
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

UniGM: Unifying Multiple Pre-trained Graph Models via
Adaptive Knowledge Aggregation

Anonymous Authors

ABSTRACT
Recent years have witnessed remarkable advances in graph rep-
resentation learning using Graph Neural Networks (GNNs). To
fully exploit the unlabeled graphs, researchers pre-train GNNs on
large-scale graph databases and then fine-tune these pre-trained
Graph Models (GMs) for better performance in downstream tasks.
Because different GMs are developed with diverse pre-training
tasks or datasets, they can be complementary to each other for a
more complete knowledge base. Naturally, a compelling question
is emerging: How can we exploit the diverse knowledge captured by
different GMs simultaneously in downstream tasks? In this paper, we
make one of the first attempts to exploit multiple GMs to advance
the performance in the downstream tasks. More specifically, for
homogeneous GMs that share the same model architecture but
are obtained with different pre-training tasks or datasets, we align
each layer of these GMs and then aggregate them adaptively on
a per-sample basis with a tailored Recurrent Aggregation Policy
Network (RAPNet). For heterogeneous GMs with different model
architectures, we design an alignment module to align the output
of diverse GMs and a meta-learner to decide the importance of each
GM conditioned on each sample automatically before aggregating
the GMs. Extensive experiments in various downstream tasks from
3 domains reveal our dominance over each single GM. Additionally,
our methods (UniGM) can achieve better performance with moder-
ate computational overhead compared to alternative approaches
including ensemble and model fusion. Also, we verify that our
methods are not limited to graph data but could be flexibly applied
to multiple modalities. The codes can be seen in the anonymous
link: https://anonymous.4open.science/r/UniGM-DA65.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Learning
latent representations.

KEYWORDS
Graph analysis, pre-trained models, ensemble, model fusion

1 INTRODUCTION
Fine-tuning a pre-trained Language Model (LM) has become the
de facto standard for Natural Language Processing (NLP) [4, 6].
Inspired by the prosperity, tremendous efforts have been devoted

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to pre-trained GMs to exploit abundant knowledge of unlabelled
graphs [18, 53]. For the pre-training stage, researchers train the
GNN encoder with various pretext tasks [35]. For the fine-tuning
stage, researchers replace the top layer of the pre-trained models
with a task-specific sub-network and train the new model with
the labeled data of the downstream tasks. Pre-training techniques
can help GNNs capture the potential laws of graph data that are
conducive to downstream tasks [18, 53]. Intuitively, different off-the-
shelf GMs are obtained with diverse pre-training tasks or datasets
and thus they capture diverse knowledge and possess different
abilities. Take molecular graphs as examples, given that motifs
in molecular graphs usually correspond to functional groups that
are indicative of molecular properties, some researchers pre-train
GNNs with motif-driven pre-training strategy [61] to capture the
information of functional groups. Now, we are naturally motivated
to ask the following question: How can we exploit the diverse knowl-
edge captured by different GMs simultaneously in downstream tasks?

There are several possible approaches to achieving this goal.
For example, the easiest way is to adopt all the pretext tasks to
pre-train only one model on various datasets. However, it is imprac-
tical because the downstream users are often only accessible to the
off-the-shelf pre-trained GMs rather than the pre-training datasets
or tasks. Worse still, pre-training a new model from scratch with
multiple tasks and datasets is computationally prohibitive. There-
fore, we consider unifying the off-the-shelf pre-trained GMs during
model adaptation. Ensemble Learning [9] is a prevalent technique
that can unify multiple models. Despite the effectiveness, we have
to fine-tune each GM and then use the averaged outputs of them for
downstream tasks, which is inconvenient and suffers from heavy
computational overhead. Model fusion [1, 32, 38] is another alterna-
tive solution to this problem, which aligns neurons across different
models before averaging their associated parameters in a data-free
way. While model fusion enjoys higher efficiency than ensemble
learning, there is a flaw that causes poorer performance: it treats all
the samples equally by letting them share the same aggregation pol-
icy. However, in practice, each sample holds specific relations with
diverse pre-trained models [56] and the aggregation policy should
depend on each sample. Additionally, existing evidence reveals that
the lower pre-trained layers learn more general features while the
higher layers closer to the output specialize more to the pre-training
tasks [20, 60]. Therefore, for some downstream tasks that are more
similar to pre-training tasks, the aggregation should emphasize
the higher layer and vice versa. Overall, an ideal aggregation pol-
icy should be both sample-dependent and layer-dependent. Also,
tremendous efforts have been devoted to designing pre-training
strategies for GNNs so far. However, how to leverage pre-trained
GNNs remains under-explored.

To remedy the above drawbacks, we propose UniGM to ex-
ploit multiple GMs effectively and efficiently during fine-tuning.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GM 1

...

Alignment &
Aggregation

 GM 2

 GM n

Performance Efficiency

UniGM

Output
GM 1

...
GM 2

GM n

Output 1

Output 2

Output n

Performance Efficiency ✘

 GM 1

...
 GM 2 Fused

GM

 GM n

Alignment
& Average

Performance ✘ Efficiency

Output

（a）Ensemble （b）Model Fusion （c）UniGM

Figure 1: Comparison of the ensemble, model fusion, and UniGM.

We show the schematic diagrams of our UniGM and the above-
mentioned approaches in Figure 1. Specifically, for homogeneous
GMs that share the same GNN backbone, we aggregate each layer
of them adaptively on a per-sample basis with a tailored RAPNet,
which includes a Recurrent Neural Network (RNN) [31] to explicitly
model the layer-based relations. For the heterogeneous GMs with
different GNNs backbones, we devise an alignment module to align
the output of heterogeneous GMs and a meta-leaner to decide the
importance of each GM for the downstream task conditioned on per
sample automatically. Here, ‘Heterogeneous GMs’ denote the pre-
trained graph models that differ from each other in terms of GNN
backbones, instead of heterogeneous graph data or heterogeneous
GNNs [59]. Different from some recent works that aim to combine
several self-supervised tasks to pre-train GNNs [13, 22], we attempt
to unify multiple off-the-shelf pre-trained GMs for a more complete
knowledge base. We highlight the following contributions:

• Currently, the community focuses on designing self-supervised
pre-training strategies for GNNs, however, it remains under-
explored how to utilize pre-trained GMs more effectively or
efficiently. To the best of our knowledge, we make one of the
first attempts to unify multiple GMs for better performance
in downstream tasks.

• We present two effective and efficient techniques to unify
homogeneous and heterogeneous GMs, respectively. Our
methods can also be flexibly applied to various modalities
(validated in section 4.5).

• Extensive experiments validate that UniGM can consistently
outperform each single GM, and achieve state-of-the-art
performance with moderate computational consumption
compared with competitive alternatives.

