
Device Codesign using Reinforcement Learning and
Evolutionary Optimization

Catherine D. Schuman1∗ Suma G. Cardwell2 Karan P. Patel1 J. Darby Smith2 Jared Arzate3
Andrew Maicke3 Samuel Liu3 Jaesuk Kwon3 Jean-Anne Incorvia3

1Department of EECS, University of Tennessee, Knoxville, TN, USA
2Sandia National Laboratories, Albuquerque, NM, USA

3Department of ECE, University of Texas at Austin, Austin, TX, USA
∗Contact: cschuman@utk.edu

Abstract

Device discovery and circuit modeling for emerging devices, such as magnetic
tunnel junctions, require detailed and time-consuming device and circuit simula-
tions. In this work, we propose using AI-guided techniques such as reinforcement
learning and evolutionary optimization to accelerate device discovery, creativity
of solutions, and automate optimization to design true random number generators
for a given distribution. We present preliminary results designing true random
number generators using magnetic tunnel junctions optimized for performance.

1 Introduction

Emerging computing technologies such as neuromorphic computing, probabilistic computing, and
quantum computing are increasingly leveraging novel device types to implement new computing
capabilities or improve existing capabilities by making them faster or more efficient. There is a
large variety of novel device types being proposed for computing, including memristors, spintron-
ics, magnetic tunneling junctions, phase-change memories, ferroelectric devices, and more. In the
design and operation of these devices, there are typically many parameters to choose from. For ex-
ample, devices may be implemented using different materials that can fundamentally change their
properties. Additionally, other device design parameters such as the thickness of the layers in de-
vices such as memristors or Spin Hall angles in magnetic tunneling junctions can have a tremendous
impact on the performance of these devices.

Much of the design of devices for computing in the past has been accomplished through computa-
tionally intensive simulations, fabrication and testing. However, there is tremendous opportunity to
customize devices for particular applications in order to get the best performance possible, whether
that be a particular capability, energy usage, latency or throughput, or some other metric or combina-
tion of metrics of interest. To effectively leverage the properties of these devices for new computing
capabilities, it is critical that there be an automated codesign framework in place to take into ac-
count the needs of applications and algorithms when designing and customizing these devices. In
this work, we describe a general device co-design framework, as well as two optimization method-
ologies that can be used for device co-design. We present our preliminary work on leveraging one
of those methodologies for device codesign, and we describe the potential advantages and disadvan-
tages of each optimization approach.

2 Codesign Framework Components and Requirements

In emerging device and circuit codesign, algorithm and application needs inform design decisions
associated with the devices. This requires that a co-design framework encompass many layers of the

37th First Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2023(MLNPCP 2023).

compute stack simultaneously and moreover, requires that these layers interact. At the very least,
the components that must be present in a device codesign framework are as follows: device models,
algorithm or application specifications, and metrics of interest. Additionally, circuit and architecture
models may also play a key role in codesign, but they may not be necessary for initial codesign
efforts.

2.1 Device Models

Device models are software models of device behavior. Device models typically take one of two
forms. Device models may be implemented using first principles from physics or they may be
implemented using a surrogate model based on experimental data. Surrogate models based on deep
learning models that have been trained using experimental data are becoming increasingly popular
with the rise in the success of deep learning techniques. Device models for use within a codesign
framework must be parameterizable, i.e., it must be possible to change the parameters of the device
and see that behavior reflected in the behavior of the model. It is important that the operational
envelope of the device models be defined in order to specify which sets of parameters produce well-
defined and validated behavior in the device model. Another key property that is required of the
device models is that they must be capable of reporting the appropriate metrics for codesign, which
may include metrics such as energy usage or latency. In our preliminary results, we leverage device
models for magnetic tunneling junction (MTJ).

