Under review as a conference paper at ICLR 2026

SRON: STATE-FREE LLM TRAINING VIA ROW-WISE
GRADIENT NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) achieve remarkable performance but at the cost
of substantial memory overhead, particularly when trained with memory-intensive
adaptive optimizers such as Adam. As model sizes continue to grow, memory
efficiency has become a critical bottleneck. Existing approaches often rely on
costly techniques such as singular value decomposition or matrix-level operations
to reduce memory usage, which can slow training or degrade performance. In
this paper, we propose SGD with Row-wise Normalization (SRON), a state-free
optimizer motivated by observed row-level gradient disparities in the Attention
module. We provide a theoretical analysis establishing SRON’s convergence un-
der non-convex L-Lipschitz smoothness conditions, ensuring its soundness for
large-scale models. Extensive experiments across architectures (LLaMA, GPT,
Gemma) and model sizes (60M—7B parameters) show that SRON reduces op-
timizer state memory overhead by 90%—-100% and cuts training time by up to
67% on billion-parameter models. Moreover, SRON consistently matches or out-
performs Adam and other baselines on both pre-training and fine-tuning tasks,
demonstrating its effectiveness as a memory-efficient and high-performance opti-
mizer for LLM training.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides across a variety of domains (Brown
et al., 2020; Touvron et al., 2023b). Their remarkable success can be attributed to their massive pa-
rameter sizes and the vast amounts of training data they are exposed to, which together enable them
to demonstrate exceptional inductive reasoning capabilities, often surpassing traditional models.

Despite their success, training such complex models presents substantial challenges. While Stochas-
tic Gradient Descent (SGD) (Bottou, 2010) is both memory-efficient and conducive to rapid training,
its lack of adaptive mechanisms limits its effectiveness when applied to sophisticated architectures
like Transformers (Vaswani et al., 2017), particularly LLMs (Zhang et al., 2020; Kunstner et al.,
2023; 2024). In this context, adaptive optimization algorithms have become increasingly essential
for efficient LLM training. Among these, Adam(W) (Kingma & Ba, 2014; Loshchilov & Hutter,
2017) has emerged as the dominant choice, owing to its powerful combination of first-order mo-
mentum for acceleration and second-order moment estimates that facilitate per-parameter learning
rate adjustments.

However, as model sizes grow, the memory demands of Adam become a critical bottleneck, limit-
ing scalability. Adam maintains both first- and second-order moment estimates for each parameter,
effectively doubling memory requirements compared to the model parameters alone. For example,
training the LLaMA-7B (Touvron et al., 2023b) model with Adam consumes over 28 GB of opti-
mizer state memory in BF16 precision (Zhao et al., 2024), while for GPT-3 (Brown et al., 2020),
this can exceed 700 GB. Such memory overhead underscores the need for optimizers that balance
memory efficiency and model performance.

Recent research has focused on reducing optimizer memory usage, primarily through two strate-
gies: (1) minimizing redundancy in the optimizer state and (2) preprocessing gradients to improve
efficiency.

Under review as a conference paper at ICLR 2026

Reducing State Redundancy in Adam. Methods in this category aim to identify and eliminate
redundant components in Adam’s optimizer state. For instance, GaLore (Zhao et al., 2024) applies
Singular Value Decomposition (SVD) to project gradients into a lower-dimensional subspace, while
Fira (Chen et al., 2024) introduces residuals to mitigate information loss from projection. These
approaches, however, rely on computationally expensive SVD operations that scale poorly with
model size. APOLLO addresses this by replacing SVD with random projections, and other methods
like Adam-Mini (Zhang et al., 2024) and Adam-S (Zhang et al., 2025) optimize memory through
block-wise sharing or momentum-based adaptive rates, respectively.

Gradient Preprocessing. This strategy modifies gradients to reduce memory and training stability.
MUON (Liu et al., 2025) uses Newton-Schulz (N-S) iterations to orthogonalize first-order momen-
tum, enabling adaptive learning rates without storing second-order moments. SWAN (Ma et al.,
2024) introduces gradient norm normalization and fast N-S whitening to enable stateless training.
While effective, these methods depend on costly matrix-level operations. SinkGD (Scetbon et al.,
2025) mitigates this issue by employing multi-norm normalization with gradient projections, thereby
reducing computational overhead. However, since these methods require preprocessing the entire
gradient matrix, they suffer from significant communication costs.

These limitations highlight the need for a simpler, memory-efficient approach that adaptively scales
gradients without relying on expensive matrix computations. Motivated by this, we propose SGD
with Row-wise Normalization (SRON), a variant of SGD (Bottou, 2010) that adjusts learning rates
on a row-wise basis for two-dimensional gradients. Unlike existing methods that normalize the en-
tire gradient as a 1D tensor, SRON is structure-aware, preserving the inherent gradient organization.
Our key insight is that row-wise gradient scales in LLM training vary significantly, largely due
to sparsity induced by attention mechanisms. SRON applies structured row-wise normalization to
rescale gradients, ensuring comparable magnitudes across all rows. This enables effective train-
ing with plain SGD—without auxiliary optimizer states—substantially reducing memory overhead.
Empirically, SRON achieves performance on par with or exceeding Adam while offering superior
memory efficiency, often matching or surpassing other memory-efficient optimizers.

Our contributions are summarized as follows:

* Memory-Efficient, State-free Optimizer: We propose SRON, a well-motivated, simple,
effective, and state-free optimizer. Compared with Adam, SRON reduces total training
memory by 64% and optimizer state memory by 90%, cuts training time by 67%, and
improves model performance.

* Theoretical Insights and Guarantees: Within a simplified Transformer framework, we
analyze row-wise scale correlations in two-dimensional gradients, identifying sources of
extreme variance. We provide convergence guarantees for SRON under both standard non-
convex L-Lipschitz smoothness, grounding its effectiveness in modern LLM architectures.

» Extensive Empirical Validation: Across models from 60M to 7B parameters, including
LLaMA, GPT-2, and Gemma, SRON consistently improves model quality, reduces mem-
ory usage, and accelerates training in both pre-training and fine-tuning settings, demon-
strating strong practicality and robustness against competitive baselines.

2 RELATED WORKS

2.1 GRADIENT NORMALIZATION

Gradient normalization has emerged as an alternative to gradient clipping (Pascanu et al., 2013) for
stabilizing optimization. Unlike simple clipping, which directly limits gradient values, normaliza-
tion methods adjust gradients at various stages of the optimization process. For example, Batch
Norm (Ioffe & Szegedy, 2015) and Layer Norm (Ba et al., 2016) normalize the activation values,
thereby influencing the gradient distribution to a certain degree, while adaptive large-batch optimiz-
ers such as LARS (You et al., 2017) and LAMB (You et al., 2019) scale parameter updates based on
the gradient norms.

