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Real-TabPFN: Improving Tabular Foundation Models
via Continued Pre-training With Real-World Data
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Abstract

Foundation models for tabular data, like TabPFN,
achieve strong performance on small datasets
when pre-trained solely on synthetic data. We
show that this performance can be significantly
boosted by a targeted continued pre-training
phase. Specifically, we demonstrate that leverag-
ing a small, curated collection of large, real-world
datasets for continued pre-training yields supe-
rior downstream predictive accuracy compared
to using broader, potentially noisier corpora like
CommonCrawl or GitTables. Our resulting model,
Real-TabPFN, achieves substantial performance
gains on 29 datasets from the OpenML AutoML
Benchmark.

1. Introduction
Until recently, traditional tree-based algorithms like XG-
Boost (Chen & Guestrin, 2016) and CatBoost (Dorogush
et al., 2017) have consistently outperformed neural networks
on tabular prediction tasks (Grinsztajn et al., 2022). How-
ever, TabPFNv2 has recently demonstrated improved per-
formance on small datasets (up to 10,000 samples and 500
features), significantly advancing deep learning for tabular
data.

Although TabPFNv2 delivers strong average performance,
it is still not universally best-in-class: many datasets are
better handled by well-tuned tree ensembles or by careful
hyper-parameter searches on TabPFNv2 itself. It is not easy
to improve the TabPFNv2 model further, since it has already
been exhaustively trained on over 100 million synthetic
tables that approximate a broad prior over tabular problems.
However, even small accuracy gains could translate into
tangible benefits, such as fewer hospital re-admissions or
more precise credit-risk scoring, domains in which tabular
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Figure 1. Per Dataset Normalized ROC Comparison of TabPFN
(default) and Real-TabPFN (ours) on the 29 datasets from the
OpenML AutoML Benchmark Datasets. Wilcoxon p refers to the
two-sided Wilcoxon signed-rank test p value.

data dominates.

We enhance TabPFNv2’s in-context learning by continuing
to pre-train it on a carefully selected set of real-world tables
from OpenML (Vanschoren et al., 2013) and Kaggle1. The
resulting model, Real-TabPFN, consistently outperforms
TabPFNv2 on the OpenML AutoMLBenchmark classifica-
tion tasks (see Figure 1). In practice, Real-TabPFN serves
as a stronger off-the-shelf baseline for tabular classification
than the default TabPFNv2 model.

Our contributions are:

➣ We empirically show that using real-world datasets
with synthetic data during the pre-training of a tabular
foundation model boosts in-context learning perfor-
mance, opening a promising research direction.

1https://www.kaggle.com
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➣ The new model Real-TabPFN and its public weights2,
an extension of TabPFNv2 obtained by continued pre-
training on real-world data. Real-TabPFN’s in-context
learning outperforms its predecessor on 29 small tabu-
lar datasets.

2. Related Work
So far, tabular foundation models have been pre-trained
solely on synthetic or real-world data. Our work aims to
bridge this gap via continued pre-training.

Synthetic-only Tabular Foundation Models. TabPFN
pre-trains a transformer (Vaswani et al., 2017) on mil-
lions of synthetically generated tabular datasets, achiev-
ing strong in-context learning performance on small
datasets (Hollmann et al., 2023; 2025). Several extensions
retain the synthetic-data recipe: TabForestPFN (den Bree-
jen et al., 2025) augments TabPFN with more complex,
decision-boundary-oriented generators, and TabICL (Qu
et al., 2025) scales to tables with 500k rows.

Real-data Foundation Models. In parallel, purely real-data
approaches emerged. TabDPT (Ma et al., 2024) couples
retrieval-based self-supervision with discriminative trans-
formers and is trained on real-world data collected from
OpenML. TabuLa-8B (Gardner et al., 2024) adapts an Llama
3-8B backbone via language modeling over serialized ta-
bles, demonstrating that large LLMs can transfer to tabular
few-shot prediction after real-world pre-training.

3. Pre-training and Evaluation Data
To study continued pre-training, we had to decide on the
data for continuing pre-training and for evaluation.