Magnetic tunnel junctions (MTJs) have recently emerged as a promising candidate for memory,
in-memory computing applications, and probabilistic computing applications [7, 1, 6, 10]. An MTJ
consists of an insulating tunnel barrier between two thin ferromagnetic layers; due to spin-dependent
electron transport, the MTJ has a high and low resistance state depending on the P (parallel) and AP
(anti-parallel) orientation of the magnetization of the two ferromagnetic layers. One of these layers
is held at a fixed magnetization, while the other, the free layer, can be switched via voltage, current,
and heat. The thermally-driven, stochastic nature of the switching of the free layer can lead to
generation of streams of random bits [12]. The MTJ can be set up as a stochastic read device,
by having a low-anisotropy magnetic free layer, near the superparamagnetic limit, that randomly
switches its magnetization at room temperature. The random fluctuations of the MTJ resistance
can then be read. Alternatively, the MTJ can be set up as a stochastic write device, with a stable-
anisotropy free magnetic layer that has a probability of switching its magnetization, and therefore
the MTJ resistance, depending on the amplitude and duration of an applied current pulse. In both
of these configurations, the weight of the probabilistic bit, i.e. how much time it spends in P or AP

Figure 1: a) Schematic illustration of a four terminal stochastic MTJ device structure with various
knobs to control the switching probability. It can be controlled through both Spin Orbit torque
(current through T1 and T4) and VCMA (T2-T4 applies a biased voltage). Spin transfer torque
(STT) (T1-T2) or spin Hall effect (SHE) (T1-T3) can bias the switching probability. b) VCMA
operation illustrated. A biased voltage eliminates stable states with a precessional switching to the
middle in-plane state. c) VCMA operation: After removing the bias voltage, the device recovers to
the stable states with an unpredicted switching towards A or AP state.

2

states, can be controlled using constant applied fields and/or DC bias voltages or currents. in-plane
due to spin current.

An alternative way to generate stochastic bit streams with MTJs is using voltage-controlled magnetic
anisotropy (VCMA), where the anisotropy of the free magnetic switching layer of the MTJ is modu-
lated using voltage; this effect has been extensively explored for memory applications. The VCMA
effect can exert unpredictable magnetization dynamics on the free layer at room temperature, but
it has not yet been fully explored for generating controllable random bit streams. Here, we build
a numerical model of VCMA-MTJs based on the Landau-Lifshitz-Gilbert (LLG) equation [15, 8],
modeling a standard perpendicular MTJ stack comprised of CoFeB (free layer)/MgO/CoFeB (fixed
layer), as shown in Fig. 1a. Fig. 1b-c depicts the operation of the device to generate a random bit
stream: first, a voltage is applied that reduces the perpendicular magnetic anisotropy and sends the
magnetization from out of plane to in-plane through precessional oscillations (Fig. 1b). Then, the
voltage is turned off, and when the anisotropy pops back, the magnetization must choose one of two
out-of-plane directions to stabilize the MTJ in either a P or AP state (Fig. 1c). The generated bit
stream from this analytical code is provided to the probabilistic circuit.

2.2 Algorithm or Application Specification

To properly perform codesign, it is important to evaluate a device in the context of an algorithm
or application. Therefore, an implementation of the algorithm or a simulation of the application
environment is needed. These implementations should be such that they can leverage the device
model in lieu of the device itself so that the impact of using the device in the algorithm or application
can be understood. In previous work [2], we evaluated our MTJ model in the context of random
number generation from a non-uniform distribution. In this case, the goal is to determine parameters
associated with device models that will give the best performance on this application, which in
this case is determined by how closely the randomly sampled values from the device follow the
distribution of interest, as measured by KL-divergence.

2.3 Metrics of Interest

To most effectively perform codesign, it is important that all metrics of interest for a particular de-
vice and algorithm/application combination be defined so that those metrics can be targeted in the
optimization of the device for that algorithm/application. There are typically specific metrics as-
sociated with the algorithm/application, e.g., KL-divergence in our exemplar use case of random
number generation from a non-uniform distribution. Other metrics of interest may be related to the
performance of the device in that algorithm/application, such as energy usage or latency. These
metrics should change as a result of changing the parameters of the device model. A key challenge
associated with automated codesign, however, is the specification of the objective or reward function
based on these metrics. As there are typically multiple metrics of interest, the objective or reward
function must be multi-objective and the different metrics must be weighted appropriately. Formu-
lating this objective function so that the optimization approaches produce the desired behavior is
highly non-trivial and often still requires either intuition or trial and error. As we will show in our
preliminary results, by choosing different weights for different objectives in the objective function,
we can see radically different device parameters.

