
Recurrent Memory for Online Interdomain
Gaussian Processes

Wenlong Chen1,∗, Naoki Kiyohara1,2,∗, Harrison Bo Hua Zhu3,1,∗,
Jacob Curran-Sebastian3, Samir Bhatt3,1, Yingzhen Li1,

1Imperial College London 2Canon Inc. 3University of Copenhagen
wenlong.chen21@imperial.ac.uk n.kiyohara23@imperial.ac.uk

harrison.zhu@sund.ku.dk yingzhen.li@imperial.ac.uk

Abstract

We propose a novel online Gaussian process (GP) model that is capable of capturing
long-term memory in sequential data in an online learning setting. Our model, On-
line HiPPO Sparse Variational Gaussian Process (OHSVGP), leverages the HiPPO
(High-order Polynomial Projection Operators) framework, which is popularized in
the RNN domain due to its long-range memory modeling capabilities. We interpret
the HiPPO time-varying orthogonal projections as inducing variables with time-
dependent orthogonal polynomial basis functions, which allows the SVGP inducing
variables to memorize the process history. We show that the HiPPO framework fits
naturally into the interdomain GP framework and demonstrate that the kernel matri-
ces can also be updated online in a recurrence form based on the ODE evolution of
HiPPO. We evaluate OHSVGP with online prediction for 1D time series, continual
learning in discriminative GP model for data with multidimensional inputs, and
deep generative modeling with sparse Gaussian process variational autoencoder,
showing that it outperforms existing online GP methods in terms of predictive
performance, long-term memory preservation, and computational efficiency.

1 Introduction

Gaussian processes (GPs) are popular choices for modeling time series due to their functional
expressiveness and uncertainty quantification abilities [Roberts et al., 2013, Fortuin et al., 2020].
However, GPs are computationally expensive and memory intensive, with cubic and quadratic
complexities, respectively. In online regression settings, such as weather modeling, the number of
time steps can be very large, quickly making GPs infeasible. Although variational approximations,
such as utilizing sparse inducing points (SGPR [Titsias, 2009]; SVGP [Hensman et al., 2013, 2015a])
and Markovian GPs [Särkkä and Solin, 2019, Wilkinson et al., 2021], have been proposed to address
the computational complexity, it would still be prohibitive to re-fit the GP model from scratch every
time new data arrives. Bui et al. [2017] proposed an online sparse variational GP (OSVGP) learning
method that sequentially updates the GP posterior distribution only based on the newly arrived data.
However, as indicated in their paper, their models may not maintain the memory of the previous data,
as the inducing points will inevitably shift as new data arrive. This is a major drawback, as their
models may not model long-term memory unless using a growing number of inducing points.

In deep learning, as an alternative to Transformers [Vaswani et al., 2017], significant works on
state space models (SSMs) have been proposed to model long-term memory in sequential data.
Originally proposed to instill long-term memory in recurrent neural networks, the HiPPO (High-order
Polynomial Projection Operators) framework [Gu et al., 2020] provides mathematical foundations for

*Equal contribution.
Source Code: https://github.com/harrisonzhu508/HIPPOSVGP.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/harrisonzhu508/HIPPOSVGP

compressing continuous-time signals into memory states through orthogonal polynomial projections.
HiPPO is computationally efficient and exhibits strong performance in long-range memory tasks, and
forms the basis for the state-of-the-art SSMs, e.g., structured state space sequential (S4) model [Gu
et al., 2022] and Mamba [Gu and Dao, 2023, Dao and Gu, 2024].

Inspired by HiPPO, we propose Online HiPPO SVGP (OHSVGP), by applying the HiPPO framework
to SVGP in order to leverage the long-range memory modeling capabilities. Our method interprets the
HiPPO time-varying orthogonal projections as inducing variables of an interdomain SVGP [Lázaro-
Gredilla and Figueiras-Vidal, 2009, Leibfried et al., 2020, Van der Wilk et al., 2020], where the basis
functions are time-dependent orthogonal polynomials. We show that we are able to significantly
resolve the memory-loss issue in OSVGP, thereby opening up the possibility of applying GPs to
long-term online learning tasks. In summary, our contributions include:

• (Section 3) We demonstrate that HiPPO integrates into the interdomain GPs by interpreting
the HiPPO projections as inducing variables with time-dependent orthogonal polynomial
basis functions. This allows the inducing variables to compress historical data, capturing
long-term information.

• (Section 3.2 & 5.1) We show that the kernel matrices can leverage the efficient ODE
evolution of the HiPPO framework, bringing an extra layer of computational efficiency to
OHSVGP.

• (Section 5) We demonstrate OHSVGP on a variety of online/continual learning tasks includ-
ing time series prediction, continual learning on UCI benchmarks, and continual learning in
Gaussian process variational autoencoder, showing that it outperforms other online sparse
GP baselines in terms of predictive performance, long-term memory preservation, and
computational efficiency.

2 Background

In this section, we provide a brief overview of GPs, inducing point methods, online learning with
GPs, and Gaussian process variational autoencoders. In addition, we review the HiPPO method,
which is the basis of our proposed method.

2.1 Gaussian processes

Let X be the input space. For time series data, X = [0,∞), the set of non-negative real numbers.
A Gaussian process (GP) f ∼ GP(0, k) is defined with a covariance function k : X × X → R.
It has the property that for any finite set of input points X = [x1, . . . , xn]

⊺, the random vector
f ≡ f(X) = [f(x1), . . . , f(xn)]

⊺ ∼ N (0,Kff), where Kff is the kernel matrix with entries
[k(X,X)]ij ≡ [Kff]ij = k(xi, xj). For notational convenience and different sets of input points
X1 and X2, we denote the kernel matrix as Kf1f2 or k(X1,X2). The computational and memory
complexities of obtaining the GP posterior on X1 scale cubically and quadratically respectively,
according to n1 = |X1|. Given responses y and inputs X, a probabilistic model can be defined as
yi ∼ p(yi | f(xi)) with a GP prior f ∼ GP(0, k), where p(yi | f(xi)) is the likelihood distribution.
However, for non-conjugate likelihoods, the posterior distribution is intractable, and approximate
inference methods are required, such as, but not limited to, variational inference [Titsias, 2009,
Hensman et al., 2013, 2015a] and Markov chain Monte Carlo (MCMC) [Hensman et al., 2015b].

2.2 Variational inference and interdomain Gaussian processes

To address the intractability and cubic complexity of GPs, Sparse Variational Gaussian Processes
(SVGP; [Titsias, 2009, Hensman et al., 2013, 2015b]) cast the problem as an optimization prob-
lem. By introducing M inducing points Z ∈ XM that correspond to M inducing variables
u = [f(z1), . . . , f(zM)]⊺, the variational distribution q(f ,u) is defined as q(f ,u) := p(f | u)qθ(u),
where qθ(u) is the variational distribution of the inducing variables with parameters θ. Then, the
evidence lower bound (ELBO) is defined as

log p(y) ≥
∑n

i=1 Eq(fi)[log p(yi | fi)]− KL [qθ(u)∥p(u)] =: Lθ, (1)

where q(fi) =
∫
p(fi | u)qθ(u)du is the posterior distribution of fi ≡ f(xi). Typical choices for

the variational distribution are qθ(u) = N (u;mu,Su), where mu and Su are the free-form mean

2

and covariance of the inducing variables, and yields the posterior distribution:

q(fi) = N (fi;KfiuK
−1
uumu,Kfifi −KfiuK

−1
uu[Kuu − Su]K

−1
uuKufi). (2)

When the likelihood is conjugate Gaussian, the ELBO can be optimized in closed form and mu

and Su can be obtained in closed form (SGPR; Titsias [2009]). In addition to setting the in-
ducing variables as the function values, interdomain GPs [Lázaro-Gredilla and Figueiras-Vidal,
2009] propose to generalize the inducing variables to um :=

∫
f(x)ϕm(x)dx, where ϕm(x) are

basis functions, to allow for further flexibility. This yields [Kfu]m =
∫
k(x, x′)ϕm(x′)dx′ and

[Kuu]nm =
s

k(x, x′)ϕn(x)ϕm(x′)dxdx′.

We see that the interdomain SVGP bypasses the selection of the inducing points Z ∈ RM , and
reformulates it with the selection of the basis functions ϕi. The basis functions dictate the structure of
the kernel matrices, which in turn modulate the function space of the GP approximation. In contrast,
SVGP relies on the inducing points Z, which can shift locations according to the training data. Some
examples of basis functions include Fourier basis functions [Hensman et al., 2018] and the Dirac
delta function δzm , the latter recovering the standard SVGP inducing variables.

2.3 Online Gaussian processes

In this paper, we focus on online learning with GPs, where data arrives sequentially in batches
(Xt1 ,yt1), (Xt2 ,yt2), . . . etc. For example, in the time series prediction setting, the data arrives in in-
tervals of (0, t1), (t1, t2), . . . etc. The online GP learning problem is to sequentially update the GP pos-
terior distribution as data arrives. Suppose that we have already obtained pt1(y|f)pt1(f |ut1)qt1(ut1)
of the likelihood and variational approximation (with inducing points Zt1), from the first data batch
(Xt1 ,yt1). Online SVGP (OSVGP; [Bui et al., 2017]) utilizes the online learning ELBO

nt2∑
i=1

E
qt2 (fi)

[log pt2(yi | fi)] + KL (q̃t2(ut1) ∥ pt1(ut1))

− KL (q̃t2(ut1) ∥ qt1(ut1))− KL (qt2(ut2) ∥ pt2(ut2)) ,

(3)

where yi ∈ yt2 for i = 1, . . . , nt2 and q̃t2(ut1) :=
∫
pt2(ut1 |ut2)qt2(ut2)dut2 . Unfortunately, with

more and more tasks, OSVGP may not capture the long-term memory in the data since as new data
arrives, it is not guaranteed that the inducing points after optimization can sufficiently cover all the
previous tasks’ data domains.

2.4 Gaussian process variational autoencoders

Gaussian processes can be embedded within a variational autoencoder (VAE; [Kingma and Welling,
2014]) framework, giving rise to the Gaussian process variational autoencoder (GPVAE; [Casale et al.,
2018, Fortuin et al., 2020, Ashman et al., 2020, Jazbec et al., 2021, Zhu et al., 2023]). For sparse GPs
with inducing variables, Jazbec et al. [2021] introduced the SVGPVAE, which combines the sparse
variational GP (SVGP) with the VAE formulation. The likelihood p(y | φθ(f)) is parameterized by a
decoder network φθ, which takes GP latent draws f as input, together with the variational inducing
posterior qθ(u | y). This posterior, qθ(u | ϕ(y)), is parameterized by the encoder network ϕ. Finally,
the latent GP f is typically modeled as a multi-output GP with independent components. GPVAEs
have been shown to successfully model high-dimensional time series such as weather data and videos
[Zhu et al., 2023, Fortuin et al., 2020]. In this work, we consider the SVGPVAE model defined in
Jazbec et al. [2021] for one set of our experiments, and the detailed specification of the model and
training objective can be found in Appendix D.2.