Evaluation Data. We adopt the same datasets as used
by Hollmann et al. (2025) for TabPFNv2 to evaluate our
method. We use the same 29 datasets from the OpenML
AutoML Benchmark (Gijsbers et al., 2023); see Appendix B.
All datasets contain up to 10,000 samples and 500 features.

Continued Pre-training Data. Unlike the domains of natu-
ral language processing and computer vision, where many
carefully curated datasets, such as ImageNet (Deng et al.,
2009), COCO (Lin et al., 2015), FineWeb (Penedo et al.,
2024), and C4 (Raffel et al., 2019) are available, comparably
high-quality resources for tabular learning remain scarce.

Recent efforts have attempted to address this gap. Notable
contributions include the Web Table Corpus (Bizer et al.,
2015), TabLib (Eggert et al., 2023), and GitTables (Hulsebos
et al., 2021). Beyond these, researchers either generate
synthetic datasets or rely on existing repositories like UCI
(Kelly et al., 2007), OpenML (Vanschoren et al., 2013),

2https://RemovedForReview.com

Figure 2. Distribution of dataset sizes (number of rows and fea-
tures) from various sources. The prevalence of smaller datasets in
broad corpora like CommonCrawl and GitTable contrasts with the
larger datasets from OpenML and Kaggle.

and Kaggle. We adopt the latter, manually curating 77
high-quality datasets from OpenML and Kaggle. Figure 2
shows the distribution of the number of features and rows
across datasets from different sources; Appendix A lists
the curated datasets used for continued pre-training. We
apply minimal preprocessing to the 77 datasets: categorical
features are encoded with Scikit-learn’s (Pedregosa et al.,
2011) OrdinalEncoder; and if the target variable has more
than ten classes, we retain the nine most common classes
and merge the remainder into a single tenth class.

Data Contamination. We carefully avoided data contam-
ination (Jiang et al., 2024) between training and the eval-
uation to obtain meaningful results. We implemented a
multi-tiered filtering process to ensure no contamination:
(1) We only select datasets exceeding 10,000 samples since
all our evaluation datasets have fewer samples. (2) We
cross-referenced dataset IDs, names, and shapes to identify
potential duplicates. (3) We compared feature names across
datasets to detect similar or identical data structures. (4)
We generated hashes of both rows and columns to identify
potential data duplications at a granular level.
We exclude any dataset from the pre-training data that does
not meet these criteria.

4. Method: Continued Pre-training of TabPFN
Our method bridges purely synthetic training (e.g.,
TabPFN (Hollmann et al., 2025; 2023)) and purely real-
data training (e.g., TabDPT (Ma et al., 2024)) by leveraging
the complementary strengths of both paradigms.

Concretely, we adopt a two-stage approach. Stage 1 re-
lies on the original TabPFNv2 checkpoint, pre-trained by
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Hollmann et al. (2025) on a large, diverse set of synthetic
tables. This serves as our starting point. Stage 2 continues
pre-training exclusively on a curated collection of heteroge-
neous real-world tables. This approach contrasts with mixed
training, where synthetic and real samples are fed to the
model simultaneously, as in D’souza et al. (2025). We opted
for a two-stage approach as it is easier to apply and builds
directly on a strong existing synthetic base model.

Although continued pre-training has shown remarkable suc-
cess in language models (Gururangan et al., 2020), its po-
tential for tabular foundation models remains largely unex-
plored. By pre-training on diverse real datasets rather than
narrow task-specific data, our approach improves general-
ization while preserving cross-domain adaptability.

To enable robust continued pre-training, we retained the
original TabPFNv2 architecture and trained with a re-
duced learning rate of 3 × 10−7 using the AdamW opti-
mizer (Loshchilov & Hutter, 2017a) together with a lin-
ear warm-up followed by a cosine annealing schedule
(Loshchilov & Hutter, 2017b).

Moreover, we added a regularizer penalizing distance to
the L2-Starting-Point (L2-SP) (Li et al., 2018) to the pre-
training objective. This penalizes large deviations from the
initial pre-trained weights, and is used to mitigate catas-
trophic forgetting (Kirkpatrick et al., 2017). More precisely,
let w0 denote the parameter vector of the pre-trained base
model from which continued pre-training begins. The L2-
SP penalty then regularizes the model parameters towards
this initial vector. It is formally defined as:

Ω(w) =
α

2

∥∥w −w0
∥∥2
2
,

where α controls the strength of the regularization penalty,
and ∥·∥2 denotes the L2 norm. We add the L2 norm to the
cross-entropy loss: L = LCE + Ω(w) to obtain our final
pre-training objective. We used a regularization strength α
of 0.003.

