backbone models and overhead GPU consumption.

Impacts of the shot number. We study the impact of the number of shots on the BBBP
and BACE datasets in the few-shot random split setting. We vary the number of shots within
the range of [5,10,20,30] and results are illustrated in Figure 6. In general, our method IA-GPL
consistently surpasses or attains comparable results with other graph prompt learning frameworks
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in most cases especially when given very limited labeled data. As the number of shots increases,
the overall performance increases while conventional supervised methods become more competitive.
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Figure 7: Impact of VQ hyperparameters.

Impacts of the codebook hyperparame-
ters. We investigate the impact of the number
of codebook vectors and the number of samples
in the vector quantization process. Specifically,
we vary the size of the codebook within the
range of [5, 10, 20, 50, 100] and the sample
size within [3, 5, 10, 15, 20], while keeping the
remaining hyperparameters constant. Results
are illustrated in Figure 7. We observe that
for most of the datasets, our model achieves a
relatively stable performance with respect to
the hyperparameters, alleviating the need for
meticulous and specific tuning.

Impacts of the input-agnostic promopt. Besides the two ablation study settings we have (i.e., without
PHM layers and without VQ process), we present another setting: without the input-agnostic prompt. We
test our model using scaffold split under both few-shot and full-shot scenarios. The results are shown in
Table 5. We can find that the input-agnostic prompt has a limited impact on the model performance.

Table 5: 50-shot and full-shot performance comparison w/ and w/o input-agonistic prompt

Shot Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.
50-shot IA-GPL 56.54±2.35 64.14±0.44 58.11±0.38 53.18±1.18 63.28±3.52 61.95±4.00 66.52±2.10 69.03±3.02 61.59
50-shot IA-GPL-w/o 56.31±2.40 64.37±0.45 57.88±0.41 52.96±1.15 63.05±3.50 61.61±4.05 66.71±2.08 69.10±3.01 61.50
full-shot IA-GPL 69.25±0.06 80.28±0.20 65.87±0.64 66.62±1.23 71.96±0.41 83.38±0.94 78.86±1.38 83.26±1.77 74.93
full-shot IA-GPL-w/o 69.80±0.07 80.04±0.21 65.82±0.63 66.42±1.22 72.01±0.42 83.10±0.95 78.89±1.36 82.95±1.76 74.88

6 Broader Impacts and Limitations

Broader Impacts. Research that is focused on parameter-efficient fine-tuning methods (PEFT) including
our approach, IA-GPL, can usually bring several broad positive societal impacts such as: (1) Accessibility
and Sustainability. By reducing the computational, financial, and environmental resources needed for fine-
tuning pre-trained models, PEFT methods make advanced AI technologies accessible to a wider range of
individuals, organizations, and communities, including those with limited resources. (2) Improved Quality of
AI Applications. IA-GPL also enhances numerous graph-related tasks and applications. By incorporating
node-level instance-aware prompts, IA-GPL is particularly well-suited for complex and heterogeneous graphs,
such as molecules and social networks. Consequently, IA-GPL can positively impact areas like drug discovery,
protein structure prediction, fraud detection, and so on.

Limitations. (1) Larger parameter size. IA-GPL demands a larger parameter size, primarily due to the
PHM layers when generating prompts. As discussed in section 5.3, compared to the huge pre-trained GIN
model, the increase in the number of parameters remains acceptable considering the performance improvement
achieved. However, it does introduce additional trainable parameters. (2) More hyperparameters. In addition
to the standard hyperparameters such as the number of layers and embedding size, IA-GPL introduces new
hyperparameters: the number of codebook vectors, the number of samples, and the temperature factor.
However, as analyzed in Appendix 5.3, IA-GPL exhibits limited sensitivity to these hyperparameters across
most datasets, obviating the need for meticulous and specific tuning.
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7 Conclusions

In this paper, we introduce a novel graph prompting method named Instance-Aware Graph Prompt Learning
(IA-GPL), which is designed to generate distinct and specific prompts for individual input instances within a
downstream task. Specifically, we initially generate intermediate prompts corresponding to each instance using
a parameter-efficient bottleneck architecture. Subsequently, we quantize these prompts with a set of trainable
codebook vectors and employ the exponential moving average strategy to update the parameters which
ensures a stable training process. Extensive experimental evaluations under full-shot and few-shot learning
settings showcase the superior performance of IA-GPL in both in-domain and out-of-domain scenarios.
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A Dataset Details

We have two kinds of tasks and corresponding datasets: graph-level tasks: molecular datasets and node-level
tasks: citation networks. The statistics of these datasets are illustrated in Table 6.