2.5 HiPPO: recurrent memory with optimal polynomial projections

The HiPPO framework [Gu et al., 2020] provides mathematical foundations for compressing
continuous-time signals into finite-dimensional memory states through optimal polynomial pro-
jections. Given a time series y(t), HiPPO maintains a memory state c(t) ∈ RM that optimally
approximates the historical signal {y(x)}x≤t. The framework consists of a time-dependent measure
ω(t)(x) over (−∞, t] that defines input importance, along with normalized polynomial basis func-
tions {g(t)n (x)}M−1

n=0 that are orthonormal under ω(t)(x), satisfying
∫ t

−∞ g
(t)
m (x)g

(t)
n (x)ω(t)(x)dx =

3

δmn. The historical signal is encoded through projection coefficients given by cn(t) =∫ t

−∞ y(x)g
(t)
n (x)ω(t)(x)dx. This yields the approximation y(x) ≈

∑M−1
n=0 cn(t)gn(x) for x ∈

(−∞, t], minimizing the L2-error
∫ t

−∞ ∥y(x)−
∑

n cn(t)gn(x)∥2ω(t)(x)dx. Differentiating c(t) :=

[c0(t), . . . , cM−1(t)]
⊺ induces a linear ordinary differential equation d

dtc(t) = A(t)c(t) +B(t)y(t)
with matrices A(t),B(t) encoding measure-basis dynamics. Discretization yields the recurrence
of the form ct = Atct−1 + Btyt enabling online updates. The structured state space sequential
(S4) model [Gu et al., 2022] extends HiPPO with trainable parameters and convolutional kernels,
while Mamba [Gu and Dao, 2023, Dao and Gu, 2024] introduces hardware-aware selective state
mechanisms, both leveraging HiPPO for efficient long-range memory modeling. HiPPO supports
various measure-basis configurations [Gu et al., 2020, 2023]. A canonical instantiation, HiPPO-LegS,
uses a uniform measure ω(t)(x) = 1

t1[0,t](x) with scaled Legendre polynomials adapted to [0, t],
g
(t)
n (x) = (2m + 1)1/2Pm

(
2x
t − 1

)
. This uniform measure encourages HiPPO-LegS to keep the

whole past in memory.

3 Interdomain inducing point Gaussian processes with HiPPO

We bridge the HiPPO framework with interdomain Gaussian processes by interpreting HiPPO’s state
vector defined by time-varying orthogonal projections as interdomain inducing points. This enables
adaptive compression of the history of a GP while preserving long-term memory.

3.1 HiPPO as interdomain inducing variables

Recall that in an interdomain setting in Section 2.2, inducing variables are defined through an
integral transform against a set of basis functions. Let f ∼ GP(0, k), and consider time-dependent
basis functions ϕ

(t)
m (x) = g

(t)
m (x)ω(t)(x), where g

(t)
m are the orthogonal functions of HiPPO and

ω(t) is the associated measure. We define the corresponding interdomain inducing variables as
u
(t)
m =

∫
f(x)ϕ

(t)
m (x)dx, which is not a standard random variable as in Section 2.2. Rather, it is a

random functions (i.e. stochastic processes) over time (u(t)
m ≡ um(t)) due to time-dependent basis

functions. These inducing variables adapt in time, capturing long-range historical information in a
compact form via HiPPO’s principled polynomial projections.

3.2 Adapting the kernel matrices over time

When new observations arrive at later times in a streaming scenario, we must adapt both the prior
cross-covariance Kfu and the prior covariance of the inducing variables Kuu. In particular, the basis
functions in our HiPPO construction evolve with time, so the corresponding kernel quantities also
require updates. Below, we describe how to compute and update these matrices at a new time t2
given their values at time t1. For clarity, we first discuss Kfu, then Kuu.

Prior cross-covariance K
(t)
fu . Recall that for a single input xn, the prior cross-covariance with

the m-th inducing variable is
[
K

(t)
fu

]
nm

=
∫
k (xn, x)ϕ

(t)
m (x)dx. We can compute the temporal

evolution of K(t)
fu in a manner consistent with the HiPPO approach, leveraging the same parameters

A(t) and B(t). Specifically,

d
dt

[
K

(t)
fu

]
n,:

= A(t)
[
K

(t)
fu

]
n,:

+B(t)k (xn, t) , (4)

where
[
K

(t)
fu

]
n,:

is the n-th row of K(t)
fu . The matrices A(t) and B(t) depend on the specific choice

of the HiPPO measure and basis functions. In our experiments, we employ HiPPO-LegS, whose
explicit matrix forms are provided in Appendix A. One then discretizes in t (e.g. using an Euler
method or a bilinear transform) to obtain a recurrence update rule.

Prior inducing covariance K(t)
uu. The ℓm-th element of the prior covariance matrix for the inducing

variables is given by
[
K

(t)
uu

]
ℓm

=
s

k (x, x′)ϕ
(t)
ℓ (x)ϕ

(t)
m (x′)dxdx′. Since k(x, x′) depends on both

4

B
as

is

(a)
φ

(t1)
0 (x)

φ
(t1)
1 (x)

φ
(t1)
2 (x)

φ
(t1)
3 (x)

φ
(t2)
0 (x)

φ
(t2)
1 (x)

φ
(t2)
2 (x)

φ
(t2)
3 (x)

t1 t2

C
oe

ff
. q

(u
(x

))

(b)
q(u

(x)
0)

q(u
(x)
1)

q(u
(x)
2)

q(u
(x)
3)

G
P

(c)
f|Dold

f|Dnew

Old data
New data

O
H

SV
G

P

(d)
qt1(f) =

∫
p(f|u(t1))q(u(t1))du(t1)

qt2(f) =

∫
p(f|u(t2))q(u(t2))du(t2)

t1 t2

R
ec

on
.

(e)
Recon. from q(u(t1))

Recon. from q(u(t2))

Figure 1: Online HiPPO Sparse Variational Gaussian Process (OHSVGP) on a toy time series with 2
tasks. Here x is used to denote arbitrary time index. (a) Time-dependent basis functions with end
time index x = t1 and x = t2. (b) Evolution of optimal approximate posterior of inducing variables
(mean ±2 marginal standard deviation). (c), (d), (e) illustrate predictive mean ±2 standard deviation
of posterior online GP, OHSVGP and finite basis reconstruction of posterior OHSVGP, respectively.

x and x′, a recurrence update rule based on the original HiPPO formulation, which is designed for
single integral, can not be obtained directly for K(t)

uu. Fortunately, for stationary kernels, Bochner
Theorem [Rudin, 1994] can be applied to factorize the double integrals into two separate single
integrals, which gives rise to Random Fourier Features (RFF) approximation [Rahimi and Recht,
2007]: for a stationary kernel k(x, x′) = k(|x − x′|), RFF approximates it as follows: k(x, x′) ≈
1
N

∑N
n=1 [cos (wnx) cos (wnx

′) + sin (wnx) sin (wnx
′)], where wn ∼ p(w) is the spectral density

of the kernel. Substituting this into the double integral factorizes the dependency on x and x′,
reducing [K

(t)
uu]ℓm to addition of products of one-dimensional integrals. Each integral, with the

form of either
∫
cos(wdx)ϕ

(t)
ℓ (x)dx or

∫
sin(wdx)ϕ

(t)
ℓ (x)dx, again corresponds to a HiPPO-ODE

in time. By sampling multiple random features, updating them recurrently to time t, and averaging,
we obtain RFF approximation of K(t)

uu. In addition, more advanced Fourier feature approximation
techniques (e.g., [Ton et al., 2018]) can be leveraged for non-stationary kernels. The details of the
ODE for recurrent updates of the RFF samples appear in Appendix B.1. Alternatively, one may
differentiate K

(t)
uu directly with respect to t. This yields a matrix ODE of the form different from the

original HiPPO formulation. For details, see Appendix B.2. Empirically, a vanilla implementation
of this approach shows numerical unstability. Hence, we conduct our experiments based on RFF
approximation.

Sequential variational updates. Having obtained K
(t2)
fu ,K

(t2)
uu at a new time t2 > t1, we perform

variational updates following the online GP framework described in Section 2.3. This ensures the
posterior at time t2 remains consistent with both the new data and the previous posterior at time
t1, based on K

(t1)
fu ,K

(t1)
uu . Overall, this procedure endows interdomain HiPPO-based GPs with the

ability to capture long-term memory online. By viewing the induced kernel transforms as ODEs in
time, we efficiently preserve the memory of past observations while adapting our variational posterior
in an online fashion. Figure 1b illustrates the evolution of the optimal posterior q(u(x)) as time x
increases on a toy online time series regression problem with two tasks, where x determines the end
of the recurrent update for the prior cross and inducing covariance matrices (evolved up to K

(x)
fu

and K
(x)
uu , respectively). Furthermore, when x > t1, we will update q(u(x)) online with the two

data points from the second task by optimizing the online ELBO (Eq. 3), which gives the discrete
jump at x = t1. Figure 1d shows the posterior OHSVGP compared with the fit of the gold-standard
online GP in Figure 1c. Notably, if f ∼ qt(f), then q(u

(t)
m)

d
=

∫
f(x)ϕ

(t)
m (x)dx (detailed derivation

in Appendix C). Therefore, our framework also provides a finite basis approximation of the posterior
OHSVGP as a byproduct: f =

∑M
m=1 u

(t)
m g

(t)
m (x), u(t)

m ∼ q(u
(t)
m). Figure 1e plots the finite basis

approximation/reconstruction and it is close to the posterior OHSVGP for this simple example.

5

3.3 Extending OHSVGP to multidimensional input

For multidimensional input data, suppose there is a time order for the first batch of training points
with inputs {x(1)

n }N1
n=1, such that x(1)

i appears after x(1)
j if i > j, and we further assume xi appears

at time index i∆t (i.e., x(i∆t) = x
(1)
i), where ∆t is a user-specified constant step size. In this case,

we can again obtain interdomain prior covariance matrices via HiPPO recurrence. For example, a
forward Euler method applied to the ODE in Eq. 4 for Kt

fu yields

[K
((i+1)∆t)
fu]n,: = [I+∆tA(i∆t)][K

(i∆t)
fu]n,: +∆tB(i∆t)k

(
x(1)
n ,x

(1)
i

)
. (5)

The equation above can be viewed as a discretization (with step size ∆t) of an ODE solving path
integrals of the form

∫ N1∆t

0
k
(
x
(1)
n ,x(s)

)
ϕ
(t)
m (s)ds. The i-th training input x(1)

i is assumed to be

x
(1)
i := x(i∆t) and thus the path integral is approximately solved with discretized recurrence based

on the training inputs corresponding to {x(i∆t)}Ni=1. We continue the recurrence for the second
task with ordered training inputs {x(2)

n }N2
n=1 by assigning time index (N1 + i)∆t to its i-th instance.

and keep the recurrence until we learn all the tasks continually. In practice, one may use a multiple
of ∆t as the step size to accelerate the recurrence, e.g., instead of using all the training inputs, one
can compute the recurrence based on {x1,x3,x5, · · · } only by using step size 2∆t. When there
is no natural time order for training instances in each task, such as in standard continual learning
applications, we need to sort the instances with some criterion to create pseudo time order to fit
OHSVGP, similar to the practice of applying SSMs to non-sequence data modalities, e.g., SSMs,
when applied to vision tasks, assign order to patches in an image for recurrence update of the memory
[Zhu et al., 2024]. In our experiments, we show that the performance of OHSVGP, when applied to
continual learning, depends on the sorting criterion used.