We continued pre-training for 20,000 steps with a batch
size of 1 (i.e., a single dataset). Choosing a batch size of
1 is a simple approach that naturally handles the varying
feature dimensions of real-world datasets without requir-
ing padding or truncation. Critically, it also allowed us to
maximize the training context for each dataset up to 20,000
samples, limited primarily by GPU memory, rather than by
batching constraints. For datasets larger than this limit, we
sample uniformly up to 20,000 rows. Per batch, we split the
data into 60% context (TabPFN’s training data) and 40%
query (TabPFN’s testing data) for the forward pass. The
training was performed on a single Nvidia RTX 2080 Ti
GPU. To stay within GPU memory limits, we further capped
each dataset at 400,000 total cells, adjusting the number of
samples accordingly for datasets with too many attributes.
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Figure 3. Mean Normalized ROC AUC Comparsion of Real-
TabPFN with all the default and the tuned versions of the baselines
on the AutoMLBenchmark. Scores were normalized per dataset,
with 1.0 representing the best and 0.0 the worst performance with
respect to all baselines.

5. Experiments and Results
We follow the evaluation protocol of Hollmann et al. (2025)
and evaluate Real-TabPFN with 10-fold cross-validation per
dataset. Furthermore, we reuse the performance values for
additional baselines from the results reported by Hollmann
et al. (2025). The baselines were tuned for ROC-AUC via
five-fold cross-validated random search under a four-hour
time budget. We run Real-TabPFN and TabPFNv2 ourselves
without hyperparameter tuning to focus on their in-context
learning performance.

Figure 1 compares TabPFNv2 and Real-TabPFN per dataset.
We observe that Real-TabPFN significantly outperforms
TabPFNv2. Additionally, Figure 3 shows that Real-TabPFN
improves the mean normalized ROC-AUC from 0.954 to
0.976 and naturally outperforms all baselines on average,
like TabPFNv2. We provide a table with various additional
performance metrics for all methods in Appendix C.

Effect of Context Size. We investigate the impact of the
size of datasets during continued pre-training by testing
pre-training with datasets from 2,048 to 20,000 (our GPU
memory limit) samples. Figure 4 shows that downstream
accuracy increases with a larger context size.

OpenML vs Kaggle. To understand the impact of our
final curated 77 training data on model performance, we
repeated continued pre-training with three corpora: (1)

3
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Figure 4. Increase in normalized ROC AUC as the continued-pre-
training context grows. The gains are shown relative to the base
TabPFNv2 model performance which was synthetically pre-trained
with 2,048 context size.
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Figure 5. Increase in normalized ROC AUC as the training data
source is varied. The gains are shown relative to the base
TabPFNv2 model performance which was synthetically pre-
trained.

only KAGGLE, (2) only OPENML, and (3) the union of
both. As Figure 5 shows, OPENML alone delivers a +0.019
gain, while KAGGLE alone gives +0.015. Combining them
yields the strongest boost, +0.022, confirming that heteroge-
neous sources provide complementary supervision signals.
This finding indicates that while OpenML datasets provide
slightly better performance individually, the combination of
both data sources yields the best performing model.

Effect of Training Data Source. To evaluate the impact
of different training data sources, we also experimented with
two alternative corpora: (1) COMMONCRAWL (Yin et al.,
2020) and (2) GITTABLES (Tran et al., 2024). We applied
aggressive filtering by evaluating datasets with Logistic Re-
gression (Cox, 1958) and Random Forest (Breiman, 2001)
and subsequently removing noisy datasets, followed by our
data contamination pipeline (see Section 3). This resulted
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Figure 6. Change in normalized ROC AUC as the training data
source is varied. The changes are shown relative to the base
TabPFNv2 model performance which was synthetically pre-
trained.

in approximately 97, 000 CommonCrawl and 658 GitTables
datasets.