Some methods reinterpret normalization in novel ways. Adam (Kingma & Ba, 2014) normalizes the
variance by element-wise storage of the second-order moments of gradients. SignSGD (Bernstein

Under review as a conference paper at ICLR 2026

35 32
—— Adam —— Adam
Galore . Galore
31 —— SRON —— SRON
= APOLLO = APOLLO
3 - APOLLO-Mini 3 --- APOLLO-Mini
e 27 S 24
& &
c f =
'g 23 % 20
3 3
E s

19 16

15 12k 24k 36k 48k 60k 12 20k 40k 60k 80k 100k
Training Iterations Training Iterations
(a) Pre-training LLaMA-350M (b) Pre-training LLaMA-1.3B

110.0

40

Adam
100 15 Galore/APOLLO
SRON
t
80 SRON
SGD
60
48.2
40 36.1 37.2 36.5
) I I I I I
. w=n B IUH
1.3B 3B 7B

Adam Galore SRON APOLLO APOLLO-Mini
Optimizer Model Size

N N W
o wu o

Memory Cost (GB)
=
(5]

Training Time (h)
-
o

w

o

(c) Training time for LLaMA-1.3B (d) End-to-end memory footprint

Figure 1: SRON performance preview on LLM pre-training. Figures (a) and (b) show pre-
training results on LLaMA-350M and LLaMA-1.3B on the C4 dataset, where SRON consistently
achieves lower validation perplexity than competing baselines. Figure (c) presents the wall-clock
training time for the LLaMA-1.3B model on 32 NVIDIA RTX 3090 24GB GPUs. Compared with
Adam, SRON cuts total training time by 67%. Figure (d) reports the memory footprint (model
parameters + optimizer states, in BF16) during LLM pre-training. Compared to Adam, SRON
reduces the total training memory by approximately 64% when pre-training a 7B model. Moreover,
SRONT eliminates optimizer state storage entirely, resulting in memory overhead equivalent to that
of SGD without momentum.

et al., 2018) discards the gradient magnitudes entirely, focusing solely on their signs. In large-scale
training scenarios, such as for LLMs, normalization-based strategies are particularly effective. For
instance, Lion (Chen et al., 2023) improves upon SGD by using a more refined sign function. SWAN
(Ma et al., 2024) applies whitening to normalized gradients, while SinkGD (Scetbon et al., 2025)
extends this normalization approach across multiple norms. Collectively, these methods highlight
the importance of normalized SGD variants for stabilizing and scaling optimization in modern deep
learning models.

2.2 MEMORY-EFFICIENT OPTIMIZATION

Memory-efficient optimization strategies can be broadly categorized into two approaches. The first
focuses on reducing the number of trainable parameters by freezing them, while the second focuses
on designing optimizers with minimal or no auxiliary optimizer states.

The LoRA method (Hu et al., 2022) freezes pre-trained parameters and uses low-rank approximation
to update the remaining parameters. ReLoRA (Lialin et al., 2023) applies LoRA updates indirectly
to the frozen parameters. FLoRA (Hao et al., 2024) introduces random projections to further im-
prove memory efficiency. Numerous variants and extensions of LoRA (Zhang et al., 2023; Xia et al.,
2024; Dettmers et al., 2024) have also been proposed to enhance its performance. BAdam (Luo
et al., 2024) employees block coordinate descent to Adam’s update rule. In contrast, GaLore (Zhao

Under review as a conference paper at ICLR 2026

et al., 2024) compresses gradients via SVD before updating the optimizer states. This approach
has inspired several follow-up works: APOLLO (Zhu et al., 2024) replaces SVD with random pro-
jections for improved efficiency, GWT (Wen et al., 2025) applies wavelet transforms, Adam-Mini
(Zhang et al., 2024) reduces memory through block-wise approximations of second-order moments,
and RSO (Chen et al., 2025) decomposes the original training problem for optimizer and activation
memory. More recently, MUON (Liu et al., 2025) achieves adaptive learning rates by leveraging
only momentum and matrix orthogonalization. Additionally, methods based on gradient normaliza-
tion, such as SWAN (Ma et al., 2024) and SinkGD (Scetbon et al., 2025), enable SGD-style updates
that further reduce memory overhead.

In summary, the two research directions—gradient normalization and memory-efficient optimiza-
tion—offer complementary approaches for enhancing stability and scalability in large-scale models.
By combining insights from both, our SRON method provides a memory-efficient, stable training
mechanism for large models without relying on auxiliary optimizer states.

Table 1: Memory and complexity comparison of different methods. Suppose W € R™*"™(m <
n), GaLore, APOLLO adopt a rank of 7.

‘ Adam MUON Adam-Mini GalLore = APOLLO SWAN SRON

Memory 2mn mn mn mr +2nr mr 4+ 2nr 0 0
Complexity | O(mn) O(m2n) O(mn) O(m?n) O(mnr) O(m*(m+n)) O(mn)

3 PRELIMINARIES

3.1 NOTATION

We denote scalars/vectors by lower-case/lower-case boldface letters. We denote matrices by upper-
case boldface letters. For G = (g1, 82, ..,8m)’ € R™ ", we use ||G|| to denote its Frobenius-
norm, [G], to denote its i-th column, diag{...} to represnt a diagonal matrix, and ® to repesent
the element-wise multiplication. f : R"™*™ — R represents the loss function, and W to denote the
model parameters.

3.2 VANILLA ADAM OPTIMIZER

Adam(W) (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) has become the standard optimizer for
LLMs. Adam updates the model parameters W € R"*" as follows

1
O —=,
VVt 4 e

where 7 is the learning rate (Ir), and € is a small constant for numerical stability. The first moment
M and the second moment V* are computed as exponentially moving averages

Wil = Wt — G, Gt =M (1)

M = BIME 4 (1 51)GE, VI = BV 4 (1 - B,)(GY)°,

where G' denotes the batch gradient at time step ¢, and 31, 32 € [0,1) are the exponential decay
rates. Adam leverages the first moment M! to smooth the update direction, eliminating the noise
from mini-batches (Zhang et al., 2020; Cutkosky & Mehta, 2020), while using the second moment
V! to customize adaptive learning rates for each element. The second-order moments approximate
the diagonal elements of the Fisher information matrix (Kingma & Ba, 2014; Hwang, 2024), effec-
tively providing an approximate whitening of the gradients (Ma et al., 2024).

