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Abstract
Whole slide image (WSI) analysis presents signif-
icant computational challenges due to the massive
number of patches in gigapixel images. While
transformer architectures excel at modeling long-
range correlations through self-attention, their
quadratic computational complexity makes them
impractical for computational pathology appli-
cations. Existing solutions like local-global or
linear self-attention reduce computational costs
but compromise the strong modeling capabilities
of full self-attention. In this work, we propose
Querent, i.e., the query-aware long contextual
dynamic modeling framework, which achieves a
theoretically bounded approximation of full self-
attention while delivering practical efficiency. Our
method adaptively predicts which surrounding re-
gions are most relevant for each patch, enabling
focused yet unrestricted attention computation
only with potentially important contexts. By us-
ing efficient region-wise metadata computation
and importance estimation, our approach dramati-
cally reduces computational overhead while pre-
serving global perception to model fine-grained
patch correlations. Through comprehensive ex-
periments on biomarker prediction, gene mutation
prediction, cancer subtyping, and survival anal-
ysis across over 10 WSI datasets, our method
demonstrates superior performance compared to
the state-of-the-art approaches. Codes are here.

1. Introduction
Computational pathology (CPath) represents a transforma-
tive shift in clinical diagnostics, leveraging artificial intel-
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Benign patches in the WSI

Cancerous patches in the WSI

When cancerous patch 
B is as query, it results in 
high attention score with 
cancerous patch C 

When benign patch A works as 
query, it leads to low attention 
score with cancerous patch C 

Figure 1. Illustration of context-dependent patch relationships in
whole slide images. When a benign patch (A) interacts with can-
cerous patch C, it shows low correlation, while a cancerous patch
(B) shows high correlation with patch C. This demonstrates how
the same patch (C) can have fundamentally different relationships
with other patches depending on the biological context.

ligence and deep learning to analyze the growing collec-
tions of whole slide images (WSIs) from medical facilities
(Van der Laak et al., 2021; Cui & Zhang, 2021; Zheng et al.,
2025). By digitalizing traditional pathology workflows, this
emerging field enhances clinical decision-making through
more standardized diagnoses, enables the identification of
new biomarkers, and helps predict treatment outcomes for
patients (Niazi et al., 2019; Song et al., 2023). These WSIs,
also known as gigapixel images, typically contain between
10, 0002 ∼ 100, 0002 pixels. The challenge lies in iden-
tifying critical diagnostic features that may be dispersed
across various tissue regions within these highly informa-
tive images, i.e., analogous to finding a needle in a haystack
(Jin et al., 2023). These unique challenges have driven the
development of multi-instance learning (MIL), a weakly-
supervised learning paradigm for WSI analysis (Campanella
et al., 2019; Lu et al., 2021; Shao et al., 2021; Xu & Chen,
2023; Zhou & Chen, 2023; Yang et al., 2024).

MIL performs slide-level analysis through three key steps:
(1) segmenting and cropping tissues in a WSI into smaller
image patches; (2) extracting representation features from
these patches using a pretrained encoder (typically a CPath
foundation model (Chen et al., 2024; Lu et al., 2024; Ma
et al., 2024; Xu et al., 2024; Du et al., 2025; Xiong et al.,
2025a)); and (3) aggregating the patch features through
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specific principles to obtain the slide-level representation.
Among various feature aggregation approaches, transformer
architectures have emerged as a particularly promising so-
lution due to their powerful ability to model long-range
dependencies through self-attention mechanisms (Vaswani,
2017; Dosovitskiy, 2020). This capability is especially valu-
able in WSI analysis, where diagnostically relevant features
often manifest through complex spatial relationships be-
tween distant tissue regions. However, the quadratic com-
putational complexity O(n2) of the standard transformer’s
self-attention mechanism presents a significant challenge
when applied to WSIs, as a typical slide can contain thou-
sands to tens of thousands of patches (Wang et al., 2023;
Song et al., 2024b; Guo et al., 2025; Xiong et al., 2025b).

To address this computational barrier, several adaptations
of transformer architectures have been proposed for WSI
analysis. These include linear attention methods that reduce
complexity to O(n) (Shao et al., 2021), and local-global
attention approaches that restrict attention computation to
predetermined spatial patterns (Chen et al., 2022; Li et al.,
2024a). While these modifications successfully reduce com-
putational overhead, they inevitably compromise the trans-
former’s inherent modeling capabilities. As demonstrated
by Dao et al. (2022) and Han et al. (2023), linear approxima-
tion of self-attention leads to only sub-optimal modeling per-
formance. Meanwhile, local-global attention makes strong
assumptions about which spatial relationships are important,
failing to adapt to the highly variable and context-dependent
nature of pathological features in WSIs.

These limitations motivate the need for a more adaptive ap-
proach to modeling inter-patch relationships in WSI analysis.
A key observation is that the relevance of surrounding tissue
regions varies significantly depending on which specific re-
gion is being examined (Heindl et al., 2015; Yuan, 2016). As
shown in Fig. 1, when analyzing a tumor boundary region,
nearby regions showing the tumor-stroma interface might
be highly relevant, while distant regions of normal tissue
might be less informative. Conversely, when examining an
area of inflammation, regions with similar inflammatory pat-
terns across the slide might be more relevant than adjacent
but histologically different regions. This context-dependent
nature of patch relationships suggests that an ideal attention
mechanism should dynamically prioritize relevant interac-
tions for each query patch while maintaining the capability
to model long-range dependencies when necessary.

Based on this insight, we propose Querent, a novel frame-
work for dynamic long-range contextual modeling of gi-
gapixel images through adaptive determination of patch
relationships. Our approach maintains the modeling power
of full attention while achieving computational efficiency
through dynamic sparsification. Rather than using fixed pat-
terns or uniform approximations, it estimates the potential

importance of patch relationships through efficient region
metadata computation and selectively applies full attention
to the most relevant interactions. This query-aware strat-
egy allows each patch to have its unique attention pattern,
better capturing the heterogeneous nature of histological
features while remaining computationally tractable for gi-
gapixel WSIs. Theoretically, we prove that Querent’s query-
aware attention mechanism maintains expressiveness within
a small constant bound of full self-attention. Empirically, we
demonstrate Querent’s effectiveness across multiple CPath
tasks, including biomarker prediction, gene mutation pre-
diction, cancer subtyping, and survival prediction, where it
consistently outperforms state-of-the-art models on over 10
WSI datasets.

The main contributions of this work are as follows: (1)
We propose a novel query-aware attention mechanism that
dynamically adapts to each patch’s unique context in gi-
gapixel WSIs, maintaining full attention’s expressiveness
while achieving computational efficiency; (2) We develop ef-
ficient region-level metadata summarization and importance
estimation modules that enables dynamic sparsification of
attention patterns while preserving modeling capabilities;
(3) We establish Querent’s effectiveness through theoreti-
cal bounds on its expressiveness and extensive empirical
validation across diverse CPath tasks.

2. Related Work
Given the massive image size of WSIs and GPU memory re-
strictions (Araujo et al., 2019), researchers have widely
adopted MIL for WSI analysis. Recent MIL-based ap-
proaches have achieved promising results in diagnosing
diseases and predicting patient outcomes under the formula-
tion of weakly-supervised learning (Campanella et al., 2019;
Chikontwe et al., 2020; Li et al., 2021b; Xiang et al., 2022;
Hou et al., 2022; Zheng et al., 2022; Wang et al., 2022; Yu
et al., 2023; Xiong et al., 2023; Lin et al., 2023; Xiong et al.,
2024a; Song et al., 2024a; Xiong et al., 2024b).

MIL primarily addresses the challenge of aggregating patch-
level features into a comprehensive slide-level representa-
tion for diagnostic purposes. Early MIL approaches em-
ployed straightforward, non-parametric aggregation tech-
niques, such as max and mean pooling operations, to com-
bine these features (Campanella et al., 2019). Recent ad-
vances in MIL have emphasized the development of more
sophisticated aggregation strategies to effectively capture
diagnostic patterns scattered across numerous patches. AB-
MIL (Ilse et al., 2018) introduces an attention-based frame-
work that computes importance weights for each patch using
a side network during the aggregation process. CLAM (Lu
et al., 2021) enhanced this attention mechanism by incor-
porating clustering-constrained learning and flexible atten-
tion branches to enhance WSI classification performance.
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DSMIL (Li et al., 2021a) develops a dual-stream architec-
ture that capitalizes on the hierarchical structure of WSIs
by integrating features across multiple magnification levels.
Further, DTFD-MIL (Zhang et al., 2022) introduces a novel
double-tier framework that leverages pseudo-bags to maxi-
mize feature utilization and minimize the bag-instance im-
balance problem in WSI analysis. Taking a graph-based per-
spective, WiKG (Li et al., 2024b) reformulates WSI analysis
by representing patches as nodes in a knowledge graph and
utilizing head-to-tail embeddings to generate dynamic graph
representations. Combined with the State Space Models (Gu
& Dao, 2023), MambaMIL (Yang et al., 2024) features a Se-
quence Reordering Mamba module that processes instance
sequences through both original and reordered pathways to
enhance long-range dependency modeling while maintain-
ing linear complexity. The field has further evolved with
the integration of multimodal information, as researchers
have begun incorporating pathology image captions (Lu
et al., 2023), diagnostic reports (Guo et al., 2024), as well
as genomic profiles (Sun et al., 2025) to enhance both inter-
pretability and diagnostic accuracy.