2 RELATEDWORK
2.1 Pre-training Graph Neural Networks
GNNs have emerged as dominant tools for graph representation
learning. While effective and prevalent, they require expensive an-
notations and barely generalize to unseen graphs, which poses a hur-
dle to practical applications. To remedy these deficiencies, tremen-
dous efforts have been devoted to pre-training GNNs. One line of
these works follows the contrastive paradigm [14, 34, 44, 62]. For

example, GraphCL [58] and its variants [11, 26, 42, 43, 48, 51, 57] em-
bed augmented versions of the anchor graph close to each other and
push the embeddings of other graphs apart. Additionally, DGI [46]
and InfoGraph [41] is proposed to obtain expressive representa-
tions for graphs or nodes via maximizing the mutual information
between graph-level representations and substructure-level repre-
sentations of different granularity. The other line of work adopts
generative or predictive pretext tasks. Typically, GPT-GNN [19]
introduces an attributed graph generation task to pre-train GNNs
so that they can capture the structural and semantic properties of
the graph. Additionally, [18], [25] and [17] conduct attribute and
structure prediction at the level of individual nodes as well as entire
graphs. To capture the rich information in molecular graph motifs,
GROVER [35] and MGSSL [61] propose to predict or generate the
motifs. Considering that 3D geometric information also plays a
vital role in predicting molecular graph properties, several recent
works [10, 27, 28, 40] pre-train the GNN encoders on molecular
datasets with 3D geometric information. Since the above GMs are
obtained with diverse pre-training tasks or datasets, they can be
complementary to each other. To this end, we propose UniGM to
integrate multiple GMs into a unified one for better performance.

2.2 Ensemble Learning and Model Fusion
Ensemble Learning has achieved spectacular achievements in his-
tory [37, 49]. They combine the outputs of different models to
improve performance. In the pretrain-then-finetune paradigm, we
have to finetune all the pre-trained models and then run each of
them during inference to average their outputs, which is laborious.
Alternatively, Model Fusion aims to merge multiple trained net-
works into a single one in a data-free manner. The simplest way
of model fusion is vanilla averaging the parameters of pre-trained
networks [45]. However, vanilla averaging only works in the case
when the weights of individual networks are relatively close in the
weight space. As effective remedies, FBA-Wagging [1], FedMA [47]
and OTFusion [38] align the neurons of each layer before applying
vanilla averaging. Although model fusion runs several magnitudes
faster than ensemble learning, the fusion process is independent of
the input sample while each sample holds specific relations with
diverse models, which accounts for its poorer performance. Com-
pared with them, our UniGM achieves better performance with
moderate computational cost.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Downstream
tasks

GM 1

GM 2

...

...

...

GM n

...

...

...

...

UniGM RAPNet

Output of
last layer

RAPNet

Parameters
of GMs

Alignment
module

Parameters
of UniGM

Hidden
state

Aggregation
 weights

Multiply &
Accumulate

Output of
last layer

Pooling

RNN

Linear layer

Softmax

Aggregation
weights

ReLU

...

Figure 2: Schematic diagram of UniGM for homogeneous GMs.

3 METHOD
Our UniGM encompasses two ingredients: Unifying homogeneous
GMs and Unifying heterogeneous GMs. In what follows, we elabo-
rate on them in detail.

3.1 Unifying homogeneous GMs (UniGM)
As shown in Figure 2, given𝑛 homogeneousGMsM = {𝑀1, 𝑀2, ..., 𝑀𝑛}
with the same backbone, we aggregate their parameter matrices
layer-wisely following the ‘Alignment-then-Aggregation’ paradigm.
We consider that 𝑖-th GM𝑀𝑖 consists of 𝐿 layers whose parameter
matrices are W𝑖

1,W
𝑖
2, ...,W

𝑖
𝐿
. Next, taking 𝑗-th layer as an example,

we elaborate on the alignment and aggregation modules to obtain
the 𝑗-th layer parameter matrixW𝑢𝑛𝑖

𝑗
of the unified model𝑀𝑢𝑛𝑖 .

Alignment Module. Since the homogeneous GMs are pre-trained
with different tasks or datasets, so even the parameters at the same
layer of them may contain different semantic meanings, which
hinders direct aggregation. To tackle this issue, we can feed the pa-
rameter matrices to linear layers to project them to a shared weight
space to align them. However, this way will incur heavy compu-
tation with multiple matrix multiplications. Hence, we use lighter
convolution. Specifically, given 𝑛 parameters matrices W{1,2,· · · ,𝑛}

𝑗

for 𝑗-th layer, each of which are of scale𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 , we resize them
as a 1 × 𝑛 × 𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 tensorW𝑗 and feed it to a pointwise con-
volution layer including 𝑛 filters C{1,2,· · · ,𝑛}

𝑗
, each of which is with

kernel size 𝑛 × 1 × 1. The output Ŵ𝑗 of size 𝑛 × 𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 are
regarded as the aligned parameter matrices. The process can be
formulated as Ŵ𝑖

𝑗
= C𝑖

𝑗
∗ W𝑗 , where ‘*’ is the convolution with

time complexity O(𝑛2𝐻𝑖𝑛𝐻𝑜𝑢𝑡). It is superior to the linear layer of
size 𝐻𝑜𝑢𝑡 ×𝐻𝑜𝑢𝑡 with complexity O(𝑛𝐻𝑖𝑛𝐻

2
𝑜𝑢𝑡) because 𝐻𝑜𝑢𝑡 ≫ 𝑛

in practice. Kindly note that we initialize the convolution as an
identical mapping for a warm-up from pre-trained parameters.
Aggregation Module. As we discuss in the introduction section,
the aggregation policy should be both sample-dependent and layer-
dependent. To this end, we introduce a Recurrent Aggregation
Policy Network (RAPNet) which is conditioned on the input fea-
ture of each layer to learn the aggregation policy for the aligned
parameter matrices. The term "aggregation policy" refers to the

weights used to linearly combine the aligned parameter matrices
into unified ones. Specifically, for each layer, we first apply a global
pooling to transform the input feature into a one-dimensional em-
bedding vector, which will be fed into the RNN [31] to model the
dependencies between different layers. Namely, we regard the one-
dimensional embedding vector of each layer as the input for a
timestamp in RNN and the hidden state of RNN will be propagated
to the next layer. Formally, for 𝑗-th layer, given that the input feature
(after pooling) is ℎ̂ 𝑗 , we can obtain the output of RNN 𝑜 𝑗 by,