Despite its advantages, Adam comes with significant memory overhead due to the need to track
both first- and second-order moment estimates. This element-wise tracking requires storing twice
the model’s size in the optimizer state (M, V € R™*™), which has become a substantial bottleneck,
especially when training large-scale LLMs.

Under review as a conference paper at ICLR 2026

4 MOTIVATION AND ALGORITHM

In this section, we present the design motivation behind our proposed optimizer, which applies row-
wise normalization to gradients prior to parameter updates.

Our motivation stems from discrepancies in gradient row-norm scales observed in the attention
modules during LLM training. To investigate this, we pre-train LLaMA-60M and LLaMA-130M on
the C4 dataset and record the maximum ratio of row norms across gradients in the shallowest and
deepest attention layers, defined as maxi<;<m, ||:||/min; ||g;||. We focus on the gradients of the
query, key, value, and output projections (g_proj, k_proj, v_proj, and o_proj), with results shown in
Figure 2 and Figure 5 (Appendix).

In the early stages of training, the row-norm ratios of the query, key, and value projections exhibit
sharp fluctuations, with extreme cases exceeding a 500-fold difference. As training progresses,
these fluctuations gradually stabilize, indicating increasingly steady gradient dynamics. However,
the larger LLaMA-130M model displays more severe gradient oscillations than the 60M model in
the early phase, particularly in shallow-layer attention modules. This extreme variability highlights
the stringent demands placed on optimization strategies and motivates the need for more robust,
structure-aware approaches such as SRON.

—— k_proj
o_proj
5 200 —— 9a.proj » 400
o] Vv_proj g
5 5
g °° & 300
= &
a a
@ @
g 400 g 200
= =
o o
(O — o]
4k 8k 12k 16k 20k 4k 8k 12k 16k 20k
Training Iterations Training Iterations
(a) Layer-0, LLaMA-130M (b) Layer-11, LLaMA-130M

Figure 2: Row-norm scale differences of gradients in attention modules (query, key, value, and
output projections) on LLaMA-130M.

A common solution to this issue is to normalize the gradients, scaling the updates to a common
magnitude. Existing normalization methods often flatten high-dimensional gradients into a one-
dimensional vector for uniform normalization, which ignores the intrinsic structural information
of the gradients. When the value of a particular dimension is too large, it suppresses the updates
of other dimensions. Based on this observation, we propose a more targeted approach: row-wise
normalization. Consider G' = (gi,gl,...,gl,)T € R™ ", with {g!}1<,<m representing the
rows, we normalize the gradient by its row-wise second-order moment

-1

Vi = (G2 +e| . GI=V'G,)
j=1

S

where Vi € R™*™ and € > 0 for numerical stability. Therefore, we update the weights by the
standard SGD recursion R

Wit = wt — 5, Gt (3)
This results in SGD with Row-wise Normalization (SRON) in Algorithm 1.

5 CONVERGENCE GUARANTEES

We first establish convergence results for general non-convex functions under standard smoothness
and stochastic gradient assumptions.

Assumption 5.1 (L-smoothness). The loss function f has an L-Lipschitz continuous gradient, i.e.,
IVF(W) = V(W[< LW - W'||, VW, W' eR™".

Under review as a conference paper at ICLR 2026

Algorithm 1 SRON Optimizer

Input: Weight matrix W, step size 7, batch size b, number of iterations 7', numerical stability
parameter e, scaling coefficient a.
Initialize £ < 0
repeat
G+ 1 Zle Vwifi(W?) {Batch gradient}

-1
V! + diag { (A5r(el,)? +¢) }

1<i<m

{Compute row-wise normalizer}

G! « VIG? {Normalize gradient row-wise }
Wit « Wt — an,G? {Update weights}
t—t+1

untilt =T

Assumption 5.2 (Bounded gradient). There exists a constant M/ > 0 such that
IG'| <M, YVt
Assumption 5.3 (Unbiased estimate with bounded variance). The stochastic gradient G? satisfies
E[G'| F'] =V (W),
E[|G" = VF(W)|? | F'] <0o?, V¢,
where F*! denotes the history up to step .

These assumptions are standard in stochastic optimization and provide the foundation for establish-
ing convergence guarantees.

Theorem 5.4 (Convergence Under L-smoothness). Let {W'},>1 be generated by Algorithm 1.
Suppose Assumptions 5.1-5.3 hold, and let the step size be 1; = 1o //t. Then,

i B[V w17 = o(2.

The hidden constant in O(-) depends on L, M, o, m,n, e, and 1.

The rate O (%) matches that of other adaptive stochastic optimization methods (Reddi et al., 2019;

Zhou et al., 2024), thus providing a theoretical guarantee for SRON under standard smoothness
conditions.

6 NUMERICAL RESULTS

In this section, we empirically validate the effectiveness of the proposed SRON optimizer, with
a primary focus on large language model (LLM) training tasks. Specifically, we pre-train LLaMA
models (Touvron et al., 2023b) of varying sizes on the English portion of the Colossal Clean Crawled
Corpus (C4) dataset (Raffel et al., 2019), access SRON in models beyond LLaMA, and conduct abla-
tion studies on the normalization methods. Detailed experimental configurations, hyperparameters,
and computational environments are provided in Appendix C.

6.1 MEMORY-EFFICIENT PRE-TRAINING

Setup. We pre-train LLaMA models ranging from 60M to 7B parameters on C4, following the
training configuration of Zhao et al. (2024). The total batch size is 512 with a sequence length of
256. A linear warm-up is applied for the first 10% of training steps, followed by a cosine decay to
10% of the peak learning rate. All experiments use BF16 precision to reduce memory consump-
tion and are parallelized using Distributed Data Parallel (DDP) across multiple GPUs with gradient
synchronization using PyTorch’s (Paszke et al., 2017) torch.distributed framework.

Under review as a conference paper at ICLR 2026

Table 2: Comparison of memory-efficient training methods for pre-training LLaMA models
(60M-1.3B) on the C4 dataset. We report the final validation PPL and the estimated memory usage
of optimizer states. Results marked with * indicate values reported in prior works.

