
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEMYSTIFYING AND ENHANCING THE EFFICIENCY OF
LARGE LANGUAGE MODEL BASED SEARCH AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM)-based search agents have shown remarkable ca-
pabilities in solving complex tasks by dynamically decomposing problems and
addressing them through interleaved reasoning and retrieval. However, this in-
terleaved paradigm introduces substantial efficiency bottlenecks. First, we ob-
serve that both highly accurate and overly approximate retrieval methods de-
grade system efficiency: exact search incurs significant retrieval overhead, while
coarse retrieval requires additional reasoning steps during generation. Second,
we identify inefficiencies in system design, including improper scheduling and
frequent retrieval-induced stalls, which lead to cascading latency—where even
minor delays in retrieval amplify end-to-end inference time. To address these
challenges, we introduce SearchAgent-X, a high-efficiency inference framework
for LLM-based search agents. SearchAgent-X leverages high-recall approxi-
mate retrieval and incorporates two key techniques: priority-aware scheduling
and non-stall retrieval. Extensive experiments demonstrate that SearchAgent-X
consistently outperforms state-of-the-art systems such as vLLM and HNSW-based
retrieval across diverse tasks, achieving up to 3.4× higher throughput and 5×
lower latency, without compromising generation quality. Code is available at
https://anonymous.4open.science/r/SearchAgent-X.

1 INTRODUCTION

Traditional Retrieval-Augmented Generation (RAG) typically uses a sequential retrieve-then-generate
approach (Fan et al., 2024; Gao et al., 2024; Gupta et al., 2024; Huang & Huang, 2024; Wu et al.,
2024; Yu et al., 2024; Zhao et al., 2024a;b), which limits dynamic interaction with knowledge bases.
Recent advancements have ushered in RAG 2.0, known as Search Agents (Trivedi et al., 2022; Singh
et al., 2025; Li et al., 2025; Jin et al., 2025a; Chen et al., 2025; Song et al., 2025; xAI, 2025; OpenAI,
2025). This paradigm leverages the strong reasoning capabilities of Large Language Models (LLMs),
allowing for the dynamic and adaptive interleaving of reasoning steps with retrieval calls throughout
the generation process. Instead of a fixed pipeline, search agents can decide when and what to
retrieve based on LLM’s ongoing reasoning, leading to significant improvements in the quality and
depth of the generated responses. Leveraging post-training techniques similar to DeepSeek-R1,
some pioneering models can even autonomously initiate retrieval actions during reasoning without
intermediate supervision (Jin et al., 2025a; Chen et al., 2025; Song et al., 2025).

However, the improved generation quality achieved by search agents often comes at the cost of effi-
ciency—an overhead that is nontrivial in practical deployments. In reasoning-with-search scenarios,
achieving low-latency responses is critical for ensuring a seamless user experience (Ray et al., 2024;
Jin et al., 2024). Moreover, during post-training of LLM-based search agents, efficient model rollouts
over large-scale training corpora are essential to support scalable learning. While recent systems
incorporate advanced inference optimizations—such as sequence concatenation (Jin et al., 2025a;
Chen et al., 2025; Song et al., 2025) and prefix caching (Jin et al., 2024; Kwon et al., 2023; Zheng
et al., 2024)—these techniques are not specifically designed to address the unique computational
challenges posed by the tight interleaving of multi-step reasoning and dynamic retrieval.

To this end, we first conduct a systematic analysis of the efficiency factors governing LLM-based
search agents, uncovering insights that diverge from the understanding of naive RAG. Our in-
depth analysis reveals two key observations: First, we demonstrate a non-monotonic relationship

1

https://anonymous.4open.science/r/SearchAgent-X


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

between retrieval accuracy and end-to-end efficiency. Both excessively high (e.g., exact search) and
excessively low retrieval recall degrade overall efficiency. While aiming for perfect recall incurs
unnecessary computational overhead in the retrieval phase, low recall necessitates more retrieval
iterations and longer reasoning paths by the LLM to compensate (as shown in Figure 1). This
highlights that search agent systems benefit from high-recall approximate search that effectively
supports reasoning without unnecessary retrieval costs. Second, we find that search agent systems
are highly sensitive to retrieval latency. Unlike naive RAG where retrieval is largely amortized, even
minor increases in retrieval time in the search agent system can cause a disproportionately large
increase in end-to-end latency (Figure 2a). We attribute this magnification effect to two primary
root causes: improper scheduling, where standard policies like FCFS fail to prioritize requests that
would benefit most from KV-cache reuse (Figure 2b), and retrieval-induced stalls, where timing
misalignments between asynchronous retrieval and token generation force requests to wait, leading to
unnecessary recomputation (Figure 2c).

Motivated by these findings, we propose SearchAgent-X, an inference system dedicated for efficient
search agents. SearchAgent-X is designed to optimize end-to-end system throughput and latency
by smoothly coordinating the interleaving of self-reasoning and retrieval. Since both overly low and
high retrieval efforts lead to degraded efficiency, SearchAgent-X chooses to build upon a high-recall
approximate retrieval method. To tackle the problem of improper scheduling, SearchAgent-X
schedules requests with priority awareness through their real-time status to enhance KV-cache
utilization. Moreover, in order to overcome frequent retrieval-induced stalls, SearchAgent-X
proposes a non-stall retrieval mechanism through an adaptive strategy that allows generation to
proceed without unnecessary waiting while ensuring sufficient retrieval quality.

Our extensive experiments demonstrate that SearchAgent-X consistently and significantly outper-
forms state-of-the-art baseline systems across various operational settings. In both offline and online
inference scenarios, SearchAgent-X achieves substantial improvements in system performance (e.g.,
1.3-3.4× higher throughput) by improving LLM KV-cache utilization (from 0.07 to 0.65), all while
maintaining the high generation quality characteristic of search agents with exact retrieval.

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARY: LLM-BASED SEARCH AGENT SYSTEMS

LLM-based search agent systems are designed to tackle complex requests by decomposing problems
into a series of interleaved, multi-turn reasoning and information retrieval steps. This allows the LLM
to adaptively seek and integrate external knowledge throughout its reasoning process. Appendix A
shows an example of the process of a LLM-based search agent.

Supporting Multi-Turn Reasoning. Search agent systems often build on LLM inference frameworks
like vLLM (Jin et al., 2025a). They use Sequence Concatenation for dynamic retrieval: during
inference, the system monitors model output for retrieval signals. Upon such a signal, LLM decoding
pauses, a query is issued, and retrieved results are concatenated with previously generated tokens to
form a new, extended Sequence. This is then re-injected into the LLM to resume reasoning.

To enhance efficiency, Prefix Cache is commonly leveraged (Jin et al., 2024; Zheng et al., 2024).
This technique stores key-value (KV) pairs from the LLM’s attention mechanism for prior tokens,
allowing efficient reuse in subsequent generations. This is particularly advantageous in search agents,
as the concatenated sequence’s prefix, excluding newly retrieved tokens, overlaps with the previous
generation. Furthermore, shared system prompts across search agent requests can be cached and
reused. In our evaluation, enabling prefix caching saved over 24% of token recomputation costs.

Sequence Scheduling. Efficient scheduling is vital for high throughput. Modern LLM inference
frameworks utilize Iteration-Level Scheduling, where GPU scheduling decisions occur at the gran-
ularity of the single token generation step (Kwon et al., 2023; Zheng et al., 2024). Compared to
sequence-level scheduling (NVIDIA, 2019; 2021), iteration-level scheduling avoids waiting for all
sequences in a batch to complete, thus preventing bubble problems and becoming a leading solution.
Frameworks like vLLM typically employ a First-Come-First-Serve (FCFS) scheduling policy.

Retrieval Mechanism. On the retrieval side, semantic search techniques efficiently locate relevant
external knowledge. Queries are usually encoded into dense vector representations for searching

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

in vector space. The two primary approaches are exact nearest neighbor (ENN) search (Dasgupta
& Sinha, 2013) and approximate nearest neighbor (ANN) search (Malkov & Yashunin, 2018; Guo
et al., 2020). Graph-based ANN methods like HNSW (Malkov & Yashunin, 2018) offer a favorable
speed/accuracy trade-off, making them suitable for large knowledge bases.

2.2 KEY INSIGHTS: FACTORS GOVERNING EFFICIENCY

Despite significant progress in high-performance LLM inference and retrieval, the LLM-based search
agent’s efficiency remains poorly understood. In this section, we analyze the influence of two key
factors: 1) retrieval accuracy and 2) retrieval latency, and examine how they contribute to severe
inefficiencies in current solutions. For retrieval, we assume a local search with a fixed dense encoder.
Experiments in this section use Search-R1 7B on MuSiQue and the default vLLM configuration.

2.2.1 IMPACT OF RETRIEVAL ACCURACY

Insight 1: Both overly high and overly low retrieval recall degrade end-to-end efficiency. High
recall increases retrieval overhead, while low recall leads to longer reasoning steps.

10 50 500 5000 10000 20000
ANN Search Range

2.5

3.0
Th

ro
ug

hp
ut

Throughput (Generation accuray error beyond 1%)
Throughput (Generation accuray error within 1%)
Avg. Retrieval Counts

5.75

6.00

6.25

6.50

Av
g.

 R
et

rie
va

l C
ou

nt
s

Figure 1: Impact of Retrieval Accuracy
on Search Agent Efficiency. Higher ANN
search range means higher-recall retrieval.
Throughput marks the number of requests
completed per second (higher is better). Re-
trieval count indicates the number of re-
trievals called per request. End-to-end gen-
eration accuracy error is calculated by com-
parison with an exact retrieval method.