Figure 6 compares performance using these two corpora.
The model trained on CommonCrawl (approximately 100
data points and 7 features on average per dataset; see Fig-
ure 2) exhibits decreased performance, primarily because
the small dataset size did not sufficiently benefit the model
during the continued pre-training phase, ultimately leading
to a performance drop.

In contrast, GitTables (approximately 1000 data points and
9 features on average per dataset; see Figure 2) leads to per-
formance improvements. The biggest performance improve-
ments are achieved with our manually curated OpenML and
Kaggle datasets (10k to 100k data points and on average
tens of features). We intentionally chose a smaller, curated
set of datasets from OpenML and Kaggle to effectively pre-
vent data contamination, which is why we did not combine
them with GitTables or CommonCrawl datasets.

6. Conclusion and Future Work
We show that continued pre-training of TabPFNv2 on cu-
rated, real-world tabular data yields a stronger default model,
Real-TabPFN, which we will open-source. Bridging the
synthetic-to-real gap, Real-TabPFN outperforms the default
TabPFNv2 on most of the datasets and outperforms every
other state-of-the-art baseline on all evaluated datasets. Ad-
ditional experiments deliver the same message: seeing more
context—whether temporal (longer windows) or statisti-
cal (a richer mix of bigger datasets) during continued pre-
training produces larger improvements.
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A. Training Datasets
The following table lists the 77 datasets curated for continued pre-training, along with their source and access link.