Methods 60M 130M 350M 1.3B
Perplexity Memory | Perplexity Memory | Perplexity Memory | Perplexity Memory

Adam 30.05 0.22G 24.95 0.53G 18.75 1.47G 16.10 5.12G
MUON 28.93 0.18G 23.05 0.36G 16.96 0.86G 14.28 2.93G
GaLore 34.38 0.16G 26.47 0.30G 19.36 0.64G 15.66 2.08G
APOLLO 31.26 0.16G 23.35 0.30G 16.73 0.64G 14.20 2.08G
APOLLO-Mini 31.58 0.12G 23.83 0.19G 17.17 0.26G 14.18 0.52G
SWAN* 30.59 0.12G 22.61 0.19G 16.63 0.26G 13.56 0.52G
SinkGD* 30.99 0.12G 22.75 0.19G 16.51 0.26G 13.51 0.52G
SRON 29.91 0.12G 22.51 0.19G 16.11 0.26G 13.02 0.52G
SGD 736.9 0.00G 640.9 0.00G 398.7 0.00G 276.3 0.00G
SignSGD 51.12 0.00G 40.33 0.00G 31.36 0.00G 26.72 0.00G
SRON' 39.25 0.00G 28.48 0.00G 19.83 0.00G 16.79 0.00G
Training Tokens | 1.3B \ 2.6B \ 7.8B \ 13.1B

Baselines. For comparative analysis, we evaluate the following baseline optimizers: Adam
(Kingma & Ba, 2014), the standard optimizer widely used for training large models. MUON (Liu
et al., 2025), which orthogonalizes gradient momentum with N-S iteration. GaLore (Zhao et al.,
2024), a memory-efficient variant of Adam that leverages low-rank gradient projections. APOLLO
(Zhu et al., 2024), Adam with random projections. APOLLO-Mini (Zhu et al., 2024), a variant of
APOLLO with rank r = 1 for further memory reduction. SGD (Bottou, 2010), the standard gradient
descent method with minimal memory usage and no gradient processing. SignSGD (Bernstein et al.,
2018), which applies the sign function to gradients before updating parameters. SWAN (Ma et al.,
2024) and SinkGD (Scetbon et al., 2025), due to the lack of publicly available implementations and
the identical experimental setup, we report the results as presented in the original publication.

To enable a fair comparison with memory-efficient baselines, we define two variants of SRON:

SRON: Motivated by the design principles of SRON, we apply SRON updates exclusively to pa-
rameters in linear projection modules, such as attention and MLP layers, while optimizing all other
parameters using Adam. This hybrid optimization scheme is commonly adopted in memory-efficient
optimizers (Zhao et al., 2024; Zhu et al., 2024; Ma et al., 2024; Liu et al., 2025; Scetbon et al., 2025),
ensuring that SRON’s memory footprint remains comparable to these baselines.

Main Results. We evaluate SRON and SRONT on pre-training LLaMA models ranging from 60M
to 1.3B parameters, focusing on final validation perplexity (PPL) and estimated optimizer memory
usage (BF16). The results are presented in Figure 1 and Table 2.

Our experiments demonstrate that SRON achieves superior performance while consuming less
memory and enabling faster training. Across all tested models, SRON consistently attains lower
or comparable final validation PPL compared to baseline optimizers, while maintaining significantly
reduced memory usage. Specifically, for LLaMA-1.3B, SRON reduces total training memory by
60% and optimizer state memory by approximately 90% relative to Adam, while shortening to-
tal training time by 67%. Furthermore, SRON decreases optimizer memory consumption by 75%
compared to other memory-efficient optimizers, including GaLore and APOLLO.

Among optimizers with zero auxiliary states (SGD, SignSGD, and SRONT), only SRON' achieves
performance comparable to Adam. Compared with SRON, SRONT completely eliminates optimizer
state memory overhead, though at the cost of a modest performance drop. This drop arises because
embedding layer parameters are one-dimensional; in this setting, row normalization degenerates
into global normalization, thereby discarding dimensional information. Overall, this highlights a
memory—performance trade-off, with SRONT representing an attractive option for training under
strict resource constraints, and successfully achieving a fully global state-free optimizer design.

Scaling to LLaMA-3B/7B. For larger models, we compare SRON with 8-bit Adam (Dettmers
et al., 2021), GaLore, APOLLO, and APOLLO-Mini, employing gradient checkpointing (Chen

Under review as a conference paper at ICLR 2026

Table 3: Pre-training LLaMA-3B and LLaMA-7B models on the C4 dataset. We report the
validation PPL across training steps, wall-clock training time, and estimated memory usage for
optimizer states. We train LLaMA-3B on 16 NVIDIA RTX 3090 GPUs (24GB each), and LLaMA-
7B on 4 NVIDIA H100 GPUs (80GB each).

Models | Methods | 30K 60K 90K 120K 150K | Mem. | Time Tokens/s
8-bit Adam 19.11 15.88 14.67 14.31 - 530G | 297.3h 14.9K
GaLore 18.44 15.98 14.90 14.73 - 391G 143.7h 37.4K
LLaMA-3B APOLLO 19.49 15.40 14.09 13.75 - 391G 125.7h 37.8K
APOLLO-Mini 18.87 15.84 14.45 14.10 - 0.66G 116.5h 38.6K
SRON 16.06 13.58 12.28 11.92 - 0.65G 114.4h 39.4K
8-bit Adam 18.79 15.71 14.14 13.38 13.23 13.5G | 285.5h 19.9K
GalLore 18.35 15.63 14.33 13.77 13.69 9.40G | 341.8h 21.0K
LLaMA-7B APOLLO 18.10 14.91 13.34 12.77 12.59 9.40G 270.1h 21.1K
APOLLO-Mini 18.59 15.27 13.64 12.90 12.73 1.05G | 268.0h 21.2K
SRON 15.76 13.32 12.02 11.23 11.03 1.04G | 265.5h 21.4K
Tokens seen | 39B 7.8B 11.7B 157B 19.6B | |
34 n 32 ‘
',-| —— 8bit-Adam \ —— 8bit-Adam
It Galore Galore
30 | —— SRON 28 —— SRON
z \ APOLLO z APOLLO
3 i -—-. APOLLO-Mini 3 -==. APOLLO-Mini
S 26 \ S 24
[} [}
a a
S 5
= 22 = 20
o o
= S
18 16
14 24k 48k 72k 96k 120k 12 24k 48k 72k 96k 120k
Training Iterations Training Iterations
(a) Pre-training GPT-XL. (b) Pre-training Gemma-2B

Figure 3: Evaluating SRON in GPT-XL and Gemma-2B.

et al., 2016) to reduce memory usage. Due to limited computational resources, MUON is excluded
from these experiments. The results, presented in Table 3, demonstrate that SRON achieves lower
validation PPL under the same token budget while maintaining a smaller memory footprint. On
LLaMA-3B with 16 NVIDIA 3090 GPUs, SRON reduces total training time by approximately 67%
compared to 8-bit Adam and by 9% compared to SVD-free methods such as APOLLO, while also
achieving lower PPL. Notably, in this experimental setting, SRON allows a batch size of 32, while
8-bit-Adam is limited to 8. On LLaMA-7B using NVIDIA H100 GPUs, SRON provides 7% faster
training and reduces optimizer memory usage by 92%.