4 Related work

Online sparse GPs. Previous works mainly focus on reducing the sparse approximation error
with different approximate inference techniques, such as variational inference [Bui et al., 2017,
Maddox et al., 2021], expectation propagation [Csató and Opper, 2002, Bui et al., 2017], Laplace
approximation [Maddox et al., 2021], and approximation enhanced with replay buffer [Chang et al.,
2023]. The orthogonal research problem of online update of inducing points remains relatively
underexplored, and pivoted-Cholesky [Burt et al., 2019] as deployed in Maddox et al. [2021], Chang
et al. [2023] is one of the most effective approaches for online update of inducing points up to date.
We tackle this problem by taking advantage of the long-term memory capability of HiPPO to design
an interdomain inducing variable based method and the associated recurrence based online update
rules. Notably, our HiPPO inducing variables in principle are compatible with all the aforementioned
approximate inference frameworks since only the way of computing prior covariance matrices will
be different from standard online sparse GPs.

Interdomain GPs. To our knowledge, OHSVGP is the first interdomain GP method in the context
of online learning. Previous interdomain GPs typically construct inducing variables via integration
based on a predefined measure (e.g., a uniform measure over a fixed interval [Hensman et al., 2018]
or a fixed Gaussian measure [Lázaro-Gredilla and Figueiras-Vidal, 2009]) to prevent diverging
covariances, and this predefined measure may not cover all regions where the time indices from
future tasks are, making them unsuitable for online learning. In contrast, OHSVGP bypasses this
limitation by utilizing adaptive basis functions constructed based on time-dependent measure which
keeps extending to the new time region as more tasks arrive.

Markovian GPs. Markovian GPs [Särkkä and Solin, 2019, Wilkinson et al., 2021] have similar
recurrence structure during inference and training due to their state space SDE representation.
However, Markovian GPs are popularized due to their O(n) computational complexity and is not
explicitly designed for online learning.

5 Experiments

Applications & datasets. We evaluate OHSVGP against baselines in the following tasks.

6

• Time series prediction. We consider regression benchmarks, Solar Irradiance [Lean, 2004],
and Audio Signal [Bui and Turner, 2014] produced from the TIMIT database [Garifolo
et al., 1993]. We preprocess the two datasets following similar procedures described in Gal
and Turner [2015] and Bui et al. [2017], respectively (the train-test split is different due
to random splitting). In addition, we consider a daily death-count time series from Santa
Catarina State, Southern Brazil spanning the March 2020 to February 2021 COVID-19
pandemic, obtained from Hawryluk et al. [2021]. We construct online learning tasks by
splitting each dataset into 10 (5 for COVID) sequential partitions with an equal number of
training instances.

• Continual learning. We consider continual learning on two UCI datasets with multi-dim
inputs, Skillcraft [Blair et al., 2013] and Powerplant [Tfekci and Kaya, 2014], using the
same data preprocessing procedure as in Stanton et al. [2021]. We construct two types of
continual learning problems by first sorting the data points based on either the values in their
first dimension or their L2 distance from the origin, and then splitting the sorted datasets
into 10 sequential tasks with an equal number of training instances.

• High dimensional time series prediction. We evaluate GPVAEs on hourly climate data
from ERA5 [Copernicus Climate Change Service, Climate Data Store, 2023, Hersbach et al.,
2023], comprising 17 variables across randomly scattered locations around the UK from
January 2020 onward. The dataset is split into 10 sequential tasks of 186 hourly time steps
each.

Baseline. We compare OHSVGP with OSVGP [Bui et al., 2017] and OVC (Online Variational
Conditioning; [Maddox et al., 2021]). At the beginning of each task, OSVGP initialize the induing
points by sampling from the old inducing points and the new data points, while OVC initializes them
via pivoted-Cholesky [Burt et al., 2019] and we consider both fixing the initialized inducing points
as in Chang et al. [2023] (OVC) or keep training them as in Maddox et al. [2021] (OVC-optZ). For
time series regression with Gaussian likelihood, we consider OHSGR and OSGPR (OHSVGP and
OSVGP based on closed form ELBO), and we further consider OVFF (OSGPR based on variational
Fourier feature (VFF), an interdomain inducing point approach from Hensman et al. [2018]).

Hyperparameters. Within each set of experiments, all the models are trained using Adam [Kingma
and Ba, 2015] with the same learning rate and number of iterations. For OHSVGP, we construct
inducing variables based on HiPPO-LegS [Gu et al., 2020] (see Appendix F.4 for visualizations of
using other HiPPO variants) and use 1000 RFF samples. We use ARD-RBF kernel, except for OVFF,
tailored specifically to Matérn kernels, where we use Matérn- 52 kernel instead. Similar to Maddox
et al. [2021], we do not observe performance gain by keeping updating kernel hyperparameters
online, and we include results with trainable kernel hyperparameters in Appendix F.2 for time series
regression, but the performance becomes unstable when number of tasks is large. Thus, we either only
train the kernel hyperparameters during the initial task and keep them fixed thereafter (Section 5.3)
or obtain them from a full GP model trained over the initial task. It is also worth noting that OVFF
requires computing covariances as integrals over a predefined interval covering the whole range
of the time indices from all tasks (including unobserved ones), which is impractical in real online
learning scenarios. For our experiments, we set the two edges of this interval to be the minimum and
maximum time index among the data points from all the tasks, respectively.

Evaluations & metrics. We report results in Negative Log Predictive Density (NLPD) in the main
text, and Root Mean Squared Error (RMSE) in Appendix F.1 (expected calibration error (ECE; [Guo
et al., 2017]) for COVID data instead), which shows consistent conclusions as NLPD. We report
the mean and the associated 95% confidence interval obtained from 5 (3 for experiments on ERA5)
independent runs.

5.1 Online time series prediction

Time series regression. Figure 2 shows NLPD (over the past tasks) of different methods during
online learning through the 10 tasks for Solar Irradiance and Audio dataset. Overall, OHSGPR
consistently achieves the best performance with OVC performing competitively, especially as we
learn more and more tasks, suggesting OHSGPR effectively preserves long-term memory through
its HiPPO-based memory mechanism. OSGPR shows catastrophic forgetting starting around task

7

1 2 3 4 5 6 7 8 9 10
Tasks

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

NL
PD

OSGPR
OVC
OVC-optZ
OVFF
OHSGPR

(a) Solar, M=50

1 2 3 4 5 6 7 8 9 10
Tasks

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

NL
PD

(b) Solar, M=150

1 2 3 4 5 6 7 8 9 10
Tasks

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

NL
PD

(c) Audio, M=100

1 2 3 4 5 6 7 8 9 10
Tasks

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

NL
PD

(d) Audio, M=200

Figure 2: Test set NLPD over the learned tasks vs. number of learned tasks for Solar Irradiance and
Audio signal prediction dataset.

200 100 0 100 200

2

0

2
Train
Test
Z
Splits

(a) OSGPR

200 100 0 100 200
2

0

2

(b) OVC

200 100 0 100 200
2

0

2

(c) OVFF

200 100 0 100 200
2

0

2

(d) OHSGPR

Figure 3: Predictive mean ±2 standard deviation of OSGPR, OVC, OVFF, and OHSGPR after task
10 of the Solar dataset. M = 50 inducing variables are used.

5, especially when the number of inducing points M is small. Although OVC-optZ also initializes
inducing points with pivoted-Cholesky as OVC, with further optimization, its performance starts to
degrade starting from task 6 for the audio dataset when M = 100, which suggests the online ELBO
objective cannot guarantee optimal online update of inducing points that preserve memory. OVFF
tends to perform well at the later stage. However, during the first few tasks, it underfits the data
significantly compared with other methods since its inducing variables are computed via integration
over a predefined interval capturing the region of all the tasks, which is unnecessarily long and
suboptimal for learning at the early stage.

In Figure 3, we compare the final predictive distributions for different methods after finishing online
learning all 10 tasks of Solar Irradiance. The inducing points Z for OSGPR tend to move to the
regions where the later tasks live after online training, and the prediction of OSGPR in the initial
regions without sufficient inducing points becomes close to the uninformative prior GP. In contrast,
OHSGPR maintains consistent performance across both early and recent time periods.

Infectious disease modeling We replace the Gaussian likelihood with a non-conjugate Negative
Binomial likelihood to capture the over-dispersion in COVID-19 death counts. All methods use
M ∈ {15, 30} inducing points and are trained for 5000 iterations per task with a learning rate of
0.01. Figure 4 reports the change of NLPD through online learning for the first four out of five tasks.
The wide metric variance reflects the noisy nature of death-count data as it is difficult to accurately
track down COVID-19 death counts. OHSVGP achieves the best performance overall while OSVGP
forgets Task 1 with small M .

Runtime comparison. Table 1 shows the accumulated wall-clock runtime for different meth-
ods to learn all the tasks. Unlike OSVGP and OVC-optZ, which must iteratively optimize induc-
ing points (for which we train e.g., 1000 iterations for time-series regression tasks), OHSVGP,
OVFF (both based on interdomain inducing points), and OVC (based on one-time pivoted-Cholesky
update of inducing points for each task) bypass this cumbersome optimization. In particular,

Table 1: Wall-clock accumulated runtime for learning all the
tasks on a single NVIDIA RTX3090 GPU in seconds, of dif-
ferent models for time series prediction experiments.

Solar Irradiance Audio Data COVID

Method M M M
50 150 100 200 15 30

OSGPR/OSVGP 140 149 144 199 525 530
OVC 0.450 0.620 0.558 0.863 345 360
OVFF 0.327 0.354 0.295 0.356 - -
OHSGPR/OHSVGP 0.297 0.394 0.392 0.655 370 380

OHSVGP recurrently evolves Kfu

and Kuu for each new task. For
regression problems where closed-
form posterior can be obtained,
OHSGPR requires no training at all.
As a result, OHSGPR, OVC and
OVFF run significantly faster, adapt-
ing to all tasks within a couple of sec-
onds for Solar Irradiance and Audio
data. For COVID data, even when
free-form variational parameters of

8

1 5
Tasks

2.0

2.2

2.4

NL
PD

Task 1

2 5
Tasks

3.2

3.4
Task 2

3 5
Tasks

3.0

3.1

Task 3

4 5
Tasks

3.0

3.2

Task 4
OSVGP OVC OVC-optZ OHSVGP

(a) M=15

1 5
Tasks

1.9
2.0
2.1

NL
PD

Task 1

2 5
Tasks

3.2

3.4
Task 2

3 5
Tasks

3.1

3.2 Task 3

4 5
Tasks

3.0

3.2

Task 4
OSVGP OVC OVC-optZ OHSVGP

(b) M=30

Figure 4: Test set NLPD on COVID dataset right after learning Task i and after learning all the tasks.

1 10
Tasks

1.0

1.5

NL
PD

Task 1
OSVGP OVC OHSVGP-k OHSVGP-o

2 10
Tasks

1.0

1.5

Task 2

4 10
Tasks

1.0

1.5

Task 4

8 10
Tasks

1.5

1.8

2.0
Task 8

(a) Skillcraft (1st dimension)

1 10
Tasks

1.0

1.5

NL
PD

Task 1
OSVGP OVC OHSVGP-k OHSVGP-o

2 10
Tasks

1.0

1.5

Task 2

4 10
Tasks

1.2

1.5

1.8
Task 4

8 10
Tasks

1.2
1.5
1.8

Task 8

(b) Skillcraft (L2)

1 10
Tasks

0.0

2.0

4.0

NL
PD

Task 1
OSVGP OVC OHSVGP-k OHSVGP-o

2 10
Tasks

0.5

1.0

1.5
Task 2

4 10
Tasks

0.0

0.2

0.4
Task 4

8 10
Tasks

0.0

0.2
Task 8

(c) Powerplant (1st dimension)

1 10
Tasks

-0.1
0.0
0.1

NL
PD

Task 1
OSVGP OVC OHSVGP-k OHSVGP-o

2 10
Tasks

-0.1

0.0

Task 2

4 10
Tasks

0.0

0.1

Task 4

8 10
Tasks

-0.1

0.0
Task 8

(d) Powerplant (L2)

Figure 5: Test set NLPD after continually learning Task i and after learning all the tasks for i = 1,
2, 4, 8. Tasks are created by splitting Powerplant and Skillcraft datasets with inputs sorted either
according to the 1st input dimension or L2 distance to the origin).

inducing variables are learned using uncollapsed ELBO, OHSVGP and OVC are still significantly
faster than OSVGP since no gradient computation is required for the inducing points.