We first investigate the impact of different retrieval ac-
curacies on the system efficiency of search agents. In-
tuitively, lower retrieval accuracy means lower retrieval
overhead, thus higher system efficiency. However, we
observe a ”less is more” phenomenon for LLM-based
search agents. Low-recall retrievals may result in sub-
optimal context, forcing the model to compensate by is-
suing additional retrievals and extending the reasoning
length. Figure 1 shows how varying the ANN search
range affects throughput and average retrieval counts.
When the search range is too small (e.g., 10), the model
fails to retrieve useful documents, resulting in longer
reasoning steps and an average of 6.5 retrievals per re-
quest. This reduces throughput to just above 2.1. As
the search range increases to 500, retrieval quality im-
proves, and the model completes reasoning with fewer
retrievals (around 5.7), boosting throughput to over 3.2.

However, further increasing the search range (e.g., be-
yond 10,000) yields diminishing returns. While average
retrieval counts decrease slightly, throughput declines
due to the higher cost of very high-recall ANN searches.
This suggests that simply maximizing retrieval recall
is not the optimal strategy for search agent efficiency. Once retrieval quality sufficiently supports
reasoning, additional search efforts offer marginal benefits and can even harm overall efficiency.

2.2.2 IMPACT OF RETRIEVAL LATENCY

Insight 2: Compared to naive RAG, search agents are much more sensitive to retrieval latency due
to ignoring inter-request priorities and retrieval-induced stalls.

For naive RAG, all requests are retrieved before generation. Retrieval latency (millisecond level) is
negligible compared to the total request latency (second level), so it is insensitive to retrieval latency.
However, for search agents, retrieval occurs during self-reasoning, where the time scale of a single
token generation and retrieval latency are comparable. Minor retrieval latency can cause requests to
be inserted into different token generation iterations, leading to different system behaviors.

Figure 2 shows the average end-to-end latency of search agents and RAG under different retrieval
latency (controlled by different search ranges), with a request rate of 5 requests/second and a test
duration of 10 minutes. For fair comparison, we assume RAG generates the same length of tokens
with search agent, and its end-to-end latency te2e is calculated as te2e0 + t̄ret · n̄ret, with te2e0 as the
token generation time without retrieval, t̄ret as the average retrieval time, and n̄ret as the average
retrieval counts per request. The results indicate that search agents suffer from drastic efficiency

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FCFS Scheduling: 
t2 > t1, #a waiting

Only #b is ready for 
generation, #a waiting

Increased 
Prefix of #b

d_1 Prefill for #bLLM 
Engine

retrieval

…

Request #a 
(searched 6 times)

Request #b
(searched 1 times)

d_n
t1

t2

KV 
Cache
Space

Prefix of #a
(much larger) 

Prefix of #b

Prefix of #a evicted

KV Recompute 
for long req #a…

Cache
Hit

Cache 
Miss

d_1 Prefill for #bLLM 
Engine

retrieval

…

Request #a 
(searched 6 times)

Request #b
(searched 1 times)

d_n
t1

KV Recompute 
for long req #a…

stalled
t2

(b) Inefficiency Reason #1: Improper scheduling. 

(c) Inefficiency Reason #2: Retrieval-induced stalls. 
(a) Minor retrieval delays lead to 
substantial system inefficiency.

83× Latency
Magnification

17×

Caused by

Figure 2: Impact of Retrieval Latency on Search Agent Efficiency. (a) Search agents exhibit
significantly higher retrieval latency sensitivity than naive RAG (up to 83× magnification), linked to
lower prefix KV-cache hit rates. Here, the latency magnification (e.g., 83× at search range 10k) is
computed as the ratio between the increase in agentic RAG end-to-end latency and the corresponding
increase in retrieval latency, both measured relative to the 500-range modular RAG baseline. (b,
c) Root causes include: (b) improper scheduling, where serving shorter requests first evicts cache
for longer ones, causing recomputation; and (c) retrieval-induced stalls, where requests missing a
scheduling point must wait, risking cache eviction.

degradation under even minor retrieval delays. As average retrieval latency increases from 0.6s to
4.4s, the end-to-end latency of the search agent is magnified by over 83×, while RAG remains largely
stable. This severe magnification in search agent is strongly correlated with a sharp decrease in the
prefix KV-cache hit rate, dropping from over 30% to under 21%, which forces frequent and costly
KV recomputations (Figure 2a). Note that in Figure 2a, each point corresponds to a different setting
of ANN parameters (i.e., different efSearch values).

We identify two root causes for this observed behavior, both contributing to unnecessary KV recom-
putation, particularly for longer, multi-turn requests: improper scheduling and retrieval-induced
stalls. Figure 2b illustrates the issue of improper scheduling. Consider request #a, which involves
a longer reasoning path with 6 retrievals, and request #b, which just completes a single retrieval.
Even if request #a arrives first, if its retrieval completes slightly later than that of #b (t2 > t1), a
standard FCFS scheduler may choose to serve #b first in the next iteration. As #b proceeds with
its generation, it occupies valuable KV-cache space, potentially leading to the eviction of the prefix
KV-cache belonging to #a. When request #a eventually resumes, it encounters a cache miss and
must recompute its entire prefix from scratch, significantly increasing its latency. Our measurements
highlight the high cost of such improper scheduling: 55.9% of tokens were unnecessarily recomputed
in affected cases, leading to more than a 108% increase in computation time per request.

Even with improved scheduling, another significant inefficiency risk comes from reasoning stalls,
depicted in Figure 2c. The asynchronous execution of retrieval and generation can lead to subtle
timing misalignments. If a long request like #a completes its retrieval only slightly after the deadline
for inclusion in the next generation step, it misses the current scheduling batch and is forced to wait
until the subsequent one. We term this unproductive waiting period ”retrieval-induced stalls.” During
this stall, shorter requests (e.g., #b) that are ready can continue executing. Their execution may
further displace #a’s prefix from the KV-cache, once again resulting in costly recomputation upon
#a’s eventual resumption. Our data shows that, on average, more than 25% of sequences experience
such stalls after completing their retrieval across various scenarios.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

One Generation Step

Priority Scheduler

Context length

Retrieval counts

Waiting time

</search>

t_now – t_arr

Prefix Match

Token Generation

Prefill

Reuse KV

Prefix
of #a

Prefix of #b

KV Cache Space

Or

step
retrieval

step
Resume!

Non-Stall Retrieval

ANN Graph

Retriever

Title: x

External
Knowledge

Requests

QA
Choice

…

<answer> result </answer>

Update

<information> Doc 1,2,… </information>

① ②

<search> query </search>Asynchronously ③

If
Prefill

If Decode

Decode

②

Cache
③

Next 
Step

…

Adaptive
Termination

Ordered
Requests

1st
2nd
3rd

Figure 3: SearchAgent-X’s Architecture. Requests are scheduled with priorities. Reasoning and
retrieval are interleaved, with a non-stall retrieval mechanism to avoid unnecessary waiting.

Limitations of Existing Solutions. Our analysis highlights key limitations in current search agent
systems. ENN retrieval, despite full recall, incurs prohibitive retrieval overhead. While high-
recall ANN search is more suitable, it suffers from retrieval-induced stalls due to asynchronous
execution. Furthermore, prevalent FCFS scheduling in LLM inference frameworks (Kwon et al.,
2023; Abhyankar et al., 2024) disregards the search agent’s unique request priorities, leading to
suboptimal cache utilization and costly recomputation.

3 DESIGN OF SEARCHAGENT-X

3.1 OVERALL ARCHITECTURE

Drawing upon the above insights, we propose SearchAgent-X, a simple yet efficient inference
system that is easy to deploy, explicitly designed to optimize end-to-end efficiency for search agent
workloads by smoothly interleaving self-reasoning and retrieval. Figure 3 shows SearchAgent-X’s
architecture, a tightly integrated system processing search agent requests at the token generation
level. At each LLM output step, the system checks for special tags that trigger the Retriever for an
ANN-based search (e.g., <search>) or request completion (e.g., <answer>), respectively.

To optimize GPU resource usage, SearchAgent-X incorporates a priority scheduler. It dynamically
prioritizes concurrent requests using real-time collected metrics like retrieval count and waiting time,
aiming to enhance KV-cache reuse by processing higher-priority requests first. During prefill, prefix
matching reuses existing KV pairs from cache, significantly reducing computational overhead; new
KV states are computed if caching is inapplicable or a miss occurs. Retrieval and generation operate
asynchronously to enhance throughput. When retrieval is triggered, the system queries a pre-built
ANN graph index. To proactively avoid retrieval-induced stalls, SearchAgent-X employs non-stall
retrieval with adaptive search termination, allowing generation to proceed without unnecessary
waiting while ensuring sufficient retrieval quality.

3.2 PRIORITY SCHEDULING

SearchAgent-X employs a priority-based scheduling mechanism to efficiently and fairly manage
concurrent generation requests. As introduced earlier, each search agent request i involves a list
of generation sequences [si,0, si,1, . . . , si,ri ], where si,0 is the initial sequence and si,j (j > 0)
represents a sequence resumed after the j-th retrieval. Let ri denote the current number of retrievals
performed for request i, and si,ri be the sequence currently being processed.

As discussed earlier, requests that have undergone more retrieval steps (i.e., higher ri) benefit more
significantly from prefix cache reuse due to longer shared prefixes. Prioritizing such requests can
therefore enhance overall cache efficiency and reduce redundant computation. However, scheduling

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

solely based on retrieval count risks starving requests with fewer or no retrievals, leading to increased
end-to-end latency and reduced fairness.