6.2 ADDITIONAL INVESTIGATIONS AND ABLATION STUDIES

This section presents additional experimental results to further validate the effectiveness of SRON.
We extend our evaluation beyond LL.aMA to other architectures and conduct ablation studies on al-
ternative normalization methods. We also examine SRON’s performance under challenging settings,
including long sequence lengths, extended training durations, small-batch training, and sensitivity
to the hyperparameters [r and «. In addition, we assess SRON in downstream fine-tuning tasks.
Comprehensive results are provided in Appendix B.

Generalization to GPT and Gemma Models. We extend SRON to additional architectures on
the C4 dataset, including GPT-XL (1.5B) (Radford et al., 2019) and Gemma-2B (Team et al., 2024).
Experimental results are shown in Figure 3. During the early stages of GPT-XL training, SRON
and APOLLO exhibit similar validation PPL. However, as training progresses, SRON gradually
outperforms APOLLO. A similar trend is observed with Gemma-2B: SRON surpasses APOLLO in
the later stages once the number of training tokens increases. These findings further demonstrate

Under review as a conference paper at ICLR 2026

SRON’s effectiveness across architectures beyond LLaMA, establishing it as a highly competitive
optimizer for LLM pre-training.

Ablation Study on Normalization. We perform ablation experiments to compare different nor-
malization methods. Specifically, we define column-wise normalization as

-1
m

S o @-av

i=1

-1

1 -
t t t .t
vt = E g (Gﬁ"j)2—|—e , G'=v-G"

These methods are compared to the row-wise normalization introduced in Algorithm 1. Addition-
ally, we include Lion (Chen et al., 2023) as a baseline normalization method.

For our experiments, we pre-train LLaMA-60M and LLaMA-130M models on the C4 dataset. Re-
sults are shown in Figure 4. As illustrated, row-wise normalization in Algorithm 1 consistently
outperforms both column-wise and tensor-wise (RMS) normalization, as well as the baseline meth-
ods. This outcome supports the observation findings in Section 4, which indicate that significant
scale discrepancies exist across gradient rows during LLM training. Row-wise normalization, as de-
fined in Eq. equation 2, effectively mitigates these discrepancies by aligning the scales of all rows,
thereby enhancing optimization performance.

6.5 v [.
\ ———. Lion 6.0 1} —==+ Lion
60 | N\ SignSGD "‘ \ :ESZSD
LN —— SRON' 55 1 —)
\ . Column-wise - \ \ Column-wise
w55 :] ——— T -wi
3 \ AN --- Tensor-wise 3 5o i N ensor-wise
= IS |
S 5.0 2 |
i) 3 4.5
2 45 <
4.0
4.0
3.5
3.5
2k 4k 6k 8k 10k 4k 8k 12k 16k 20k
Training Iterations Training Iterations
(a) Pre-training LLaMA-60M (b) Pre-training LLaMA-130M

Figure 4: Ablation study on the normalization methods.

7 CONCLUSION

In this paper, we introduce SGD with Row-wise Normalization (SRON), a state-free variant of
SGD designed for memory-efficient LLM training. Unlike conventional normalization methods that
flatten the entire multidimensional gradient into a single vector, SRON performs structure-aware
normalization at the row level. This approach explicitly addresses gradient scale disparities within
the Attention module, effectively eliminating inconsistencies in row-wise gradient magnitudes dur-
ing training. Consequently, SRON enables fully state-free parameter updates while reducing mem-
ory overhead by up to 90%—-100%. Theoretically, we establish convergence guarantees under non-
convex L-Lipschitz smoothness conditions, ensuring the soundness of SRON for modern LLM ar-
chitectures. Empirically, SRON demonstrates clear advantages over existing optimizers, including
Adam and recent memory-efficient methods, in terms of training speed, memory usage, and final
performance. Evaluations across diverse architectures—such as LLaMA, GPT, and Gemma—show

that SRON consistently matches or outperforms strong baselines, highlighting its effectiveness for
LLM training.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper presents work aimed at advancing the field of Machine Learning. No human subjects,
sensitive personal data, or potentially harmful applications are involved. There are no ethical issues
associated with this work.

REPRODUCIBILITY STATEMENT

The complete proofs of all theorems are provided in the appendix. All code and scripts required to
reproduce the experiments are included in the supplementary materials. The models and datasets
used in our study are publicly available. Detailed experimental settings, hyperparameters, and eval-
uation protocols are described in the main paper and appendix. The source code for this work will
be made publicly available upon publication.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International conference on
machine learning, pp. 560-569. PMLR, 2018.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of the
19th International Conference on Computational Statistics, pp. 177-186. Springer, 2010.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv,
abs/2005.14165, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang. Fira:
Can we achieve full-rank training of llms under low-rank constraint? ArXiv, abs/2410.01623,
2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of
optimization algorithms, 2023.

Yiming Chen, Yuan Zhang, Yin Liu, Kun Yuan, and Zaiwen Wen. A memory efficient ran-
domized subspace optimization method for training large language models. arXiv preprint
arXiv:2502.07222, 2025.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955-9968, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International confer-
ence on machine learning, pp. 2260-2268. PMLR, 2020.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

10

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Dongseong Hwang. Fadam: Adam is a natural gradient optimizer using diagonal empirical fisher
information. arXiv preprint arXiv:2405.12807, 2024.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
pmlr, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be,
2023.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models, 2024.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In International Conference on Learning Representations,
2023.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models. Advances in Neural Information Processing Systems, 37:
2492624958, 2024.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Sgd with normalization and
whitening enables stateless 1lm training. ArXiv, abs/2412.13148, 2024.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural

networks. In Proceedings of the 30th International Conference on Machine Learning, pp. 1310—
1318. PMLR, 2013.

11

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2019.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.