For molecular datasets, during the pre-training process, we sample 2 million unlabeled molecules from
the ZINC15 (Sterling & Irwin, 2015) database, along with 256K labeled molecules from the preprocessed
ChEMBL (Mayr et al., 2018; Gaulton et al., 2011) dataset. For downstream tasks, we use the molecular
datasets from MoleculeNet (Wu et al., 2018) encompassing molecular graphs spanning the domains of physical
chemistry, biophysics, and physiology. Specifically, they involve 8 molecular datasets: BBBP, Tox21, ToxCast,
SIDER, Clintox, BACE, HIV and MUV. All datasets come with additional node and edge features introduced
by open graph benchmarks (Hu et al., 2020b).

For citation networks, we use 3 commonly used datasets: Cora, citepSeer, and PubMed from Yang et al.
(2016). Nodes represent documents and edges represent citation links. Each document (node) in the graph is
described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the
dictionary. During the pre-training phase, we use them without labels in a self-supervised learning approach.
In the fine-tuning stage, we convert the node-level task to the graph-level task following Sun et al. (2023) and
process them in the same way as the molecular datasets.

Table 6: Statistics of the datasets.

Tasks Name #graphs #nodes #edges #features #binary tasks/classes

Graph-level

BBBP 2,050 ∼23.9 ∼51.6 9 1
Tox21 7,831 ∼18.6 ∼38.6 9 12

ToxCast 8,597 ∼18.7 ∼38.4 9 617
SIDER 1,427 ∼33.6 ∼70.7 9 27
ClinTox 1,484 ∼26.1 ∼55.5 9 2
BACE 1,513 ∼34.1 ∼73.7 9 1
MUV 93,087 ∼24.2 ∼52.6 9 17
HIV 41,127 ∼25.5 ∼54.9 9 1

Node-level
Cora 1 2,708 10,556 1,433 7

citepSeer 1 3,327 9,104 3,703 6
PubMed 1 19,717 88,648 500 3

B Additional Experimental Results

B.1 Results of Full-shot Learning

We present the experimental results using the full datasets to train the model in both scaffold split and
random split scenarios in Table 7 and Table 8, respectively.

In-domain performance. Table 8 illustrates the results for full-shot graph classification under the in-
domain setting (random split). We have the following observations: (1) Overall, fine-tuning exhibits superior
performance across all methods including supervised schemes and prompt learning frameworks which is not
surprising. Given an ample amount of labeled training data, fine-tuning can effectively adapt the pre-trained
model that already encapsulates intrinsic graph properties, thereby contributing to optimal performance. (2)
IA-GPL consistently attains the highest results in the realm of graph prompt learning, demonstrating its
exceptional performance in this category and the importance of instance-aware prompts.

16



Published in Transactions on Machine Learning Research (02/2025)

Table 7: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks using scaffold
split. Bold numbers represent the best results in the graph prompting field (shaded region) to which our
method belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 67.30±2.80 74.23±0.65 62.22±1.31 57.43±1.24 48.83±3.03 72.78±2.48 75.82±2.89 74.79±1.37 66.68
GCN 62.18±3.49 74.48±0.55 62.74±0.59 62.51±1.06 56.58±3.22 73.44±1.64 78.26±2.01 71.98±2.34 67.77

GraphSAGE 67.91±2.58 74.14±0.55 63.79±0.70 62.80±1.15 58.04±5.68 69.27±2.91 75.77±3.09 71.90±1.43 67.95
Pre-training+
Fine-tuning