To mitigate these issues, SearchAgent-X utilizes a hierarchical scheduler that dynamically prioritizes
requests based on a combination of three key metrics associated with request i: (1) the number of
retrievals completed Ri = ri; (2) the context length of the current sequence Ci = Lseq,i; and (3)
the waiting time of the initial request Wi = tnow − tarr,i. The first two metrics implicitly prioritize
sequences with longer reusable prefixes, while the last ensures fairness by giving preference to
requests that have been waiting longer overall.

Instead of combining these diverse metrics into a single weighted score, which would require tedious
and potentially task-specific tuning of weights, SearchAgent-X discretizes each metric into G
distinct priority levels. For a given metric M ∈ {R,W,C}, the threshold defining the lower bound
for level k is calculated as:

TM,k = min(M) +
k

G
· (max(M)−min(M)), 0 ≤ k < G (1)

A request i is then assigned to the highest priority level k for which at least one of its metric values
(Ri,Wi, Ci) exceeds the corresponding threshold TM,k:

k = max {j ∈ [0, G−1] | Ri > TR,j ∨Wi > TW,j ∨ Ci > TC,j} (2)

Requests that do not meet any threshold are assigned to the base level 0.

Within each assigned priority level, active sequences are further sorted according to their current
queueing time, defined as W cur

i = tnow − t
(ri)
arr,i, where t

(ri)
arr,i is the time when the sequence si,ri

becomes ready for processing (e.g., after retrieval completes). Sorting by W cur
i in descending order

ensures that among requests of similar priority level, those that have been waiting longest for their
current step are processed first, mitigating the risk of KV-cache eviction during extended waits.

Finally, SearchAgent-X determines the execution order by traversing the priority levels from highest
to lowest and processing the sequences within each level based on their sorted W cur

i .

3.3 NON-STALL RETRIEVAL

To mitigate inefficiencies from retrieval latency and prevent retrieval-induced stalls (Section 2.2.2),
SearchAgent-X incorporates a flexible, non-stall early termination strategy for Approximate Nearest
Neighbor (ANN) search. Unlike traditional ANN search that iteratively refines candidates until
meeting pre-set criteria (e.g., explored nodes, list stability) and can thus cause pipeline stalls if
retrieval is slow, SearchAgent-X adaptively concludes the search. This adaptive termination is
based on two key conditions: the maturity of retrieval results and the readiness of the LLM engine,
ensuring generation proceeds without unnecessary blocking.

At the core of this strategy is the concept of a soft limit for the retrieval process. This soft limit repre-
sents a checkpoint where search results are likely to have achieved sufficient quality for the generation
task. SearchAgent-X estimates retrieval maturity by monitoring returns in quality improvement
during the ANN search. While retrieval quality generally improves with more explored neighbors,
we find that the rate of improvement diminishes significantly after a certain point, exhibiting a
”knee” where newly found points contribute less to the overall quality. SearchAgent-X exploits this
observation. A normalized metric RQt is used to evaluate the quality of newly discovered candidates
at step t, defined as: (dt − dbest)/(dworst − dbest), where dt is the new candidate’s distance to the
query, while dbest and dworst are the distances of the best and worst candidates currently in ANN
algorithm’s list. A high RQt value suggests the new candidate offers little improvement over existing
ones, indicating diminishing returns from further search (see details in Appendix B.2).

The maturity exit criterion is met when this smoothed quality signal (derived from RQt) indicates
a plateau (i.e., exceeds a threshold τ ) and the LLM engine is ready for its next token generation
operation. Upon meeting both conditions, SearchAgent-X halts the retrieval and provides the current,
sufficiently mature results to the LLM; otherwise, retrievals stop naturally. This adaptive alignment of
asynchronous retrieval and generation significantly reduces end-to-end latency without compromising
the quality of the retrieved context, contrasting with traditional fixed stopping criteria that may not
optimally synchronize with the dynamic state of the generation pipeline. SearchAgent-X’s complete
execution process and implementation details can be found in Appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Th
ro

ug
hp

ut
(fi

ni
sh

ed
 re

q/
se

c)

Top K Retrieved

1.8-2.7×
1.8-2.2×

1.5-1.7×

0

400

800

1200

1 2 3 4 5

En
d-

to
-E

nd
 L

at
en

cy
(s

ec
)

Top K Retrieved

1.3-3.7×

1.9-3.4×

0.2-0.6× 0.2-0.5× 0.3-0.5×
0.4-0.5×

0.5-0.6×

vLLM_ENN vLLM_ANN CachevLLM_ANN SearchAgent-X

Figure 4: End-to-End Efficiency of Offline Inference. Left: Requests completed per second (higher
is better). Right: Average end-to-end latency (lower is better).

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6

Pe
nd

in
g 

Se
qu

en
ce

 R
at

io

Request Rate

0.0

100.0

200.0

300.0

400.0

1 2 3 4 5 6

En
d-

to
-E

nd
 L

at
en

cy
 (s

ec
)

Request Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Request Rate

Figure 5: End-to-End Efficiency of Online Inference. Left: Throughput. Middle: Latency. Right:
Pending Sequence Ratio, the percentage of sequences initiated but not completed within the test
period. Lower is better, indicating reasonable workload scheduling.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate our method on two different search agent models from Search-R1
(Jin et al., 2025a) and ReCall (Chen et al., 2025). For retrieval, we adopt a chunked Wikipedia dataset
as the knowledge base, using an ANN index constructed with HNSWlib (Malkov & Yashunin). Note
that our approach is model-agnostic and readily generalizes to other reasoning models/ANN methods.

Testbed. For the 7B model, we use a single NVIDIA L20 GPU with 48GB memory. For the 14B
model, we use two A100 GPUs with 40GB memory each, connected via PCIe 3.0. The retrieval
system runs on 22 CPU cores with 120GB of RAM.

Baselines. We compare the performance of four methods: 1) vLLM ENN: the vanilla vLLM with exact
retrieval. 2) vLLM ANN: vanilla vLLM system (Kwon et al., 2023) with approximate retrieval. 3)
CachevLLM ANN: vanilla vLLM with approximate retrieval and prefix cache. 4) SearchAgent-X:
our proposed system. Refer to Appendix B.3 for detailed setup.

4.2 END-TO-END PERFORMANCE

We first evaluate the end-to-end performance of different methods. For efficiency measurement, we
use Musique (Jin et al., 2025b) and HotpotQA (Yang et al., 2018), two datasets of complex multi-hop
queries. Two scenarios are tested: (1) offline inference, where all requests arrive at the start; and (2)
online inference, where requests arrive at a fixed rate. In the offline setting, we process 1000 requests
and measure efficiency upon completion. In the online setting, requests arrive at rates from 1 to 6
over a 10-minute window. Results for the 7B Search-R1 model are shown in Figures 4 and 5; full
results across all metrics and models are in Appendix C.1 and C.2.

In offline scenarios, SearchAgent-X consistently outperforms all baselines in terms of system
throughput and per-request latency. As shown in Figure 4, SearchAgent-X achieves 1.3-3.4×
higher throughput and only 0.2-0.6× the latency compared to the baselines across different top-k
values. Even in the most challenging case of top-k=5, SearchAgent-X still beats the best baseline

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Generation Quality of SearchAgent-X and Exact Retrieval.

Dataset Musique NQ 2Wiki HotpotQA Bamboogle StrategyQA Avg.

Generation Accuracy
Exact Retrieval 0.203 0.316 0.371 0.429 0.472 0.788 0.430
SearchAgent-X 0.203 0.320 0.370 0.428 0.472 0.789 0.430

CachevLLM ANN, with a significant margin (1.5× in throughput and 0.6× in latency). We attribute
this improvement to the SearchAgent-X’s high-recall ANN, and the design of efficient scheduling
and non-stall retrieval mechanisms. vLLM ENN performs poorly in this scenario, as it incurs excessive
retrieval overhead and hinders end-to-end reasoning efficiency. vLLM ANN employs a high-recall
ANN and performs obviously better than vLLM ENN, but it still suffers from the inefficiencies of
large amounts of recomputation due to the lack of prefix cache. CachevLLM ANN uses prefix cache
to reduce recomputation, but it still fails to wisely manage the scheduling of requests and avoid
retrieval-induced stalls, leading to a significant performance gap compared to SearchAgent-X.

We also find that the performance of all methods first increases then decreases with the increase
of top-k values. This aligns well with our previous observation that both overly high and overly
low retrieval quality degrade end-to-end efficiency. When the top-k value is too small, the model
may fail to retrieve useful documents, leading to longer reasoning sequences and lower throughput.
Conversely, when the top-k value is too large, the concatenated sequence becomes too long, resulting
in longer prefill time. However, we note that SearchAgent-X consistently outperforms all baselines
across all top-k values, indicating its robustness to different retrieval settings.

We also observe that SearchAgent-X often yields larger gains on harder tasks. As shown in Table 3 in
Appendix C.1, the HotpotQA dataset (a easier dataset according to the Search-R1 analysis) yields
lower benefits compared to the Musique dataset in our main experiments (e.g., 1.52x of throughput
improvement on easy dataset vs. 1.84x of throughput improvement on hard dataset, for top-k=3).

In online scenarios, SearchAgent-X utilizes computing resources more efficiently than baselines,
completing more requests in the same amount of time. As shown in Figure 5, SearchAgent-X
completes at least 1.5×, and up to 3.5×more requests on average than the baseline, within the request
rate range of 1 to 6. Further, we record the pending sequence ratio that measures the resource utility
of the system, defined as the percentage of sequences that are initiated but not completed within the
test period. As shown in Figure 5 (right), SearchAgent-X achieves stable, small pending sequence
ratios (about 0.2), while the baselines experiences dramatic increases with higher request rates (more
than 0.6), indicating the effectiveness of SearchAgent-X’s scheduling.