Building upon these advancements, another significant line
of research has focused on leveraging Transformer archi-
tectures to model long-range dependencies among patches
in WSIs. Despite the effectiveness of self-attention in mod-
eling long-range correlation, the quadratic computational
complexity of standard Transformer architectures poses sig-
nificant challenges when processing tens of thousands of
patches in a WSI. To address this limitation, Transformer-
based MIL methods could be categorized into two classes,
i.e., linear approximation (Shao et al., 2021) and local-
global attention (Chen et al., 2022; Guo et al., 2024; Li
et al., 2024a). TransMIL (Shao et al., 2021), a pioneering
work in linear approximation, adopts the Nyströmformer
(Xiong et al., 2021) to achieve linear complexity in WSI
modeling. However, this approximation strategy often leads
to sub-optimal performance due to its inherent limitations
in capturing pairwise token interactions, creating an infor-
mation bottleneck that compromises the model’s ability to
learn complex dependencies (Dao et al., 2022). In con-
trast, local-global attention methods like HIPT (Chen et al.,
2022) introduce a hierarchical approach, using a three-level
Transformer architecture to progressively aggregate infor-
mation from cellular features to tissue phenotypes through
non-overlapping region slicing. Similarly, HistGen (Guo
et al., 2024), RRT-MIL (Tang et al., 2024), and LongMIL
(Li et al., 2024a) employ a two-stage strategy, first process-
ing patches within local attention windows before pooling
them to enable global attention across the reduced sequence.
However, these methods rely on fixed window sizes, which
fail to capture the inherently adaptive nature of pathological
analysis: malignant regions often require attention to dis-
tant but visually similar areas, while normal tissue typically

benefits from focusing on local contextual patterns.

This observation motivates our query-aware dynamic long
sequence modeling approach, which adaptively determines
relevant regions for each patch based on its pathological
characteristics rather than using predetermined fixed atten-
tion patterns. Our method efficiently computes region-level
metadata through min-max networks to estimate the impor-
tance of different tissue regions for each (query) patch. By
focusing only on the most relevant regions for each patch,
we maintain the expressiveness of full attention while sig-
nificantly reducing computational cost.

3. Methods
3.1. Problem Formulation and Solution Overview

Problem Formulation: Given a WSI W , we first par-
tition it into a set of non-overlapping smaller patches
{p1, p2, ..., pN} at a fixed magnification level. Each patch
is then processed through a pre-trained encoder ϕ(·) to ob-
tain feature representations. Specifically, a CPath founda-
tion model named PLIP (Huang et al., 2023) is used for
this purpose. Formally, for each patch pi, we obtain its
feature representation xi = ϕ(pi), where xi ∈ Rd is a d-
dimensional feature vector. This results in a bag of instances
X = {x1, x2, ..., xN} representing the entire WSI. The goal
of WSI analysis is to learn a mapping function f : X → Y
that predicts the slide-level label y based on all patches
within the WSI through a weakly-supervised manner. The
key challenge lies in effectively aggregating information
from thousands of patches while capturing both their spe-
cific contexts and inter-patch semantic relationships.

Solution Overview: Here, we describe the overview of our
method comprising 4 major steps as depicted in Fig. 2.

Step 1: For each WSI, we partition the WSI into local
regions, where each region contains multiple patches. For
each region, we compute region-level metadata through
a summarization mechanism. This metadata encapsulates
the key characteristics of each region through statistical
measures (e.g., min/max features) and serves as a compact
representation for importance estimation.

Step 2: Given a query patch, we leverage the pre-computed
region-level metadata to identify the top-K most relevant
regions through importance scoring efficiently. This en-
ables prioritized processing of regions most likely to contain
meaningful contextual information for the current query.

Step 3: Then, we employ query-aware selective attention to
process the query with the most relevant regions. This step
involves computing dense self-attention between the query
and patches within selected regions, allowing for detailed
analysis of patch-to-patch relationships while maintaining
computational efficiency. The selection is guided by the
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Figure 2. Illustration of the proposed Querent framework, which models a WSI via four key steps: (1) region-level metadata summarization
from the partitioned WSI, detailed in Fig. 3, (2) identification of relevant regions for query patches through efficient importance scoring,
(3) query-aware selective self-attention computation between query patch and patches in selected regions, and (4) feature aggregation with
attentive pooling for final prediction. The framework enables dynamic modeling of long-range contextual relationships in gigapixel WSIs
through efficient region relevance identification and query-aware selective attention computation.

relevance scores computed using the region-level metadata.

Step 4: Finally, we aggregate the refined features through
an attentive pooling mechanism to generate slide-level pre-
dictions, which combines the contextually enhanced patch
representations while emphasizing the most diagnostically
relevant features.

3.2. Querent for dynamic long sequence WSI modeling

3.2.1. REGION-LEVEL METADATA SUMMARIZATION

Given the extracted patch features X = {x1, x2, ..., xN},
we first organize them into regionsR = {R1, R2, ..., RM},
where each region Ri contains a fixed number of K patches.

For each region Ri, we compute metadata vectors that cap-
ture the statistical characteristics of all patches within that
region, as illustrated in Fig. 3. Specifically, we compute two
types of summary vectors: minimum and maximum feature
values across all patches in the region. Formally, for region
Ri containing patches {xi1, xi2, ..., xiK}, we compute:

mmin
i = min

j∈{1...K}
xij , mmax

i = max
j∈{1...K}

xij (1)

where mmin
i ,mmax

i ∈ Rd represent the element-wise min-
imum and maximum values across all patches in region
Ri. These summary vectors are then transformed through

learnable projections:

m̂min
i = fmin(m

min
i ), m̂max

i = fmax(m
max
i ) (2)

where fmin and fmax are neural networks that project the sum-
mary vectors into a shared embedding space. This projection
allows the metadata to be directly comparable with query
features in the subsequent importance estimation step. The
resulting region-level metadata provides a compact yet in-
formative representation of each region’s content, enabling
efficient relevance assessment without requiring exhaustive
patch-level computations.

3.2.2. REGION IMPORTANCE ESTIMATION FOR QUERY

Given a query patch feature q ∈ Rd, our goal is to efficiently
identify the most relevant regions for this query using the
pre-computed region-level metadata. For each region Ri,
we estimate its importance score based on the potential
interaction between the query and its metadata vectors.

Specifically, we first project the query feature into the same
embedding space as the region metadata q̂ = fq(q), where
fq is a learnable projection network. The importance score
for region Ri is then computed by evaluating the maximum
possible interaction between the query and the region’s meta-
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Figure 3. Illustration of the region-level metadata summarization
process. Each region from the WSI is represented by summary
vectors computed from its constituent patches. These summary
vectors capture the statistical characteristics (minimum and maxi-
mum values) across all patches within each region, providing an
efficient representation for subsequent importance estimation.

data bounds:

si = max(|⟨q̂, m̂min
i ⟩|, |⟨q̂, m̂max

i ⟩|) (3)

where ⟨·, ·⟩ denotes the dot product operation. The impor-
tance score si provides an upper bound on the potential
relevance of any patch within region Ri to the current query.
Based on these scores, we select the top-K regions with the
highest importance scores:

Rq = TopK({(Ri, si)}Mi=1) (4)

This efficient scoring mechanism allows us to identify the
most promising regions for detailed attention computation
without examining every patch, significantly reducing the
computational complexity while maintaining the ability to
capture long-range dependencies.