5.2 Continual learning on UCI datasets

We use 256 inducing variables for all methods, and for each task, we train each method for 2000
iterations with a learning rate of 0.005. We only consider OVC here since initial trials show OVC-optZ
give worse results on these two datasets. As described in Section 3.3, within each task, OHSVGP
requires sorting the data points to compute prior covariance matrices via recurrence. We consider
two sorting criteria. The first one, which we call OHSVGP-o, uses the oracle order compatible with
how the tasks are created (e.g., sort with L2-distance to the origin if the tasks are initially splitted
based on it). In real-world problems, we typically do not have the information on how the distribution
shifts from task to task. Hence, we also consider OHSVGP-k, which uses a heuristic sorting method
based on kernel similarity: we select the i-th point in task j to be x

(j)
i = argmaxx∈X(j) k(x,x

(j)
i−1)

for i > 1, and the first point in first task is set to be x
(1)
1 = argmaxx∈X(1) k(x,0). Figure 5

compares the two variants of OHSVGP with OSVGP and OVC. Overall, OSVGP achieves the worst
performance and is again prone to forgetting the older tasks, especially in Figure 5c. OVC performs
decently for Skillcraft but it also demonstrates catastrophic forgetting in Figure 5c. While OHSVGP-k
achieves similar performance as OSVGP on Skillcraft, OHSVGP-o consistently outperforms the
other methods across all 4 scenarios, suggesting the importance of a sensible sorting method when
applying OHSVGP for continual learning. Here, we only report the results for Task 1, 2, 4, and 8
for concise presentation, and in Appendix F.1, we include the complete results for all the tasks (the
overall conclusion is the same). In Appendix F.3, we further visualize how different sorting methods
impact OHSVGP’s performance in continual learning with a 2D continual classification problem.

5.3 Continual learning for high dimensional time series prediction

All models share a two-layer MLP encoder–decoder, a 20-dimensional latent space, and a multi-output
GP with independent components; we use M ∈ {50, 100} and train each task for 20 epochs with
learning rate 0.005 on single NVIDIA A6000 GPU. The continual learning in SVGPVAE is achieved

9

1 10
Tasks

0

5
NL

PD

Task 1

2 10
Tasks

0

5

10
Task 2

4 10
Tasks

0

5

10
Task 4

8 10
Tasks

0

10

20
Task 8

OSVGP OVC OVC-per-dim OHSVGP

(a) M=50

1 10
Tasks

0

2

4

NL
PD

Task 1

2 10
Tasks

0

2
Task 2

4 10
Tasks

0

2
Task 4

8 10
Tasks

2

4
Task 8

OSVGP OVC OVC-per-dim OHSVGP

(b) M=100

Figure 6: Test set NLPD after continually learning Task i and after learning all the tasks for i = 1, 2,
4, 8, on ERA5 dataset.

by further imposing Elastic Weight Consolidation (EWC; [Kirkpatrick et al., 2017]) loss on the
encoder and decoder, which yields the vanilla baseline, Online SVGPVAE (OSVGP). Since EWC
alone leaves inducing locations non-regularized, a principled online placement rule for the inducing
points will improve the model. Thus, we further consider OVC-SVGPVAE (OVC) which adjusts
inducing points online via Pivoted-Cholesky, and OVC-SVGPVAE per dimension (OVC-per-dim),
which makes OVC more flexible by allocating a separate set of M inducing points to every latent
dimension. Our method, Online HiPPO SVGPVAE (OHSVGP), replaces standard inducing points in
SVGPVAE with HiPPO inducing variables and updates them online via recurrence. Figure 6 plots
the change of NLPD during continual learning for Task 1, 2, 4, and 8 (full results in Appendix F.1).
The performance of OHSVGP remains stable throughout, while the other methods all demonstrate
obvious catastrophic forgetting shown by the large gaps between performances after learning current
task i and after learning final task 10. Two factors plausibly explain the gap: first, standard inducing
points cannot adequately cover the long time axis, whereas OHSVGP ties its inducing variables to
basis functions rather than time locations; second, the added encoder–decoder complexity makes
optimization harder for models that must reuse a limited inducing set. Increasing M narrows the gap
but scales at O(M3) computational and O(M2) memory cost respectively, underscoring OHSVGP’s
superior efficiency.

6 Conclusion

We introduce OHSVGP, a novel online Gaussian process model that leverages the HiPPO framework
for robust long-range memory in online/continual learning. By interpreting HiPPO’s time-varying
orthogonal projections as adaptive interdomain GP basis functions, we leverage SSM for improved
online GP. This connection allows OHSVGP to harness HiPPO’s efficient ODE-based recurrent
updates while preserving GP-based uncertainty-aware prediction. Empirical results on a suite of
online and continual learning tasks show that OHSVGP outperforms existing online sparse GP
methods, especially in scenarios requiring long-term memory. Moreover, its recurrence-based
covariance updates yield far lower computational overhead than OSVGP’s sequential inducing point
optimization. This efficient streaming capability and preservation of historical information make
OHSVGP well-suited for real-world applications demanding both speed and accuracy.

Broader impact. This paper presents work whose goal is to advance machine learning research.
There may exist potential societal consequences of our work, however, none of which we feel must
be specifically highlighted here.

Acknowledgments and Disclosure of Funding

Samir Bhatt acknowledges funding from the MRC Centre for Global Infectious Disease Analysis
(reference MR/X020258/1), funded by the UK Medical Research Council (MRC). This UK funded
award is carried out in the frame of the Global Health EDCTP3 Joint Undertaking. Samir Bhatt
acknowledges support from the Danish National Research Foundation via a chair grant (DNRF160)
which also supports Jacob Curran-Sebastian. Samir Bhatt acknowledges support from The Eric and
Wendy Schmidt Fund For Strategic Innovation via the Schmidt Polymath Award (G-22-63345) which
also supports Harrison Bo Hua Zhu. Samir Bhatt acknowledges support from the Novo Nordisk
Foundation via The Novo Nordisk Young Investigator Award (NNF20OC0059309).

10

References
Matthew Ashman, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael Pearce, and Richard E Turner.

Sparse Gaussian process variational autoencoders. arXiv preprint arXiv:2010.10177, 2020.

Mark Blair, Joe Thompson, Andrew Henrey, and Bill Chen. SkillCraft1 Master Table Dataset. UCI
Machine Learning Repository, 2013. DOI: https://doi.org/10.24432/C5161N.

Thang D. Bui and Richard E. Turner. Tree-structured Gaussian process approximations. In Advances
in Neural Information Processing Systems, 2014.

Thang D. Bui, Cuong V. Nguyen, and Richard E. Turner. Streaming sparse Gaussian process
approximations. In Advances in Neural Information Processing Systems, 2017.

David R. Burt, Carl E. Rasmussen, and Mark van der Wilk. Rates of convergence for sparse variational
Gaussian process regression. In International Conference on Machine Learning (ICML), 2019.

Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo Fusi. Gaussian
process prior variational autoencoders. Advances in neural information processing systems, 31,
2018.

Paul E. Chang, Prakhar Verma, S.T. John, Arno Solin, and Mohammad Emtiyaz Khan. Memory-based
dual Gaussian processes for sequential learning. In International Conference on Machine Learning,
2023.

Copernicus Climate Change Service, Climate Data Store. Era5 hourly data on single levels from 1940
to present, 2023. URL https://doi.org/10.24381/cds.adbb2d47. Accessed: DD-MMM-
YYYY.

Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):
641–668, 2002.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning (ICML), 2024.

Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Thomas A Mellan, Helen Coupland,
Charles Whittaker, Harrison Zhu, Tresnia Berah, Jeffrey W Eaton, et al. Estimating the effects of
non-pharmaceutical interventions on covid-19 in europe. Nature, 584(7820):257–261, 2020.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep probabilistic
time series imputation. In International Conference on Artificial Intelligence and Statistics, pages
1651–1661. PMLR, 2020.

Yarin Gal and Richard E. Turner. Improving the Gaussian process sparse spectrum approximation by
representing uncertainty in frequency inputs. In International Conference on Machine Learning
(ICML), 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(59):1–35, 2016. URL http://jmlr.org/papers/
v17/15-239.html.

J. Garifolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue. TIMIT acoustic-
phonetic continuous speech corpus LDC93S1. In Philadelphia: Linguistic Data Consortium,
1993.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent memory with
optimal polynomial projections. In Advances in Neural Information Processing Systems, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

11

https://doi.org/10.24381/cds.adbb2d47
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your HIPPO:
State space models with generalized orthogonal basis projections. In International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=klK17OQ3KB.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, 2017.

Iwona Hawryluk, Henrique Hoeltgebaum, Swapnil Mishra, Xenia Miscouridou, Ricardo P Schneken-
berg, Charles Whittaker, Michaela Vollmer, Seth Flaxman, Samir Bhatt, and Thomas A Mellan.
Gaussian process nowcasting: application to covid-19 mortality reporting. In Uncertainty in
Artificial Intelligence, pages 1258–1268. PMLR, 2021.

James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13, pages 282–290,
Arlington, Virginia, USA, 2013. AUAI Press.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian
process classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR, 2015a.

James Hensman, Alexander G Matthews, Maurizio Filippone, and Zoubin Ghahramani. MCMC for
variationally sparse Gaussian processes. Advances in Neural Information Processing Systems, 28,
2015b.

James Hensman, Nicolas Durrande, and Arno Solin. Variational Fourier features for Gaussian
processes. Journal of Machine Learning Research, 18(151):1–52, 2018.

H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey,
R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut. Era5 hourly
data on single levels from 1940 to present, 2023. Accessed: DD-MMM-YYYY.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
1991.

Metod Jazbec, Matt Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, and Gunnar Rätsch.
Scalable Gaussian process variational autoencoders. In International Conference on Artificial
Intelligence and Statistics, pages 3511–3519. PMLR, 2021.

Sanyam Kapoor, Theofanis Karaletsos, and Thang D. Bui. Variational auto-regressive Gaussian
processes for continual learning. In International Conference on Machine Learning, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Judith Lean. Solar irradiance reconstruction. In Data contribution series # 2004-035, IGBP
PAGES/World Data Center for Paleoclimatology NOAA/NGDC Paleoclimatology Program, Boul-
der, CO, USA, 2004.

Felix Leibfried, Vincent Dutordoir, ST John, and Nicolas Durrande. A tutorial on sparse Gaussian
processes and variational inference. arXiv preprint arXiv:2012.13962, 2020.

Miguel Lázaro-Gredilla and Anibal Figueiras-Vidal. Inter-domain Gaussian processes for sparse
inference using inducing features. In Advances in Neural Information Processing Systems, 2009.

Wesley J. Maddox, Samuel Stanton, and Andrew Gordon Wilson. Conditioning sparse variational
Gaussian processes for online decision-making. In Advances in Neural Information Processing
Systems, 2021.