Linear Probing 69.45±0.58 79.55±0.12 65.41±0.41 66.39±0.79 67.41±1.77 83.10±0.44 76.87±1.98 80.42±1.03 73.57
Fine Tuning 66.56±3.56 78.67±0.35 66.29±0.45 64.35±0.78 69.07±4.61 80.90±0.92 79.79±2.76 81.76±1.80 73.42

GPPT 64.13±0.14 66.41±0.04 60.34±0.14 54.86±0.25 59.81±0.46 70.85±1.42 60.54±0.54 63.05±0.34 62.49
GPPT (w/o ol) 69.43±0.18 78.91±0.15 64.86±0.11 60.94±0.18 62.15±0.69 70.31±0.99 73.19±0.19 82.06±0.53 70.23
GraphPrompt 69.29±0.19 68.09±0.19 60.54±0.21 58.71±0.13 55.37±0.57 67.70±1.26 59.31±0.93 62.35±0.44 62.67

All in One 58.01±4.89 52.38±3.46 55.07±7.22 53.33±2.16 50.91±9.33 55.86±12.75 58.32±4.40 - 54.84
GPF 68.87±0.57 79.93±0.08 65.63±0.41 65.93±0.64 66.40±2.77 80.37±4.07 75.20±1.30 80.87±1.76 73.47

GPF-plus 68.16±0.78 79.59±0.09 65.22±0.32 66.08±0.85 71.23±3.01 82.15±1.64 76.99±2.01 81.93±1.68 73.91

Prompt
Learning

IA-GPL 69.25±0.06 80.28±0.20 65.87±0.64 66.62±1.23 71.96±0.41 83.38±0.94 78.86±1.38 83.26±1.77 74.93

Table 8: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks using random
spilt. Bold numbers represent the best results in the graph prompting field (shaded region) to which our
method belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 93.09±0.94 82.47±0.68 70.71±0.45 57.76±1.42 75.61±3.57 87.90±1.49 81.96±1.90 80.57±2.02 78.76
GCN 92.59±0.79 81.82±0.23 72.50±0.55 57.10±0.95 80.45±3.26 88.09±0.60 83.06±0.45 79.18±1.86 79.35

GraphSAGE 91.98±0.49 82.52±0.32 72.55±0.42 56.65±1.18 80.57±2.02 88.05±1.90 83.43±1.34 79.61±2.93 79.42
Pre-training+
Fine-tuning

Linear Probing 88.21±0.05 82.86±0.12 74.55±0.25 61.16±0.54 85.51±1.09 89.73±0.52 85.42±0.68 89.53±0.42 82.12
Fine Tuning 93.06±0.35 85.46±0.26 75.35±0.33 63.89±0.69 87.22±1.12 90.93±0.55 86.84±0.72 87.26±0.76 83.75
All in One 62.88±9.60 52.38±3.46 45.24±8.53 48.78±4.17 44.86±18.81 51.82±4.01 54.78±1.76 - 51.53

GPF 92.71±0.38 83.00±0.22 73.53±0.35 61.96±1.08 90.65±0.33 86.83±0.36 85.63±0.39 90.29±0.14 83.08Prompt
Learning GPF-plus 89.91±0.22 83.04±0.70 74.24±0.36 62.50±1.38 88.72±0.64 88.56±0.52 85.26±0.81 91.13±0.16 83.67

IA-GPL 91.77±0.40 84.15±0.29 75.64±0.44 62.61±0.73 87.27±0.97 90.14±0.14 86.02±0.90 91.57±0.19 85.90

Out-of-domain performance. Table 7 illustrates the results for full-shot graph classification under the out-
of-domain setting (scaffold split). We have the following observations: (1) When addressing the out-of-domain
problem, IA-GPL consistently showcases superior performance compared to other baselines, confirming the
clustering benefit derived from the vector quantization process. (2) While supervised learning can yield
acceptable results in the in-domain setting, it notably lags behind fine-tuning and prompt learning approaches
when confronted with the out-of-domain challenge. This underscores the benefit in generalization gained
from the graph pre-training phase when a substantial amount of labeled and unlabeled data are available to
equip the pre-trained model with prior knowledge.