3.2.3. QUERY-AWARE SELECTIVE ATTENTION

After identifying the relevant regionsRq for a query patch
q, we compute dense self-attention between the query and
patches within these selected regions. For a selected region
Ri ∈ Rq, we first compute query (Q), key (K), and value
(V) representations through linear projections, followed by
attention score computation:

[Q,K,V] = Wqkv(x), A = softmax(
QKT

√
dh

) (5)

where Wqkv ∈ Rd×3d is a learnable parameter matrix, x
represents the concatenation of the query patch and patches
from the selected region, and dh is the dimension of each

attention head. The output of the attention layer and multi-
head attention are computed as:

O = AV (6)

Oh = MultiHead(Q,K,V) = Concat(O1, . . . ,OH)WO

(7)
where WO ∈ RHdh×d is a learnable projection matrix.
Through this selective attention mechanism, each query
patch attends only to patches within the most relevant
regions, achieving a balance between computational effi-
ciency and comprehensive contextual modeling. The com-
putational complexity is reduced from O(N2) to O(NK),
where N is the total number of patches and K is the number
of patches in selected regions.

The selective attention mechanism described above pro-
vides an efficient approximation of full self-attention while
maintaining its key properties. To formally characterize the
relationship between our query-aware selective attention
and standard self-attention, we establish the following the-
oretical guarantee. This theorem demonstrates that under
reasonable conditions regarding the input distribution and
model parameters, our selective attention mechanism can
approximate full self-attention with bounded error. Specifi-
cally, we show:
Theorem 3.1 (Query-Aware Attention Approximation). Let
A be the query-aware attention matrix (Def. B.2), and
B be the full self-attention matrix (Def. B.1). Assume at-
tention scores decay exponentially with spatial distance:
exp(−αd(i, j)) bounds the attention score decay for dis-
tance d(i, j). For any input sequence X with L patches
and d dimensions, there exist random projection matrices
WQ,WK ∈ Rd×d such that ∥A − B∥F ≤

(
2 + B√

d

)
ϵ

with probability at least 1− δ, provided:

1. The hidden dimension satisfies, and the number of se-
lected regions per query satisfies:

d ≥ C1 ·
log(L/δ)

ϵ2
, k ≥ C2

α
· log

(
1

ϵ

)
where C1 = 8B4 (from JL inner-product preservation
(Kaban, 2015)), and C2 = 2.

2. For each region Ri, the diameter satisfies:

diam(Ri) ≤ min

(
ϵ

L ·
√
d
,
1

α

)
3. Regions are spatially separated such that:

∀i ̸= j, d(Ri, Rj) ≥
C3

α

where C3 = 1
2 ensures

∑∞
m=k+1 e

−C3m ≤ ϵ.

Proof. The detailed derivation of proof can be found in
Appendix B.1.
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Table 1. Results of biomarker prediction, gene mutation prediction, and cancer subtyping tasks, with accuracy, AUC, F1 score reported.
The best results are in bold, and the second-best results are underlined. Rows in gray color represent Self-Attn-based methods.

Methods
BCNB-ER (n = 1038) TCGA-LUAD TP53 (n = 469) UBC-OCEAN (n = 527)

ACC AUC F1 Score ACC AUC F1 Score ACC AUC F1 Score

Mean Pooling 0.806±0.047 0.820±0.044 0.700±0.062 0.639±0.061 0.672±0.081 0.630±0.063 0.788±0.017 0.941±0.017 0.759±0.038

Max Pooling 0.810±0.016 0.819±0.051 0.723±0.029 0.659±0.049 0.660±0.048 0.650±0.046 0.800±0.031 0.946±0.015 0.782±0.033

ABMIL 0.825±0.038 0.825±0.072 0.726±0.085 0.639±0.024 0.688±0.077 0.630±0.017 0.823±0.035 0.942±0.019 0.796±0.039

DS-MIL 0.817±0.050 0.814±0.087 0.734±0.077 0.629±0.047 0.684±0.072 0.614±0.046 0.781±0.029 0.938±0.018 0.753±0.024

CLAM-SB 0.821±0.052 0.821±0.050 0.732±0.070 0.615±0.073 0.647±0.061 0.607±0.071 0.808±0.021 0.942±0.010 0.796±0.025

DTFD 0.786±0.029 0.835±0.040 0.715±0.034 0.644±0.057 0.680±0.045 0.636±0.052 0.793±0.021 0.941±0.014 0.779±0.029

WiKG 0.794±0.027 0.815±0.038 0.717±0.026 0.654±0.067 0.661±0.076 0.642±0.048 0.819±0.065 0.944±0.023 0.782±0.080

MambaMIL 0.825±0.043 0.820±0.067 0.719±0.017 0.639±0.064 0.685±0.075 0.627±0.079 0.808±0.021 0.941±0.020 0.785±0.031

TransMIL 0.802±0.029 0.780±0.086 0.664±0.063 0.615±0.028 0.658±0.094 0.596±0.034 0.723±0.055 0.928±0.017 0.698±0.051

HIPT 0.796±0.016 0.758±0.056 0.681±0.034 0.600±0.029 0.672±0.062 0.588±0.031 0.781±0.040 0.913±0.035 0.737±0.068

HistGen 0.791±0.027 0.790±0.066 0.695±0.049 0.668±0.061 0.665±0.056 0.658±0.063 0.784±0.025 0.934±0.009 0.764±0.053

RRT-MIL 0.812±0.052 0.814±0.054 0.688±0.085 0.600±0.077 0.657±0.029 0.581±0.077 0.804±0.022 0.939±0.016 0.783±0.039

LongMIL 0.781±0.018 0.782±0.058 0.653±0.029 0.663±0.081 0.693±0.086 0.657±0.079 0.760±0.022 0.921±0.016 0.742±0.033

Querent (Ours) 0.836±0.0430.836±0.0430.836±0.043 0.848±0.0420.848±0.0420.848±0.042 0.739±0.0420.739±0.0420.739±0.042 0.678±0.0680.678±0.0680.678±0.068 0.706±0.0900.706±0.0900.706±0.090 0.672±0.0700.672±0.0700.672±0.070 0.835±0.0150.835±0.0150.835±0.015 0.956±0.0190.956±0.0190.956±0.019 0.806±0.0410.806±0.0410.806±0.041

3.2.4. ATTENTIVE FEATURE AGGREGATION

After obtaining contextually enhanced representations for all
patches through query-aware selective attention, we employ
an attentive pooling mechanism to aggregate these features
for slide-level prediction. Given the refined patch features
{x′1, x′2, ..., x′N}, we compute attention weights through a
learnable attention network:

wi = σ(fa(x
′
i)), ai =

exp(wi)∑N
j=1 exp(wj)

(8)

where fa is a multi-layer perceptron that produces a scalar
score for each patch, and σ is the sigmoid activation function.
The attention weights ai are normalized through softmax to
ensure they sum to one. The final slide-level representation
is computed as the weighted sum of all patch features, which
is then passed through a final classification layer:

z =

N∑
i=1

aix
′
i, ŷ = fc(z) (9)

where fc is a fully connected layer that outputs the predicted
class probabilities. This attentive pooling mechanism al-
lows the model to emphasize diagnostically relevant patches
while suppressing the influence of irrelevant or background
regions in the final prediction.

Our model is trained end-to-end using task-appropriate loss
functions. For classification tasks, we employ cross-entropy

(CE) loss Lce. For survival prediction tasks, we utilize
the negative log-likelihood (NLL) survival loss Lsurv (Cox,
1972; Katzman et al., 2018; Zadeh & Schmid, 2020). The
detailed formulations of these loss functions and their opti-
mization procedures are provided in Appendix C.

4. Experiments
4.1. Tasks and Datasets

We evaluate Querent across four types of tasks over 11
publicly available datasets (see Appendix D for details):

(1) Biomarker prediction. BCNB (Xu et al., 2021) (n =
1038), a dataset of early breast cancer core-needle biopsy
WSI is used to predict tumor clinical characteristic estrogen
receptor (ER).

(2) Gene mutation prediction. A subset of The Can-
cer Genome Atlas (TCGA) (Tomczak et al., 2015) is used
(TCGA-LUAD, n = 469) to predict TP53 gene mutation
from lung adenocarcinoma WSIs.

(3) Cancer subtyping. UBC-OCEAN (n = 527), an ovar-
ian cancer dataset, is used to predict 5 cancer subtypes.

(4) Survival Analysis. 8 TCGA subsets are used for this
task, including TCGA-BRCA (n = 1025), TCGA-UCEC
(n = 497), TCGA-STAD (n = 365), TCGA-LUAD (n =
457), TCGA-LUSC (n = 454), TCGA-SKCM (n = 417),
TCGA-KIRC (n = 500), and TCGA-KIRP (n = 263).
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Table 2. Results of survival prediction on 8 TCGA subsets with C-Index score reported. The best results are in bold, and the second-best
results are underlined. Rows in gray color represent Self-Attn-based methods.