12

https://openreview.net/forum?id=klK17OQ3KB

Mélodie Monod, Alexandra Blenkinsop, Xiaoyue Xi, Daniel Hebert, Sivan Bershan, Simon Tietze,
Marc Baguelin, Valerie C Bradley, Yu Chen, Helen Coupland, et al. Age groups that sustain
resurging covid-19 epidemics in the united states. Science, 371(6536):eabe8372, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems, 2007.

Stephen Roberts, Michael Osborne, Mark Ebden, Steven Reece, Neale Gibson, and Suzanne Aigrain.
Gaussian processes for time-series modelling. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371(1984):20110550, 2013.

W. Rudin. Fourier analysis on groups. Wiley Classics Library. Wiley-Interscience New York, reprint
edition, 1994.

Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

Samuel Stanton, Wesley J. Maddox, Ian Delbridge, and Andrew Gordon Wilson. Kernel interpolation
for scalable online Gaussian processes. In International Conference on Artificial Intelligence and
Statistics. PMLR, 2021.

Pnar Tfekci and Heysem Kaya. Combined Cycle Power Plant. UCI Machine Learning Repository,
2014. DOI: https://doi.org/10.24432/C5002N.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
intelligence and statistics, pages 567–574. PMLR, 2009.

Jean-Francois Ton, Seth Flaxman, Dino Sejdinovic, and Samir Bhatt. Spatial mapping with gaussian
processes and nonstationary fourier features. Journal of Spatial Statistics, 28:59–78, 2018.

H Juliette T Unwin, Swapnil Mishra, Valerie C Bradley, Axel Gandy, Thomas A Mellan, Helen
Coupland, Jonathan Ish-Horowicz, Michaela AC Vollmer, Charles Whittaker, Sarah L Filippi, et al.
State-level tracking of covid-19 in the united states. Nature communications, 11(1):6189, 2020.

Mark Van der Wilk, Vincent Dutordoir, ST John, Artem Artemev, Vincent Adam, and James
Hensman. A framework for interdomain and multioutput Gaussian processes. arXiv preprint
arXiv:2003.01115, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

William Wilkinson, Arno Solin, and Vincent Adam. Sparse algorithms for Markovian Gaussian
processes. In International Conference on Artificial Intelligence and Statistics, pages 1747–1755.
PMLR, 2021.

Harrison Zhu, Carles Balsells Rodas, and Yingzhen Li. Markovian Gaussian process variational
autoencoders. In International Conference on Machine Learning, 2023.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision Mamba: Efficient visual representation learning with bidirectional state space model. In
International Conference on Machine Learning (ICML), 2024.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately describe the paper’s contributions and scope, and include the
necessary motivations and backgrounds required to understand our contributions. The claims
are verified with our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the effect of a sub-optimal sorting method when applying our
method to continual learning in our experiments (Section 3.3 & 5.2 & Appendix F.3).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]

Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed dataset composition and hyperparameter information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released our code at https://github.com/harrisonzhu508/
HIPPOSVGP/tree/main.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We fully describe the training and test details, including data splits, random
seeds, hyperparameter tuning, optimizer type and any necessary information needed for
reproducibility in our experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the error bars of the performance metrics over several random seed
runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://github.com/harrisonzhu508/HIPPOSVGP/tree/main
https://github.com/harrisonzhu508/HIPPOSVGP/tree/main
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate which GPUs were used to run the experiments. We also include
wallclock time information (Table 1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In this paper, we introduce work designed to push the boundaries of machine
learning. While our methods could carry ethical implications, we do not believe any require
specific discussion at this point in the submission process.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a statement for broader impacts at the end of the paper.

Guidelines:

17

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Whenever we use any assets, we always cite the original asset source.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We fully describe our contributions and any assets used in the paper. We will
also be releasing code after the publishing of the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was only used for editing the writing, helping with plotting and assisted
coding.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A HiPPO-LegS matrices

Here we provide the explicit form of matrices used in our implementation of HiPPO-LegS
[Gu et al., 2020]. For a given time t, the measure ω(t)(x) = 1

t1[0,t](x) and basis functions
ϕ
(t)
m (x) = g

(t)
m (x)ω(t)(x) =

√
2m+1
t Pm

(
2x
t − 1

)
1[0,t](x) are used, where Pm(·) is the m-th Legen-

dre polynomial and 1[0,t](x) is the indicator function on the interval [0, t]. These basis functions are
orthonormal, i.e., ∫ t

0

g
(t)
m (x)g

(t)
n (x)

t
dx = δmn (6)

Following Gu et al. [2020], the HiPPO-LegS framework maintains a coefficient vector c(t) ∈ RM×1

that evolves according to the ODE:

d

dt
c(t) = A(t)c(t) +B(t)f(t) (7)

where f(t) is the input signal at time t. The matrices A(t) ∈ RM×M and B(t) ∈ RM×1 are given
by:

[A(t)]nk =
1

t
A, [A]nk =


−
√
(2n+ 1)(2k + 1) if n > k

−n+ 1 if n = k

0 if n < k

(8)

and

[B(t)]n =
[B]n
t

=

√
2n+ 1

t
(9)

These matrices govern the evolution of the basis function coefficients over time, where the factor
1/t reflects the time-dependent scaling of the basis functions to the adaptive interval [0, t]. When
discretized, this ODE yields the recurrence update used in our implementation.

B Computing prior covariance of the inducing variables K(t)
uu

We provide the detailed derivation for the following two approaches when the inducing functions
are defined via HiPPO-LegS. Recall that the ℓm-th element of the prior covariance matrix for the
inducing variables is given by

[K(t)
uu]ℓm =

x
k(x, x′)ϕ

(t)
ℓ (x)ϕ(t)

m (x′)dxdx′, (10)

where ϕ
(t)
ℓ (x) = g

(t)
ℓ (x)ω(t)(x) are the time-varying basis functions under the HiPPO-LegS frame-

work.

B.1 RFF approximation

Since k(x, x′) depends on both x and x′, a recurrence update rule based on the original HiPPO
formulation, which is designed for single integral, can not be obtained directly for K(t)

uu. Fortunately,
for stationary kernels, Bochner Theorem [Rudin, 1994] can be applied to factorize the above double
integrals into two separate single integrals, which gives rise to Random Fourier Features (RFF)
approximation [Rahimi and Recht, 2007]: for a stationary kernel k(x, x′) = k(|x − x′|), RFF
approximates it as follows:

k(x, x′) = Ep(w)

[
cos(wx) cos(wx′) + sin(wx) sin(wx′)

]
≈ 1

N

N∑
n=1

[cos (wnx) cos (wnx
′) + sin (wnx) sin (wnx

′)] ,
(11)

21

where wn ∼ p(w) is the spectral density of the kernel. Substituting this into the double integral
(Eq. 10) factorizes the dependency on x and x′, reducing [K

(t)
uu]ℓm to addition of products of one-

dimensional integrals. Each integral based on a Monte Carlo sample w has the form of either

Z
(t)
w,ℓ =

∫
cos(wx)ϕ

(t)
ℓ (x) dx or Z

′(t)
w,ℓ =

∫
sin(wx)ϕ

(t)
ℓ (x) dx, (12)

which corresponds to a standard projection coefficient in the HiPPO framework. We further stack
these integrals based on M basis functions and define

Z(t)
w =

[
Z

(t)
w,1, · · · , Z

(t)
w,M

]⊤
, Z′(t)

w =
[
Z

′(t)
w,1, · · · , Z

′(t)
w,M

]⊤
. (13)

Collecting N Monte Carlo samples {wn}Nn=1, we form the feature matrix

Z(t) =
[
Z

(t)
w1 Z

(t)
w2 · · · Z

(t)
wN Z

′(t)
w1 Z

′(t)
w2 · · · Z

′(t)
wN

]
, (14)

and the RFF approximation of the covariance is

K(t)
uu ≈

1

N
Z(t)

(
Z(t)

)⊤
. (15)

Since Z
(t)
wn and Z

′(t)
wn are standard HiPPO projection coefficient, their computation is governed by the

HiPPO ODE evolution as before

d

dt
Z(t)

wn
= A(t)Z(t)

wn
+B(t)hn(t),

d

dt
Z′(t)

wn
= A(t)Z′(t)

wn
+B(t)h′

n(t), (16)

with hn(t) = cos(wnt) and h′
n(t) = sin(wnt) and these ODEs can be solved in parallel across dif-

ferent Monte Carlo samples. In summary, the procedure involves sampling multiple random features,
updating them recurrently to time t, and averaging across samples to obtain RFF approximation of
Kuu

(t).

For non-stationary kernels, more advanced Fourier feature approximation techniques (e.g., [Ton et al.,
2018]) can be applied.

B.2 Direct ODE evolution

Differentiating [K
(t)
uu]ℓ,m with respect to t gives

d

dt
[K(t)

uu]ℓ,m =
x

k(x, x′)
∂

∂t

[
ϕ
(t)
ℓ (x)ϕ(t)

m (x′)
]
dxdx′. (17)

Applying the product rule:

d

dt
[K(t)

uu]ℓ,m =
x

k(x, x′)
∂

∂t
ϕ
(t)
ℓ (x)ϕ(t)

m (x′)dxdx′ +
x

k(x, x′)ϕ
(t)
ℓ (x)

∂

∂t
ϕ(t)
m (x′)dxdx′. (18)

In HiPPO-LegS, each ϕ
(t)
ℓ (x) obeys an ODE governed by lower-order scaled Legendre polynomials

on [0, t] and a Dirac delta boundary term at x = t. Concretely,

∂

∂t
ϕ
(t)
ℓ (x) = −

√
2ℓ+ 1

t
[

ℓ+ 1√
2ℓ+ 1

ϕ
(t)
ℓ (x) +

√
2ℓ− 1ϕ

(t)
ℓ−1(x)

+
√
2ℓ− 3ϕ

(t)
ℓ−2(x) · · ·] +

1

t
δt(x),

(19)

where δt(x) is the Dirac delta at x = t (see Appendix D.3 in Gu et al. [2020] for details).

Substituting this expression into the integrals yields the boundary terms of the form∫
k(t, x′)ϕ

(t)
m (x′) dx′, along with lower-order terms involving {[K(t)

uu]ℓ,m, [K
(t)
uu]ℓ−1,m, · · · }, etc.

Summarizing in matrix form leads to

d

dt
K(t)

uu =
[
A(t)K(t)

uu +K(t)
uuA(t)⊺

]
+

1

t

[
B̃(t) + B̃(t)⊺

]
, (20)

22

where the lm-th entry of K(t)
uu ∈ RM×M is [K(t)

uu]ℓ,m, A(t) ∈ RM×M is the same lower-triangular
matrix from the HiPPO-LegS framework defined in Eq. 8, and B̃(t) ∈ RM×M is built from the
boundary contributions as

B̃(t) = c(t)1M , (21)

where 1M ∈ R1×M is a row vector of ones of size M and c(t) ∈ RM×1 is the coefficient vector
with each element being

cℓ(t) =

∫
k (t, x) ϕ

(t)
ℓ (x) dx. (22)

After discretizing in t (e.g. an Euler scheme), one repeatedly updates K(t)
uu and the boundary vector

c(t) over time.

B.2.1 Efficient computation of B̃(t)

Computing B̃(t) directly at each time step requires evaluating M integrals, which can be computa-
tionally intensive, especially when t changes incrementally and we need to update the matrix B̃(t)
repeatedly.

To overcome this inefficiency, we propose an approach that leverages the HiPPO framework to
compute B̃(t) recursively as s evolves. This method utilizes the properties of stationary kernels and
the structure of the Legendre polynomials to enable efficient updates.

