
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIAL PRIVACY OF CROSS-ATTENTION WITH
PROVABLE GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-attention has become a fundamental module nowadays in many important
artificial intelligence applications, e.g., retrieval-augmented generation (RAG),
system prompt, guided stable diffusion, and many more. Ensuring cross-attention
privacy is crucial and urgently needed because its key and value matrices may
contain sensitive information about model providers and their users. In this work,
we design a novel differential privacy (DP) data structure to address the pri-
vacy security of cross-attention with a theoretical guarantee. In detail, let n be
the input token length of system prompt/RAG data, d be the feature dimension,
0 < α ≤ 1 be the relative error parameter, R be the maximum value of the query
and key matrices, Rw be the maximum value of the value matrix, and r, s, ϵs
be parameters of polynomial kernel methods. Then, our data structure requires
Õ(ndr2) memory consumption with Õ(nr2) initialization time complexity and
Õ(α−1r2) query time complexity for a single token query. In addition, our data
structure can guarantee that the process of answering user query satisfies (ϵ, δ)-DP
with Õ(n−1ϵ−1α−1/2R2sRwr

2) additive error and n−1(α+ ϵs) relative error
between our output and the true answer. Furthermore, our result is robust to
adaptive queries in which users can intentionally attack the cross-attention sys-
tem. To our knowledge, this is the first work to provide DP for cross-attention and
is promising to inspire more privacy algorithm design in large generative models
(LGMs).

1 INTRODUCTION

The development of Artificial Intelligence (AI) has four stages: (1) prediction AI, e.g., ResNet
(He et al., 2016) in image classification; (2) generation AI, e.g., ChatGPT (Achiam et al., 2023) in
language generation; (3) autonomous agent AI, Voyager (Wang et al., 2023a) autonomously plays
Minecraft game (Fan et al., 2022); (4) Artificial Generalization Intelligence (AGI). Humans have
made rapid progress in generative AI, and we are excitingly heading to the third stage, the era of AI
agent (Liu et al., 2023). One prevalent application of AI agents is customized large generative mod-
els (LGMs) agents (OpenAI, 2024a), e.g., AgentGPT (GitHub, 2024a), SuperAGI (GitHub, 2024d),
MetaGPT (Hong et al., 2024b;a), GPT Researcher (GitHub, 2024c) and many so on. In particular,
recently, Apple Inc. introduced Apple Intelligence (Apple, 2024), signaling the integration of LGMs
into physical devices. This innovation allows devices to use personal information for real-life as-
sistance, such as entering passport numbers when booking flights or informing users of their latest
meetings. With increased AI capabilities, privacy concerns become significant, as the more personal
information devices handle, the greater the potential privacy risks.

One fundamental technique used in LGMs is cross-attention (Vaswani et al., 2017), which is an
essential module in retrieval-augmented generation (RAG) (Lewis et al., 2020), system prompt,
guided stable diffusion, and many so on. In RAG, to be more professional, the LGMs answer
user input queries by using a domain-specific database under cross-attention, which may contain
specific privacy data and knowledge so that the LGMs gain additional power. For system prompts,
based on cross-attention, some customized long prompts, e.g., user information or concrete rules,
are concatenated before user input to follow human instructions better, which are commonly used in
ChatGPT (GitHub, 2024b), Claude3 (Anthropic, 2024) and other commercial LGMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Consequently, protecting the privacy of domain-specific data in RAG or system prompts is crucial
as they contain sensitive information about users and companies. These data and prompts are the
core assets of many start-ups. However, these data and prompts can be easily recovered (Li et al.,
2023b), jailbroken (Jin et al., 2024), and released (Li et al., 2023a) by user adversarial attack (Yu
et al., 2024), e.g., there are 1700 tokens in ChatGPT system prompts (Patel, 2024). These findings
highlight the critical importance of robust privacy protections in LGMs, making privacy not just
essential but an urgent issue that demands immediate attention.

To fundamentally preserve cross-attention privacy, we borrow the powerful tools from differential
privacy (DP) (Dwork et al., 2006), which provides measurable privacy and combines with statistical
machine learning seamlessly (Ponomareva et al., 2023). Thus, in this work, we would like to ask
and answer the following question,

How can we use differential privacy to protect the security of cross-attention in LGMs?

Our work demonstrates that the Softmax cross-attention computation is equivalent to computing the
weighted distance problem.
Definition 1.1 (Softmax cross-attention). Let n and m be the token length of the data and input
query, respectively. Let d be the feature dimension. Given fixed key matrix K ∈ [0, R]n×d and
fixed value matrix V ∈ [−Rw, Rw]

n×d, for any input query matrix Q ∈ [0, R]m×d, the goal of the
Softmax Cross-Attention Computation is to get the matrix Attn(Q,K, V) ∈ Rm×d, which is

Attn(Q,K, V) := D−1AV,

where A ∈ Rm×n satisfies Ai,j := exp(⟨Qi,Kj⟩/d) for any i ∈ [m], j ∈ [n] (Qi and Kj denote the
i-th and j-th rows of Q and K, respectively) and D := diag(A1n) ∈ Rm×m is a diagonal matrix.

Note that Softmax(QK⊤/d) = D−1A ∈ Rm×n in Definition 1.1, which is the standard function
used in transformers, and usually, we call it as attention matrix. Our main theorem, presented below,
provides a robust solution of cross-attention, ensuring privacy and accuracy guarantees.
Theorem 1.2 (Main result; Informal version of Theorem 3.1). Let Q,K, V,Attn be defined in
Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability of failure
parameter. Let r, s, ϵs be the parameters of the polynomial kernel methods (Lemma C.7). Then,
our Algorithm 1 requires Õ(ndr2) memory with Õ(ndr2) initialization time and Õ(α−1dr2) query
time, such that with probability 1− pf , the output process of cross-attention satisfies (ϵ, δ)-DP and
is robust to adaptive query with error Õ(n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α + ϵs) · (AV)i,k +

ϵ−1α−1/2R2sRwr
2)).