Methods BRCA UCEC STAD LUAD LUSC SKCM KIRC KIRP Avg. (↑)

Mean Pooling 0.669±0.013 0.685±0.053 0.594±0.044 0.558±0.074 0.700±0.054 0.661±0.045 0.616±0.066 0.643±0.041 0.641

Max Pooling 0.674±0.037 0.649±0.037 0.539±0.054 0.519±0.065 0.672±0.039 0.666±0.064 0.581±0.031 0.593±0.024 0.612

ABMIL 0.698±0.020 0.666±0.039 0.598±0.075 0.581±0.063 0.707±0.042 0.663±0.084 0.606±0.065 0.608±0.071 0.641

DS-MIL 0.678±0.023 0.608±0.050 0.547±0.073 0.568±0.062 0.705±0.043 0.671±0.045 0.582±0.079 0.593±0.081 0.619

DTFD 0.695±0.022 0.672±0.032 0.597±0.090 0.570±0.054 0.716±0.046 0.649±0.048 0.631±0.0420.631±0.0420.631±0.042 0.598±0.023 0.641

WiKG 0.669±0.019 0.678±0.049 0.612±0.066 0.588±0.056 0.711±0.030 0.654±0.083 0.610±0.031 0.651±0.036 0.647

MambaMIL 0.694±0.012 0.668±0.022 0.590±0.039 0.609±0.0590.609±0.0590.609±0.059 0.692±0.044 0.666±0.046 0.614±0.067 0.641±0.042 0.647

TransMIL 0.643±0.038 0.642±0.049 0.568±0.082 0.498±0.067 0.657±0.056 0.586±0.042 0.602±0.043 0.567±0.092 0.595

HIPT 0.717±0.006 0.647±0.031 0.588±0.065 0.536±0.037 0.603±0.054 0.616±0.039 0.578±0.036 0.559±0.103 0.606

HistGen 0.688±0.041 0.664±0.041 0.619±0.064 0.562±0.068 0.708±0.026 0.611±0.057 0.610±0.049 0.560±0.055 0.628

RRT-MIL 0.700±0.022 0.672±0.029 0.555±0.064 0.580±0.089 0.669±0.070 0.652±0.063 0.592±0.048 0.561±0.041 0.623

LongMIL 0.652±0.024 0.633±0.062 0.591±0.094 0.535±0.038 0.674±0.074 0.658±0.026 0.631±0.0310.631±0.0310.631±0.031 0.626±0.055 0.625

Querent (Ours) 0.720±0.0120.720±0.0120.720±0.012 0.691±0.0620.691±0.0620.691±0.062 0.636±0.0280.636±0.0280.636±0.028 0.608±0.050 0.732±0.0530.732±0.0530.732±0.053 0.682±0.0450.682±0.0450.682±0.045 0.626±0.038 0.667±0.0240.667±0.0240.667±0.024 0.6700.6700.670

These four tasks represent key challenges across the compu-
tational pathology pipeline: from molecular-level analysis
(biomarker/mutation prediction) to clinical assessment (sub-
typing) and patient outcomes (survival).

We use 5-fold cross-validation for model training and evalua-
tion and report the results’ mean and standard deviation. For
classification tasks, accuracy (ACC), area under the curve
(AUC), and F1 Score are reported for comparison. For sur-
vival analysis, the concordance index (C-Index) (Harrell
et al., 1982) is used for evaluation.

4.2. Baselines

We employ SOTA models including Max/Mean Pooling,
ABMIL (Ilse et al., 2018), DS-MIL (Li et al., 2021a), DTFD
(Zhang et al., 2022), WiKG (Li et al., 2024b), and Mam-
baMIL (Yang et al., 2024) for comparison. For Transformer-
based MIL models, we involve TransMIL (Shao et al., 2021),
HIPT (Chen et al., 2022), HistGen (Guo et al., 2024), RRT-
MIL (Tang et al., 2024), and LongMIL (Li et al., 2024a).
For all models in comparison, we use PLIP (Huang et al.,
2023) as the patch feature encoder. Further information
on all baselines and implementation details are available in
Appendix E and Appendix F, respectively.

5. Results
5.1. Comparison to SOTA Methods

Tab. 1 shows the evaluation results on classification tasks,
including biomarker prediction (BCNB-ER), gene muta-

tion prediction (TCGA-LUAD TP53), and cancer subtyping
(UBC-OCEAN). Across all three tasks, our method consis-
tently achieves state-of-the-art performance. For BCNB-ER,
Querent achieves an accuracy of 0.836, AUC of 0.848, and
F1 score of 0.739, outperforming all MIL baselines and
transformer-based counterparts. On TCGA-LUAD TP53,
our method demonstrates superior performance with an ac-
curacy of 0.678 and AUC of 0.706, showing particular ad-
vantages over other transformer-based methods. For the
complex task of 5-class cancer subtyping on UBC-OCEAN,
Querent achieves significant improvements with an accu-
racy of 0.835 and AUC of 0.956, surpassing the second-best
method by 1.2% and 1.0%, respectively.

Moreover, Tab. 2 demonstrates the survival prediction re-
sults across eight TCGA cancer types. Querent achieves the
highest average C-Index of 0.670, representing a substan-
tial improvement over the second-best methods (WiKG and
MambaMIL, 0.647). The superior performance is consistent
across different cancer types, with our method achieving
the best results on BRCA (0.720), UCEC (0.691), STAD
(0.636), LUSC (0.732), SKCM (0.682), and KIRP (0.667).
This consistent improvement across diverse cancer types
demonstrates the robustness and generalizability of our
method in capturing prognostic features from WSIs.

5.2. Ablation Study

Region-level Metadata Summarization Strategy. We eval-
uate the effectiveness of different region-level feature sum-
marization strategies by comparing pairwise distance rela-
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P<0.005

P<0.005

Figure 4. Ablation on Querent using min, max, mean, and mean
±std strategies compared to our min-max method on TCGA-
LUAD TP53 gene mutation dataset (details in Appendix G.1).

tionships between regions before and after summarization.
As shown in Fig. 4, our proposed min-max summarization
strategy demonstrates superior performance as measured by
both the Pearson correlation coefficient and mean squared
error (MSE). Specifically, our min-max approach achieves
the highest correlation (0.975) and lowest MSE (0.008), sig-
nificantly outperforming (p < 0.005) alternative methods
including individual min (correlation: 0.937, MSE: 0.012)
or max summarization (correlation: 0.959, MSE: 0.018),
mean (correlation: 0.902, MSE: 0.058), and mean-std ap-
proaches (correlation: 0.897, MSE: 0.062), indicating that
combining both minimum and maximum values effectively
preserves the structural relationships between regions.

Table 3. Ablation on the importance estimation module of Quer-
ent, with reported results on TCGA-LUAD TP53 mutation and
UBC-OCEAN ovarian cancer datasets (details in Appendix G.2).

Importance Estimation Accuracy AUC F1 Score

TCGA-LUAD TP53 Gene Mutation Prediction

Estimation Side Network 0.580±0.076 0.660±0.042 0.568±0.073

Random Region Selection 0.649±0.063 0.686±0.071 0.643±0.061

Querent (Ours) 0.678±0.0680.678±0.0680.678±0.068 0.706±0.0900.706±0.0900.706±0.090 0.672±0.0700.672±0.0700.672±0.070

UBC-OCEAN Ovarian Cancer Subtyping

Estimation Side Network 0.731±0.036 0.903±0.019 0.690±0.026

Random Region Selection 0.746±0.056 0.914±0.036 0.697±0.062

Querent (Ours) 0.835±0.0150.835±0.0150.835±0.015 0.956±0.0190.956±0.0190.956±0.019 0.806±0.0410.806±0.0410.806±0.041

Region Importance Estimation Strategy. Meanwhile, we
conduct an ablation study comparing our proposed region
importance estimation module against random region se-
lection and an estimation side network, reported in Tab.
3. Our approach consistently outperforms both baselines
across TCGA-LUAD and UBC-OCEAN datasets. For TP53
mutation prediction, our method achieves 0.678 accuracy
and 0.706 AUC, showing moderate improvements over the
baselines. The gains are more substantial in ovarian can-

(a) TCGA-LUAD TP53 (b) UBC-OCEAN

Figure 5. Ablation on Querent using different region size K, with
reported results on TCGA-LUAD for TP53 gene mutation predic-
tion and UBC-OCEAN for ovarian cancer subtyping.