3 Optimization Methodologies for Device Codesign

3.1 Evolutionary Optimization

Evolutionary optimization is an optimization approach inspired by the principles of evolution. In
this case, a population of potential solutions is maintained and evolved over the course of optimiza-
tion, rather than a single solution. In evolutionary optimization, the initial population of solutions
is typically formed through random initialization, though this initialization may also be seeded or
informed by prior knowledge about what potential solutions might be “good.” Once the initial popu-
lation is established, the objective function (which is called the fitness in evolutionary optimization)
is calculated for each of the individuals/solutions in the population. From there, a selection proce-
dure takes place to preferentially select better-performing individuals to serve as parents for the next
generation of solutions. This next generation is formed through reproduction operations such as

3

crossover, which takes components from two parents to produce children that inherit characteristics
from both parents, or random mutation of elements within the solution. The children then replace
some or all of the parents in the population and this evaluation, selection, and reproduction cycle
is repeated over the course of several generations. Evolutionary optimization has long been used
for device and architecture codesign [3, 5] and has been specifically used in device codesign for
neuromorphic computing [11, 13] and probabilistic computing [2].

3.2 Reinforcement Learning

Reinforcement learning (RL) techniques are a type of machine learning technique to solve different
tasks without prior knowledge. For a detailed review, please see [14]. In reinforcement learning
an agent learns an optimal policy, and chooses actions based on rewards, and observations in its
environment. After each action, the state of the environment is updated and the agent receives an
award based on the new state. We have previously also leveraged RL techniques to design novel
neuromorphic devices [citation removed for double-blind]. Here, we discuss the potential for using
reinforcement learning for device discovery. We intend to leverage a spin-orbit torque (SOT) MTJ
model developed in [9] for our analysis, where we vary key material and device parameters. The
reward function accounts for minimizing energy, latency, how closely it fits the desired distribution,
and a configuration test to check device validity. The observations comprising the environment
include the current device parameters, the ”score” for the current configuration, and finally the best
configuration score discovered so far.

Figure 2: Overview of RL algorithm for device discovery.

4 Preliminary Results

4.1 Evolutionary Optimization for Device Discovery

In our preliminary results in using evolutionary optimization for codesign [citation removed for
double-blind], we leverage evolutionary optimization to tune MTJ device parameters associated
with random number generation from a non-uniform distribution. The parameters that are being
tuned are the “weights” of four different MTJ devices, which define how biased the outputs are of
the MTJ. We treat each sample of the MTJ as though it is a flip of a biased coin, and the weight of
each device determines its bias. The metrics of interest in this case are: (1) KL-divergence, which
gives us an idea of how well the sampled values from the MTJ match the desired distribution, (2)
energy usage of the device, and (3) how close the weight of the device is to 0.5 (i.e., how close the
device behavior is to a fair coin). The three objectives are described in our fitness function in 1.

For the given device model (MTJ-SHE, or MTJ-VCMA), we then calculate the energy usage for
devices with probabilities p1, p2, q1, and q2. We sum these energy values and produce a single

4

(a) ω1 (b) ω2 (c) ω3

Figure 3: Impact of multi-objective weights ω1, ω2, ω3 on the KL divergence and energy usage of
MTJ-SHE devices. Image reproduced from previous work (citation removed for double-blind).

energy usage, EN. To allow us to investigate the tradeoff between different objectives, we include
three objective weights ω1, ω2, ω3. Thus, our overall fitness function is:

f(w, p1, p2, q1, q2) = ω1 KL(w, p1, p2, q1, q2)

+ ω2

(
2∑

i=1

|pi − 0.5|+
2∑

i=1

|qi − 0.5|

)
+ ω3 EN(p1, p2, q1, q2)

(1)

In this equation, the weights of the MTJ “coins” are p1, p2, q1, q2, and w is simply another non-
device parameter of the system. The goal is to determine the values of w, p1, p2, q1, q2 that will
minimize this function. The first component, weighted with ω1, is the KL-divergence. The second,
weighted with ω2 is how far each of the MTJ weights is from a fair coin, and the third, weighted by
ω3 is the energy usage of the MTJ devices given those settings. The impact of the weights of our
objective function on the performance of the system is shown in Figure 3. As we can see in those
figures, there are different weight values that prioritize different objectives and by tuning the multi-
objective weights, we can see radically different device behavior, even within the same application.
This motivates the use of automated optimization approaches to explore the search space of possible
device parameters in order to find “best” operating conditions of the device for that application. We
plot the energy vs. KL divergence for different MTJ devices in Figure 4a-4b.