Meyer Scetbon, Chao Ma, Wenbo Gong, and Edward Meeds. Gradient multi-normalization for
stateless and scalable 1lm training. arXiv preprint arXiv:2502.06742, 2025.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. Advances in neural information processing systems, 31, 2018.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, and et al Amjad Almahairi. Llama 2:
Open foundation and fine-tuned chat models. ArXiv, abs/2307.09288, 2023b.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
BlackboxNLP@EMNLP, 2018.

Ziqing Wen, Ping Luo, Jiahuan Wang, Xiaoge Deng, Jinping Zou, Kun Yuan, Tao Sun, and Dong-
sheng Li. Breaking memory limits: Gradient wavelet transform enhances llms training, 2025.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Huishuai Zhang, Bohan Wang, and Luoxin Chen. Adams: Momentum itself can be a normalizer for
IIm pretraining and post-training. arXiv preprint arXiv:2505.16363, 2025.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383-15393, 2020.

12

Under review as a conference paper at ICLR 2026

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. ArXiv, abs/2308.03303, 2023.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence of
adaptive gradient methods for nonconvex optimization, 2024.

Hanqging Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z.
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance,
2024.

13

Under review as a conference paper at ICLR 2026

A LEMMAS AND PROOFS

Lemma A.1. Foranyt > 1, let W be the parameters obtained by SRON in Algorithm I after t-th
iteration. Then
[W*H — W < g,

Proof. From the update rule in Eq. equation 3, we have

W= W2 = g2 [VIGH® =7 Y (Vi)*) (G

i=1 j=1

Leverage the definition of V in Eq. equation 2, we obtain
-1

w YV DT> Dl I (THL I WML

i=1 j= 1 i=1 j=1 j=1

n

Then the proof is completed. O
A.1 PROOF OF THEOREM 5.4
Proof. Leveraging the L-Lipschitz smooth property, we have
FOWH) < W) + (VW) W =W 4 2 W - w2
From the update rule Wit! = W —), VIG!, we get
FOWH) < FOWE) iV F(WH), VG + 2 [WH - W2
Taking conditional expectation E[- | F*] on both sides:
E[f(W') [F1] < F(W') = nE[VF(W'),V'G") | F'] + gﬂi[llwt+1 - W | F.

By Lemma A.1, we have
E[|W* — W2 | F'] < nfmn.

Consider the inner product term. Using the unbiasedness of the stochastic gradient E[g! | F!] =
[V f(W?)];, we have

E[(VF(W),VIG") | F'] = E[
=1
:Z [

ViV Wi, gi) | F']

(
ViV WOLIP | F] > el VAW,

where ¢; := min; E[V}, | F*] > 0.

Incorporating the above inequalities, we get

Ln?mn
E[f (W) | F] < F(W') = e [VAW + =22
Taking the global expectation
Ln?mn
E[f(W*)] < E[f(W")] = nic: E[[V(W2 + =2

Summing from ¢t = 1 to 7', we obtain

o Y mEIV (W2 < Ef(WH)] - f +MZW

t=1

14

Under review as a conference paper at ICLR 2026

Choosing 7; = %, we have

T T
Somz2mp(VT+1-1), > n7 <ng(l+T).

t=1 t=1

Therefore,

(Wt)HZ < E[f(Wl)] — f* me?o(l + IHT)

min E||V .
<t<T Iv7 T 2em0(VT+1-1) 4ei(VT+1-1)

1

In other words,

InT
. VW2 =
1I§ntl§nTE” FWOIF =0 <\Fl> '

The proof is completed. O

B SUPPLEMENTARY EXPERIMENTS

500 600

500

3 400 3
=) o
o 5

S 5 400
£ 300 £
a a

@ @ 300
3 200 3

z Z 200
o o
-4 =<

100 100

0 0

2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
Training Iterations Training Iterations
(a) Layer-0, LLaMA-60M (b) Layer-7, LLaMA-60M

Figure 5: Row-norm scale differences of gradients in attention modules W, W, Wy, Wo on
LLaMA-60M.

B.1 LONG-CONTEXT TRAINING

To evaluate SRON under extended context lengths, we train LLaMA models (60M-350M) with se-
quences of length 512 and 1024 while keeping total tokens per batch fixed at 131K. Table 4 shows
that SRON maintains superior PPL compared to baselines. We can see that when the sequence length
increases, all methods, including SRON, show a certain degree of performance degradation, which
is especially pronounced in GalLore and APOLLO-Mini. The reason is that our experimental con-
figuration actually decreased the iteration-independent batch size. Nevertheless, SRON continues to
outperform the tested baselines, showcasing its strength in long-sequence training.

B.2 LONG-TERM TRAINING

We assess SRON with extended training schedules on LLaMA-60M and LLaMA-130M, using 180B
and 390B tokens, respectively (30 tokens per parameter, exceeding the Chinchilla scaling recom-
mendation (Hoffmann et al., 2022)). We present the learning curve in Figure 6. Across these pro-
longed training regimes, SRON consistently preserves lower PPL, demonstrating its ability to handle
massive datasets without performance degradation.

B.3 SMALL-BATCH TRAINING

An immediate observation is that SRON, being entirely stateless, cannot leverage moving averages
to reduce gradient noise as Adam and other momentum-based optimizers do (Cutkosky & Mehta,

15

Under review as a conference paper at ICLR 2026

Table 4: Evaluation of SRON in long-sequence training configurations. We evaluate SRON
with a sequence length of 512 and 1024. Final validation PPLs are reported. SRON consistently
demonstrates strong performance, maintaining its effectiveness across extended sequence lengths.

Methods 60M 130M 350M
512 1024 512 1024 512 1024
Adam 34.52 37.52 25.95 28.68 19.95 22.02
GaLore 35.25 38.09 27.19 29.51 19.92 21.73
APOLLO 32.02 34.04 24.04 25.93 17.26 18.77
APOLLO-Mini 32.76 35.15 24.58 26.51 17.75 19.39
SRON 30.79 33.37 23.11 25.07 16.67 18.33
Training Tokens | 1.3B | 2.6B 7.8B
42 ; 36
v —— Adam —— Adam
‘I Galore Galore
38 ‘\\ —— SRON 32 ——SRON
=z \ APOLLO o APOLLO
3 3\ ~-=. APOLLO-Mini 3 - APOLLO-Mini
g 34 g 28
g 30 g 24
s s
26 200 T SSmssseo .
22 30k 60k 90k 120k 150k 16 60k 120k 180k 240k 300k
Training Iterations Training Iterations
(a) Pre-training LLaMA-60M (b) Pre-training LLaMA-130M

Figure 6: Long-term training on LLaMA-60M and 130M.