Figure 6. Computational efficiency comparison between full self-
attention and our query-aware approach. (a) Memory requirements
in gigabytes and (b) computational complexity in GFLOPs across
different sequence lengths. See detailed analysis in Appendix H.

cer subtyping (UBC-OCEAN), where our approach reaches
0.835 accuracy and 0.956 AUC, representing absolute im-
provements of 8.9% in accuracy and 4.2% in AUC over
random selection, demonstrating the effectiveness of our
region importance estimation strategy.

Region size in Querent. Fig. 5 shows the impact of apply-
ing different region size for our Querent model during the
region metadata summarization process. For TP53 mutation
prediction in TCGA-LUAD, moderate region sizes (K=24)
yielded optimal results with an AUC of 0.706, while both
smaller (K=8) and larger (K=64) regions showed decreased
performance. In UBC-OCEAN ovarian cancer subtyping,
K=16 emerged as the clear optimal choice, achieving the
highest accuracy (0.835) and AUC (0.956), with perfor-
mance gradually declining as region size increased. These
results demonstrate that moderate-sized regions are most
effective for both tasks. This aligns with pathological intu-
ition, as larger regions may dilute the discriminative local
tissue patterns by aggregating potentially heterogeneous ar-
eas, while smaller regions might miss important contextual
information.

5.3. Computational Efficiency

We analyze the computational efficiency of our query-aware
attention mechanism compared to full self-attention (illus-
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trated in Fig. 6). While full self-attention reaches 37GB
memory and 10,000 GFLOPs at 100k sequence length with
quadratic scaling, our approach achieves near-linear scaling,
requiring only 1GB memory and 500 GFLOPs for a 100k
patch sequence. This significant reduction in computational
overhead enables our model to efficiently process longer
sequences, which is crucial for gigapixel whole-slide image
analysis.

6. Conclusion
In this study, we present Querent, a query-aware dynamic
modeling framework for understanding long-range contex-
tual correlations in gigapixel WSIs. Inspired by pathological
observations, our method aims to dynamically adapt to the
unique context of each patch while remaining computa-
tionally efficient through region-level metadata summariza-
tion and importance-based attention. Extensive experiments
across multiple CPath tasks demonstrate the superior perfor-
mance of our model compared to state-of-the-art approaches,
establishing its effectiveness in whole slide image analysis.
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A. Algorithm Pseudo Code of Querent

Algorithm 1 Querent: Query-Aware Dynamic Long Sequence Modeling for Gigapixel WSI Analysis
1: Input: Patch features X = {x1, x2, ..., xN}, region size K, number of regions M
2: Output: Slide-level prediction ŷ and attention weights α
3: Parameter: Query projection fq , metadata projections fmin, fmax, attention Wqkv,WO, classifier fc
4: // Phase 1: Region-level Metadata Summarization
5: for i = 1 to M do
6: Extract region patches: Ri = {xi1, xi2, ..., xiK}
7: Compute min/max metadata: mmin

i = minj∈{1...K} xij , mmax
i = maxj∈{1...K} xij

8: Project metadata: m̂min
i = fmin(m

min
i ), m̂max

i = fmax(m
max
i )

9: end for
10: // Phase 2: Region Importance Estimation
11: for each query patch q do
12: Project query: q̂ = fq(q)
13: for i = 1 to M do
14: Compute importance: si = max(|⟨q̂, m̂min

i ⟩|, |⟨q̂, m̂max
i ⟩|)

15: end for
16: Select top regions: Rq = TopK({(Ri, si)}Mi=1)
17: end for
18: // Phase 3: Query-Aware Selective Attention
19: for each selected region Ri ∈ Rq do
20: Compute QKV: [Q,K,V] = Wqkv(x)

21: Compute attention scores: A = softmax(QKT

√
dh

)

22: Compute attention output: O = AV
23: Multi-head attention: Oh = Concat(O1, . . . ,OH)WO

24: end for
25: // Phase 4: Attentive Feature Aggregation
26: Compute attention weights: wi = σ(fa(x

′
i))

27: Normalize weights: ai =
exp(wi)∑N

j=1 exp(wj)

28: Aggregate features: z =
∑N

i=1 aix
′
i

29: Compute final prediction: ŷ = fc(z)
30: Return ŷ, α

B. Theoretical Analysis
B.1. Query-Aware Sparse Attention: A Theoretically Bounded Approximation of Full Self-Attention

B.1.1. DEFINITIONS AND PRELIMINARIES

Definition B.1 (Full Self-Attention Matrix). Let X ∈ RL×d be the feature matrix of a sequence of patches, where L is the
sequence length and d is the feature dimension. The full self-attention matrix B is defined as:

Bi,j = exp

(
q⊤i Kj√

d

)
where qi is the query vector for patch i and Kj is the key vector for patch j.

Definition B.2 (Query-Aware Attention Matrix). Let X ∈ RL×d be the feature matrix of a sequence of patches, where L is
the sequence length and d is the feature dimension. The query-aware attention matrix A is defined as:

Ai,j =

{
exp

(
q⊤
i Kj√

d

)
if j ∈ Ri

0 otherwise

whereRi is the set of top-K relevant regions for query patch qi, and Kj is the key vector for patch j.
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Definition B.3 (Region-Level Metadata). For each region Ri, the metadata consists of summary statistics computed from
the patches within the region. The primary statistics are the minimum and maximum feature vectors:

mi
min = min

j∈Ri

xj , mi
max = max

j∈Ri

xj

These vectors are projected via Lipschitz-continuous neural networks fmin and fmax into a shared embedding space:

m̂i
min = fmin(m

i
min), m̂i

max = fmax(m
i
max)

where fmin and fmax are L-Lipschitz continuous with constant L.

B.1.2. TECHNICAL LEMMAS

Lemma B.4 (Region Metadata Approximation). Let B be a bound on the input norms ∥qi∥, ∥Kj∥ ≤ B. For any query
patch q and region Ri, assuming L-Lipschitz continuous projection functions, the interaction scores satisfy:

max
j∈Ri

|⟨q,xj⟩ − ⟨q̂, m̂i
min⟩| ≤ B · L · diam(Ri) = ϵ1

and similarly for m̂i
max, where diam(Ri) is the diameter of region Ri in feature space.

Proof. Fix any patch xj ∈ Ri. By construction:

mi
min ⪯ xj ⪯mi

max

where ⪯ denotes element-wise comparison. By Lipschitz continuity:

∥m̂i
min − fmin(xj)∥ ≤ L∥mi

min − xj∥ ≤ L · diam(Ri)

Using Cauchy-Schwarz and the norm bound B:

|⟨q,xj⟩ − ⟨q̂, m̂i
min⟩| ≤ ∥q∥ · L · diam(Ri) ≤ B · L · diam(Ri) = ϵ1.

Lemma B.5 (Ranking Stability). Let si = max(|⟨q̂, m̂i
min⟩|, |⟨q̂, m̂i

max⟩|). If maxj∈Ri |⟨q,xj⟩ − ⟨q̂, m̂i
min⟩| ≤ ϵ1, then

the top-K regions selected by si and true interactions differ by at most 2ϵ1-suboptimal regions.

Proof of Lemma B.5. Let SK
true denote the true top-K regions ranked by ⟨q,xj⟩, and SK

approx denote those selected by si. For
any region Ri ∈ SK

approx \ SK
true, its approximate score satisfies:

si ≥ min
R∈SK

approx

sR ≥ max
R/∈SK

approx

sR.

By the approximation error bound ϵ1, we have:

⟨q,xj⟩ ≥ si − ϵ1 and ⟨q,xj⟩ ≤ si + ϵ1 ∀j ∈ Ri.

Thus, any region Ri ∈ SK
approx must satisfy:

⟨q,xj⟩ ≥

(
max

R/∈SK
approx

sR

)
− ϵ1.

This implies Ri is at most 2ϵ1-suboptimal compared to the true top-K regions.
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B.1.3. MAIN THEOREM

Theorem B.6 (Query-Aware Attention Approximation). Let A be the query-aware attention matrix (Def. B.2), and B be
the full self-attention matrix (Def. B.1). Assume attention scores decay exponentially with spatial distance: exp(−αd(i, j))
bounds the attention score decay for distance d(i, j). For any input sequence X with L patches and d dimensions, there
exist random projection matrices WQ,WK ∈ Rd×d such that:

∥A−B∥F ≤
(
2 +

B√
d

)
ϵ

with probability at least 1− δ, provided:

1. The hidden dimension satisfies:

d ≥ C1 ·
log(L/δ)

ϵ2

where C1 = 8B4 (from JL inner-product preservation (Kaban, 2015)).