Name Source

aam avaliacao dataset Kaggle
Air Traffic Data Kaggle
Amsterdam - AirBnb Kaggle
ansible-defects-prediction Kaggle
AV Healthcare Analytics II Kaggle
Candidate Selection Kaggle
Cardio Disease Kaggle
CC Fraud Dataset Kaggle
Churn Modelling Kaggle
Classification - Crop Damages in India (2015-2019) Kaggle
CSGO Round Winner Classification Kaggle
Flower Type Prediction Machine Hack Kaggle
Horse Racing - Tipster Bets Kaggle
How severe the accident could be Kaggle
HR Analysis Case Study Kaggle
HR analysis Kaggle
hr-comma-sep Kaggle
ip-network-traffic-flows-labeled-with-87-apps Kaggle
Janatahack cross-sell prediction Kaggle
JanataHack Machine Learning for Banking Kaggle
L&T Vehicle Loan Default Prediction Kaggle
League of Legends Diamond Games (First 15 Minutes) Kaggle
Malware Analysis Datasets Top-1000 PE Imports Kaggle
Multiple target variable classification - Hackathon Kaggle
Online News Popularity Kaggle
Online Shopper’s Intention Kaggle
Phishing website Detector Kaggle
Phishing websites Data Kaggle
Preprocessed Shopee marketing data Kaggle
Pump it Up Data Mining the Water Table Kaggle
Rain in Australia Kaggle
Richter’s Predictor Modeling Earthquake Damage Kaggle
Server Logs - Suspicious Kaggle
Sloan Digital Sky Survey DR14 Kaggle
Sloan Digital Sky Survey DR16 Kaggle
Success of Bank Telemarketing Data Kaggle
Term Deposit Prediction Data Set Kaggle
trajectory-based-ship-classification Kaggle
Travel Insurance Kaggle
Twitter Fake Account Detection Kaggle
Amazon employee access OpenML
artificial-characters OpenML
Bank marketing data set UCI OpenML
BNG(breast-w) OpenML
BNG(tic-tac-toe) OpenML
Click prediction small OpenML
CreditCardSubset OpenML
connect 4 OpenML
eeg-eye-state OpenML
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https://www.kaggle.com/datasets/himselfthedecker/aam-avaliacao-dataset
https://www.kaggle.com/datasets/rohanshetty678/air-traffic-data
https://www.kaggle.com/datasets/erikbruin/airbnb-amsterdam
https://www.kaggle.com/datasets/stefadp/ansibledefectsprediction
https://www.kaggle.com/datasets/nehaprabhavalkar/av-healthcare-analytics-ii
https://www.kaggle.com/datasets/tarunchilkur/client
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
https://www.kaggle.com/datasets/aniketng21600/crop-damage-information-in-india
https://www.kaggle.com/datasets/christianlillelund/csgo-round-winner-classification
https://www.kaggle.com/datasets/vpkprasanna/flower-type-prediction-machine-hack
https://www.kaggle.com/datasets/gunner38/horseracing/data
https://www.kaggle.com/datasets/kanuriviveknag/road-accidents-severity-dataset
https://www.kaggle.com/datasets/shivan118/hranalysis
https://www.kaggle.com/datasets/anshika2301/hr-analytics-dataset
https://www.kaggle.com/datasets/pankeshpatel/hrcommasep
https://www.kaggle.com/datasets/jsrojas/ip-network-traffic-flows-labeled-with-87-apps
https://www.kaggle.com/datasets/pawan2905/jantahack-cross-sell-prediction
https://www.kaggle.com/code/neerunaveenjakhar/janatahack-machine-learning-for-banking/data
https://www.kaggle.com/datasets/mamtadhaker/lt-vehicle-loan-default-prediction
https://www.kaggle.com/datasets/benfattori/league-of-legends-diamond-games-first-15-minutes
https://www.kaggle.com/datasets/ang3loliveira/malware-analysis-datasets-top1000-pe-imports
https://www.kaggle.com/datasets/ppsheth91/two-target-variables-classification-problem
https://www.kaggle.com/datasets/btphan/online-news-popularity-dataset
https://www.kaggle.com/datasets/henrysue/online-shoppers-intention
https://www.kaggle.com/datasets/eswarchandt/phishing-website-detector
https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning
https://www.kaggle.com/datasets/ilosvigil/shopee-marketing-data/data
https://www.kaggle.com/datasets/dylanli/pump-it-up-data-mining-the-water-table?select=Pump_it_Up_Data_Mining_the_Water_Table_-_Training_set_values.csv
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/code/franciscoescobar/richter-s-predictor-modeling-earthquake-damage
https://www.kaggle.com/datasets/kartikjaspal/server-logs-suspicious
https://www.kaggle.com/datasets/lucidlenn/sloan-digital-sky-survey
https://www.kaggle.com/datasets/muhakabartay/sloan-digital-sky-survey-dr16
https://www.kaggle.com/datasets/raosuny/success-of-bank-telemarketing-data
https://www.kaggle.com/datasets/brajeshmohapatra/term-deposit-prediction-data-set
https://www.kaggle.com/datasets/danielamigo/trajectorybasedshipclassification/data
https://www.kaggle.com/datasets/mhdzahier/travel-insurance
https://www.kaggle.com/datasets/bitandatom/social-network-fake-account-dataset/data
https://openml.org/search?type=data&status=active&id=4135
https://www.openml.org/search?type=data&sort=runs&status=active&id=1459
https://openml.org/search?type=data&status=active&id=44234
https://www.openml.org/search?type=data&status=active&id=251
https://www.openml.org/search?type=data&status=active&id=137
https://www.openml.org/search?type=data&sort=runs&status=active&id=41434
https://openml.org/search?type=data&status=active&id=4154
https://www.openml.org/d/40668
https://www.openml.org/search?type=data&sort=runs&status=active&id=1471
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Name Source

electricity OpenML
elevators OpenML
Employee-Turnover-at-TECHCO OpenML
eye movements OpenML
FOREX eurpln-hour-High OpenML
gas-drift-different-concentrations OpenML
gas-drift OpenML
higgs OpenML
house 16H OpenML
house 8L OpenML
Intersectional-Bias-Assessment-(Training-Data) OpenML
law-school-admission-binary OpenML
magic OpenML
MagicTelescope OpenML
Medical-Appointment OpenML
microaggregation2 OpenML
fried OpenML
mozilla4 OpenML
mushroom OpenML
NewspaperChurn OpenML
nursery OpenML
okcupid stem OpenML
pendigits OpenML
PhishingWebsites OpenML
pol OpenML
WBCAtt OpenML
Bank Marketing OpenML
Internet Firewall Data OpenML

B. Evaluation Datasets
We use the same evaluation suite as TabPFNv2 to ensure direct comparability of results. All classification tasks from the
AutoML Benchmark with fewer 10,000 samples and 500 features. The benchmark comprises diverse real-world tabular
datasets, curated for complexity, relevance, and domain diversity.