SearchAgent-X achieves comparable generation quality to exact retrieval. We evaluate the
generation quality of SearchAgent-X and exact retrieval (vLLM ENN) on six representative datasets.
We use the Exact Match metric as generation accuracy to measure the correctness of the generated
answers (Jin et al., 2025b). As shown in Table 1, SearchAgent-X achieves similar generation
accuracy, retrieval counts and output length (see Appendix C.2 for details) as exact retrieval across all
datasets, indicating that it does not compromise generation quality for efficiency. Another interesting
finding is that SearchAgent-X may even achieve higher generation accuracy on some datasets, such
as NQ (0.320 vs. 0.316). The results could be attributed to two aspects. First, full ANN recall does
not necessarily mean optimal generation accuracy; the correct answer document may not always be
captured by semantic similarity. Second, the search agent model has the adaptability to adjust the
reasoning length. ANN might lead search agents to perform an extra reasoning step (e.g., 2.292 vs.
2.288 for NQ), adjusting the retrieval query, which in turn improves generation accuracy.

4.3 ABLATION STUDY

The priority scheduling and non-stall retrieval of SearchAgent-X help improve the prefix cache
utility, thus enhancing end-to-end efficiency. In this section, we use Search-R1 7B model on
Musique dataset. Figure 6 (left) shows the end-to-end performance of different techniques for offline
inference with top-k = 5. We have several observations. First, the advantages of prefix cache are
diminished in this challenging scenario. With top-k=5, it’s only 1.01× that of vLLM ANN, compared
to 1.91× with top-k=1 (see all prefix caching improvement data in Figure 4). This validates that

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

0.2

0.4

0.6

0
200
400
600
800

1000
1200

H
it 

R
at

e

La
te

nc
y 

(s
ec

)

End-to-End Latency Prefix Cache Hit Rate

vLLM_
ANN

+ Prefix
Cache

+ Priority
Scheduling

+ Non-Stall
Retrieval

↓ 35.55% ↓ 6.31%

0

40

80

120

160

200

Ti
m

e 
Br

ea
kd

ow
n 

(s
ec

)

Waiting + Prefill Decode Retrieval

vLLM_
ENN

+ Prefix
Cache

+ Priority
Scheduling

+ Non-Stall
Retrieval

vLLM_
ANN

0.16s 0.15s
7.5s 6.9s

81s 77s

Terminate 
Ratio = 24%

Figure 6: SearchAgent-X Technique Breakdown for End-to-End Performance (Left) and Per-
Sequence Generation Time (Right). Each bar/scatter adds one technique over its left bar/scatter,
with the leftmost being vanilla vLLM and the rightmost being the full SearchAgent-X.

the benefits of prefix cache still require appropriate scheduling and retrieval methods to unleash its
potential. Second, SearchAgent-X’s priority scheduling reduces the end-to-end latency by 35.55%
based on prefix cache. This is because the priority of requests is properly managed, maximizing
the utilization of GPU resources. In addition, the prefix cache hit rate increases from 0.07 to 0.51,
verifying the effectiveness of the technique. Third, SearchAgent-X’s non-stall retrieval further
improves the hit rate to 0.65, leading to a further 6.3% reduction in latency. This shows that
the adaptive termination strategy fully utilizes the ”free lunch” of asynchronous execution, timely
recalling mature retrieval results, thereby improving system processing efficiency.

Figure 6 (right) further demonstrates the per-sequence generation time of different parts. We have
more observations. First, for vLLM ENN, the retrieval time is the largest component, accounting for
over 60% of the total time. Instead, its prefill time is the lowest across different techniques, since its
reasoning requires waiting for long-time retrieval, thus reducing the pressure on token generation.
Second, for priority scheduling, we note that it reduces not only the prefill time (due to more prefix
cache utilized), but also the decode time, showing a better system processing capability. This is
because by improving KV-cache utilization, it avoids recomputation of long requests, freeing up
GPU space earlier for better decode parallelism. Third, non-stall retrieval actually only reduces
0.01s of retrieval time (from 0.16s to 0.15s), with about 24% of the retrievals being early terminated,
but significantly reduces the end-to-end latency (41s, the end-to-end latency shown in Figure 6
(left)). This aligns well with our previous observation that minor retrieval latency can cause drastic
efficiency degradation (as shown in Figure 2). Non-stall retrieval adaptively terminates only a small
set of retrievals when necessary, yet yields the significant benefit of better cache utilization. More
experiments can be found in Appendix C.3 to C.7.

5 RELATED WORK

Several recent systems optimize one- or multi-round RAG pipelines, such as TELERAG (Lin
et al., 2025), RAGO (Jiang et al., 2025), PATCHWORK (Hu et al., 2025), RAGServe (Ray et al.,
2024), RAGCache (Jin et al., 2024), AquaPipe (Yu et al., 2025), AutoRAG (Fu et al., 2024),
and PipeRAG (Jiang et al., 2024). These methods either prefetch or pipeline retrieval results, or
tune retrieval/generation hyperparameters, but they still treat retrieval and generation as largely
separated stages and do not analyze the root causes of inefficiency in the dynamically interleaved
search–reasoning pattern targeted by SearchAgent-X.

Techniques that could change sequence prefix, such as context trimming, summarization, or token
sparsification (Jiang et al., 2023) are also compatible with our design: as long as they are applied in a
prefix-preserving fashion during decoding, prefix caching remains effective and our scheduler can
simply use the effective cached prefix length (after sparsification) as a scheduling feature.

Meanwhile, broader agent workflow optimizations, such as auto-tuning (He et al., 2025), KV-cache
management (Abhyankar et al., 2024), and partial tool execution (Xu et al., 2024), improve overall
efficiency but overlook the specific challenges of retrieval accuracy and latency in search agents. In
contrast, SearchAgent-X directly addresses these challenges by tightly coupling priority-scheduled
reasoning with non-stall retrieval, yielding improved efficiency. Notably, our approach is orthogonal

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

to, and can potentially be combined with, other RAG optimization techniques such as context
compression (Shi et al., 2024) and retrieval reranking (Glass et al., 2022).

6 CONCLUSION

LLM reasoning-driven search agents offer great potential for complex problems, but face severe,
distinct efficiency challenges. This paper highlights the non-trivial impact of retrieval accuracy and
the latency sensitivity caused by scheduling deficiencies and retrieval-induced stalls. Our proposed
system, SearchAgent-X, designed based on these insights, demonstrates substantial improvement
in system efficiency, all while maintaining high generation quality. This study provides important
insights for practical deployments of high-efficiency LLM-based search agents, and the proposed
solutions are easily adaptable to other ANN retrieval methods and LLM reasoning models.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, personally
identifiable information, sensitive data, or applications with potential for misuse. Therefore, we
believe there are no ethical concerns related to this paper.

REPRODUCIBILITY STATEMENT

We provide the complete source code of SearchAgent-X in an anonymous repository at https:
//anonymous.4open.science/r/SearchAgent-X. The repository is self-contained with instruc-
tions and scripts to replicate all experiments, along with dataset specifications and pre-trained model
references.

REFERENCES

Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, and Yiying Zhang. InferCept: Efficient
Intercept Support for Augmented Large Language Model Inference, May 2024. URL http:
//arxiv.org/abs/2402.01869. arXiv:2402.01869 [cs].

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. ReSearch: Learning to
Reason with Search for LLMs via Reinforcement Learning, March 2025. URL http://arxiv.
org/abs/2503.19470. arXiv:2503.19470 [cs].

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for exact nearest neighbor search.
In Shai Shalev-Shwartz and Ingo Steinwart (eds.), Proceedings of the 26th Annual Conference
on Learning Theory, volume 30 of Proceedings of Machine Learning Research, pp. 317–337,
Princeton, NJ, USA, 12–14 Jun 2013. PMLR. URL https://proceedings.mlr.press/v30/
Dasgupta13.html.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
6491–6501, 2024.

Jia Fu, Xiaoting Qin, Fangkai Yang, Lu Wang, Jue Zhang, Qingwei Lin, Yubo Chen, Dongmei Zhang,
Saravan Rajmohan, and Qi Zhang. AutoRAG-HP: Automatic Online Hyper-Parameter Tuning
for Retrieval-Augmented Generation, June 2024. URL http://arxiv.org/abs/2406.19251.
arXiv:2406.19251 [cs].

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-Augmented Generation for Large Language Models: A Survey,
March 2024. URL http://arxiv.org/abs/2312.10997. arXiv:2312.10997 [cs].

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Rajaram Naik, Pengshan
Cai, and Alfio Gliozzo. Re2g: Retrieve, rerank, generate. arXiv preprint arXiv:2207.06300, 2022.

10

https://anonymous.4open.science/r/SearchAgent-X
https://anonymous.4open.science/r/SearchAgent-X
http://arxiv.org/abs/2402.01869
http://arxiv.org/abs/2402.01869
http://arxiv.org/abs/2503.19470
http://arxiv.org/abs/2503.19470
https://proceedings.mlr.press/v30/Dasgupta13.html
https://proceedings.mlr.press/v30/Dasgupta13.html
http://arxiv.org/abs/2406.19251
http://arxiv.org/abs/2312.10997


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In International Conference
on Machine Learning, pp. 3887–3896. PMLR, 2020.

Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A Comprehensive Survey of Retrieval-
Augmented Generation (RAG): Evolution, Current Landscape and Future Directions, October
2024. URL http://arxiv.org/abs/2410.12837. arXiv:2410.12837 [cs].

Zijian He, Reyna Abhyankar, Vikranth Srivatsa, and Yiying Zhang. Cognify: Supercharging gen-ai
workflows with hierarchical autotuning. arXiv preprint arXiv:2502.08056, 2025.

Charles C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages.
International Journal of Forecasting, 20(1):5–10, 2004. ISSN 0169-2070. doi: https://doi.org/10.
1016/j.ijforecast.2003.09.015. URL https://www.sciencedirect.com/science/article/
pii/S0169207003001134.

Bodun Hu, Luis Pabon, Saurabh Agarwal, and Aditya Akella. Patchwork: A unified framework
for RAG serving. CoRR, abs/2505.07833, 2025. doi: 10.48550/arXiv.2505.07833. URL https:
//arxiv.org/abs/2505.07833.

Yizheng Huang and Jimmy Huang. A Survey on Retrieval-Augmented Text Generation for Large Lan-
guage Models, August 2024. URL http://arxiv.org/abs/2404.10981. arXiv:2404.10981
[cs].

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Compressing
prompts for accelerated inference of large language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
2023. doi: 10.48550/arXiv.2310.05736. URL https://arxiv.org/abs/2310.05736.

Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska. Piperag: Fast
retrieval-augmented generation via algorithm-system co-design. arXiv preprint arXiv:2403.05676,
2024.

Wenqi Jiang, Suvinay Subramanian, Cat Graves, Gustavo Alonso, Amir Yazdanbakhsh, and Vidushi
Dadu. Rago: Systematic performance optimization for retrieval-augmented generation serving. In
Proceedings of the 52nd Annual International Symposium on Computer Architecture (ISCA ’25),
pp. 974–989. ACM, 2025. doi: 10.1145/3695053.3731093. URL https://arxiv.org/abs/
2503.14649.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-R1:
Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning, March
2025a. URL http://arxiv.org/abs/2503.09516. arXiv:2503.09516 [cs].

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin. RAGCache:
Efficient Knowledge Caching for Retrieval-Augmented Generation, April 2024. URL http:
//arxiv.org/abs/2404.12457. arXiv:2404.12457 [cs].

Jiajie Jin, Yutao Zhu, Guanting Dong, Yuyao Zhang, Xinyu Yang, Chenghao Zhang, Tong Zhao, Zhao
Yang, Zhicheng Dou, and Ji-Rong Wen. FlashRAG: A Modular Toolkit for Efficient Retrieval-
Augmented Generation Research, February 2025b. URL http://arxiv.org/abs/2405.13576.
arXiv:2405.13576 [cs].

Jeff Johnson, Matthijs Douze, and Herve Jegou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, pp. 535–547, Jul 2021. doi: 10.1109/tbdata.2019.2921572. URL
http://dx.doi.org/10.1109/tbdata.2019.2921572.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

11

http://arxiv.org/abs/2410.12837
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://arxiv.org/abs/2505.07833
https://arxiv.org/abs/2505.07833
http://arxiv.org/abs/2404.10981
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2503.14649
https://arxiv.org/abs/2503.14649
http://arxiv.org/abs/2503.09516
http://arxiv.org/abs/2404.12457
http://arxiv.org/abs/2404.12457
http://arxiv.org/abs/2405.13576
http://dx.doi.org/10.1109/tbdata.2019.2921572


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. Improving approximate nearest
neighbor search through learned adaptive early termination. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, pp. 2539–2554,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450367356. doi:
10.1145/3318464.3380600. URL https://doi.org/10.1145/3318464.3380600.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025.

Chien-Yu Lin, Keisuke Kamahori, Yiyu Liu, Xiaoxiang Shi, Madhav Mahesh Kashyap, Yile Gu,
Rulin Shao, Zihao Ye, Kan Zhu, Stephanie Wang, Arvind Krishnamurthy, Rohan Kadekodi,
Luis Ceze, and Baris Kasikci. Telerag: Efficient retrieval-augmented generation inference with
lookahead retrieval. CoRR, abs/2502.20969, 2025. doi: 10.48550/arXiv.2502.20969. URL
https://arxiv.org/abs/2502.20969.

Yu. A. Malkov and D. A. Yashunin. Hnswlib - fast approximate nearest neighbor search. https:
//github.com/nmslib/hnswlib. Accessed: 2025-05-15.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824–836, 2018.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems, 45:
61–68, 2014. ISSN 0306-4379. doi: https://doi.org/10.1016/j.is.2013.10.006. URL https:
//www.sciencedirect.com/science/article/pii/S0306437913001300.

NVIDIA. FasterTransformer. https://github.com/NVIDIA/FasterTransformer, 2019. Ac-
cessed: 2025-05-14.

NVIDIA. Triton Inference Server: Dynamic Batching. https://docs.nvidia.com/
deeplearning/triton-inference-server/user-guide/docs/user_guide/model_
configuration.html#dynamic-batcher, 2021. Accessed: 2025-05-14.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025. Accessed: 2025-05-15.

Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Ganesh Ananthanarayanan, Ravi Netravali, and
Junchen Jiang. RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation,
December 2024. URL http://arxiv.org/abs/2412.10543. arXiv:2412.10543 [cs].

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Z. Ren, K. Doekemeijer, P. Apparao, and A. Trivedi. Storage-based approximate nearest neighbor
search: What are the performance, cost, and i/o characteristics? In 2025 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, oct 2025.

Kaize Shi, Xueyao Sun, Qing Li, and Guandong Xu. Compressing long context for enhancing rag
with amr-based concept distillation. arXiv preprint arXiv:2405.03085, 2024.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic Retrieval-Augmented
Generation: A Survey on Agentic RAG, February 2025. URL http://arxiv.org/abs/2501.
09136. arXiv:2501.09136 [cs].

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement
Learning, March 2025. URL http://arxiv.org/abs/2503.05592. arXiv:2503.05592 [cs].

12

https://doi.org/10.1145/3318464.3380600
https://arxiv.org/abs/2502.20969
https://github.com/nmslib/hnswlib
https://github.com/nmslib/hnswlib
https://www.sciencedirect.com/science/article/pii/S0306437913001300
https://www.sciencedirect.com/science/article/pii/S0306437913001300
https://github.com/NVIDIA/FasterTransformer
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
http://arxiv.org/abs/2412.10543
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2501.09136
http://arxiv.org/abs/2501.09136
http://arxiv.org/abs/2503.05592


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022.

M. Wang, X. Xu, Q. Yue, and Y. Wang. A comprehensive survey and experimental comparison
of graph-based approximate nearest neighbor search. Proceedings of the VLDB Endowment, 14
(11):1964–1978, 2021. doi: 10.14778/3476249.3476255. URL https://doi.org/10.14778/
3476249.3476255.

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue
Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-Augmented Generation for Nat-
ural Language Processing: A Survey, July 2024. URL http://arxiv.org/abs/2407.13193.
arXiv:2407.13193 [cs].

xAI. Grok agents: Combining reasoning and tool use. https://x.ai/news/grok-3#
grok-agents-combining-reasoning-and-tool-use, 2025. Accessed: 2025-05-15.

Yechen Xu, Xinhao Kong, Tingjun Chen, and Danyang Zhuo. Conveyor: Efficient tool-aware llm
serving with tool partial execution. arXiv preprint arXiv:2406.00059, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018.

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. Evaluation of retrieval-
augmented generation: A survey. In CCF Conference on Big Data, pp. 102–120. Springer, 2024.

Runjie Yu, https://orcid.org/0009-0002-8006-5316, View Profile, Weizhou Huang,
https://orcid.org/0000-0002-8024-0789, View Profile, Shuhan Bai, https://orcid.org/0000-
0002-0842-7602, View Profile, Jian Zhou, https://orcid.org/0000-0001-5295-4680, View
Profile, Fei Wu, https://orcid.org/0000-0001-9746-4714, and View Profile. AquaPipe: A
Quality-Aware Pipeline for Knowledge Retrieval and Large Language Models. Proceedings
of the ACM on Management of Data, 3(1):1–26, February 2025. doi: 10.1145/3709661. URL
https://dlnext.acm.org/doi/10.1145/3709661. Publisher: Association for Computing
Machinery.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-Augmented Generation for AI-Generated Content:
A Survey, June 2024a. URL http://arxiv.org/abs/2402.19473. arXiv:2402.19473 [cs].

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K. Qiu, and Lili Qiu. Retrieval Augmented
Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use
External Data More Wisely, September 2024b. URL http://arxiv.org/abs/2409.14924.
arXiv:2409.14924 [cs].

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

13

https://doi.org/10.14778/3476249.3476255
https://doi.org/10.14778/3476249.3476255
http://arxiv.org/abs/2407.13193
https://x.ai/news/grok-3#grok-agents-combining-reasoning-and-tool-use
https://x.ai/news/grok-3#grok-agents-combining-reasoning-and-tool-use
https://dlnext.acm.org/doi/10.1145/3709661
http://arxiv.org/abs/2402.19473
http://arxiv.org/abs/2409.14924


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A AN ILLUSTRATION OF LLM-BASED SEARCH AGENTS

Figure 7 shows an example of a search agent process. Faced with a complex query (”Curious is
a women’s fragrance by a singer born in what city and state?”), the search agent first engages in
preliminary reasoning (”I need to find out which city and state a singer...”). Recognizing a knowledge
gap regarding the ”Curious fragrance,” the model proactively decides to initiate a search (”search
Curious fragrance information”). Upon receiving the crucial information (”Curious is a women’s
fragrance by Britney Spears”), the model doesn’t conclude its process. Instead, it integrates this
new knowledge into its subsequent thought process and reasoning. This triggers further searches,
of which the retrieval result is concatenated with previously generated tokens and re-injected into
LLMs. Through this dynamic cycle of ”think-search-rethink,” the model progressively assembles
the necessary pieces of the knowledge puzzle required to answer the question fully. This culminates
in a high-quality answer that addresses all aspects of the initial query (”McComb, Mississippi”).
This ability to autonomously plan retrieval actions and iteratively incorporate new information into
its reasoning process allows the search agent to tackle more complex questions and deliver better
responses, moving beyond reliance solely on pre-trained knowledge or a single retrieval.