2. The number of selected regions per query satisfies:

k ≥ C2

α
· log

(
1

ϵ

)
where C2 = 2 (derived from Step 3).

3. For each region Ri, the diameter satisfies:

diam(Ri) ≤ min

(
ϵ

L ·
√
d
,
1

α

)
4. Regions are spatially separated such that:

∀i ̸= j, d(Ri, Rj) ≥
C3

α

where C3 = 1
2 ensures

∑∞
m=k+1 e

−C3m ≤ ϵ.

Proof of Theorem B.6.
Step 1: Region Metadata Summarization.
By Lemma B.4, projections m̂i

min, m̂i
max approximate interactions within Ri with error ϵ1 = B · L · diam(Ri) ≤ Bϵ√

d
. The

condition diam(Ri) ≤ 1
α ensures region-level interactions respect the exponential decay rate α.

Step 2: Region Importance Estimation.
Using Lemma B.5, approximate scores si preserve the true top-K regions up to error ϵ1. Thus,Ri includes all regions with
si ≥ maxj sj − 2ϵ1.

Step 3: Bounding Non-Selected Regions.
Under spatial separation d(Ri, Rj) ≥ C3

α , the tail sum becomes:

∑
j /∈Ri

exp(−αd(i, j)) ≤
∞∑

m=k+1

e−C3m =
e−C3(k+1)

1− e−C3
≤ ϵ

Solving for k gives k ≥ 1
C3

log
(

1
ϵ(1−e−C3 )

)
. Setting C3 = 1

2 simplifies this to k ≥ 2
α log

(
1
ϵ

)
(i.e., C2 = 2).

Step 4: Johnson-Lindenstrauss Guarantee.
Using random matrices WQ,WK (Kaban, 2015), for d ≥ 8B4 log(L/δ)/ϵ2, we have:

Pr
[∣∣∣⟨q̂, K̂j⟩ − ⟨q,Kj⟩

∣∣∣ ≤ ϵ
]
≥ 1− δ

15



Context Matters: Query-aware Dynamic Long Sequence Modeling of Gigapixel Images

Step 5: Frobenius Norm Aggregation.
Normalize ϵ← ϵ/L to absorb the L2 scaling. The entrywise error becomes:

∥A−B∥F ≤

√
L2

(
2ϵ+

Bϵ√
d

)2

= L

(
2ϵ+

Bϵ√
d

)
ϵ←ϵ/L−−−−→

(
2 +

B√
d

)
ϵ

B.1.4. DISCUSSION

The theorem shows query-aware attention effectively approximates full attention via region metadata, sufficient embedding
dimension, and region selection. Error bounds depend on L, d,B, k, α, and region diameters. The spatial separation
condition ensures the exponential decay property is meaningful.

C. Task-specific Losses
C.1. Cross-entropy Loss for Classification Tasks

For classification tasks (biomarker prediction, gene mutation prediction, and cancer subtyping), we employ the standard
cross-entropy (CE) loss. Given a WSI X with slide-level label y, and model prediction ŷ = f(X; θ) where ŷ ∈ RC

represents the predicted probabilities over C classes, the CE loss is defined as:

Lce = −
C∑

c=1

yc log(ŷc) (10)

where yc is the one-hot encoded ground truth label for class c. The final classification loss is averaged over all WSIs in the
training set:

Lcls =
1

N

N∑
i=1

L(i)
ce (11)

where N is the number of WSIs in the training set and L(i)
ce is the CE loss for the i-th WSI.

This loss function encourages the model to output probability distributions that assign high probabilities to the correct
classes while minimizing probabilities for incorrect classes, effectively training the query-aware attention mechanism to
focus on diagnostically relevant regions within each WSI.

C.2. Negative Log-likelihood (NLL) Loss for Survival Analysis

The NLL survival loss (Zadeh & Schmid, 2020; Song et al., 2024b) generalizes the standard negative log-likelihood loss to
accommodate censored data. The goal is to predict patient survival based on their patient-level embedding, x̄patient ∈ R2d.
For each patient, we consider two key pieces of information: (1) a censorship status c, where c = 0 indicates observed death
and c = 1 indicates the last known follow-up, and (2) a time-to-event ti, representing either time until death (c = 0) or time
until last follow-up (c = 1).

Rather than directly predicting ti, we discretize time into n non-overlapping intervals (tj−1, tj), where j ∈ [1, ..., n], based
on the quartiles of observed survival times, and denote each interval as yj . This transforms survival prediction into a
classification problem, where each patient’s outcome is defined by (x̄patient, yj , c).

For each interval, we compute a hazard function fhazard(yj |x̄patient) = S(ŷj), where S is the sigmoid activation. Intuitively,
fhazard(yj |x̄patient) represents the probability of death occurring within interval (tj−1, tj). We also define a survival function
fsurv(yj |x̄patient) =

∏j
k=1(1− fhazard(yk|x̄patient)) that represents the probability of survival up to interval (tj−1, tj).

The NLL survival loss for a dataset of ND patients can then be formalized as:
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L
(
{x̄(i)

patient, y
(i)
j , c(i)}ND

i=1

)
=

ND∑
i=1

−c(i) log(fsurv(y
(i)
j |x̄

(i)
patient))

− (1− c(i)) log(fsurv(y
(i)
j−1|x̄

(i)
patient))− (1− c(i)) log(fhazard(y

(i)
j |x̄

(i)
patient)) (12)

The first term enforces a high survival probability for patients still alive at their last follow-up. The second term ensures
high survival probability up to the time interval before death for uncensored patients. The third term promotes accurate
prediction of the death interval for uncensored patients.

D. Datasets
BCNB1 (Xu et al., 2021) for biomarker prediction. Short for Early Breast Cancer Core-Needle Biopsy WSI, the BCNB
dataset includes core-needle biopsy WSIs of early breast cancer patients and the corresponding clinical data. 1038 WSIs are
annotated with their corresponding estrogen receptor (ER) expression, which is a favorable prognostic parameter in breast
cancer, and a predictor for response to endocrine therapy.

TCGA-LUAD2 (Tomczak et al., 2015) for TP53 gene mutation prediction. TCGA-LUAD TP53 dataset includes 469 lung
adenocarcinoma WSIs with their corresponding annotation of mutation of the TP53 tumor suppressor gene, which is one of
the most mutated genes in lung adenocarcinoma and represents a vital role in regulating the occurrence and progression of
cancer (Li et al., 2023).

UBC-OCEAN3 for ovarian cancer subtyping. UBC-OCEAN is a large-scale ovarian cancer dataset collected from over
20 medical centers across four continents. The dataset collects 527 ovarian cancer WSIs, representing five major ovarian
carcinoma subtypes: high-grade serous carcinoma, clear-cell carcinoma, endometrioid, low-grade serous, and mucinous
carcinoma, along with several rare subtypes. Each subtype exhibits distinct morphological patterns, molecular profiles, and
clinical characteristics, making accurate subtype classification crucial for treatment planning. The challenge of accurate
subtype identification is particularly relevant given the growing emphasis on subtype-specific treatment approaches and the
limited availability of specialist gynecologic pathologists in many regions.

TCGA Subsets4 (Tomczak et al., 2015) for survival analysis. In this work, we include 8 TCGA sub-datasets for unimodal
survival prediction:

1. TCGA-BRCA: Breast Invasive Carcinoma dataset from TCGA, containing 1025 whole slide images with associated
survival outcome data for breast cancer patients. This comprehensive collection represents one of the largest breast
cancer datasets, featuring diverse histological patterns and molecular subtypes including ductal and lobular carcinomas.
The survival data encompasses overall survival time and vital status, enabling robust prognostic model development.

2. TCGA-UCEC: Uterine Corpus Endometrial Carcinoma dataset from TCGA, encompassing 497 WSIs and survival data
from endometrial cancer cases. This dataset includes various histological grades and stages of endometrial carcinoma,
providing valuable insights into the progression and prognosis of gynecologic cancers. The images showcase diverse
morphological patterns characteristic of endometrial malignancies.

3. TCGA-STAD: Stomach Adenocarcinoma dataset from TCGA, which includes 365 WSIs and patient survival infor-
mation for gastric cancer cases. The dataset represents different anatomical locations within the stomach and various
histological subtypes of gastric adenocarcinoma. The survival data is particularly valuable for understanding the
relationship between morphological features and patient outcomes in gastric cancer.