Leveraging Stationary Kernels Assuming that the kernel k(x, t) is stationary, it depends only on
the difference d = |x − t|, so k(x, t) = k(d). In our context, since we integrate over x ∈ [tstart, t]
with x ≤ t, we have d = t − x ≥ 0. Therefore, we can express k(x, t) as a function of d over the
interval [0, t− tstart]:

k(x, t) = k(t− x) = k(d), with d ∈ [0, t− tstart]. (23)

Our goal is to approximate k(d) over the interval [0, t− tstart] using the orthonormal Legendre basis
functions scaled to this interval. Specifically, we can represent k(d) as

k(d) ≈
M−1∑
m=0

c̃m(t) g(t)m (d), (24)

where g
(t)
m (d) are the Legendre polynomials rescaled to the interval [0, t− tstart].

Recursive Computation via HiPPO-LegS To efficiently compute the coefficients c̃m(t), we utilize
the HiPPO-LegS framework, which provides a method for recursively updating the coefficients of a
function projected onto an orthogonal basis as the interval expands. In our case, as t increases, the
interval [tstart, t] over which k(d) is defined also expands, and we can update c̃m(t) recursively.

Discretizing time with step size ∆t and indexing tk = tstart + k∆t, the update rule using the Euler
method is:

c̃k+1 =

(
I− 1

k
A

)
c̃k +

1

k
B k(tk), (25)

where c̃k = [c̃0(tk), c̃1(tk), . . . , c̃M−1(tk)]
⊺, and A ∈ RM×M and B ∈ RM are again matrices

defined by the HiPPO-LegS operator as in Eq. 8 and 9.

Accounting for Variable Transformation and Parity The change of variables from x to d = t−x
introduces a reflection in the function domain. Since the Legendre polynomials have definite parity,
specifically,

Pm(−x) = (−1)mPm(x), (26)

we need to adjust the coefficients accordingly when considering the reflected function.

As a result of this reflection, when projecting k(d) onto the Legendre basis, the coefficients c̃m(t)
computed via the HiPPO-LegS updates will correspond to a reflected version of the function. To

23

account for this, we apply a parity correction to the coefficients. Specifically, the corrected coefficients
cm(t) are related to c̃m(t) by a sign change determined by the degree m:

cm(t) = (−1)mc̃m(t). (27)

This parity correction ensures that the computed coefficients properly represent the function over the
interval [tstart, t] without the effect of the reflection.

By computing c(t) recursively as t evolves, we can efficiently update B̃(t) = c(t)[1, . . . , 1] at each
time step without the need to evaluate the integrals directly. This approach significantly reduces the
computational burden associated with updating B̃(t) and allows for efficient computation of K(t)

uu via
the ODE.

B.2.2 Unstability of directly evolving K
(t)
uu as ODE.

Empirically, we find that the direct ODE approach is less stable compared with RFF approach.
Intuitively, it can be seen from the difference in the forms of their evolutions, especially in the first
term. In RFF approach, the first term of the evolution of Fourier feature is of the form A(t)Z

(t)
w ,

which includes evolving vectors with the operator L1 : X→ A(t)X. In direct ODE approach, the
first term in the direct evolution of K(t)

uu is of the form A(t)K
(t)
uu +K

(t)
uuA(t)⊤, which requires the

Lyapunov operator L2 : X→ A(t)X+XA(t)⊤. The critical difference is that L2 has eigenvalues
{λi + λj} (where λi and λj are eigenvalues of A(t)) [Horn and Johnson, 1991], while L1 has
eigenvalues {λi}. Since HiPPO-LegS uses a lower-triangular A(t) with negative diagonal entries,
the eigenvalues are all negative λi < 0. Hence, the eigenvalues of the Lyapunov operator L2 are
approximately as twice negative as the eigenvalues of L1, leading to a stiff ODE system with poorer
numerical conditioning.

C Finite basis approximation of posterior OHSVGP

Here, we show that q(u(t)) is the distribution of HiPPO coefficients of the posterior OHSVGP
qt(f). From Eq. 2, the posterior of the function values evaluated at arbitrary indices X is qt(fX) =

N (fX;K
(t)
fXuK

(t)−1
uu m

(t)
u ,KfXfX −K

(t)
fXuK

(t)−1
uu [K

(t)
uu − S

(t)
u]K

(t)−1
uu K

(t)
ufX

).

Based on this, we compute the mean of the m-th HiPPO coefficient for qt(f) as follows,

Eqt(f)

[∫
f(x)ϕ(t)

m (x)dx

]
=

∫
Eqt(f) [f(x)]ϕ

(t)
m (x)dx

=

(∫
K

(t)
fxu

K(t)−1
uu ϕ(t)

m (x)dx

)
m(t)

u

=

∫ ∫
k(x, x′)

ϕ
(t)
1 (x′)
· · ·

ϕ
(t)
M (x′)

 dx′K(t)−1
uu ϕ(t)

m (x)dx

m(t)
u

=

∫ ∫
k(x, x′)

ϕ
(t)
1 (x′)ϕ

(t)
m (x)

· · ·
ϕ
(t)
M (x′)ϕ

(t)
m (x)

 dx′dx

K(t)−1
uu m(t)

u

=
[
K(t)

uu

]
m,:

K(t)−1
uu m(t)

u

=
[
m(t)

u

]
m
,

(28)

24

which is exactly the variational mean of q(u(t)
m). Similarly, the covariance between the l-th and the

m-th HiPPO coefficient for qt(f) can be computed as

Eqt(f)

[(∫
f(x)ϕ

(t)
l (x)dx

)(∫
f(x′)ϕ(t)

m (x′)dx′
)]
−
[
m(t)

u

]
l

[
m(t)

u

]
m

=

∫ ∫
Eqt(f) [f(x)f(x

′)]ϕ
(t)
l (x)ϕ(t)

m (x′)dxdx′ −
[
m(t)

u

]
l

[
m(t)

u

]
m

=

∫ ∫ (
k(x, x′)−K

(t)
fxu

K(t)−1
uu [K(t)

uu − S(t)
u]K(t)−1

uu K
(t)
ufx′

)
ϕ
(t)
l (x)ϕ(t)

m (x′)dxdx′

+

∫
((((((((((((((((((((((∫

Eqt(f) [f(x)]Eqt(f) [f(x
′)]ϕ

(t)
l (x)ϕ(t)

m (x′)dxdx′ −
��������[
m(t)

u

]
l

[
m(t)

u

]
m

=
[
K(t)

uu

]
lm
−
(∫

K
(t)
fxu

K(t)−1
uu ϕ

(t)
l (x)dx

)
[K(t)

uu − S(t)
u]

(∫
ϕ(t)
m (x′)K(t)−1

uu K
(t)
ufx′dx

′
)

=
��

���[
K(t)

uu

]
lm
−
((((((((((((((((([
K(t)

uu

]
l,:
K(t)−1

uu K(t)
uuK

(t)−1
uu

[
K(t)

uu

]
:,m

+
[
K(t)

uu

]
l,:
K(t)−1

uu S(t)
u K(t)−1

uu

[
K(t)

uu

]
:,m

=
[
S(t)
u

]
lm

,

(29)

which is exactly the variational covariance between u
(t)
l and u

(t)
m in q(u(t)).

Hence, if f ∼ qt(f), then q(u
(t)
m)

d
=

∫
f(x)ϕ

(t)
m (x)dx, which implies that we can approximate the

posterior OHSVGP with finite basis: f =
∑M

m=1 u
(t)
m ϕ

(t)
m (x), u(t)

m ∼ q(u
(t)
m).

D Additional experimental details

D.1 Infectious disease modeling

For a sanity check, we also fit a weekly renewal-equation model [Flaxman et al., 2020, Unwin et al.,
2020, Monod et al., 2021], trained offline on the full history. This is a well-established infectious
disease model that has been widely utilized by scientists during the COVID-19 pandemic, and we
include its results in section F.1 (denoted as AR(2) Renewal in the legend). Interestingly, OHSVGP
achieves better predictive performance than this traditional infectious disease model. Although this
may be partly due to the strong inductive biases of the renewal equations, it nevertheless highlights
OHSVGP’s suitability for long infectious-disease time series.

The details of renewal-equation model are as follows. Let yt,a be the number of deaths on day
t = 1, . . . , T in state a = 1, . . . , A (in our experiments, a = 1 since we only fit on 1 state), The
probabilistic model is:

(expected deaths), µt,a =

t−1∑
τ=1

mτ,aIFR(t− τ) (30)

(expected infections), mτ,a = Radj
τ,a

τ−1∑
i=1

mi,aSI(τ − i) (31)

(Adjusted reproductive number), Radj
τ,a =

Na − Cτ,a

Na
Rτ,a (32)

Rt,a = 3.3× 2σ(−fa(τ)) (33)

(cumulative infections), Cτ,a = NumDeathsInita +
τ−1∑
i=1

Ci,a, (34)

where σ is the sigmoid function, Na is the population of country a, NumDeathsInita is the initial
number of deaths in country a, the IFR is the infection fatality rate and SI is the serial interval. The
choice of fa(τ) requires a stochastic process and here we choose to model it as weekly random

25

effect on day τ using AR(2) process as in Monod et al. [2021], Unwin et al. [2020]. Typically,
Markov chain Monte Carlo (MCMC) methods are used to infer the posterior distribution of fa and
the other parameters, so it is less scalable than the online sparse GP based models shown in main text,
especially when the number of states a and time steps T increase.

D.2 SVGPVAE model details

With SVGPVAE, we utilize Jazbec et al. [2021] and notation from Zhu et al. [2023], and we have the
following encoder-decoder model:

p(y1:T) = p(f1:T)

T∏
t=1

p(yt|ft), (35)

with likelihood p(yt|ft) = N (yt|φ(ft), σ2I) and decoder network φ : RL → Rdy . The encoder
ϕ : Rdy → R2L yields (ỹ1:L

t , ṽt
1:L) = ϕ(yt). ft follows an L-dimensional multi-output GP and its

approximate posterior is given by:

q(f1:T) =

L∏
l=1

p(f l1:T |ul
m)q(ul), q(ul) = N (ul|ml,Al), (36)

Sl = Kl
uu +Kl

ufdiag(ṽl
1:T)

−1Kl
fu, ml = Kl

uu(S
l)−1Kl

ufdiag(ṽl
1:T)

−1ỹl
1:T , (37)

Al = Kl
uu(S

l)−1Kl
uu, (38)

where p(f l1:T |ul
m) is the prior conditional distribution.

Following Jazbec et al. [2021], the objective function is defined as:

LSVGPVAE(θ) =

T∑
t=1

[
Eq(ft) log p(yt|ft)− logN (ft|ỹt, ṽt)

]
+

L∑
l=1

Ll
H , (39)

where Ll
H is the ”Hensman” ELBO described in Equation 7 of Jazbec et al. [2021]. Since the

variational parameters ml and Sl, and the likelihood are all amortized by neural networks, we further
add EWC (Elastic Weight Consolidation; [Kirkpatrick et al., 2017]) regularization for both encoder
and decoder networks to the loss above for continual learning.

E Algorithmic Breakdown of OHSVGP

Algorithm 1 The HIPPO-SVGP ELBO for a single task of data. Differences with SVGP in blue.