𝑠 𝑗 = 𝑡𝑎𝑛ℎ(Pℎ̂ 𝑗 + Q𝑠 𝑗−1 + 𝑏), 𝑜 𝑗 = 𝑡𝑎𝑛ℎ(R𝑠 𝑗 + 𝑐), (1)

where 𝑠 𝑗 is the hidden state of layer 𝑗 and we initialize 𝑠0 with zeros.
P,Q,R are the parameters of the RNN. 𝑏 and 𝑐 are the bias terms.
Finally, we transform the output of the RNN (𝑜 𝑗) to the aggregation
weights (policy) with a fully-connected layer followed by a softmax
function, i.e., 𝐴 𝑗

(
ℎ 𝑗−1

)
= Softmax

(
Linear

(
ReLU

(
𝑜 𝑗
)))

. The 𝑖-th
dimension of 𝐴 𝑗

(
ℎ 𝑗−1

)
is 𝐴𝑖

𝑗

(
ℎ 𝑗−1

)
, which denotes the learned

aggregation weights (policy) for the 𝑗-layer parameter matrix of
the 𝑖-th pre-trained model (Ŵ𝑖

𝑗
). Finally, we can obtain the 𝑗-th

layer parameter matrix𝑊𝑢𝑛𝑖
𝑗

of the unified model by re-weighting
the aligned matrices with the learned aggregation policy,

W𝑢𝑛𝑖
𝑗 =

𝑛∑︁
𝑖=1

𝐴𝑖
𝑗 (ℎ 𝑗−1)Ŵ𝑖

𝑗
. (2)

With the aggregated parameters in the unified model𝑀uni (·;W𝑢𝑛𝑖
1 ,

W𝑢𝑛𝑖
2 , · · · ,W𝑢𝑛𝑖

𝐿
), we can formulate the loss as,

L = E(x,y)∼Dℓ

(
𝑀uni

(
x;W𝑢𝑛𝑖

1 ,W𝑢𝑛𝑖
2 , · · · ,W𝑢𝑛𝑖

𝐿

)
, y
)
, (3)

where D = {(x, y)} denotes the dataset of downstream tasks and
x, y denote the sample and label. ℓ is the loss of downstream tasks.
We provide two variations for UniGM. The first one, dubbed UniGM-
F, is to freeze the pre-trained parameters of GMs and only tune the
parameters of alignment and aggregation modules. The other one
named UniGM-T is to tune all the parameters. Unlike ensemble
learning, UniGM is more efficient because the samples are only
required to pass through the unified model while the samples in
ensemble learning need to pass through all the GMs. Comparedwith

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

GM 1

GM n

......

...

...

...

Alignment Module

Aggregation Module

He-UniGM

Multiply

Accumulate

Figure 3: The schematic diagram for unifying heterogeneous GMs (He-UniGM).

model fusion, UniGM aggregates parameters of GMs adaptively
depending on the sample and layer, leading to better performance.

3.2 Unifying heterogeneous GMs (He-UniGM)
Although most current open-sourced GMs for the same domain
share the same GNN encoder, future GMsmay adopt more powerful
GNNs. However, UniGM-T and UniGM-F cannot unify heteroge-
neous GMs. As a remedy, we develop another effective strategy
(He-UniGM) to integrate heterogeneous GMs into a unified one,
whose general pipeline can be seen in Figure 3.
Alignment Module. Since heterogeneous GMs are separately pre-
trained with different networks or datasets, both the semantics
and dimensions of their outputs are not well-aligned. We intro-
duce the following strategy to overcome this issue. Specifically, let
𝑀𝑖 (·), 𝑀uni (·) be the output of 𝑖-th GM and He-UniGM respectively,
we minimize the following ℓ2 objective to align their feature space,

∥𝑅𝜔 (𝑀uni (x;𝜃uni)) −𝑀𝑖 (x;𝜃𝑖)∥22 , (4)

where 𝑅𝜔 (·) is a linear transformation parameterized by 𝜔 . Differ-
ent from homogeneous settings, the parameters 𝜃uni of the unified
model are initialized randomly and updated with the following
aggregation module.
Aggregation Module. Considering that diverse GMs contribute
unequally to the downstream task, we introduce a learnable param-
eter 𝜆𝑖 to automatically decide the importance of GM 𝑀𝑖 . We set
𝜆𝑖 = 𝑓 𝑖

𝜙
(𝑀𝑖 (x;𝜃𝑖)) in order to model the importance of 𝑀𝑖 condi-

tioned on the input x, where 𝑓 𝑖
𝜙
(·) is a light meta-learner (1-layer

fully-connected network in practice) parameterized by 𝜙 . We can
then formulate the loss of aggregation as,

Lagg = E(x,y)∼D

𝑛∑︁
𝑖=1

𝜆𝑖 ∥𝑅𝜔 (𝑀uni (x;𝜃uni)) −𝑀𝑖 (x;𝜃𝑖)∥22 , (5)

where 𝑛 is the number of GMs. And then, the optimization objective
of He-UniGM is,

Lhe = Ltask + 𝛼 ∗ Lagg, (6)

where 𝛼 is a hyper-parameter and Ltask is the loss of downstream
task,

Ltask = E(x,y)∼Dℓ (𝑀uni (x;𝜃uni) , y) . (7)

Then, we utilize 𝜑 to denote both the parameters of linear trans-
formation 𝜔 and unified model 𝜃uni for convenience. We can solve
above problem with following bilevel scheme [2, 12, 21],

min
𝜙

Ltask (𝜑∗) , s.t. 𝜑∗ = argmin𝜑 Lhe (𝜑, 𝜙) . (8)

In practice, we can choose gradient descent (GD) to approximately
solve the inner optimization,

𝜑𝑡+1 = 𝜑𝑡 − 𝛽∇𝜑Lhe (𝜑𝑡 , 𝜙) , (9)

where 𝛽 is the learning rate. Now we consider solving the outer
optimization with gradient-based methods. The prerequisite is the
gradients of Ltask w.r.t 𝜙 . Let 𝜑𝑇 is the approximate optimal solu-
tion obtained with 𝑇 steps GD in Eq.(9), we can then re-write the
gradients as,

∇𝜙Ltask (𝜑𝑇) = ∇𝜑Ltask (𝜑𝑇)∇𝜙𝜑𝑇 , (10)

where the gradient ∇𝜙𝜑𝑇 can be computed by unrolling the dynam-
ics of the inner loop from 𝜑𝑇 to 𝜑0. In the forward computation,
successive parameters 𝜑0, · · · , 𝜑𝑇 are cached. In the backward call,
the cached parameters are used to compute gradients in a series of
vector-jacobian products. During the reverse computation, the gra-
dient starting from the ∇𝜙𝜑𝑇 can be propagated to the intermediate
parameters 𝜑𝑡 through ∇𝜑𝑡

𝜑𝑡+1:

∇𝜑𝑡
𝜑𝑡+1 = 1 − 𝛽∇2

𝜑𝑡
Lhe (𝜑𝑡) , 𝑡 ∈ {0, . . . ,𝑇 − 1}, (11)

where ∇2
𝜑𝑡

is the Hessian. We can then obtain the gradients Ltask

w.r.t 𝜙 with,

∇𝜙Ltask (𝜑𝑇) = ∇𝜑Ltask (𝜑𝑇)
0∑︁

𝑡=𝑇−1

[
∇𝜑𝑡+1𝜑𝑇

]
∇𝜙𝜑𝑡+1

= −𝛽∇𝜑Ltask (𝜑𝑇)
0∑︁

𝑡=𝑇−1

[
∇𝜑𝑡+1𝜑𝑇

]
∇𝜙

(
∇𝜑𝑡

Lhe (𝜑𝑡 , 𝜙)
)
,

(12)

where ∇𝜑𝑡+1𝜑𝑇 can be iteratively derived with Eq. (11). Kindly
note that the bilevel optimization can be done efficiently with Py-
Torch [33] because (1) 𝜑 only includes the parameters of the linear
transformation and the unified model; (2) 𝑇 = 2 is enough in our
experiments. Compared with the ensemble, He-UniGM is computa-
tionally cheaper because (1) the parameters of multiple GMs are

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

frozen during the training stage; (2) He-UniGMonly uses the unified
model (one model) for inference.

4 EXPERIMENTS
4.1 Experimental Settings and Baselines.
Following previous works on the topic of pre-training GNNs [18,
30], we evaluate UniGM on 3 downstream tasks from 3 domains:
molecular property prediction in chemistry, protein function pre-
diction in biology, and research field prediction in the bibliography.

For the first task, we adopt the 8 binary classification datasets
contained in MoleculeNet [50]. For the second task, we use protein-
protein interaction (PPI) networks consisting of 88K proteins from
8 different species, where the subgraphs centered at a protein of
interest (i.e., ego-networks) are used to predict their biological func-
tions. The task is to predict 40 fine-grained biological functions
corresponding to 40 binary classification tasks. For the third task,
we predict the research field with 299,447 labeled subgraphs from 6
different categories. We randomly split the downstream data and
evaluate test performance with micro-averaged F1 score. Addition-
ally, we evaluate UniGM on more downstream tasks in the experi-
ments. For homogeneous UniGM, we unify recent open-sourced
GMs including GraphCL, MGSSL, SimGRACE, and GraphMVP in
chemistry and Infomax, EdgePred, ContextPred, AttrMask for both
the biology and bibliography domains. For heterogeneous GMs in
chemistry, we first pre-train different GNNs with the pre-training
tasks proposed in the above works. And then, we integrate the ob-
tained GMs into a unified one with He-UniGM. For single GM, we
report the results of baselines in Table 1. Additionally, we consider
several alternatives that can also utilize multiple GMs. Specifically,
‘Vanilla Average’ refers to we use the average of the weights of GMs
to initialize a newmodel for prediction. ‘Concatenation’ denotes the
baselines that we take the graph embeddings from the pre-trained
models, concatenate them, and pass them into a single linear layer
to finetune w.r.t the downstream task.

For model fusion, we adopt the most advanced method OTFu-
sion [38] so far. For homogeneous GMs, we set the learning rate
as 1 × 10−3. The hidden size of RNN in RAPNet is set as 8 and the
number of layers is 2.Note that we only aggregate the fully-connected
layers of GNNs. The embedding layers and the batch normalization
layers of each GM are not integrated into a unified one. For hetero-
geneous settings, we unify heterogeneous GMs with diverse GNN
architectures. We provide the details of these heterogeneous GMs
in the appendix. For the chemistry and biology domains, we adopt
a 5-layer Graph Isomorphism Networks (GINs) [54] whose hidden
dimension is 300 as the backbone architecture, which is one of the
most expressive GNNs. In the fine-tuning stage, we use a batch size
of 32 and dropout rate of 50%. On the molecular property prediction
datasets, we train models for 100 epochs, while on the protein func-
tion prediction dataset (with the 40 binary prediction tasks), we
train models for 50 epochs. All the above models are trained with
Adam optimizer with a learning rate of 0.001 and we evaluate test
performance on downstream tasks using ROC-AUC. For bibliogra-
phy domain, we train the pre-trained GNNs with Adam optimizer
with a learning rate of 0.001 and batch size as 32 for 50 epochs.
In all the 3 domains, the split for train/validation/test sets is 80% :
10% : 10%. We use ADAM optimizer for training the meta-networks

with a learning rate of 1 × 10−3. Additionally, we set the steps of
inner optimization as 2 (i.e., 𝑇 = 2). Hyper-parameter 𝛼 is picked
from {0.1, 0.2, 0.5, 0.8} with the validation set. All experiments are
conducted on Tesla V100 GPUs. More details can be found in the
appendix.

4.2 Results and Analysis.
Table 1, Table 2, and Table 3 document the main results in terms of
accuracy. Table 4 and Table 5 compare the computational efficiency,
from which we make the following observations (Obs):
Obs 1. Variants of UniGM achieve notable improvements over every
single model. However, they inevitably introduce extra computa-
tional costs. We compare the memory consumption in the appendix.
Obs 2. Variants of UniGM achieve better performance while en-
joying higher efficiency than ensemble in most cases. Although
model fusion is more efficient than UniGM, its performance is
unsatisfactory and even sometimes inferior to the single model.
Moreover, model fusion cannot work in heterogeneous settings.
Overall, UniGM achieves better performance with moderate com-
putational budgets.
Obs 3. UniGM-F performs better than UniGM-T in datasets with
smaller scales while the latter is superior in larger-scale datasets.
This phenomenon coincides with the observations of a recent
work [52]: the over-parameterizedmodels tend to overfit the limited
labeled graphs. UniGM-T with more learnable parameters is more
likely to overfit the small-scale datasets. To support these claims,
we plot the training and testing accuracy curves in the appendix.

4.3 Case Study
In this section, we study whether UniGM can possess the special-
ized abilities of the GMs it is composed of. We adopt two tasks:
3D Diameter Prediction [28] and Atom Type Prediction [18]. The
former means using 2D molecular graph to predict the 3D diameter,
which is challenging with respect to the 2D topology but straightfor-
ward using 3D geometry because the 2D and 3D landscapes of some
molecules are considerably different (Figure 4). The latter means
predicting atoms’ type. As shown in Figure 4, GraphMVP [28] per-
forms the best in 3D Diameter Prediction because it can capture the
3D geometry. Analogously, AttrMask [18] is better at Atom Type
Prediction. UniGM composed of GraphMVP and AttrMask pos-
sesses their unique abilities, which verify that UniGM constitutes a
more complete knowledge base.