4. TCGA-LUAD: Lung Adenocarcinoma dataset from TCGA, containing 457 WSIs and survival outcome data from
lung adenocarcinoma patients. This collection captures the heterogeneous nature of lung adenocarcinomas, including
various growth patterns and degrees of differentiation. The survival information is crucial for developing predictive
models for one of the most common types of lung cancer.

1https://bcnb.grand-challenge.org/
2https://portal.gdc.cancer.gov/
3https://www.kaggle.com/competitions/UBC-OCEAN
4https://portal.gdc.cancer.gov/
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5. TCGA-LUSC: Lung Squamous Cell Carcinoma dataset from TCGA, providing 454 WSIs and survival data for
lung squamous cell carcinoma cases. These images showcase the distinct morphological features of squamous cell
carcinomas, including keratinization and intercellular bridges. The dataset enables comparative studies between
different types of lung cancers and their prognostic factors.

6. TCGA-SKCM: Skin Cutaneous Melanoma dataset from TCGA, consisting of 417 WSIs and survival information
from melanoma patients. This collection includes primary and metastatic melanoma cases, capturing the diverse
histological patterns and progression stages of this aggressive skin cancer. The survival data is particularly relevant for
understanding metastatic potential and treatment response.

7. TCGA-KIRC: Kidney Renal Clear Cell Carcinoma dataset from TCGA, containing 500 WSIs with survival outcome
data for kidney cancer patients. The dataset showcases the characteristic clear cell morphology and various grades of
renal cell carcinoma. The survival information helps in understanding the prognostic implications of morphological
variations in kidney cancer.

8. TCGA-KIRP: Kidney Renal Papillary Cell Carcinoma dataset from TCGA, providing 263 WSIs and survival data
for papillary renal cell carcinoma cases. This collection represents a distinct histological subtype of kidney cancer,
featuring papillary architecture and different cellular patterns. The survival data enables comparative analysis with
other renal cancer subtypes.

All these datasets are part of The Cancer Genome Atlas (TCGA) program and contain high-resolution histopathology
whole slide images along with corresponding patient survival data. Each dataset has been digitized following standardized
protocols and includes detailed clinical annotations. The images are typically scanned at 40x magnification, providing
high-detail visualization of cellular and architectural features. These comprehensive resources enable researchers to develop
and validate computational methods for survival prediction based on histopathological features, facilitating advances in
precision oncology and personalized medicine approaches.

E. Baselines
Max/Mean Pooling. Mean Pooling represents one of the most straightforward aggregation strategies in multi-instance
learning. This approach processes all instances within a bag equally, combining their features through average pooling to
create a single, unified representation. While simple in nature, this method effectively captures the collective characteristics
of all instances, making it particularly suitable for cases where every instance contributes meaningful information to the
overall bag classification. Max Pooling, on the other hand, adopts a more selective approach by identifying and utilizing
the most prominent features across all instances. This strategy operates under the assumption that the most distinctive
or highest-activated features are the most relevant for classification. By focusing on these peak features, max pooling
can effectively highlight the most discriminative patterns within the bag, though it may potentially overlook more subtle,
collective patterns that could be captured by other methods.

ABMIL (Ilse et al., 2018). Attention-Based Multiple Instance Learning (ABMIL) enhances bag-level feature aggregation
by incorporating a learnable attention mechanism that adaptively weights the importance of different instances within a bag.
Unlike fixed pooling strategies, ABMIL computes attention scores for each instance based on their learned representations,
enabling the model to emphasize the most informative elements while downweighting less relevant ones. This adaptive
weighting scheme, combined with its inherent interpretability through attention weights, makes ABMIL particularly effective
for scenarios where instances have varying levels of relevance to the classification task.

DS-MIL (Li et al., 2021a). Dual-Stream Multiple Instance Learning (DS-MIL) advances bag-level feature aggregation
through a novel two-stream architecture that combines the benefits of instance-level and bag-level learning. The model’s
first stream employs max pooling to identify the most discriminative instance (critical instance), while the second stream
computes attention weights for all instances based on their learned distance to the critical instance. By fusing these
complementary streams and incorporating trainable distance measurements, DS-MIL creates a more nuanced decision
boundary that better captures the relationships between instances, making it particularly effective for scenarios with complex
instance distributions within positive bags.

DTFD (Zhang et al., 2022). DTFD introduces an innovative dual-tier framework for whole slide image classification that
addresses the inherent challenges of limited training samples with high instance counts. The model’s key innovation lies in
its pseudo-bag strategy, which virtually increases the number of training bags by randomly splitting instances from each
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original slide into smaller subsets. A two-tier architecture processes these pseudo-bags: the first tier applies attention-based
MIL to the pseudo-bags, while the second tier distills features from the first tier’s outputs to generate final slide-level
predictions. This hierarchical approach, combined with multiple feature distillation strategies, enables more effective
learning from limited training data while maintaining robustness against noise in positive instance distributions.

WiKG (Li et al., 2024b). WiKG introduces a dynamic graph representation framework for whole slide image analysis
that conceptualizes the relationships between image patches through a knowledge graph structure. The model employs a
dual-stream approach: head embeddings that explore correlations between patches and tail embeddings that capture each
patch’s contribution to others. These embeddings are then used to dynamically construct directed edges between patches
based on their learned relationships. A knowledge-aware attention mechanism aggregates information across patches by
computing attention scores through the joint modeling of head, tail, and edge embeddings. This architecture allows WiKG
to both capture long-range dependencies between distant patches and model directional information flow, overcoming key
limitations of conventional graph-based and instance-based approaches for histopathology image analysis.

MambaMIL (Yang et al., 2024). MambaMIL introduces a novel approach to whole slide image analysis by incorporating
Selective Scan Space State Sequential Model, i.e., Mamba (Gu & Dao, 2023), into multiple instance learning with linear
complexity. The model’s core innovation lies in its Sequence Reordering Mamba (SR-Mamba) architecture, which processes
instance sequences in dual streams - one preserving the original sequence order and another utilizing reordered sequences.
This dual-stream approach enables more comprehensive modeling of relationships between instances while maintaining
computational efficiency. The SR-Mamba module dynamically reorders instance sequences within non-overlapping segments,
allowing the model to capture both local and global dependencies between patches. Through this sequence reordering
mechanism and linear-time sequence modeling inherited from Mamba, the model effectively addresses common challenges
in whole slide image analysis such as overfitting and high computational overhead.

TransMIL (Shao et al., 2021). TransMIL introduces a novel correlated multiple instance learning framework that
fundamentally reimagines how relationships between instances are modeled in whole slide image analysis. Unlike traditional
MIL approaches that assume instances are independent and identically distributed, TransMIL leverages Transformer
architecture to capture both morphological and spatial correlations between patches. The model employs a TPT (Transformer
Pyramid Translation) module that combines multi-head self-attention for modeling instance relationships with position-aware
encoding to preserve spatial context.

HIPT (Chen et al., 2022). HIPT (Hierarchical Image Pyramid Transformer) is a novel architecture designed specifically
for analyzing gigapixel whole-slide images in computational pathology. It processes images in a hierarchical manner
across multiple scales - from cell-level features (16×16 pixels) to larger tissue regions (4096×4096 pixels) - mirroring how
pathologists examine slides by zooming in and out. This hierarchical approach allows HIPT to capture both fine-grained
cellular details and broader tissue patterns simultaneously. The model employs a series of Vision Transformers arranged in a
pyramid structure to aggregate information across these different scales, enabling it to learn representations that incorporate
both local and global tissue contexts.

HistGen (Guo et al., 2024). HistGen is a hierarchical architecture designed for efficient processing and representation
learning of gigapixel whole slide images (WSIs). At its core, HistGen employs a novel local-global hierarchical encoder that
processes WSIs in a region-to-slide manner, capturing both fine-grained tissue details and broader contextual patterns. The
framework first segments WSIs into regions, processes them using a pre-trained vision transformer backbone, and then
hierarchically aggregates information across different scales through a series of attention-based modules. This hierarchical
design allows the model to effectively manage the extreme size of WSIs while maintaining meaningful spatial relationships.
Particularly noteworthy is HistGen’s ability to learn robust and transferable representations through its region-aware
approach, which helps bridge the gap between local tissue patterns and global slide-level characteristics.