<think> I need to find out which 
city and state a singer, … </think>

<search> Curious fragrance 
information </search>

Approximate
Nearest 
Neighbor

Fast
High recall

Exact 
Nearest
Neighbor

Slow
Full recall

Search

<think> I need to find out which 
city and state a singer … </think>
<search> Curious fragrance 
information </search>

<information> Curious is a 
women's fragrance by Britney 
Spears … </information>

User

Search Agent

LLM
prefill decode

I need to find

…

Input Question

Curious is a 
women's fragrance 
by a singer born in 
what city and state?

Output Answer
<answer> McComb, 
Mississippi
</answer>

</search></answer>

request #1
request #2

request #3

① End to request ② Next turn

Multi-Turn

Prompt 
Concatenation

“Curious fragrance information”

“Curious is a women's …”

Figure 7: An illustration of reasoning and search interleaved LLM-based search agents.

B IMPLEMENTATION DETAILS

B.1 SEARCHAGENT-X EXECUTION

This section outlines the high-level execution flow of the SearchAgent-X system, as depicted in
Algorithm 1, complementing the conceptual component descriptions in Section 3 of the main paper.
SearchAgent-X orchestrates LLM inference (with prefix caching, Section 3.1), dynamic high-recall
approximate retrieval, Priority Scheduling (Section 3.2), and Non-Stall Retrieval (Section 3.3) to
achieve efficient search agents. The system initializes an LLM inference engine and manages
incoming requests, active asynchronous search tasks, and their results.

The main execution loop begins by ingesting new user requests into the LLM engine’s pool (line5-7).
Concurrently, if Non-Stall Retrieval is active, SearchAgent-X consults an external signal to identify
and expedite the completion of any ongoing retrieval tasks that have reached sufficient maturity or
for which LLM engine readiness dictates early termination (line 10-11), thus preventing pipeline
stalls. Upon completion of a search (either normally or via early termination), retrieved documents
are concatenated with the original context, and the augmented request is resubmitted to the LLM
engine (line 15-20).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The core of the processing loop involves LLM generation and the agentic control flow. Before
each LLM generation step, SearchAgent-X’s Priority Scheduling policy is applied to the queue
of waiting requests, reordering them to optimize system throughput and KV-cache utilization (line
23). Following token generation by the LLM, the output for each active sequence is parsed (line
25-28). If a <search> tag is detected, indicating a need for external knowledge, SearchAgent-X
halts further generation for that sequence and launches an asynchronous high-recall ANN retrieval
task (line 29-34). Conversely, if a <answer> tag is identified or the sequence naturally concludes,
the request is finalized (line 35-38). This iterative and asynchronous process enables the dynamic
interleaving of LLM reasoning, external knowledge retrieval, and intelligent scheduling, which is
fundamental to SearchAgent-X’s efficient handling of complex search agent workloads.

Algorithm 1 SearchAgent-XMain Execution Loop
1: Initialize LLM Engine, ArrivalQueue, ActiveSearchTasks, FinishedOutputs
2: Configure PriorityScheduling (enabled/type), NonStallRetrieval (enabled)
3: while LLM Engine has unfinished requests or not ActiveSearchTasks is empty or not Ar-

rivalQueue is empty do
4: // Step 1: Ingest new requests
5: for each request Rnew in ArrivalQueue ready for processing do
6: Add Rnew to LLM Engine’s request pool
7: Remove Rnew from ArrivalQueue
8: end for
9: // Step 2: Non-Stall Retrieval Check (if enabled)

10: if NonStallRetrieval is enabled and ActiveSearchTasks is not empty and LLM Engine has
waiting requests then

11: TerminatedSearchIDs← CheckExternalNonStallSignal()
12: // Queries for searches to terminate early
13: end if
14: // Step 3: Process completed search tasks
15: for each search task Si in ActiveSearchTasks that has completed do
16: Rorig, retrieved docs, search finish time← Si.getResult()
17: new context← Concatenate(Rorig.context, retrieved docs)
18: AddResumedRequest(Rorig, new context, search finish time) to LLM Engine
19: Remove Si from ActiveSearchTasks
20: end for
21: // Step 4: LLM Generation Step
22: if LLM Engine has unfinished requests then
23: // Section 3.2
24: ApplyPriorityScheduling(LLM Engine.waiting requests)
25: LLM Outputs, Scheduler Info← LLM Engine.step()
26: RecordTokenTimingsAndPrefixCacheStats(Scheduler Info)
27: for each output Oj in LLM Outputs do
28: current text← Oj .getGeneratedText()
29: if DetectSearchTag(current text) then
30: query← ExtractSearchQuery(current text)
31: LLM Engine.abortRequest(Oj .request id)
32: Snew ← LaunchAsyncRetrievalTask(Oj .request id, current text, query)
33: // High-recall ANN
34: Add Snew to ActiveSearchTasks
35: else if DetectAnswerTag(current text) or Oj .isFinished() then
36: Add Oj to FinishedOutputs
37: LLM Engine.abortRequest(Oj .request id)
38: end if
39: end for
40: end if
41: end while
42: CleanupRemainingTasks()

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0k 5k 10k 15k 20k 25k
Number of Explored Candidates

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 V

al
ue

Recall=0.98
0.940

RQ
EMA of RQ
Recall

Figure 8: EMA Signal of Retrieval Maturity.
RQ means relative quality of newly explored
candidates. EMA represents smoothed RQ. The
vertical line marks maturity, where the improve-
ment of recall and EMA decreases to about 0.

Queries

0k

10k

20k

30k

40k

N
um

be
r o

f E
xp

lo
re

d 
C

an
di

da
te

s

Recall at Maturity Exit
Maturity Exit
Natural Stop

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Figure 9: Comparison of Maturity Exit and
Natural Stop. The shadows represent the num-
ber of candidates explored by two methods
(showing a similar trend). The curve represents
the recall of maturity exit (consistently high).

B.2 RETRIEVAL MATURITY ESTIMATION

In practice, the raw RQt signal described in Section 3.3 exhibits short-term fluctuations that may
hinder robust maturity estimation. To address this, SearchAgent-X applies an exponential moving
average (EMA) (Holt, 2004), with a window size of 500, to smooth the signal.

Selecting an appropriate threshold τ for the EMA is critical to balancing retrieval quality and latency.
To determine a suitable value, we sample queries from the Musique dataset and record the evolution
of the EMA curve as the number of explored candidates increases. For each query, we identify the
point where the EMA curve flattens—i.e., where marginal improvements approach zero—indicating
that newly explored candidates are far from the query and contribute little to quality. This point
reflects the onset of retrieval maturity. As shown in Figure 8, the recall at this stage also stabilizes
and reaches a high level (around 0.98). We adopt the corresponding EMA value (τ = 0.9) at this
”knee” as the practical threshold τ in SearchAgent-X to reliably trigger maturity exit. We provide
more analysis of this design to verify its effectiveness in Appendix C.3.

B.3 DETAILED EXPERIMENTAL SETUP

We implement SearchAgent-X by building upon vLLM (Kwon et al., 2023), a state-of-the-art LLM
inference engine to use its efficient PagedAttention mechanism. For retrieval component, we use a
knowledge base constructed from a chunked Wikipedia dataset, containing approximately 21 million
text chunks. Each chunk is embedded into a 384-dimensional vector using the all-MiniLM-L6-v2
model (Reimers & Gurevych, 2019). An Approximate Nearest Neighbor (ANN) index is built offline
over these embeddings using HNSWlib (Malkov & Yashunin), configured with parameters such as
up to 32 neighbors per node and an efConstruction (candidate list size during build) of 500. This
index serves as the foundation for all ANN-based retrieval methods in our experiments. For these
ANN searches (employed by SearchAgent-X and approximate retrieval baselines), we generally
set the search range (e.g., efSearch) to 10,000 to achieve high recall with acceptable computational
overhead, based on empirical analysis. These HNSW ANN searches leverage inter-query parallelism
with 4 threads to optimize throughput while managing memory access contention.

Specific configurations for the different systems are as follows. For the exact retrieval baseline
(vLLM ENN), we adapt HNSWlib to perform exhaustive search more efficiently by enabling intra-query
parallelism, utilizing 6 threads. For SearchAgent-X, beyond using the aforementioned high-recall
ANN setup, we set its unique parameters: the priority scheduling level G is configured to 6 (we note
that SearchAgent-X exhibits low sensitivity to this specific value, as shown in our ablation study in
Appendix C.4). The threshold τEMA for estimating retrieval maturity in the non-stall mechanism
is set to 0.9, determined via offline profiling detailed in Appendix B.2. The approximate retrieval

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

baselines (vLLM ANN, CachevLLM ANN) also utilize the general ANN search settings described above,
including the search range of 10,000 and 4 threads for inter-query parallelism.