B.2 Results of Node-level tasks

We present the experimental results using node-level datasets-Cora, citepSeer and PubMed in Table 9. We
unify the task into a general graph-level task by generating local subgraphs for the nodes of interest and use
the 100-shot setting following Sun et al. (2023). We observe that (1) IA-GPL achieves the best performance
on all three datasets, demonstrating its capacity in node-level tasks. (2) Supervised learning outperforms the
fine-tuning approach by a large margin, showcasing the implicit negative transfer problem.

B.3 Results of More Pre-training Strategies

Besides the edge prediction (Jin et al., 2020) pre-training strategies, we also use Deep Graph Info-
max (Veličković et al., 2018) (denoted as InfoMax), Attribute Masking (Hu et al., 2020a) (Denoted as
AttrMasking), Context Prediction (Hu et al., 2020a) (Denoted as ContextPred) and Graph Contrastive
Learning (You et al., 2020) (Denoted as GCL) methods to compare with IA-GPL to demonstrate our model’s
robustness. Note that we test under the full-shot scaffold split setting. Results are illustrated in Table 10. We
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Table 9: 100-shot test accuracy (%) performance on node-level citation network datasets. Bold numbers
represent the best results in the graph prompting field (shaded region) to which our method belongs.
Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods Cora citepSeer PubMed Avg.

Supervised
GCN 78.06±1.37 82.11±1.02 74.33±1.44 78.17
GAT 79.71±0.77 82.27±0.68 74.44±0.68 78.81

TransformerConv 78.50±0.68 82.66±0.36 75.00±1.24 78.72
Pre-training+
Fine-tuning

Linear Probing 60.53±4.07 82.05±0.20 70.22±1.25 70.93
Fine Tuning 55.16±3.87 80.33±0.40 60.11±0.10 65.20
All in One 63.96±7.23 80.38±0.20 58.33±1.44 67.56

GPF 70.13±1.58 77.67±1.24 58.67±1.58 68.82Prompt
Learning GPF-plus 71.43±1.04 78.67±0.92 61.33±1.29 70.48

IA-GPL 71.51±0.97 81.33±1.29 63.33±0.67 72.06

observe that IA-GPL achieves state-of-the-art results in 27 out of 32 cases within the graph prompt learning
area.

C Additional Implementation Details

Table 11 presents the hyperparameter settings used during the adaptation stage of pre-trained GNN models on
downstream tasks in IA-GPL. For molecular datasets, we adopt the widely used 5-layer GIN (Xu et al., 2018) as
the underlying architecture for our models. For citation networks, we adopt 2-layer Graph Transformers (Yun
et al., 2019) as the underlying architecture. Grid search is used to find the best set of hyperparameters. You
can also visit our code repository to obtain the specific commands for reproducing the experimental results.
All the experiments are conducted using NVIDIA V100 graphic cards with 32 GB of memory and PyTorch
framework. For the details, please visit our code repository.
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Table 10: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks with
Deep Graph Infomax, Attribute Masking, ContextPred and GCL as pre-training methods. Bold numbers
represent the best results in the graph prompting field to which our method belongs. Underlined numbers
represent the best results achieved by other methods.

Pre-training
Strategies

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

InfoMax

Supervised
GraphSAGE 69.12 74.17 62.65 63.22 55.43 74.70 70.44 73.60 67.92

GCN 68.07 74.63 59.03 63.89 55.24 63.39 76.85 71.82 66.62
GIN 70.43 73.20 60.73 60.42 51.19 71.70 74.21 71.77 66.71

Pre-training+
Fine-tuning

Linear Probing 66.52 78.02 66.49 65.18 73.74 84.55 77.68 80.02 74.03
Fine Tuning 69.81 78.92 66.50 66.54 71.86 82.68 76.33 81.01 74.21

Prompt
Learning

All-In-One 58.50 66.09 52.43 46.09 58.98 69.69 48.08 - 57.12
GPF 67.33 77.53 65.91 65.46 73.59 83.27 74.89 79.96 73.49

GPF-Plus 67.61 79.67 65.78 64.96 72.17 81.41 71.68 78.61 72.74
IA-GPL 68.86 78.95 66.58 66.16 78.90 85.08 75.90 82.25 75.34