4.2 Formulation of RL for Device Discovery

For the purposes of our intended reinforcement learning task, the task is to generate a TRNG from
an exponential distribution function. We intend to use a simulation model of a SOT-MTJ and vary
key device and material parameters as shown in Table 1. The reward function will be calculated as
shown in equation 2, where Valid Device is a function that checks to see if the device parameters
are valid for SOT operation, average energy, and latency are calculated for a coinflip over 2000

(a) MTJ-SHE (b) MTJ-VCMA

Figure 4: KL divergence and energy usage vs. number of samples for the given distribution with
the MTJ-SHE and MTJ-VCMA device. There were 10 trials conducted per sample. Sample sizes
investigated include 10, 50, 100, 200, 500, 1000, 1500 and 2000. Image reproduced from previous
work (citation removed for double-blind).

5

Parameter Symbol Parameter Range Parameter Type
Gilbert Damping Constant α 0.03− 1 Material
Surface Anisotropy Energy Ki 0.2× 10−3–1× 10−3 J/m2 Device
Saturation Magnetization Ms 0.3× 106–2× 106A/m Material
Parallel Resistance Rp 500–50, 000Ω Device
Tunneling Magnetoresistance Ratio TMR 0.3–6 Device
Spin Hall Angle η 0.1 –0.8 Material
Current Density JSHE 0.01× 1012–1× 1012 A/m2 Device
Pulse Width tpulse 0.5–75 ns Device

Table 1: Device and Material Parameters that are varied within a given range to pick the ideal device
candidate using reinforcement learning for a given task.

samples, and the empirical distribution is compared to the target distribution. This is currently work
in progress and results will be presented at the workshop.

Reward = ω1(Energy/Coinflip) + ω2 (Curve Fit or KL)

+ ω3(Valid Device) + ω4(Latency/Coinflip)
(2)

5 Performance Analysis

Novel probabilistic accelerators will need to be developed in order to harness the efficiency and
latency gains from TRNG blocks. In a tiled accelerator for example we envision an n-bit TRNG
block in each core. This depends on the application, however. For example, a high-energy physics
application might require a 32-bit or 64-bit TRNG, but a machine learning application might require
an 8-bit or 16-bit TRNG. In either scenario, the TRNG energy cost will include the array cost and the
cost of peripheral circuits which include programming circuits, selection circuits, readout circuits,
and also the cost of the microcontroller/microprocessor. These system costs tend to be a lot higher
than the energy per coin flip for a given device.

A single MTJ cell is 1T1M with one selection transistor, with read/write times in ≈ nansoseconds,
with high endurance of up to 1015 cycles, and reported energy per coinflip in 10s fJ [9] for a 50 nm
device. Recent work simulated an integrated TRNG block (STT-MTJ based, diameter=32 nm, tf=1.3
nm) in a reduced instruction set computer-V (RISC-V) processor as an acceleration component with
5.3 pJ/bit accounting for the peripheral circuits in 45 nm (write drivers, sense amplifiers, selection
transistor, and XOR gate for post-processing) [4].

6 Discussion and Conclusion

In this work, we have proposed an optimization-driven codesign framework for device design. We
have proposed two optimization approaches, evolutionary optimization and reinforcement learning,
to automate device customization for a particular application. We present preliminary results for
our evolutionary optimization approach and we discuss our planned approach for the reinforcement
learning approach, including the formulation of the reward function, for TRNG tasks. With our pre-
liminary results for evolutionary optimization, we have demonstrated that the landscape of possible
device parameters can be efficiently and automatically explored to customize device solutions for
our particular application and also provide options to the user to select which parameter settings are
best for their particular applications’ needs and metrics.

In the future, we plan to evaluate both evolutionary optimization and reinforcement learning ap-
proaches for device design and to compare the two approaches to understand when one should be
used over the other. We also plan to extend our use of these approaches to circuit design, which will
we co-optimize alongside the devices.

6

Acknowledgement

The authors acknowledge financial support from the DOE Office of Science (ASCR / BES) for our
Microelectronics Co-Design project COINLFIPS. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

This article has been authored by an employee of National Technology & Engineering Solutions
of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE).
The employee owns all right, title and interest in and to the article and is solely responsible for
its contents. The United States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, ir-
revocable, world-wide license to publish or reproduce the published form of this article or allow
others to do so, for United States Government purposes. The DOE will provide public access
to these results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

This paper describes objective technical results and analysis. Any subjective views or opinions that
might be expressed in the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government. SAND Number: SAND2023-13931C.