4.4 Ablation Study
GMs’ diversity. Although UniGM achieves impressive results, it
remains to be explored: What the performance gains can be at-
tributed to? The GMs’ diversity or more learnable parameters? In
Table 6, we substitute diverse GMs in UniGM-T and UniGM-F with
the same one and keep the number of GMs unchanged. ‘4 ×MGSSL’
means that we substitute 4 GMs in UniGM-T or UniGM-F with 4
MGSSL models. In this way, we keep the number of learnable pa-
rameters unchanged while observing the role of GMs’ diversity. We
can draw the following conclusions: (1) More parameters are not
necessarily conducive for downstream tasks. Since most datasets in
experiments are insufficiently labeled, over-parameterized models

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Results for molecular property prediction tasks (homogeneous setting). We report the mean (and standard deviation)
ROC-AUC of 10 seedswith scaffold splitting. The best results and the second best are highlightedwith bold and bold, respectively.
We also highlight the performance of the GMs that UniGM contains with the gray background. ‘No pretrain’ means training
from scratch. The original papers marked with ‘♦’ did not follow the standard fine-tuning settings, which we elaborate on in the
appendix. For fairness, we reproduce their fine-tuning results following the settings of the pioneering work [18]. Considering
that the std is relatively large on small-scale molecular datasets, we highlight the results that outperform the best baselines
with ≥ 0.5 std / ≥ 2 std with ‘★’ and ‘+’ respectively to show how statistically significant the improvement is.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

graphs 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -

No pretrain 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

InfoGraph [41] 73.3 (0.6) 61.8 (0.4) 58.7 (0.6) 75.4 (4.3) 74.4 (1.8) 74.2 (0.9) 68.7 (0.6) 74.3 (2.6) 70.10
EdgePred [18] 76.0 (0.6) 62.8 (0.6) 60.4 (0.7) 64.1 (3.7) 75.1 (1.2) 76.3 (1.0) 67.3 (2.4) 77.3 (3.5) 70.08
AttrMasking [18] 75.1 (0.9) 63.3 (0.6) 60.5 (0.9) 73.5 (4.3) 75.8 (1.0) 75.3 (1.5) 65.2 (1.4) 77.8 (1.8) 70.81
GPT-GNN [19] 74.9 (0.3) 62.5 (0.4) 58.1 (0.3) 58.3 (5.2) 75.9 (2.3) 65.2 (2.1) 64.5 (1.4) 77.9 (3.2) 68.45
ContextPred [18] 73.9(0.5) 62.8(0.3) 59.9(1.6) 74.3(3.2) 72.4(1.8) 75.6(1.0) 70.8(1.4) 78.5(1.3) 71.03
GraphLoG♦ [55] 75.0(0.6) 63.4(0.6) 59.6(1.9) 75.7(2.4) 75.5(1.6) 76.1(0.8) 68.7(1.6) 78.6(1.0) 71.56
G-Contextual [35] 75.3(0.4) 62.4(0.5) 58.5(1.1) 60.3(4.8) 72.3(0.9) 76.5(1.3) 69.7(1.8) 78.2(1.2) 69.33
G-Motif [35] 73.2(0.6) 62.0(0.8) 61.1(1.2) 77.5(2.5) 73.4(1.6) 73.3(1.5) 66.6(2.6) 73.3 (3.1) 70.05
AD-GCL [43] 74.6(0.2) 63.6(0.4) 61.4(0.8) 76.3 (2.4) 72.4(1.5) 75.8(1.0) 69.5 (0.6) 75.5(1.2) 71.14
KCL [11] 74.5(0.3) 62.7(0.7) 59.6(0.9) 65.5(5.5) 73.4(2.6) 75.7(0.6) 65.0(1.1) 74.0 (1.5) 68.80
GraphMAE♦ [17] 75.2(0.9) 63.6(0.3) 60.5(1.2) 76.5(3.0) 76.4(2.0) 76.8(0.6) 71.2(1.0) 78.2(1.5) 72.30
D-SLA♦ [23] 75.3(0.4) 63.2(0.3) 60.8(1.2) 76.6(2.8) 76.2(1.5) 76.6(1.4) 69.8(0.8) 78.3(1.4) 72.10
JOAO [57] 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 66.6 (3.1) 76.6 (1.7) 76.9 (0.7) 66.4 (1.0) 73.2 (1.6) 69.71
SimGRACE [51] 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.0 (1.1) 74.9 (2.0) 71.15
GraphCL [58] 75.1 (0.7) 63.0 (0.4) 59.8 (1.3) 77.5 (3.8) 76.4 (0.4) 75.1 (0.7) 67.8 (2.4) 74.6 (2.1) 71.16
MGSSL [61] 75.2(0.6) 63.3(0.5) 61.6(1.0) 77.1(4.5) 77.6(0.4) 75.8(0.4) 68.8(0.6) 78.8(0.9) 72.28
GraphMVP [28] 75.9(0.5) 63.1(0.2) 60.2(1.1) 79.1(2.8) 77.7(0.6) 76.0(0.1) 70.8(0.5) 79.3(1.5) 72.76

Vanilla Average 73.8(1.0) 60.2(0.7) 58.5(1.3) 57.0(5.2) 71.5(0.9) 75.2(1.7) 65.6(1.1) 70.9(1.8) 66.59
Concatenation 75.5(0.7) 62.7(1.0) 62.8(0.9) 77.8(3.5) 76.3(0.6) 75.7(1.3) 70.3(0.7) 77.9(1.1) 72.38
Ensemble 76.1(0.1) 64.3(0.2) 63.1(1.0) 78.2(1.5) 77.8(0.2) 77.1(0.3) 71.4(0.5) 77.6(0.8) 73.20
Model Fusion 75.7(0.3) 63.0(0.1) 60.7(0.7) 77.4(2.1) 77.3(0.2) 75.8(0.5) 70.4(0.5) 76.3(1.0) 72.08

UniGM-F (RNN) 77.2+(0.4) 64.9+(0.5) 64.6★(0.9) 80.3★(1.8) 78.9+(1.1) 77.6★ (0.8) 71.3(0.5) 80.4★(1.4) 74.40
UniGM-T (RNN) 78.0+(0.5) 65.3+(0.3) 64.2★(1.3) 79.5★(2.7) 79.7+(0.7) 78.2+(1.0) 71.9★(0.9) 81.3★(1.2) 74.78

will over-fit the scarce samples; (2) The performance gains can be at-
tributed to GMs’ diversity because UniGM outperforms ‘4×MGSSL’
by large margins.