RRT-MIL (Tang et al., 2024). RRT-MIL introduces a novel re-embedding paradigm for multiple instance learning in
computational pathology that addresses a key limitation of existing approaches - the inability to fine-tune pre-extracted
image features for specific downstream tasks. At its core is the Re-embedded Regional Transformer (R2T), which processes
pathology images through a hierarchical structure that respects the natural organization of tissue at different scales. The
framework first divides whole slide images into regions and processes them using a pre-trained feature extractor. Then, it
employs two key components: a Regional Multi-head Self-attention module that captures fine-grained local patterns within
each region, and a Cross-region Multi-head Self-attention module that models relationships between different regions. This
regional approach allows RRT-MIL to efficiently handle the extremely large size of pathology images while maintaining the
ability to capture both local and global tissue patterns.
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LongMIL (Li et al., 2024a). LongMIL proposes a novel hybrid Transformer architecture specifically designed for whole
slide image analysis. The method addresses key challenges in processing gigapixel pathology images by introducing
a local-global attention mechanism that balances computational efficiency with modeling capability. By analyzing the
low-rank nature of attention matrices in long sequences, LongMIL incorporates local attention patterns in lower layers
while maintaining global context through selective attention in higher layers. This design not only reduces computational
complexity but also improves the model’s ability to handle varying image sizes and spatial relationships in histopathology
slides.

F. Implementation Details
We implement Querent using PyTorch. For the feature extraction backbone, we utilize CPath pre-trained vision-language
foundation model PLIP (Huang et al., 2023) to obtain 512-dimensional patch features. Each region contains 16/24/28
patches (depending on the datasets used), which provides a good balance between computational efficiency and contextual
coverage. The model consists of 8 attention heads, with the hidden dimension set to 512.

For the region-level metadata networks (fmin and fmax), we use single-layer perceptrons with GELU activation. The query
projection network fq shares the same architecture. During the region importance estimation, we select the top-16 most
relevant regions for each query patch, which empirically provides sufficient contextual information while maintaining
computational efficiency.

The attention pooling network fa consists of a two-layer MLP with a hidden dimension of 512 and GELU activation.
Dropout with a rate of 0.1 is applied throughout the network to prevent overfitting. We train the model using the AdamW
optimizer with a learning rate of 1e−4 for classification tasks and 2e−4 for survival analysis, with a weight decay of 1e−5.
The model is trained for 50 epochs with a batch size of 1 WSI per GPU. We employ gradient clipping with a maximum
norm of 1.0 to ensure stable training.

G. Additional Experiment Details
G.1. Ablation on Region-level Metadata Summarization Strategy

To thoroughly evaluate the effectiveness of our proposed min-max region-level metadata summarization approach, we
conducted a comprehensive ablation study comparing it against several alternative summarization strategies:

• Min-only: Using only the element-wise minimum values across patches within each region

• Max-only: Using only the element-wise maximum values across patches within each region

• Mean: Using the average feature values across patches within each region

• Mean-std: Using both mean and standard deviation of features across patches

The evaluation framework compares the pairwise distance relationships between regions before and after summarization.
For each region containing N patches with D-dimensional features (N ×D matrix), we compute two distance matrices:
one using the original high-dimensional features, and another using the summarized representations (e.g., D-dimensional
for min/max/mean, 2D-dimensional for min-max/mean-std). For each strategy, we computed pairwise distance matrices
between regions using both the original patch features and the summarized metadata, then measured the correlation between
these matrices using two metrics: Pearson correlation coefficient and Mean Squared Error (MSE), indicating how well each
summarization method preserves the original structural relationships between regions.

The experiment was conducted on the TCGA-LUAD TP53 dataset, with statistical significance assessed using paired t-tests
(p < 0.005). Our proposed min-max approach demonstrated superior performance in both metrics, achieving significantly
higher correlation and lower MSE compared to all alternative strategies. This suggests that capturing both the lower and
upper bounds of feature distributions within each region provides a more comprehensive and accurate representation of the
region’s characteristics.

Particularly noteworthy is the substantial improvement over the mean-based approaches, indicating that extreme values
(minimums and maximums) carry important discriminative information that might be lost when only considering average
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statistics. This aligns with pathological intuition, where both the presence of certain distinctive features (captured by
maximums) and their absence (captured by minimums) can be diagnostically relevant.

G.2. Ablation on Region Importance Estimation Strategy

To evaluate the effectiveness of our proposed region importance estimation module, we conducted a detailed ablation study
comparing it against two baseline approaches: random region selection and a trainable estimation side network. This study
aims to validate the benefits of our query-aware dynamic region importance estimation strategy.

• The random region selection baseline serves as a lower bound, employing uniform random sampling to select regions
for attention computation. This approach uses a fixed random seed for reproducibility and maintains the same number
of selected regions as our proposed method. While simple, it helps quantify the importance of adaptive region selection.

• The estimation side network baseline represents a more sophisticated approach, implementing a trainable neural
network that directly predicts region importance scores. This network consists of two fully-connected layers with GELU
activation and processes each region independently. Unlike our proposed method, it doesn’t consider query-region
relationships when estimating importance.

We evaluated these approaches on both TCGA-LUAD TP53 mutation prediction and UBC-OCEAN cancer subtyping tasks.
The results demonstrate that while both baseline approaches achieve reasonable performance, our query-aware estimation
strategy consistently outperforms them. The performance gap is particularly pronounced in the more complex UBC-OCEAN
dataset, where accurate region selection becomes crucial due to the heterogeneous nature of ovarian cancer subtypes.

For training stability, we implemented an adaptive update mechanism for the estimation module with a moving average of
attention accuracy and periodic updates every 200 forward passes. This strategy helps prevent overfitting and ensures stable
convergence of the importance estimation. Additionally, we employed a hybrid loss function combining binary classification
and ranking components to guide the learning process effectively.

H. Complexity Analysis
We analyze the computational and memory complexity of the Query-Aware Transformer MIL method, comparing it to
standard transformer self-attention. Let N denote the total number of patches in a whole slide image (WSI), d represent the
hidden dimension, R be the number of regions (pages), and k indicate the number of selected regions per query. The page
size p is the number of patches per region.

H.1. Standard Transformer Self-Attention

Standard transformer self-attention has quadratic computational complexity:

O(N2d) (13)

This arises from computing attention scores and weighted aggregation for all patch pairs. Memory requirements scale
similarly:

O(N2 +Nd) (14)

to store the full attention matrix and key/value representations. This quadratic scaling makes standard self-attention
computationally prohibitive for gigapixel WSIs.

H.2. Querent: Query-Aware Dynamic Long Sequence Modeling Framework

Our method operates in three phases, with each phase optimized through efficient chunking strategies:

H.2.1. REGION METADATA COMPUTATION

This phase computes min/max metadata for each region:

O(Nd) (15)
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Memory requirements are:
O(Rd) (16)

where R = ⌈N/p⌉ (number of regions). For constant p, R scales linearly with N . This phase is highly efficient as it requires
only a single pass over the data with constant memory overhead per region.

H.2.2. REGION IMPORTANCE ESTIMATION

This phase estimates relevance scores between queries and region metadata:

O(NRd) (17)

While the theoretical memory requirements are:
O(NR) (18)

in practice, we employ a chunking strategy with fixed chunk size C (typically 8192):

O(min(N,C) ·R) (19)

This chunked processing effectively bounds the memory usage while maintaining computational efficiency through vectorized
operations.

H.2.3. SELECTIVE ATTENTION COMPUTATION

This phase performs attention only on selected regions:

O(Nkpd) (20)

The theoretical memory requirements are:
O(Nkp+Nd) (21)

However, with chunked processing (chunk size C):

O(min(N,C)kp+Nd) (22)

Where k and p are constants (typically k = 16, p = 16), ensuring linear scaling with N in both computation and memory.

H.3. Total Complexity

Combining all phases, the total computational complexity is:

O(Nd+NRd+Nkpd) (23)

For constant k and p, this simplifies to:
O(Nd+NRd) (24)

The theoretical memory complexity is:
O(Rd+NR+Nkp+Nd) (25)

which simplifies to:
O(NR+Nd) (26)

However, with chunked processing, the practical memory complexity becomes:

O(Rd+min(N,C)R+min(N,C)kp+Nd) (27)

where C is the chunk size.
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H.4. Practical Efficiency

In practice, our method achieves near-linear scaling (O(Nd)) due to:

• Constant k and p reducing the impact of Nkpd

• Chunked processing with size 8192 providing bounded memory usage

• Efficient vectorized operations in PyTorch minimizing constant factors

• Memory-efficient implementations of matrix operations

Empirical results (Fig. 6) demonstrate that our method requires ∼ 1% of the memory and ∼ 5% of the computational cost
of standard self-attention for large WSIs (100k+ patches). This significant reduction in resource requirements enables the
practical processing of gigapixel-scale images while maintaining the modeling power of attention mechanisms.
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