C MORE RESULTS

C.1 DETAILED OVERALL EFFICIENCY

We note that SearchAgent-X outperforms all baselines in different scenarios including model sizes,
deployment methods (single GPU or distributed GPUs), top-k values, and query datasets.

Different Model Sizes and Top-k Values Table 2 presents detailed results of overall efficiency
across different methods for Search-R1 under 7B (on a single L40 GPU) and 14B models (on two
40GB A100 GPUs). The advantage of SearchAgent-X is bigger in the 7B model and small top-k
values of the 14B model. This is due to two reasons. First, although the 14B model distributes model
weights across two A100s, its KV-cache space is still smaller than the 7B model (because the model
weights are larger, resulting in a larger KV-cache for a single token). The 7B model has a larger
available KV-cache space, thus yielding greater benefits from managing the prefix cache. Second, the
14B model we test calls retrievals more cautiously, while the 7B model calls more retrievals (e.g., 4.9
of the 7B model vs. 3.3 of the 14B model when top-k = 3 for Musique dataset), resulting in a greater
distinction in request priority.

Different Datasets Moreover, as shown in Table 3, on the HotpotQA dataset, SearchAgent-X also
outperforms all baselines, achieving 1.47x to 2.55x higher throughput and 1.62x to 2.81x lower
latency compared to the strongest baseline, CachevLLM ANN.

Different Search Agent Models To further demonstrate the generality of our method, we apply it
to a different search agent architecture, ReCall (Chen et al., 2025). We observe that SearchAgent-X
consistently delivers best efficiency. As shown in Table 4 below, when applied to ReCall’s 7B model,
SearchAgent-X attains 1.12x to 1.74x higher throughput, 1.31x to 1.81x lower latency, and 1.49x
to 2.86x higher cache hit rate than baselines. The results demonstrate that SearchAgent-X still
outperforms the most competitive baseline in this different search agent architecture, confirming the
generality of SearchAgent-X.

C.2 DETAILED GENERATION QUALITY

Table 5 further shows the generation details beyond Table 1 of SearchAgent-X and exact retrieval
(vLLM ENN) across different datasets. We note that SearchAgent-X achieves similar generation
length as exact retrieval across all datasets (6822 tokens vs. 6826 tokens), indicating that our non-stall
retrieval does not lead to unusual search agent model/retriever behaviours, making SearchAgent-X
possible for maintaining perfect generation quality.

C.3 ANALYSIS OF MATURITY EXIT MECHANISM

The maturity exit mechanism effectively halts unnecessary searches without compromising
retrieval quality. To validate the effectiveness of non-stall retrieval, we analyze whether the maturity-
based termination reliably halts unnecessary ANN iterations. We compare the retrieval traces of
representative queries under two settings: maturity-based early stop and standard natural stop. As
shown in Figure 9, we make several observations. First, query difficulty varies significantly across
the dataset, resulting in different numbers of candidate nodes explored before natural convergence.
This highlights the need for an adaptive termination strategy rather than relying on a fixed exploration
budget. Second, for queries of varying difficulty, the number of candidates explored by the maturity-
based strategy closely matches the natural termination point of standard search, indicating our maturity
exit accurately captures query difficulties. More importantly, the recall achieved by maturity-stopped
queries remains consistently high (0.963 on average). These results confirm that our non-stall retrieval
effectively terminates redundant search iterations while preserving retrieval quality.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Comparison across seven key metrics and top-k values for different methods. Throughput
and efficiency gains are marked by × multipliers. Lower values are better for metrics marked with ↓.

Metric Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3
Search-R1-7B Search-R1-14B

Throughput
vLLM ENN 0.44 0.69 0.62 0.63 0.61 0.46 0.47 0.43
vLLM ANN 0.62 1.04 0.76 0.73 0.68 0.94 0.77 0.61
CachevLLM ANN 1.18 1.25 0.89 0.77 0.69 1.08 0.89 0.70
SearchAgent-X 1.59 2.36 1.64 1.39 1.01 1.40 1.09 0.76
Max Ratio 3.61× 3.42× 2.65× 2.20× 1.66× 3.04× 2.32× 1.77×
Min Ratio 1.35× 1.89× 1.84× 1.81× 1.46× 1.30× 1.22× 1.09×

Token Throughput
vLLM ENN 69.90 90.85 86.12 97.79 84.26 156.35 127.28 111.21
vLLM ANN 101.21 136.81 106.09 114.28 94.65 320.76 206.46 159.70
CachevLLM ANN 191.65 164.46 124.59 119.17 95.64 366.85 239.01 182.60
SearchAgent-X 259.94 309.73 229.96 216.21 139.25 472.76 292.13 199.14
Max Ratio 3.72× 3.41× 2.67× 2.21× 1.65× 3.02× 2.30× 1.79×
Min Ratio 1.36× 1.88× 1.85× 1.81× 1.46× 1.29× 1.22× 1.09×

Latency ↓
vLLM ENN 1300.56 1066.05 1089.37 1154.62 1205.16 1642.86 1567.85 1614.71
vLLM ANN 571.36 625.33 790.68 930.29 1020.46 767.46 923.74 1052.74
CachevLLM ANN 429.60 562.47 759.57 916.58 1026.91 673.35 805.60 980.35
SearchAgent-X 238.00 266.50 347.14 466.78 620.07 502.10 690.20 939.42
Max Ratio 0.18× 0.25× 0.32× 0.40× 0.51× 0.31× 0.44× 0.58×
Min Ratio 0.55× 0.47× 0.46× 0.51× 0.60× 0.75× 0.86× 0.96×

P99 Latency ↓
vLLM ENN 1758.64 1441.18 1462.45 1569.80 1641.90 2205.26 2136.75 2237.55
vLLM ANN 915.04 956.46 1160.86 1348.87 1459.13 1066.63 1334.67 1555.47
CachevLLM ANN 609.70 797.46 1073.03 1296.03 1446.88 930.06 1159.02 1454.61
SearchAgent-X 373.20 421.32 566.28 716.88 993.98 732.16 958.78 1362.24
Max Ratio 0.21× 0.29× 0.39× 0.46× 0.61× 0.33× 0.45× 0.61×
Min Ratio 0.61× 0.53× 0.53× 0.55× 0.69× 0.79× 0.83× 0.94×

Table 3: Comparison of system efficiency under the HotpotQA dataset.
TopK Method Throughput Latency Token Throughput Cache Hit Rate

3 vLLM ENN 0.78143 483.4094 106.0500 0.0000

CachevLLM ANN 1.30926 282.9210 179.9000 0.3890

SearchAgent-X 1.99253 171.9478 271.8200 0.8890

4 vLLM ENN 0.74530 505.7417 102.6500 0.0000

CachevLLM ANN 0.95950 375.9803 133.7800 0.3040

SearchAgent-X 1.57188 210.8670 217.4600 0.9100

5 vLLM ENN 0.68400 543.9000 87.5970 0.0000

CachevLLM ANN 0.81700 443.1300 105.2410 0.1706

SearchAgent-X 1.20400 273.6900 154.8331 0.7340

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Comparison of system efficiency under the ReCall search agent model.
TopK Method Throughput Latency Token Throughput Cache Hit Rate

3 vLLM ENN 0.6370 376.375 224.550 0.000

CachevLLM ANN 0.9861 273.360 342.490 0.570

SearchAgent-X 1.1035 207.920 391.898 0.849

4 vLLM ENN 0.6200 423.070 205.630 0.000

CachevLLM ANN 0.8242 342.870 276.810 0.383

SearchAgent-X 1.0780 234.390 364.066 0.804

5 vLLM ENN 0.7180 393.390 220.810 0.000

CachevLLM ANN 0.7566 383.490 236.660 0.250

SearchAgent-X 0.9570 282.085 302.049 0.716

Table 5: Generation Quality of SearchAgent-X and Exact Retrieval.

Dataset Musique NQ 2Wiki HotpotQA Bamboogle StrategyQA Avg.

Retrieval Counts
Exact Retrieval 3.247 2.288 3.126 2.702 2.440 2.496 2.717
SearchAgent-X 3.251 2.292 3.138 2.699 2.448 2.476 2.717

Output Length
Exact Retrieval 8125 5839 7575 6840 6152 6402 6822
SearchAgent-X 8134 5847 7600 6839 6151 6382 6826

0

0.5

1

1.5

2

N/A 2 4 6 8 10 12
Priority Scheduling Level

Throughput (Req/Sec)

0
50

100
150
200
250

N/A 2 4 6 8 10 12
Priority Scheduling Level

Token Throughput
(Tokens/Sec)

0

200

400

600

800

N/A 2 4 6 8 10 12
Priority Scheduling Level

Latency (s)

0

0.2

0.4

0.6

0.8

1

N/A 2 4 6 8 10 12
Priority Scheduling Level

Prefix Cache Hit Rate

Figure 10: Comparison of Different Priority Levels G on Musique dataset. The numbers on the
X-axis represent different priority scheduling levels; N/A indicates that priority scheduling is not
used.

N/A 2 4 6 8 10
Priority Scheduling Level

0.5

1.0

1.5

2.0

2.5

Throughput (Req/Sec)

N/A 2 4 6 8 10
Priority Scheduling Level

100

150

200

250

300

350
Token Throughput (Tokens/Sec)

N/A 2 4 6 8 10
Priority Scheduling Level

0

100

200

300

Latency (s)

N/A 2 4 6 8 10
Priority Scheduling Level

0.0

0.2

0.4

0.6

0.8

1.0

Prefix Cache Hit Rate

Figure 11: Comparison of Different Priority Levels G on HotpotQA dataset. The numbers on
the X-axis represent different priority scheduling levels; N/A indicates that priority scheduling is not
used.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: System performance under different concurrency for vLLM and SearchAgent-X.