The number of GMs.We also study the influence of the number
of GMs by sequentially adding the following six GMs: EdgePred,
InfoGraph, SimGRACE, GraphCL, GraphMVP, and MGSSL. We con-
duct experiments on Toxcast dataset. ‘Best single model’ refers to
the GM whose performance is the best in the models’ pool. As
shown in Table 7, UniGM consistently outperforms the best single
model. Additionally, UniGM performs better with more GMs. How-
ever, the memory consumption which increases with the number
of GMs linearly will limit the practical applications.

Alignment, aggregation module, and RAPNet. For the align-
ment module of UniGM, we remove it and observe performance
drops in Table 8. Additionally, we substitute RAPNet with an MLP-
based policy network. Specifically, the MLP takes the output of the
last layer as input and outputs the aggregation policy followed by
softmax function. Also, we try various RNNs for RAPNet. RAPNet
with RNNs outperforms MLP-based policy networks, verifying that
modeling the dependency between different layers is necessary and
conducive. Secondly, RAPNet with RNN performs better than LSTM
and Gated Recurrent Unit (GRU) in general. For both UniGM and

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Results for heterogeneous GMs. Model fusion and vanilla average cannot work in this setting.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

GraphCL (6-layer GCN) 74.2(0.6) 61.5(0.7) 61.3(1.7) 75.0(3.6) 76.3(0.9) 74.6(0.7) 65.6(2.1) 71.2(3.9) 70.01
GraphMVP (3-layer GIN) 72.6(0.4) 60.2(0.4) 58.3(1.1) 63.6(3.6) 72.1(1.1) 74.2(0.6) 64.1(1.5) 65.7(2.2) 66.35
SimGRACE (5-layer GIN) 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.0 (1.1) 74.9 (2.0) 71.15
MGSSL (4-layer GraphSAGE) 73.8(0.5) 61.8(0.3) 59.1(1.5) 66.2(4.2) 76.2(1.2) 73.6(0.5) 68.6(1.2) 72.6(2.1) 68.99

Concatenation 75.0(0.4) 61.6(0.7) 61.9 (1.0) 75.0(4.2) 77.5(0.6) 75.4(0.9) 71.0(1.5) 74.8(2.0) 71.53
Ensemble 75.3(0.2) 62.9(0.2) 62.5(1.4) 76.6(4.1) 77.3(0.3) 76.0(0.4) 70.3(0.3) 75.4(1.7) 72.04

He-UniGM (5-layer GIN) 76.7+(0.7) 63.8+(0.5) 63.6★(0.7) 75.4(2.5) 78.5+(1.2) 77.6+(0.8) 71.6+(1.2) 77.5★(1.4) 73.08

Table 3: Results for protein function prediction and research field prediction.

Methods No pre-train Infomax EdgePred ContextPred AttrMask Concatenation Model Fusion Ensemble UniGM-F UniGM-T

Protein function prediction 64.8(1.0) 64.1(1.5) 65.7(1.3) 65.2(1.6) 64.4(1.3) 66.1(0.9) 64.9(1.7) 66.4(0.8) 68.1(1.2) 68.6(1.4)
Research field prediction 69.01(0.23) 69.54(0.08) 69.43(0.07) 69.37 (0.21) 68.61(0.16) 69.91(0.25) 68.14(0.09) 70.21(0.11) 71.69(0.20) 72.85(0.17)

No Pretrain AttrMask GraphMVP UniGM30

35

40

45

50

55
Ac

cu
ra

cy

92

94

96

98

Ac
cu

ra
cy

3D Diameter Prediction
Atom Type Prediction

Figure 4: Left: An example of 3D Diameter Prediction task in [28]. Right: The performance of GraphMVP, AttrMask and UniGM
in the two tasks. UniGM acquire the specialized abilities of AttrMask and GraphMVP.

Table 4: Comparisons of training and inference time on the
same device in the homogeneous setting.

Methods ToxCast Sider
Training Inference Training Inference

Single GM 368.3 s 102.8 s 88.1 s 37.6 s
Model Fusion 531.2 s 115.5 s 120.8 s 39.9 s
Ensemble 1536.7 s 442.8 s 370.1 s 135.4 s
UniGM-T 981.2 s 211.7 s 215.6 s 64.8 s
UniGM-F 778.4 s 195.6 s 176.5 s 56.5 s

He-UniGM, we replace the adaptive aggregation with vanilla aver-
age and random aggregation. The results indicate that the learned
importance of each GM is meaningful.

4.5 Results for Pre-trained Models in Multiple
Modalities

As we mentioned in the main text, our approaches are not limited
to GNNs scenarios but could be flexibly applied to various scenarios

Table 5: Comparisons of training and inference time on the
same device in the heterogeneous setting.

Methods ToxCast Sider
Training Inference Training Inference

GraphCL (6-layer GCN) 415.9 s 116.8 s 95.4 s 46.3 s
GraphMVP (3-layer GIN) 222.6 s 64.5 s 54.6 s 25.8 s
SimGRACE (5-layer GIN) 368.3 s 102.8 s 88.1 s 37.6 s
MGSSL (4-layer GraphSAGE) 235.7 s 68.9 s 61.8 s 29.3 s

Ensemble 1482.5 s 361.2 s 329.7 s 151.8 s

He-UniGM 916.6 s 98.5 s 205.7 s 36.3 s

Table 6: The influence of GMs’ diversity for UniGM.

Methods 4 × MGSSL
(UniGM-T)

4 ×MGSSL
(UniGM-F) UniGM-F UniGM-T

Sider 62.0(0.9) 61.5(1.3) 64.6(0.9) 64.2(1.3)
Toxcast 63.1(0.8) 63.0(0.1) 64.9(0.5) 65.3(0.3)
Tox21 76.6(0.1) 75.8(0.5) 77.2(0.4) 78.0(0.5)

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: The influence of the number of GMs.

Num. of GMs 2 3 4 5 6

Best single model 62.8(0.6) 62.8(0.6) 63.0(0.4) 63.1(0.2) 63.3(0.5)
UniGM-F 63.3(0.5) 64.2(0.2) 64.5(0.3) 64.0(0.6) 64.5(1.1)
UniGM-T 63.7(0.1) 64.8(0.5) 65.3(0.3) 65.9(0.5) 65.5(0.7)

Table 8: Ablations on alignment, RAPNet of UniGM, and the
aggregation of He-UniGM.