References
[1] William A Borders, Ahmed Z Pervaiz, Shunsuke Fukami, Kerem Y Camsari, Hideo Ohno,

and Supriyo Datta. Integer factorization using stochastic magnetic tunnel junctions. Nature,
573(7774):390–393, 2019.

[2] Suma G Cardwell, Catherine D Schuman, J Darby Smith, Karan Patel, Jaesuk Kwon, Samuel
Liu, Christopher Allemang, Shashank Misra, Jean Anne Incorvia, and James B Aimone. Prob-
abilistic neural circuits leveraging ai-enhanced codesign for random number generation. In
2022 IEEE International Conference on Rebooting Computing (ICRC), pages 57–65. IEEE,
2022.

[3] Paolo Di Barba, Marco Farina, and Antonio Savini. An improved technique for enhancing
diversity in pareto evolutionary optimization of electromagnetic devices. COMPEL-The in-
ternational journal for computation and mathematics in electrical and electronic engineering,
20(2):482–496, 2001.

[4] Siqing Fu, Tiejun Li, Chunyuan Zhang, Hanqing Li, Sheng Ma, Jianmin Zhang, Ruiyi Zhang,
and Lizhou Wu. Rhs-trng: A resilient high-speed true random number generator based on
stt-mtj device. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

[5] Guido Goldoni and Fausto Rossi. Optimization of semiconductor quantum devices by evolu-
tionary search. Optics letters, 25(14):1025–1027, 2000.

[6] Keisuke Hayakawa, Shun Kanai, Takuya Funatsu, Junta Igarashi, Butsurin Jinnai, WA Borders,
H Ohno, and S Fukami. Nanosecond random telegraph noise in in-plane magnetic tunnel
junctions. Physical review letters, 126(11):117202, 2021.

[7] B. M. Sutton K. Y. Camsari and S. Datta. p-bits for probabilistic spin logic. Applied Physics
Reviews, 6(011305):1931–9401, 2019.

[8] Jonathan Leliaert, Jeroen Mulkers, Jonas De Clercq, Annelies Coene, M Dvornik, and Bartel
Van Waeyenberge. Adaptively time stepping the stochastic landau-lifshitz-gilbert equation at
nonzero temperature: Implementation and validation in mumax3. Aip Advances, 7(12), 2017.

[9] Samuel Liu, Jaesuk Kwon, Paul W Bessler, Suma G Cardwell, Catherine Schuman, J Darby
Smith, James B Aimone, Shashank Misra, and Jean Anne C Incorvia. Random bitstream
generation using voltage-controlled magnetic anisotropy and spin orbit torque magnetic tun-
nel junctions. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits,
8(2):194–202, 2022.

7

[10] Shashank Misra, Leslie C Bland, Suma G Cardwell, Jean Anne C Incorvia, Conrad D James,
Andrew D Kent, Catherine D Schuman, J Darby Smith, and James B Aimone. Probabilistic
neural computing with stochastic devices. Advanced Materials, page 2204569, 2022.

[11] James S Plank, Garrett S Rose, Mark E Dean, Catherine D Schuman, and Nathaniel C Cady.
A unified hardware/software co-design framework for neuromorphic computing devices and
applications. In 2017 IEEE International Conference on Rebooting Computing (ICRC), pages
1–8. IEEE, 2017.

[12] Christopher Safranski, Jan Kaiser, Philip Trouilloud, Pouya Hashemi, Guohan Hu, and
Jonathan Z Sun. Demonstration of nanosecond operation in stochastic magnetic tunnel junc-
tions. Nano letters, 21(5):2040–2045, 2021.

[13] Catherine D Schuman, J Parker Mitchell, Robert M Patton, Thomas E Potok, and James S
Plank. Evolutionary optimization for neuromorphic systems. In Proceedings of the 2020
Annual Neuro-Inspired Computational Elements Workshop, pages 1–9, 2020.

[14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[15] Zhaohao Wang, Weisheng Zhao, Erya Deng, Jacques-Olivier Klein, and Claude Chappert.
Perpendicular-anisotropy magnetic tunnel junction switched by spin-hall-assisted spin-transfer
torque. Journal of Physics D: Applied Physics, 48(6):065001, 2015.

8