Require: • X = {x1, . . . xn = t1} (training time steps up to time t1),
• {y1, . . . , yn} (training targets),
• Z ∈ RM×1 (inducing points) A(t) ∈ RM×M , B(t) ∈ RM×1 (HIPPO matrices) ,
• mu ∈ RM×1,Su ∈ RM×M (variational params)

1: Kfu = k(X,Z),Kuu = k(Z,Z), Kt1
fu,K

t1
uu from HIPPO ODEs evolved from 0 to the final

time step t1 with HIPPO matrices A(t), B(t)
2: µ(xi) = Kt1

fiu
(Kt1

uu)
−1mu ▷ Variational Posterior Mean

3: σ2(xi) = Kt1
fifi
−Kt1

fiu
(Kt1

uu)
−1[Kt1

uu − Su](K
t1
uu)

−1Kt1
ufi

▷ Variational Posterior Variance
4: ℓvarexp ←

∑n
i=1 EN (µ(xi),σ2(xi))

[
log p(yi | fi)

]
▷ closed form or quadrature/MC

5: KL← KL(N (mu,Su)||N (0,Kt1
uu))

6: return ℓvarexp − KL

26

Algorithm 2 The OHSVGP ELBO on the second task after learning the first task. Differences with
OSVGP in blue.
Require: • X′ = {t1 < x′

1, . . . x
′
n′ = t2} (training time steps up to time t2),

• {y′1, . . . , y′n′} (training targets),
• Zt1 ∈ RM×1 (frozen and learned inducing points from task 1) with inducing variables
ut1 = f(Zt1),

• Zt2 ∈ RM×1 (new inducing points for task 2) with inducing variables ut2 = f(Zt2),
A(t) ∈ RM×M , B(t) ∈ RM×1 (HIPPO matrices),

• mut1
∈ RM×1,Sut1

∈ RM×M (learned variational params from task 1),

• mut2
∈ RM×1,Sut2

∈ RM×M (new variational params for task 2),
• Kt1

ut1ut1

1: Kf ′ut2
= k(X′,Zt2), Kut2

ut2
= k(Zt2 ,Zt2), K

t2
f ′ut2

evolved from 0 to the final time step t2,
Kt2

ut2ut2
evolved from t1 to the final time step t2 with HIPPO matrices A(t), B(t)

2: µt2(x
′
i) = Kt2

f ′
iut2

(Kt2
ut2

ut2
)−1mut2

▷ Variational Posterior Mean

3: σ2
t2(x

′
i) = Kt2

f ′
if

′
i
−Kt2

f ′
iut2

(Kt2
ut2

ut2
)−1[Kt2

ut2
ut2
− Sut2

](Kt2
ut2

ut2
)−1Kt1

ut2
f ′
i

▷ Variational
Posterior Variance

4: ℓvarexp ←
∑n′

i=1 EN (µt2
(xi),σ2

t2
(xi))

[
log p(y′i | f ′

i)
]

▷ closed form or quadrature/MC
5: m̃t1t2 = Kt2

ut1
ut2

Kt2
ut2

ut2
mut2

▷ Mean of q̃t2(ut1) =
∫
pt2(ut1 |ut2)qt2(ut2)dut2

6: S̃t1t2 = Kt2
ut1ut1

−Kt2
ut1ut2

(Kt2
ut2ut2

)−1Kut2
ut1

+Kt2
ut1ut2

Kt2
ut2ut2

Sut2
(Kt2

ut2ut2
)⊺Kt2

ut2ut1

▷ Covariance of q̃t2(ut1) =
∫
pt2(ut1 |ut2)qt2(ut2)dut2

7: KL← KL(N (mut2
,Sut2

)||N (0,Kt2
ut2ut2

))
8:

CorrectionTerm(t1, t2)← KL(N (m̃t1t2 , S̃t1t2)||N (0,Kt1
ut1

ut1
))

− KL(N (m̃t1t2 , S̃t1t2)||N (mut1
,Sut1

))

9: return ℓvarexp − KL + CorrectionTerm(t1, t2)

F Additional results

F.1 Full results including RMSE and ECE

We also include the full results of test NLPD and RMSE (ECE for experiments on COVID due to
non-Gaussian likelihood) containing evaluation of Task i after learning tasks j = i, i+ 1, · · · , 10 (5
for experiments on COVID) for all i.

We define the Root Mean Squared Error (RMSE) and Negative Log Predictive Density (NLPD) as
the following:

RMSE =

√√√√ 1

N

N∑
i=1

(
yi − ŷi

)2
, NLPD = − 1

N

N∑
i=1

log p̂
(
yi | xi

)
. (40)

(41)

The Expected Calibration Error ([Guo et al., 2017]; ECE) is defined as

ECE =
1

K

K∑
k=1

∣∣∣∣∣ 1N
N∑
i=1

1
(
yi ∈

[
q̂ 1−ck

2
(xi) , q̂ 1+ck

2
(xi)

])
− ck,

∣∣∣∣∣ (42)

27

where

K = 10, ck ∈ {0.05, 0.15, . . . , 0.95}

N is the number of test points (xi, yi),

q̂p(xi) = the empirical p–quantile of the S predictive samples { ŷ(s)i }
S
s=1, S = 100

1(·) =
{
1, if the argument is true,
0, otherwise.

Figure 7 shows the RMSE results for time series regression experiments (results of NLPD are in
Figure 2 in the main text). Figure 8 and 9 show NLPD and ECE results on COVID dataset with
an additional sanity check baseline described in Appendix D.1. Figure 10 - 13 show full results of
RMSE and NLPD for UCI datasets, and Figure 14 and 15 show full results of RMSE and NLPD for
ERA5 dataset.

1 2 3 4 5 6 7 8 9 10
Tasks

0.10
0.15
0.20
0.25
0.30
0.35

RM
SE

OSGPR
OVC
OVC-optZ
OVFF
OHSGPR

(a) Solar, M=50

1 2 3 4 5 6 7 8 9 10
Tasks

0.06
0.08
0.10
0.12
0.14
0.16

RM
SE

(b) Solar, M=150

1 2 3 4 5 6 7 8 9 10
Tasks

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

RM
SE

(c) Audio, M=100

1 2 3 4 5 6 7 8 9 10
Tasks

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

RM
SE

(d) Audio, M=200

Figure 7: Test set RMSE over the learned tasks vs. number of learned tasks for Solar Irradiance and
Audio signal prediction dataset.

1 2 3 4 5
Tasks

2.0

2.5

3.0

3.5

4.0

NL
PD

Task 1

1 2 3 4 5
Tasks

3.0

3.2

3.4

Task 2

1 2 3 4 5
Tasks

3.0

3.2

3.4

Task 3

1 2 3 4 5
Tasks

3.0

3.1

3.2

3.3
Task 4

1 2 3 4 5
Tasks

3.45

3.50

3.55

Task 5
AR(2) Renewal OSVGP OVC OVC-optZ OHSVGP

(a) M=15

1 2 3 4 5
Tasks

2.0

2.5

3.0

3.5

4.0

NL
PD

Task 1

1 2 3 4 5
Tasks

3.0

3.2

3.4

Task 2

1 2 3 4 5
Tasks

3.1

3.2

3.3

3.4

3.5
Task 3

1 2 3 4 5
Tasks

3.1

3.2

3.3

Task 4

1 2 3 4 5
Tasks

3.48

3.50

3.52

3.54

3.56
Task 5

AR(2) Renewal OSVGP OVC OVC-optZ OHSVGP

(b) M=30

Figure 8: Test set NLPD per task after continually learning each task for all the 5 tasks on COVID
dataset.

28

1 2 3 4 5
Tasks

0.050

0.075

0.100

0.125

EC
E

Task 1

1 2 3 4 5
Tasks

0.05

0.10

0.15

0.20

Task 2

1 2 3 4 5
Tasks

0.10

0.15

Task 3

1 2 3 4 5
Tasks

0.050

0.075

0.100

0.125

Task 4

1 2 3 4 5
Tasks

0.075

0.100

0.125

0.150

0.175
Task 5

AR(2) Renewal OSVGP OVC OVC-optZ OHSVGP

(a) M=15

1 2 3 4 5
Tasks

0.050

0.075

0.100

0.125

0.150

EC
E

Task 1

1 2 3 4 5
Tasks

0.05

0.10

0.15

0.20

Task 2

1 2 3 4 5
Tasks

0.075

0.100

0.125

0.150

0.175
Task 3

1 2 3 4 5
Tasks

0.06

0.08

0.10

0.12

0.14
Task 4

1 2 3 4 5
Tasks

0.05

0.10

0.15

Task 5
AR(2) Renewal OSVGP OVC OVC-optZ OHSVGP

(b) M=30

Figure 9: Test set ECE per task after continually learning each task for all the 5 tasks on COVID
dataset.

29

1 2 3 4 5 6 7 8 9 10
Tasks

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

1.0

1.1

1.2

1.3

1.4

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

0.9

1.0

1.1

1.2

1.3
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

RM
SE

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

0.9

1.0

1.1

1.2

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

1.2

1.3

1.4

1.5

1.6

1.7
Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

RM
SE

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750

Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(a) Skillcraft (1st dimension)

1 2 3 4 5 6 7 8 9 10
Tasks

0.5

0.6

0.7

0.8

0.9

1.0

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.35

0.40

0.45

0.50

0.55

0.60

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.50

0.55

0.60

0.65

0.70

0.75
Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.75

0.80

0.85

0.90

0.95

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RM
SE

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.40

0.45

0.50

0.55

0.60

0.65

0.70 Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100

RM
SE

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.9

1.0

1.1

1.2

1.3

1.4
Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(b) Skillcraft (L2)

Figure 10: Test set RMSE per task after continually learning each task for all the 10 tasks on UCI
Skillcraft dataset.

30

1 2 3 4 5 6 7 8 9 10
Tasks

1.0

1.2

1.4

1.6

1.8

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

1.0

1.2

1.4

1.6

1.8

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

1.2

1.3

1.4

1.5

1.6

1.7

1.8

NL
PD

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8

NL
PD

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(a) Skillcraft (1st dimension)

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8 Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

NL
PD

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8 Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

NL
PD

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(b) Skillcraft (L2)

Figure 11: Test set NLPD per task after continually learning each task for all the 10 tasks on UCI
Skillcraft dataset.

31

1 2 3 4 5 6 7 8 9 10
Tasks

0.3

0.4

0.5

0.6

0.7

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.26

0.28

0.30

0.32

0.34

0.36

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.24

0.26

0.28

0.30

0.32
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.23

0.24

0.25

0.26

0.27

0.28

RM
SE

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.23

0.24

0.25

0.26

0.27

0.28
Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.23

0.24

0.25

0.26

0.27

0.28 Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270

RM
SE

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.26

0.27

0.28

0.29

0.30

0.31
Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(a) Powerplant (1st dimension)

1 2 3 4 5 6 7 8 9 10
Tasks

0.21

0.22

0.23

0.24

0.25

0.26

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.220

0.225

0.230

0.235

0.240

0.245

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.22

0.23

0.24

0.25

0.26

0.27
Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.235

0.240

0.245

0.250

0.255

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.240

0.245

0.250

0.255

0.260

0.265

RM
SE

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.250

0.255

0.260

0.265

0.270

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.210

0.215

0.220

0.225

0.230

0.235

0.240

0.245
Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.250

0.255

0.260

0.265

0.270

0.275

RM
SE

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.2175
0.2200
0.2225
0.2250
0.2275
0.2300
0.2325
0.2350
0.2375

Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(b) Powerplant (L2)

Figure 12: Test set RMSE per task after continually learning each task for all the 10 tasks on UCI
Powerplant dataset.