Methods Tox21 Toxcast Sider

UniGM-T w/o alignment 75.4(1.0) 63.8(0.1) 61.5(2.1)
UniGM-T with MLP 76.7(0.2) 63.6(0.7) 63.0(1.5)
UniGM-T with GRU 77.2(0.2) 64.5(0.5) 62.9(0.7)
UniGM-T with LSTM 77.7(0.6) 64.8(0.3) 63.8(1.0)
UniGM-T (Vanilla average) 76.6(1.0) 63.0(0.7) 62.1(1.2)
UniGM-T (Random aggregation) 76.4(0.8) 63.5(0.9) 62.6(0.6)
UniGM-T 78.0(0.5) 65.3(0.3) 64.2(1.3)

UniGM-F w/o alignment 75.1(0.7) 63.6(1.1) 61.7(1.3)
UniGM-F with MLP 75.9(0.7) 63.4(0.9) 63.5(0.9)
UniGM-F with GRU 76.5(0.6) 63.8(0.1) 64.1(0.7)
UniGM-F with LSTM 77.5(0.8) 64.3(0.4) 64.3(1.1)
UniGM-F (Vanilla average) 75.6(1.3) 63.2(0.5) 62.4(1.5)
UniGM-F (Random aggregation) 75.4(1.1) 63.0(0.7) 62.0(1.6)
UniGM-F 77.2 (0.4) 64.9(0.5) 64.6(0.9)

He-UniGM (Vanilla average) 75.8(0.1) 62.2(0.6) 62.8(1.6)
He-UniGM (Random aggregation) 75.4(0.7) 62.5(0.3) 62.5(1.1)
He-UniGM 76.7(0.7) 63.8(0.5) 63.6(0.7)

Table 9: UniGM for pre-trained vision models (top-1 accu-
racy).

Models CIFAR-100 COCO-70
ImageNet Supervised 81.18 81.97
MOCO 75.31 75.66
Mask R-CNN 79.12 81.64
DeepLabV3 78.76 80.70
Keypoint R-CNN 76.38 76.53

Model Fusion 80.77 81.74
Ensemble 82.18 82.42

UniGM-F 83.56 83.86
UniGM-T 83.83 84.69

Table 10: UniGM for pre-trained language models.

Models SST-2 (Acc.) RTE (Acc.)
BERT 92.1 65.8
RoBERTa 92.9 68.9
UniLM 93.3 70.6

Model Fusion 93.5 71.9
Ensemble 93.8 72.7

UniGM-F 94.2 74.8
UniGM-T 94.6 75.7

such as in NLP or computer vision (CV). In this section, we unify the

pre-trained models in CV and NLP. For pre-trained vision models,
we unify 5 representative pre-trained vision models: (1) Supervised
pre-trained models on ImageNet [36]; (2) Unsupervised pre-trained
models with MOCO [15] on ImageNet; (3) Mask R-CNN [16] model
for detection and instance segmentation; (4) DeepLabV3 [5] model
for semantic segmentation; (5) Keypoint R-CNNmodel for keypoint
detection, pre-trained on COCO-2017 challenge datasets of each
task. All these pre-trained models are from torchvision or original
implementation. For pre-trained language models, we combine
BERT [7], RoBERTa [29] and UniLM [8]. We conduct experiments
on two text datasets with different sizes. The first one is SST-2 [39],
which is a benchmark for text sentiment classification. The second
one is RTE [3], which is a widely used dataset for natural language
inference. The results can be seen in Table 9 and Table 10, from
which we can observe that UniGM consistently outperforms each
single model and competitive baselines including ensemble and
model fusion. Compared with the graph domain, the superiority of
UniGM in CV or NLP domains is even more pronounced.

4.6 Visualization Analysis

1 2 3 4 5
Layer

GraphMVP

MGSSL

SimGRACE

GraphCL

0.340 0.285 0.202 0.228 0.212

0.358 0.295 0.252 0.273 0.206

0.167 0.273 0.269 0.262 0.319

0.134 0.147 0.276 0.237 0.263
0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Figure 5: Visualization of the learned aggregation policy.

We visualize the learned aggregation policy for diverse GMs on
Toxcast dataset in Figure 5. As can be observed, the policies vary
significantly across different GMs and layers, which coincides with
previous literatures that claim different pre-trained models have
different relations to the downstream tasks and different layers
can capture different knowledge [24, 60]. Concretely, GMs such
as GraphMVP and MGSSL that introduce external knowledge out-
weigh the contrastive GMs including SimGRACE and GraphCL.
Additionally, the higher layer of SimGRACE and GraphCL are gen-
erally more important for downstream tasks.

5 CONCLUSION
In this paper, we make one of the first attempts to unify multi-
ple pre-trained GMs for better performance in downstream tasks.
Specifically, we propose UniGM whose variants can integrate both
homogeneous and heterogeneous pre-trained models into a uni-
fied one in an effective and efficient manner. The empirical results
suggest that UniGM can achieve better performance in various
downstream tasks. Currently, tremendous efforts are devoted to
designing pre-training strategies for multiple modalities. Despite
the fruitful progress, exploring more effective and efficient ways to
leverage pre-trained models warrant further research in the future.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Stephen Ashmore and Michael Gashler. 2015. A method for finding similar-

ity between multi-layer perceptrons by Forward Bipartite Alignment. In 2015
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

[2] Jonathan F Bard. 2013. Practical bilevel optimization: algorithms and applications.
Vol. 30. Springer Science & Business Media.

[3] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2009. The
Fifth PASCAL Recognizing Textual Entailment Challenge.. In TAC.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. 2018. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European conference on computer vision
(ECCV). 801–818.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Jacob Devlin, Ming-Wei Chang, and others. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL (2019).

[8] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in Neural
Information Processing Systems 32 (2019).

[9] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. 2020. A survey
on ensemble learning. Frontiers of Computer Science 14, 2 (2020), 241–258.

[10] Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo
Zhou, Fan Wang, Hua Wu, and Haifeng Wang. 2022. Geometry-enhanced molec-
ular representation learning for property prediction. Nature Machine Intelligence
4, 2 (2022), 127–134.

[11] Yin Fang, Qiang Zhang, Haihong Yang, Xiang Zhuang, Shumin Deng, Wen
Zhang, Ming Qin, Zhuo Chen, Xiaohui Fan, and Huajun Chen. 2022. Molecular
Contrastive Learning with Chemical Element Knowledge Graph. In Proceedings
of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI).

[12] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. 2017.
Forward and reverse gradient-based hyperparameter optimization. In Interna-
tional Conference on Machine Learning. PMLR, 1165–1173.

[13] Xueting Han and others. 2021. Adaptive Transfer Learning on Graph Neural
Networks. In KDD.

[14] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive Multi-View
Representation Learning on Graphs. In Proceedings of International Conference
on Machine Learning. 3451–3461.

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proc. of
CVPR.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[17] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders.
arXiv e-prints (2022), arXiv–2205.

[18] Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vi-
jay Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neu-
ral Networks. In International Conference on Learning Representations. https:
//openreview.net/forum?id=HJlWWJSFDH

[19] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Virtual
Event CA USA July, 2020 (2020), 1857–1867.