2020; Crawshaw et al., 2022), particularly in small-batch regimes where gradient noise is more pro-
nounced. To evaluate SRON under such conditions, we conduct small-batch training with total batch
sizes of 128 (one-eighth or one-fourth of the original setting, respectively) and increase the number
of training iterations eightfold or fourfold to keep the total number of training tokens unchanged.
All other hyperparameters remain consistent with the main experiments.

The results, summarized in Table 5, show that SRON continues to achieve performance comparable
to or exceeding that of other baselines. Relative to the experimental setup in the main text in Table 2,
the model PPL achieved by each tested method shows some decline. Under extremely small batch
sizes, such as 64, SRON shows a performance degradation, performing worse than APOLLO and
APOLLO-Mini, but still better than Full-Adam and GaLore. This suggests that the absence of
optimizer states in SRON leads to inaccurate estimation of row-normalization statistics under high-
noise conditions. In scenarios with a high proportion of noise, a sliding window can be considered
to mitigate the disturbance caused by the gradients of the current batch, which we leave for future
work.

B.4 MEMORY-EFFICIENT FINE-TUNING

Compared to pre-training, fine-tuning is generally more practical for engineers and researchers, as
it requires substantially fewer computational resources. In this section, we evaluate SRON in fine-
tuning experiments using the RoOBERTa-Large model (Liu, 2019) on the GLUE benchmark (Wang
et al., 2018). We compare SRON against several baselines, including Adam (Kingma & Ba, 2014),
APOLLO (Zhu et al., 2024), and GaLore (Zhao et al., 2024). In addition, we include LoRA (Hu
et al., 2022), a widely adopted memory-efficient fine-tuning method. We adopt a sequence length
of 256 for all tasks and set the epoch to 3. To ensure fairness, we tune the learning rate for each
method, selecting the best value from {1.0e—5, 2.5e—5, 5.0e—5, 1.0e—4, 1.5e—4, 2.0e—4}. For
all low-rank methods, we set r = 4.

16

Under review as a conference paper at ICLR 2026

Table 5: Evaluation of SRON with a batch size of 64 and 128. We report the final validation PPL.

Methods 60M 130M
64 128 64 128

Adam 37.31 3548 25.95 27.06
GaLore 38.38 36.34 27.19 28.03
APOLLO 32.34 31.37 24.31 24.77
APOLLO-Mini 32.84 31.92 24.58 25.69
SRON 33.64 31.29 25.28 23.99
Training Tokens 1.3B 2.6B

As shown in Table 6, SRON achieves performance that is comparable to, or surpasses, the baselines
across a range of downstream LLM tasks. These results demonstrate SRON’s effectiveness beyond
pre-training and suggest that it can serve as a unified, memory-efficient optimization method appli-
cable throughout the LLM training pipeline.

Table 6: Evaluating SRON for memory-efficient fine-tuning on the GLUE benchmark (higher
is better), using a pre-trained ROBERTa-Large model. We report overall (matched and mismatched)
accuracy for MNLI, Matthew’s correlation coefficient for CoLA, Pearson correlation for STS-B, and
classification accuracy for all other tasks.

Methods \CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP\ Avg.
Full-Adam | 64.85 91.60 9279 7881 9644 90.51 9443 91.90 | 87.66

LoRA 64.32 90.68 91.39 77772 9598 90.57 94.78 90.93 | 87.04
GaLore 62.52 91.18 90.94 77.11 96.10 90.27 9421 89.99 | 86.54
APOLLO 61.13 91.66 92.14 80.14 95.06 89.85 93.61 89.27 | 86.58
SRON 63.08 91.91 91.76 83.03 9472 89.74 93.78 89.59 | 87.20

C IMPLEMENTATION DETAILS

C.1 NETWORK SETUP

In this section, we describe the model architectures used in our experiments, including Large
Language Model Meta Al (LLaMA) (Touvron et al., 2023b), Generative Pre-trained Transformer
(GPT) (Radford et al., 2019), and Gemma (Team et al., 2024). To ensure fairness, we adopt the
LLaMA architectural details reported in prior work (Zhao et al., 2024), which follows the design
choices of RMSNorm and SwiGLU activations (Touvron et al., 2023b;a). Table 7 summarizes the
architectural hyperparameters of LLaMA models of different sizes, as well as those of GPT and
Gemma.

C.2 HYPERPARAMETERS

For the Ir hyperparameter of the tested baselines, we tune the learning rates
of Adam, MUON, Lion, SGD, and SignSGD, selecting the best value from
{1.0e—5, 5.0e—5, 1.0e—4, 5.0e—4, 1.0e—3, 5.0e—3, 1.0e—2, 5.0e—2, 1.0e—1}. For
memory-efficient baselines (GaLore, APOLLO, APOLLO-Mini), we follow the learning rates and
scaling coefficient o suggested in the respective original works.

For our method (SRON), we apply row-wise normalization to all linear projection weights, while
the remaining parameters are optimized using Adam. Following prior work (Zhao et al., 2024;
Chen et al., 2024; Zhu et al., 2024; Wen et al., 2025; Ma et al., 2024; Liu et al., 2025), we adopt a
global learning rate to control all modules and introduce a scaling factor o for the SRON-updated
parameters. Specifically, the effective learning rate for Adam-updated parameters is [r, whereas for

17

Under review as a conference paper at ICLR 2026

Table 7: Architecture hyperparameters of different models for pre-training. Batch size and training
data amount are specified in tokens.

Models | Params Hidden Intermediate Heads Layers Iteration Tokens

60M 512 1376 8 8 10K 1.3B
130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8B
LLaMA 1B 2048 5461 24 32 100K 13.1B
3B 2560 6848 32 32 120K 15.7B
7B 4096 11008 32 32 150K 19.7B
GPT ‘ 1.5B 1600 - 25 48 120K 15.7B
Gemma‘ 2B 2048 16384 8 18 120K 15.7B

SRON-updated parameters it is [r x . In line with SWAN (Ma et al., 2024), we employ a lazy-tuning
strategy, setting hyperparameters without extensive search to reduce the risk of unfair comparisons
arising from over-tuning. Specifically, we test Ir € {1.0e—2, 2.0e—2},« € {5.0e—2, 1.0e—1}.
This tuning approach guarantees that the SRON module’s effective learning rate stays at 0.001,
identical to Adam’s default learning rate. We present the corresponding experimental results in
Table 9. For the SRONT variant, where SRON is applied to all model parameters, the scaling factor o
is no longer required. Instead, we perform a grid search over {1.0e—4, 5.0e—4, 1.0e—3, 5.0e—3}
to determine the optimal learning rate. We present all the hyperparameters in Table 8.