Name OpenML ID Domain Features Samples Targets Categorical Feats.

ada 41156 Census 48 4147 2 0

Australian 40981 Finance 14 690 2 8

blood-transfusion-
service-center

1464 Healthcare 4 748 2 0

car 40975 Automotive 6 1728 4 6

churn 40701 Telecommunication 20 5000 2 4

cmc 23 Public Health 9 1473 3 7

credit-g 31 Finance 20 1000 2 13

dna 40670 Biology 180 3186 3 180

eucalyptus 188 Agriculture 19 736 5 5

first-order-theorem-
proving

1475 Computational Logic 51 6118 6 0
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https://openml.org/search?type=data&status=active&id=151
https://www.openml.org/search?type=data&status=active&id=846&sort=runs
https://openml.org/search?type=data&status=active&id=43551
https://openml.org/search?type=data&status=active&id=1044
https://www.openml.org/search?type=data&status=active&id=41787&sort=runs
https://www.openml.org/search?type=data&sort=runs&status=active&id=1477
https://www.openml.org/search?type=data&sort=runs&status=active&id=1476
https://openml.org/search?type=data&status=active&id=23512
https://www.openml.org/search?type=data&status=active&id=821&sort=runs
https://www.openml.org/search?type=data&status=active&id=843&sort=runs
https://openml.org/search?type=data&status=active&id=44201
https://openml.org/search?type=data&status=active&id=43904
https://www.openml.org/search?type=data&sort=runs&status=active&id=40679
https://openml.org/search?type=data&status=active&id=1120
https://openml.org/search?type=data&status=active&id=43617
https://www.openml.org/search?type=data&status=active&id=41671&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=901&status=active
https://openml.org/search?type=data&status=active&id=1046
https://www.openml.org/search?type=data&status=active&id=43923&sort=runs
https://openml.org/search?type=data&status=active&id=44226
https://openml.org/search?type=data&status=active&id=1568
https://www.openml.org/search?type=data&status=active&id=45067&sort=runs
https://www.openml.org/search?type=data&status=active&id=32&sort=runs
https://openml.org/search?type=data&status=active&id=4534&sort=runs
https://www.openml.org/search?type=data&sort=runs&status=active&id=44122
https://www.openml.org/search?type=data&status=active&id=46676&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=1461&status=active
https://www.openml.org/search?type=data&sort=runs&id=43039&status=active
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Name OpenML ID Domain Features Samples Targets Categorical Feats.

GesturePhase Segmen-
tation Processed

4538 Human-Computer Inter-
action

32 9873 5 0

jasmine 41143 Natural Language Pro-
cessing

144 2984 2 136

kc1 1067 Software Engineering 21 2109 2 0

kr-vs-kp 3 Game Strategy 36 3196 2 36

madeline 41144 Artificial 259 3140 2 0

mfeat-factors 12 Handwriting Recogni-
tion

216 2000 10 0

ozone-level-8hr 1487 Environmental 72 2534 2 0

pc4 1049 Software Engineering 37 1458 2 0

philippine 41145 Bioinformatics 308 5832 2 0

phoneme 1489 Audio 5 5404 2 0

qsar-biodeg 1494 Environmental 41 1055 2 0

Satellite 40900 Environmental Science 36 5100 2 0

segment 40984 Computer Vision 16 2310 7 0

steel-plates-fault 40982 Industrial 27 1941 7 0

sylvine 41146 Environmental Science 20 5124 2 0

vehicle 54 Image Classification 18 846 4 0

wilt 40983 Environmental 5 4839 2 0

wine-quality-white 40498 Food and Beverage 11 4898 7 0

yeast 181 Biology 8 1484 10 0
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C. Performance Comparison on 29 AMLB Classification Datasets
Scores are normalized on all the baselines (0 = worst, 1 = best) per dataset; all methods are tuned for ROC-AUC, so
secondary metrics may not reflect their true rank.