[20] Hang Hua, Xingjian Li, Dejing Dou, Cheng-Zhong Xu, and Jiebo Luo. 2021.
Noise stability regularization for improving BERT fine-tuning. arXiv preprint
arXiv:2107.04835 (2021).

[21] Simon Jenni and Paolo Favaro. 2018. Deep bilevel learning. In Proceedings of the
European conference on computer vision (ECCV). 618–633.

[22] Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. 2022.
Automated Self-Supervised Learning for Graphs. In ICLR. OpenReview.net.

[23] Dongki Kim, Jinheon Baek, and Sung Ju Hwang. 2022. Graph Self-supervised
Learning with Accurate Discrepancy Learning. In Advances in Neural Informa-
tion Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (Eds.). https://openreview.net/forum?id=JY6fLgR8Yq

[24] Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. 2007. Sparse deep belief
net model for visual area V2. Advances in neural information processing systems
20 (2007).

[25] Pengyong Li, Jun Wang, Yixuan Qiao, Hao Chen, Yihuan Yu, Xiaojun Yao, Peng
Gao, Guotong Xie, and Sen Song. 2021. An effective self-supervised framework for
learning expressive molecular global representations to drug discovery. Briefings
in Bioinformatics 22, 6 (2021), bbab109.

[26] Sihang Li, XiangWang, An Zhang, YingxinWu, Xiangnan He, and Tat-Seng Chua.
2022. Let Invariant Rationale Discovery Inspire Graph Contrastive Learning. In
ICML (Proceedings of Machine Learning Research, Vol. 162). PMLR, 13052–13065.

[27] Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and Hui Xiong. 2022. GeomGCL:
Geometric Graph Contrastive Learning for Molecular Property Prediction. In
Proceedings of the Thirty-Six AAAI Conference on Artificial Intelligence. 4541–4549.

[28] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and
Jian Tang. 2022. Pre-training Molecular Graph Representation with 3D Geometry.
In International Conference on Learning Representations. https://openreview.net/
forum?id=xQUe1pOKPam

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[30] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to Pre-train
Graph Neural Networks. In AAAI. AAAI Press, 4276–4284.

[31] Larry Medsker and Lakhmi C Jain. 1999. Recurrent neural networks: design and
applications. CRC press.

[32] Dang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, and Nhat Ho. 2021. Model
Fusion of Heterogeneous Neural Networks via Cross-Layer Alignment. arXiv
preprint arXiv:2110.15538 (2021).

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[34] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. arXiv preprint arXiv:2006.09963 (2020).

[35] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. Advances in Neural Information Processing Systems 33 (2020),
12559–12571.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[37] Robert E Schapire. 1999. A brief introduction to boosting. In Ijcai, Vol. 99. Citeseer,
1401–1406.

[38] Sidak Pal Singh and Martin Jaggi. 2020. Model fusion via optimal transport.
Advances in Neural Information Processing Systems 33 (2020), 22045–22055.

[39] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[40] Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian
Dallago, Stephan Günnemann, and Pietro Liò. 2021. 3D Infomax improves GNNs
for Molecular Property Prediction. arXiv preprint arXiv:2110.04126 (2021).

[41] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. 2020. InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via
Mutual Information Maximization. In International Conference on Learning Rep-
resentations. https://openreview.net/forum?id=r1lfF2NYvH

[42] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. 2021. MoCL:
Contrastive Learning on Molecular Graphs with Multi-level Domain Knowledge.
KDD (2021).

[43] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph
augmentation to improve graph contrastive learning. Advances in Neural Infor-
mation Processing Systems 34 (2021).

[44] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2022. Large-Scale
Representation Learning on Graphs via Bootstrapping. In International Conference
on Learning Representations. https://openreview.net/forum?id=0UXT6PpRpW

[45] Joachim Utans. 1996. Weight averaging for neural networks and local resampling
schemes. In Proc. AAAI-96 Workshop on Integrating Multiple Learned Models.
AAAI Press. Citeseer, 133–138.

[46] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax.. In ICLR (Poster).

[47] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated Learning with Matched Averaging. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=BkluqlSFDS

[48] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.
Molecular contrastive learning of representations via graph neural networks.
Nature Machine Intelligence 4, 3 (2022), 279–287.

[49] David H Wolpert. 1992. Stacked generalization. Neural networks 5, 2 (1992),
241–259.

[50] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=JY6fLgR8Yq
https://openreview.net/forum?id=xQUe1pOKPam
https://openreview.net/forum?id=xQUe1pOKPam
https://openreview.net/forum?id=r1lfF2NYvH
https://openreview.net/forum?id=0UXT6PpRpW
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[51] Jun Xia, LirongWu, , Jintao Chen, Bozhen Hu, and Stan Z. Li. 2022. SimGRACE: A
Simple Framework for Graph Contrastive Learning without Data Augmentation.
In Proceedings of TheWeb Conference 2022. Association for ComputingMachinery.

[52] Jun Xia, Jiangbin Zheng, Cheng Tan, Ge Wang, and Stan Z Li. 2022. Towards
effective and generalizable fine-tuning for pre-trained molecular graph models.
bioRxiv (2022).

[53] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z. Li. 2022. Pre-training Graph Neural
Networks for Molecular Representations: Retrospect and Prospect. In ICML 2022
2nd AI for Science Workshop. https://openreview.net/forum?id=dhXLkrY2Nj3

[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[55] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. 2021. Self-
supervised graph-level representation learning with local and global structure.
In International Conference on Machine Learning. PMLR, 11548–11558.

[56] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks? Advances in neural information processing
systems 27 (2014).

[57] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In International Conference on Machine Learning.

PMLR, 12121–12132.
[58] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[59] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
793–803.

[60] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi.
2020. Revisiting few-sample BERT fine-tuning. arXiv preprint arXiv:2006.05987
(2020).

[61] Zaixi Zhang, Qi Liu, HaoWang, Chengqiang Lu, and Chee-Kong Lee. 2021. Motif-
based graph self-supervised learning for molecular property prediction. Advances
in Neural Information Processing Systems 34 (2021), 15870–15882.

[62] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

https://openreview.net/forum?id=dhXLkrY2Nj3

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pre-training Graph Neural Networks
	2.2 Ensemble Learning and Model Fusion

	3 Method
	3.1 Unifying homogeneous GMs (UniGM)
	3.2 Unifying heterogeneous GMs (He-UniGM)

	4 Experiments
	4.1 Experimental Settings and Baselines.
	4.2 Results and Analysis.
	4.3 Case Study
	4.4 Ablation Study
	4.5 Results for Pre-trained Models in Multiple Modalities
	4.6 Visualization Analysis

	5 Conclusion
	References