32

1 2 3 4 5 6 7 8 9 10
Tasks

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.1

0.2

0.3

0.4

0.5

0.6

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.1

0.0

0.1

0.2

0.3

0.4
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.05

0.00

0.05

0.10

0.15

NL
PD

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.05

0.00

0.05

0.10

0.15

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.050
0.025
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.05

0.00

0.05

0.10

0.15

0.20

0.25
Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12

NL
PD

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275

Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(a) Powerplant (1st dimension)

1 2 3 4 5 6 7 8 9 10
Tasks

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.06
0.05
0.04
0.03
0.02
0.01
0.00
0.01
0.02
0.03

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.02
0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07 Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.00

0.02

0.04

0.06

0.08

0.10

NL
PD

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.10

0.08

0.06

0.04

0.02

0.00

0.02
Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.04

0.06

0.08

0.10

0.12

NL
PD

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
Task 10

OSVGP
OVC
OHSVGP-k
OHSVGP-o

(b) Powerplant (L2)

Figure 13: Test set NLPD per task after continually learning each task for all the 10 tasks on UCI
Powerplant dataset.

33

1 2 3 4 5 6 7 8 9 10
Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1 Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.4

0.6

0.8

1.0

1.2

1.4
Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.4

0.6

0.8

1.0

1.2

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Task 10

OSVGP
OVC
OVC-per-dim
OHSVGP

(a) M=50

1 2 3 4 5 6 7 8 9 10
Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.2

0.3

0.4

0.5

0.6

0.7
Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65 Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.3

0.4

0.5

0.6

0.7
Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

Task 10

OSVGP
OVC
OVC-per-dim
OHSVGP

(b) M=100

Figure 14: Test set RMSE per task after continually learning each task for all the 10 tasks on ERA5
dataset.

34

1 2 3 4 5 6 7 8 9 10
Tasks

0

2

4

6

8

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0

2

4

6

8

10

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0

2

4

6

8

10

12
Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0

2

4

6

8

10

12
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

2

4

6

8

10

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0

5

10

15

20

25

30

35
Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0

2

4

6

8

10

12

14
Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

2
4
6
8

10
12
14
16

Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0
2
4
6
8

10
12
14
16

Task 10

OSVGP
OVC
OVC-per-dim
OHSVGP

(a) M=50

1 2 3 4 5 6 7 8 9 10
Tasks

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

NL
PD

Task 1

1 2 3 4 5 6 7 8 9 10
Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Task 2

1 2 3 4 5 6 7 8 9 10
Tasks

0

1

2

3

4

5
Task 3

1 2 3 4 5 6 7 8 9 10
Tasks

0.0

0.5

1.0

1.5

2.0

2.5
Task 4

1 2 3 4 5 6 7 8 9 10
Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Task 5

1 2 3 4 5 6 7 8 9 10
Tasks

0
1
2
3
4
5
6
7
8

Task 6

1 2 3 4 5 6 7 8 9 10
Tasks

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Task 7

1 2 3 4 5 6 7 8 9 10
Tasks

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Task 8

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8
Task 9

1 2 3 4 5 6 7 8 9 10
Tasks

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Task 10

OSVGP
OVC
OVC-per-dim
OHSVGP

(b) M=100

Figure 15: Test set NLPD per task after continually learning each task for all the 10 tasks on ERA5
dataset.

35

F.2 Results for time series regression with trainable kernel hyperparameters

Figure 16 and 17 show RMSE and NLPD results for time series regression experiments based on
trainable kernel hyperparameters (i.e., keep optimizing kernel hyperparameters online in all the tasks).
Notice that OVC is only compatible with fixed kernel [Maddox et al., 2021], so we don’t consider it
here. Compared with the results based on fixed kernel in the main text, here all methods show less
stable performance. Previous works either find a well-performed fixed kernel [Maddox et al., 2021]
or scale the KL terms in the online ELBO objective with a positive factor requiring careful tuning to
mitigate the unstable online optimization of kernel hyperparameters [Stanton et al., 2021, Kapoor
et al., 2021].

2 4 6 8 10

0.2

0.4

0.6

0.8
OSGPR
OVFF
OHSGPR

(a) Solar, M=50

2 4 6 8 10
0.05

0.10

0.15

0.20

(b) Solar, M=150

2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

(c) Audio, M=100

2 4 6 8 10
0.0

0.2

0.4

0.6

(d) Audio, M=200

Figure 16: Test set RMSE over the learned tasks vs. number of learned tasks for Solar Irradiance and
Audio signal prediction dataset (keep updating kernel hyperparameters).

2 4 6 8 10
2

0

2

4

OSGPR
OVFF
OHSGPR

(a) Solar, M=50

2 4 6 8 10
2.0

1.5

1.0

0.5

0.0

(b) Solar, M=150

2 4 6 8 10
0

5

10

15

(c) Audio, M=100

2 4 6 8 10

0

5

10

15

(d) Audio, M=200

Figure 17: Test set NLPD over the learned tasks vs. number of learned tasks for Solar Irradiance and
Audio signal prediction dataset (keep updating kernel hyperparameters).

F.3 Visualization of impacts of sorting criterion for OHSVGP in continual learning

Here, we consider fitting OHSVGPs with 20 inducing variables for a continual binary classification
problem on the Two-moon dataset [Ganin et al., 2016]. The data is splitted into three task and we use
a Bernoulli likelihood to model binary labels. We consider three different sorting criteria:

• Random, denoted as OHSVGP-rand. The order of data points in each task is obtained via
random permutation.

• Kernel similarity maximization, denoted as OHSVGP-k-max. We select the i-th point
in task j to be x

(j)
i = argmaxx∈X(j) k(x,x

(j)
i−1) for i > 1, and the first point in first task

is set to be x
(1)
1 = argmaxx∈X(1) k(x,0). The intuition is that the signals to memorize,

when computing the prior covariance matrices, tend to be more smooth if the consecutive
x’s are close to each other.

• Kernel similarity minimization, denoted as OHSVGP-k-min. We select the i-th point in
task j to be x

(j)
i = argminx∈X(j) k(x,x

(j)
i−1) for i > 1, and the first point in first task is

set to be x
(1)
1 = argminx∈X(1) k(x,0). In this case, we deliberately make it difficult to

memorize the signals in the recurrent computation for the prior covariance matrices.

Figure 18 show the decision boundaries after each task for different OHSVGPs based on different
sorting criteria. We also include the decision boundaries of an OSVGP model for reference. Both
OHSVGP-k-max and OHSVGP-rand return decision boundaries achieving 100% accuracy, while
OHSVGP-k-min show catastrophic forgetting after Task 3, which suggests OHSVGP requires a
sensible sorting criterion to perform well in continual learning tasks.

36

1 0 1 2

0.5

0.0

0.5

1.0

(a) OSVGP, after Task 1

1 0 1 2

0.5

0.0

0.5

1.0

(b) OSVGP, after Task 2

1 0 1 2

0.5

0.0

0.5

1.0

(c) OSVGP, after Task 3

1 0 1 2

0.5

0.0

0.5

1.0

(d) OHSVGP-rand, after Task 1

1 0 1 2

0.5

0.0

0.5

1.0

(e) OHSVGP-rand, after Task 2

1 0 1 2

0.5

0.0

0.5

1.0

(f) OHSVGP-rand, after Task 3

1 0 1 2

0.5

0.0

0.5

1.0

(g) OHSVGP-k-max, after Task 1

1 0 1 2

0.5

0.0

0.5

1.0

(h) OHSVGP-k-max, after Task 2

1 0 1 2

0.5

0.0

0.5

1.0

(i) OHSVGP-k-max, after Task 3

1 0 1 2

0.5

0.0

0.5

1.0

(j) OHSVGP-k-min, after Task 1

1 0 1 2

0.5

0.0

0.5

1.0

(k) OHSVGP-k-min, after Task 2

1 0 1 2

0.5

0.0

0.5

1.0

(l) OHSVGP-k-min, after Task 3

Figure 18: Decision boundaries of OSVGP, and OHSVGP models with different sorting criteria after
each task (3 in total) on the Two-moon dataset. For OSVGP, we visualize the inducing points with
red color.

37

F.4 Comparison of basis–measure variants

Figure 19 shows the results of OHSGPR applied to a toy time-series regression dataset, where the
data is split chronologically into three equal segments, used as Tasks 1–3 in an online learning
setup. The figure compares the effect of several variants of the HiPPO operators [Gu et al., 2020,
2023] when used for OHSGPR. Subfigures (a–c) correspond to HiPPO-LegS as used in all of our
main experiments. Subfigures (d–f) apply HiPPO-LegT, (g–i) apply HiPPO-LagT, based on the
Laguerre polynomial basis, and (j–l) apply HiPPO-FouT, based on Fourier basis functions. While
OHSGPR-LegS successfully memorizes all the past tasks, OHSGPR-LegT, OHSGPR-LagT and
OHSGPR-FouT all demonstrate catastrophic forgetting to certain degree since instead of the uniform
measure over the past (as is used in HiPPO-LegS), they are based on measures which place more
mass over the recent history. LegT and FouT use a fixed-length sliding window measure, while LagT
uses exponentially decaying measure, which assigns more importance to recent history.

3 2 1 0 1 2
2

1

0

1

2

(a) OHSGPR-LegS, after Task 1

3 2 1 0 1 2
2

1

0

1

2

(b) OHSGPR-LegS, after Task 2

3 2 1 0 1 2

1

0

1

2

(c) OHSGPR-LegS, after Task 3

3 2 1 0 1 2
2

1

0

1

2

(d) OHSGPR-LegT, after Task 1

3 2 1 0 1 2
2

1

0

1

2

(e) OHSGPR-LegT, after Task 2

3 2 1 0 1 2
2

1

0

1

2

(f) OHSGPR-LegT, after Task 3

3 2 1 0 1 2
2

1

0

1

2

(g) OHSGPR-LagT, after Task 1

3 2 1 0 1 2
2

0

2

(h) OHSGPR-LagT, after Task 2

3 2 1 0 1 22

0

2

(i) OHSGPR-LagT, after Task 3

3 2 1 0 1 2
2

1

0

1

2

(j) OHSGPR-FouT, after Task 1

3 2 1 0 1 2
2

0

2

(k) OHSGPR-FouT, after Task 2

3 2 1 0 1 2
2

0

2

(l) OHSGPR-FouT, after Task 3

Figure 19: Comparison of OHSGPR based on different HiPPO variants on a toy online regression
dataset.

38

	Introduction
	Background
	Gaussian processes
	Variational inference and interdomain Gaussian processes
	Online Gaussian processes
	Gaussian process variational autoencoders
	HiPPO: recurrent memory with optimal polynomial projections

	Interdomain inducing point Gaussian processes with HiPPO
	HiPPO as interdomain inducing variables
	Adapting the kernel matrices over time
	Extending OHSVGP to multidimensional input

	Related work
	Experiments
	Online time series prediction
	Continual learning on UCI datasets
	Continual learning for high dimensional time series prediction

	Conclusion
	HiPPO-LegS matrices
	Computing prior covariance of the inducing variables Kuu(t)
	RFF approximation
	Direct ODE evolution
	Efficient computation of (t)
	Unstability of directly evolving Kuu(t) as ODE.

	Finite basis approximation of posterior OHSVGP
	Additional experimental details
	Infectious disease modeling
	SVGPVAE model details

	Algorithmic Breakdown of OHSVGP
	Additional results
	Full results including RMSE and ECE
	Results for time series regression with trainable kernel hyperparameters
	Visualization of impacts of sorting criterion for OHSVGP in continual learning
	Comparison of basis–measure variants