Table 8: Hyperparameters (Ir, o) for pre-training LLaMA models. SRON applies the identical
hyperparameters for all models, while other methods need to lower the learning rate during LLaMA-
3B training to avoid loss explosion in our test.

Models | 6M | 130M | 350M | 1B H 3B H 7B
Hyperparameters lr o ‘ lr @ ‘ Ir o ‘ Ir o ‘ Ir o ‘ r o
Adam (8bit) 5.0e-3 - 1.0e-3 - 1.0e-3 - 5.0e-4 - 5.0e-4 - 5.0e-4
MUON 5.0e-3 - 5.0e-3 - 1.0e-3 - 1.0e-3 - - - -

Lion 1.0e-4 - 1.0e-4 - 1.0e-4 - 1.0e-4

GalLore 1.0e-2 025 | 1.0e-2 0.25 | 1.0e-2 0.25 | 1.0e-2 025 | 5.0e-3 0.25 | 1.0e-2 0.25
APOLLO 1.0e-2 1.0 | 1.0e-2 1.0 | 1.0e-2 1.0 | 1.0e-2 1.0 | 5.0e-:3 1.0 | 1.0e-2 128
APOLLO-Mini 1.0e-2 128 | 1.0e-2 192 | 1.0e-2 128 | 1.0e-2 128 | 5.0e-3 128 | 1.0e-2 128
SRON 2.0e-2 0.05 | 2.0e-:2 0.05 | 2.0e-2 0.05 | 2.0e-2 0.05 | 2.0e-2 0.05 | 2.0e-2 0.05
SGD 1.0e-1 - 1.0e-1 - 1.0e-1 - 1.0e-1

SignSGD 1.0e-3 - 1.0e-3 - 1.0e-3 - 1.0e-3

SRON' 1.0e-3 - 1.0e-3 - 1.0e-3 - 5.0e-4

r for low-rank methods | 128 | 192 | 256 | 512 | 640 | 1024

All experiments are conducted with a global batch size of 512 and a sequence length of 256, yielding
512 x 256 = 131K tokens per iteration. We adopt BF16 precision for model parameters, gradients,
and optimizer states to reduce memory consumption. The learning rate schedule follows (Zhao et al.,
2024): a linear warmup over the first 10% of training iterations, followed by cosine decay to 10%
of the base learning rate. For reproducibility, all training runs are performed with the random seed
fixed at 42.

C.3 MEMORY ESTIMATION

For memory estimation, we compute optimizer memory layer-by-layer using the proposed memory
consumption reported in Table 1. Specifically, we isolate memory overhead attributable to model
parameters and optimizer states, while excluding factors such as batch size and PyTorch’s memory
caching and fragmentation behavior (Paszke et al., 2017). The code used for memory estimation is
provided in the supplementary materials.

18

Under review as a conference paper at ICLR 2026

Table 9: Evaluation of [r and o hyperparameter combinations for SRON on LLaMA-60M/130M.
We report the final validation PPL.

Ir | a | LLaMA-60M LLaMA-130M

oo1 | 01 3037 22.64
] 005 30.83 22.88
0.1 30.08 2252

0.02
0.05 29.91 2251

As a representative example, the LLaMA-1.3B model contains approximately 1,339.08M parame-
ters, of which 1,207.91M are updated with SRON and 191.17M with Adam. This corresponds to
131.17M x 2Bytes x 2 = 524.68MB = 0.52GB for storing optimizer states in the Adam portion.
Since SRON is state-free, the total optimizer memory consumption for training LLaMA-1.3B with
SRON is only 0.52GB, while SRONT requires effectively 0.00GB.

C.4 GPU COMMUNICATION

Gradient communication across GPUs remains a critical bottleneck in distributed training. Com-
pared with gradient orthogonalization or whitening methods such as SWAN (Ma et al., 2024),
MUON (Liu et al., 2025), and SinkGD (Scetbon et al., 2025), SRON’s gradient preprocessing does
not require storing the entire gradient matrix and is compatible with gradient sharding, which in
principle can integrate with existing sharded communication methods. As GPU communication
overhead is not the primary focus of this work, we do not discuss it in detail here.

C.5 FUTURE WORKS
Several directions remain open for further exploration:

1. The comparison of SRON and SRONT performance, along with the hybrid optimizer strate-
gies in other memory-efficient approaches, indicates that Adam is still irreplaceable for
training nonlinear layers. Future work includes exploring methods to compress the mem-
ory usage required for training these parameters.

2. Under high-noise conditions, SRON’s row normalization can be significantly affected; in
such cases, incorporating a sliding window over batches may help mitigate the noise im-
pact.

3. Extending SRON to other model families, including ViTs (Dosovitskiy et al., 2021) and
Diffusion Models (Song et al., 2021). Since these models often contain numerous three-
dimensional or even four-dimensional parameter modules, applying SRON to these param-
eters requires additional design considerations, which we leave for future work.

4. Investigating SRON’s compatibility with advanced parallel training strategies beyond
torch.DDP, such as model parallelism (Shazeer et al., 2018) and pipeline paral-
lelism (Huang et al., 2019).

5. Due to computational resource limitations, the largest model we used to evaluate SRON’s
performance was 7B, which is sufficient from an academic perspective. However, its per-
formance on ultra-large models and trillion-token scales still awaits industrial validation, as
training such models often requires over 1000 GPUs and is more prone to adverse training
environments.

D USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in preparing this manuscript solely for linguistic as-
sistance, including polishing wording, improving clarity, and refining phrasing. LLMs were not

19

Under review as a conference paper at ICLR 2026

involved in generating scientific ideas, designing experiments, analyzing data, or drawing conclu-
sions. All technical contributions, experimental work, and findings are entirely the responsibility of
the authors.

20

	Introduction
	Related Works
	Gradient Normalization
	Memory-Efficient Optimization

	Preliminaries
	Notation
	Vanilla Adam Optimizer

	Motivation and Algorithm
	Convergence Guarantees
	Numerical Results
	Memory-efficient pre-training
	Additional Investigations and Ablation Studies

	Conclusion
	Lemmas and Proofs
	Proof of Theorem 5.4

	Supplementary Experiments
	Long-Context Training
	Long-term training
	Small-Batch Training
	Memory-efficient Fine-tuning

	Implementation Details
	Network Setup
	Hyperparameters
	Memory Estimation
	GPU Communication
	Future Works

	Use of Large Language Models