AttrMasking

Supervised
GraphSAGE 71.68 73.94 61.96 62.16 61.01 63.86 73.90 76.27 68.10

GCN 67.02 74.47 60.83 61.88 56.21 70.82 75.55 73.20 67.50
GIN 66.43 73.69 60.98 60.29 56.65 79.63 73.48 72.75 67.99

Pre-training+
Fine-tuning

Linear Probing 66.56 79.37 66.15 67.65 74.52 86.61 78.55 81.34 75.09
Fine Tuning 67.51 78.66 67.33 65.16 74.68 80.73 78.31 77.22 73.70

Prompt
Learning

All-In-One 49.79 52.78 68.26 49.57 41.69 53.46 34.97 - 50.07
GPF 67.70 79.16 66.75 66.39 72.24 85.82 77.51 79.08 74.33

GPF-Plus 67.73 78.42 67.95 68.13 73.02 84.08 78.08 84.11 75.19
IA-GPL 69.35 79.30 68.52 69.66 80.15 86.78 78.90 84.70 77.17

ContextPred

Supervised
GraphSAGE 64.12 72.05 60.20 61.99 72.94 77.77 74.18 75.85 69.89

GCN 63.58 71.40 62.98 57.65 70.60 79.84 78.09 75.61 70.21
GIN 61.88 75.42 64.92 61.39 69.46 80.74 75.79 77.64 70.91

Pre-training+
Fine-tuning

Linear Probing 65.78 80.62 59.33 65.55 70.87 78.10 76.58 83.19 72.25
Fine Tuning 67.99 78.24 63.71 63.88 73.20 81.90 79.71 81.41 73.75

Prompt
Learning

All-In-One 55.93 62.18 61.62 45.91 59.19 48.01 39.10 - 53.13
GPF 67.35 78.24 68.98 63.25 70.78 83.32 78.60 82.60 74.14

GPF-Plus 68.05 77.17 68.57 64.95 75.83 81.06 76.34 85.12 74.63
IA-GPL 69.92 80.49 68.18 66.07 77.30 82.62 79.90 85.53 76.07

GCL

Supervised
GraphSAGE 67.88 68.79 63.79 51.08 72.47 68.41 71.10 68.50 66.50

GCN 65.20 66.88 61.50 55.54 74.72 65.86 74.90 73.09 67.21
GIN 67.56 68.65 67.14 51.17 75.79 71.06 69.07 70.69 67.73

Pre-training+
Fine-tuning

Linear Probing 71.82 74.81 60.89 58.75 76.92 65.49 74.02 73.91 69.83
Fine Tuning 69.90 72.56 63.17 56.26 74.64 68.20 73.89 75.73 69.41

Prompt
Learning

All-In-One 61.07 47.33 49.54 41.07 57.70 54.24 46.17 - 50.87
GPF 70.54 73.19 61.08 61.77 72.10 67.53 73.61 74.92 69.34

GPF-Plus 70.94 73.70 60.90 62.48 71.54 70.62 76.84 77.07 70.51
IA-GPL 72.58 76.08 60.86 64.22 75.07 71.24 75.59 77.33 71.62
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Table 11: The hyperparameter settings for 50-shot learning.

Dataset split Learning rate #Codebook vectors #Samples #MLP layers (Proj. head)
BBBP Scaffold 0.005 20 10 3
Tox21 Scaffold 0.0005 50 10 3

ToxCast Scaffold 0.0001 50 10 4
SIDER Scaffold 0.005 10 5 2
ClinTox Scaffold 0.0001 50 10 4
BACE Scaffold 0.0001 20 10 2
HIV Scaffold 0.005 20 10 4
MUV Scaffold 0.0005 20 10 2
BBBP Random 0.001 20 50 4
Tox21 Random 0.001 20 50 2

ToxCast Random 0.005 50 5 2
SIDER Random 0.005 50 5 4
ClinTox Random 0.001 20 10 2
BACE Random 0.001 50 5 4
HIV Random 0.005 50 10 3
MUV Random 0.005 20 10 2
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