Mean Normalized Mean Mean

ROC Acc. F1 CE ECE ROC Acc. F1 CE ECE Time (s)

(↑) (↑) (↑) (↓) (↓) (↑) (↑) (↑) (↓) (↓)

Real-TabPFN 0.976 0.932 0.939 0.011 0.107 0.932 0.862 0.771 0.337 0.040 2.921

±0.01 ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.02 ±0.04 ±0.03 ±0.01 ±0.57

TabPFN 0.954 0.906 0.920 0.036 0.111 0.929 0.857 0.767 0.347 0.042 2.793

(default) ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.04 ±0.03 ±0.01 ±0.49

Autogluon(V1, 0.928 0.888 0.916 0.040 0.108 0.926 0.856 0.769 0.311 0.041 9660.060

BQ) (tuned) ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.04 ±0.03 ±0.01 ±514.65

XGB 0.842 0.748 0.759 0.268 0.367 0.920 0.844 0.739 0.432 0.066 14444.307

(tuned) ±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.02 ±0.02 ±0.04 ±0.08 ±0.03 ±11.99

CatBoost 0.832 0.776 0.790 0.186 0.285 0.920 0.844 0.741 0.408 0.057 14437.103

(tuned) ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.04 ±0.06 ±0.02 ±4.79

LightGBM 0.781 0.720 0.767 0.252 0.361 0.915 0.841 0.741 0.443 0.063 14410.417

(tuned) ±0.02 ±0.03 ±0.02 ±0.03 ±0.04 ±0.02 ±0.02 ±0.04 ±0.11 ±0.02 ±1.37

CatBoost 0.761 0.731 0.783 0.170 0.249 0.913 0.839 0.748 0.404 0.053 5.874

(default) ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.04 ±0.04 ±0.01 ±0.74

Random Forest 0.727 0.650 0.644 0.376 0.462 0.913 0.834 0.716 0.386 0.074 14404.904

(tuned) ±0.02 ±0.03 ±0.03 ±0.04 ±0.03 ±0.02 ±0.02 ±0.05 ±0.07 ±0.02 ±0.15

LightGBM 0.693 0.684 0.747 0.307 0.407 0.908 0.836 0.745 0.461 0.068 0.583

(default) ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 ±0.02 ±0.02 ±0.04 ±0.06 ±0.02 ±0.06

XGB 0.665 0.643 0.725 0.330 0.533 0.906 0.834 0.743 0.468 0.079 0.814

(default) ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 ±0.02 ±0.02 ±0.04 ±0.06 ±0.02 ±0.09

Random Forest 0.640 0.633 0.672 0.553 0.425 0.907 0.833 0.727 0.432 0.073 0.488

(default) ±0.04 ±0.03 ±0.03 ±0.04 ±0.03 ±0.02 ±0.02 ±0.04 ±0.19 ±0.02 ±0.03

SVM 0.571 0.531 0.537 0.292 0.169 0.887 0.810 0.680 0.455 0.044 14412.047

(tuned) ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.02 ±0.02 ±0.04 ±0.04 ±0.01 ±3.05

MLP 0.512 0.442 0.480 0.345 0.294 0.883 0.802 0.664 0.493 0.058 2.133

(default) ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.02 ±0.05 ±0.05 ±0.02 ±0.19

MLP (sklearn) 0.458 0.411 0.448 0.432 0.306 0.877 0.800 0.653 0.764 0.059 14408.730

(tuned) ±0.03 ±0.03 ±0.03 ±0.04 ±0.03 ±0.02 ±0.02 ±0.06 ±0.65 ±0.02 ±0.34

Log. Regr. 0.401 0.354 0.391 0.386 0.241 0.874 0.789 0.637 inf 0.049 14406.416

(tuned) ±0.04 ±0.03 ±0.04 ±0.04 ±0.03 ±0.02 ±0.02 ±0.04 ±0.03 ±0.02 ±0.47

SVM 0.388 0.406 0.430 0.357 0.202 0.872 0.794 0.672 0.482 0.046 2.887

(default) ±0.04 ±0.03 ±0.03 ±0.04 ±0.02 ±0.02 ±0.02 ±0.04 ±0.03 ±0.01 ±0.60

Log. Regr. 0.209 0.185 0.186 0.483 0.348 0.857 0.778 0.600 0.529 0.062 0.609

(default) ±0.03 ±0.03 ±0.03 ±0.04 ±0.04 ±0.02 ±0.02 ±0.04 ±0.03 ±0.02 ±0.10
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