Concurrency 1 10 50 100 200 300 400 500

Cache Hit Rate
vLLM ANN 0.131 0.065 0.088 0.135 0.168 0.173 0.173 0.177
SearchAgent-X 0.999 0.920 0.920 0.920 0.920 0.589 0.555 0.495

End-to-End Latency
vLLM ANN 2181.75 633.37 477.88 448.64 437.12 425.89 415.44 411.67
SearchAgent-X 1378.82 323.21 212.05 199.29 208.07 295.39 314.80 327.87

Throughput
vLLM ANN 0.190 0.604 0.782 0.843 0.853 0.865 0.862 0.865
SearchAgent-X 0.203 0.848 1.348 1.517 1.582 1.137 1.100 1.060

C.4 COMPARISON OF DIFFERENT PRIORITY LEVELS G

The performance of SearchAgent-X is insensitive to its priority level setting. The priority level
G mentioned in Section 3.2 is an important hyperparameter of our method. In this section, we conduct
an ablation study to evaluate the performance of SearchAgent-X with different priority levels G.
The evaluation is performed on the Musique and HotpotQA datasets using the Search-R1 7B model
in offline scenarios. We set G = 2, 4, 6, 8, 10, and 12, and compare them with the baseline without
priority scheduling (N/A). The results are shown in Figure 10. We note that the performance of
SearchAgent-X is not sensitive to the choice of G, and all efficiency metrics (including throughput,
token throughput, latency, and prefix cache hit rate) first improve and then stabilize after G = 6. This
is expected because the average retrieval number of the 7B model is within 4 and 6, while the primary
objective of priority scheduling is to distinguish requests with different retrieval numbers for effective
management.

We further validate this observation on the HotpotQA dataset. As shown in Figure 11, the efficiency
consistently improves as G increases (e.g., up to a 1.62× throughput gain), and stabilizes once G ≥ 6.
This again confirms that the performance of SearchAgent-X is not sensitive to the choice of G,
making it straightforward to tune across different settings.

C.5 COMPARISON OF DIFFERNET CONCURRENCY SETTINGS

SearchAgent-X consistently outperforms baselines across different concurrency levels. To
explore the impact of concurrency levels on system performance, we conduct an analysis to validate
the effectiveness of SearchAgent-X under explicitly controlled request concurrency by tuning
key parameters: iteration-level concurrency (max num seq) in vLLM (Kwon et al., 2023). The
evaluation is conducted on the Musique dataset using the Search-R1 7B model in offline scenarios.

As detailed in Table 6, when increasing concurrency from 1 to 500, SearchAgent-X maintains a
high cache hit rate up to around 200. Beyond that point, the cache hit rate drops more significantly.
Meanwhile, system efficiency first increases then declines, showing a turning point: latency is
minimized around concurrency = 100, and throughput peaks at concurrency = 200. This suggests
that the GPU becomes saturated or experiences resource contention when concurrency exceeds
300. In practice, we typically choose the default value 256, which yields performance close to
the optimal. The results demonstrate that SearchAgent-X consistently outperforms vLLM in both
throughput and latency while exhibiting a tradeoff between cache hit rate and concurrency. We
also observe that vLLM consistently suffers from low cache hit rates and lower system efficiency
compared to SearchAgent-X across all concurrency levels. This is because suboptimal scheduling
and retrieval under interleaved reasoning-retrieval workloads, where cache for previous tokens is
frequently evicted—even with relatively small concurrency—causing inefficient reuse.

C.6 COMPARISON WITH A NAIVE EARLY-STOPPING BASELINE

SearchAgent-X aligns stopping decisions with the LLM’s prefill/decode progress, making the
stop decision more timely and effective. In contrast, naive early-stopping approaches make halting

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison of vanilla early stop and SearchAgent-X’s Non-Stall Retrieval.
Method Throughput (req/sec) Latency (sec) Cache Hit Rate Accuracy
Vanilla HNSW 0.7872 661.85 0.412 0.15

Early Stop 0.8050 634.77 0.564 0.15

SearchAgent-X 0.9502 620.07 0.645 0.15

Table 8: Comparison of system efficiency under the NSW search engine.
TopK Method Throughput Latency Token Throughput Cache Hit Rate

3 vLLM ENN 0.7880 395.040 97.640 0.000

CachevLLM ANN 1.7401 173.026 216.970 0.666

SearchAgent-X 2.1270 129.862 265.690 0.891

4 vLLM ENN 0.7196 578.940 99.487 0.000

CachevLLM ANN 1.0706 285.390 147.590 0.350

SearchAgent-X 1.6560 172.340 227.730 0.864

5 vLLM ENN 0.6940 428.642 87.531 0.000

CachevLLM ANN 0.8959 333.206 115.081 0.281

SearchAgent-X 1.1402 241.234 146.360 0.690

decisions based exclusively on retrieval-side signals, such as a machine learning model that predicts
the ”maturity” of retrieval, while disregarding the state of LLM inference. To further validate the
effectiveness of SearchAgent-X’s non-stall retrieval, we conduct a comparison against a vanilla
early-stop baseline that only relies on retrieval status to decide the stopping point. The evaluation
is conducted on the Musique dataset using the Search-R1 7B model with Top-5 retrieval in offline
scenarios. Table 7 shows SearchAgent-X outperforms vanilla HNSW and the early-stop baseline.
Early-stop baseline (Li et al., 2020) boosts throughput by 2.26% and cache hit rate by 0.152, cutting
latency by 27.08 sec while keeping accuracy at 0.15. SearchAgent-X further increases throughput
by 18.04% and cache hit rate by 0.081, reducing latency by 14.70 sec, with accuracy unchanged at
0.15. This confirms the efficiency gains of SearchAgent-X’s non-stall retrieval via aligned LLM
scheduling and retrieval.

C.7 SCALABILITY TO OTHER RETRIEVAL METHODS

To further validate the generalizability of our method, we implemented and evaluated it on an
alternative retrieval backend, NSW (Malkov et al., 2014), which is another widely-used approximate
search method. The experiments are conducted on the Musique dataset in offline scenarios using the
Search-R1 7B model. As shown in Table 8, our method boosts the throughput of the NSW-based
system by up to 2.7× and the cache hit rate by 2.46×, while reducing latency by 3.04×. These results
confirm that our method is robust across retrieval strategies and our design is compatible with any
iterative retriever, including cluster-based (e.g., IVF (Johnson et al., 2021)) and graph-based (e.g.,
HNSW (Malkov & Yashunin, 2018)) methods.

D DISCUSSION

D.1 APPLICABILITY

Other Inference Engines Our implementation of SearchAgent-X is a direct modification of vLLM.
We therefore compare against vLLM-based baselines so that all systems share the same serving
stack (PagedAttention, batching logic, etc.), avoiding interference with the performance observations
from unrelated optimizations. However, The proposed optimization techniques are not specific to
vLLM. SearchAgent-X only assumes: 1) token-level generation scheduling, and 2) an FCFS (or

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

FCFS-like) base policy that can be overridden. SGLang also adopts token-level generation scheduling
and an FCFS-style policy, so SearchAgent-X can be integrated into SGLang with minimal changes
for system improvement.

Beyond Graph-Based ANN For non-graph indices such as IVF or PQ-based methods, we treat
probing additional clusters or codebook entries as units of search effort and apply the same maturity-
based stopping rule; in large-scale industrial deployments it is common to tune these parameters to
trade recall against latency (Wang et al., 2021; Ren et al., 2025), making SearchAgent-X readily
applicable in such environments.

Search APIs While non-stall retrieval assumes controllable local searches, it is still possible to
initiate concurrent requests to search APIs with multiple different search parameters, and do non-stall
retrieval with an asynchronous manner as our compatible extension.

D.2 FUTURE EXTENSIONS

Multi-Agents Our priority-aware scheduling and non-stall retrieval mechanisms offer a natural
starting point for coordinating across agents, for example by: 1) introducing agent-level priorities or
budgets, and 2) propagating these priorities to the shared SearchAgent-X scheduler.

Other Tools The core ideas of SearchAgent-X, including balancing retrieval accuracy and system
efficiency, priority-aware scheduling, and allocating “just enough” tool-use effort, can be applied
broadly to any scenario with multi-round, dynamically autonomous tool invocations.

E THE USE OF LARGE LANGUAGE MODELS

We use the large language model for proofreading and language refinement for this paper. The LLM’s
contribution is confined to improving grammar and prose; all research concepts and results are the
original work of the authors.

22


	Introduction
	Background and Motivation
	Preliminary: LLM-based Search Agent Systems
	Key Insights: Factors Governing Efficiency
	Impact of Retrieval Accuracy
	Impact of Retrieval Latency


	Design of SearchAgent-X
	Overall Architecture
	Priority Scheduling
	Non-Stall Retrieval

	Evaluation
	Experimental Setup
	End-To-End Performance
	Ablation Study

	Related Work
	Conclusion
	An Illustration of LLM-Based Search Agents
	Implementation Details
	SearchAgent-X Execution
	Retrieval Maturity Estimation
	Detailed Experimental Setup

	More Results
	Detailed Overall Efficiency
	Detailed Generation Quality
	Analysis of Maturity Exit Mechanism
	Comparison of Different Priority Levels G
	Comparison of Differnet Concurrency Settings
	Comparison with a Naive Early-Stopping Baseline
	Scalability To Other Retrieval Methods

	Discussion
	Applicability
	Future Extensions

	The Use of Large Language Models