Our main technique in Theorem 1.2 ensures that cross-attention is differentially private by using the
polynomial kernel approximation method and transforming it into a weighted distance problem. We
then solve the problem by summing over weighted distances (depending on the value embedding)
between the query embedding and the key embedding. We build a data structure for weighted
Softmax queries in Section 4.3, and we extend this data structure to handle adaptive queries using
the ϵ0-net/metric entropy argument in Section 4.4. Furthermore, our error decreases as the input
token length grows, diminishing the error to zero.

Our contributions are as follows:

• We demonstrate that cross-attention computations are equivalent to the weighted distance
problem (Section 3).

• We design a novel algorithm (Algorithm 3) that privately answers weighted Softmax
queries with high probability and a concrete accuracy bound.

• Our algorithm (Algorithm 1) handles multiple cross-attention queries and is robust against
adaptive query attacks (Theorem 3.1), meaning that potential attackers cannot intentionally
extract information of system prompts/RAG data.

To our knowledge, this is the first work to utilize DP to protect prompts in LGMs with theoretically
provable guarantees. While some have explored protecting user/system prompts with DP (Edemacu
& Wu, 2024; Mai et al., 2023), they are primarily empirical and lack theoretical guarantees. Addi-
tionally, many others are working on protecting private datasets by applying DP to the fine-tuning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

stage of LGMs (Behnia et al., 2022; Singh et al., 2024; Liu et al., 2024b; Yu et al., 2021; Li et al.,
2021; Shi et al., 2022a), which diverges from our work. The strength of DP lies in its strong, unam-
biguous, and concrete definition of privacy, enabling algorithm designs with provable privacy and
accuracy analysis. Therefore, we believe that the theoretical aspects of DP applications in LGMs
remain a highly impactful direction, and we aim to pave the way for further exploration in this area.

1.1 RELATED WORK

Differential Privacy in Data Structure and Attention. Differential privacy (DP) is a flourishing
and powerful technique that has enormous applications in the topic of private machine learning.
In the era of Large Generative Models (LGMs), there are three primary approaches to ensuring
privacy: (1) during the pre-training stage: to protect training data (Abadi et al., 2016; Ponomareva
et al., 2023), (2) during the adaptation stage: to protect target data (Behnia et al., 2022; Singh et al.,
2024; Liu et al., 2024b; Yu et al., 2021; Li et al., 2021; Shi et al., 2022a; Huang et al., 2024),
(3) during the inference stage: to protect user/system prompts (Edemacu & Wu, 2024) and RAG
data (Lewis et al., 2020). To protect training data, DP-SGD (Abadi et al., 2016) uses DP optimizer
to ensure data privacy, severing as the traditional baseline method. Recently, numerous works have
aimed to improve this method by integrating DP in both the pre-training and fine-tuning stages
of LGMs (Yu et al., 2021; Li et al., 2021; Golatkar et al., 2022; Behnia et al., 2022; Shi et al.,
2022a; Mattern et al., 2022; Singh et al., 2024; Zheng et al., 2024; Liu et al., 2024b). However, DP-
SGD confines differential privacy to the optimizer. In contrast, we propose a novel approach that
integrates DP directly into the attention mechanism, supported by strong theoretical analysis and
guarantees. Given the resource-intensive nature of training LGMs, our technique offers a practical
alternative for models trained with standard SGD, which lack inherent privacy guarantees. In such
cases, applying DP-SGD would require retraining the models, which is computationally expensive,
whereas our method avoids this additional cost.

To protect user/system prompts, Edemacu & Wu (2024) provides a survey on both DP and non-
DP methods. In the use of LGMs, prompting methods almost become a standard way for infer-
ence (Schulhoff et al., 2024). Given the billions of prompt interactions daily, ensuring privacy is
essential (Mai et al., 2023). We refer readers to Appendix A for more related works.

Roadmap. In Section 2, we present the preliminary of differential privacy (DP) and cross-attention.
In Section 3, we present the main result of our cross-attention theorem (Theorem 3.1). In Sec-
tion 4, we outline the main results of our algorithms. In Section 5, we discuss DP-related topics and
potential extensions. In Section 6, we conclude our paper.

2 PRELIMINARY

In this section, we give the preliminary of differential privacy (DP) and cross-attention. In Sec-
tion 2.1, we describe the notations. In Section 2.2, we give definitions related to DP.

2.1 NOTATIONS

We use Pr[] to denote the probability. We use E[] to denote the expectation. We use Var[] to denote
the variance. For two vectors x ∈ Rd and y ∈ Rd, we use ⟨x, y⟩ to denote the inner product between
x, y, i.e., ⟨x, y⟩ = ∑d

i=1 xiyi. We use X ⊂ Rd and |X| = n to mean the same thing as X ∈ Rn×d.
Also, we denote x⊤

i as the i-th row of X . We use xi,j to denote the j-th coordinate of xi ∈ Rn. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e., ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
We denote polynomial time complexity with respect to n as poly(n). For a function f , we use Õ(f)
to represent f multiplied by a polylogarithmic factor, i.e., f · poly(log f). This notation, known
as soft-O or tilde notation, simplifies expressions by omitting logarithmic factors, focusing on the
dominant term’s growth rate.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DIFFERENTIAL PRIVACY DEFINITIONS

In this section, we give several definitions related to differential privacy (DP). We refer the reader to
Dwork & Roth (2014) for more background and details on DP.

Definition 2.1 (Neighboring dataset). Two datasets X,X ′ ∈ [0, R]n×d are neighboring if they differ
in exactly one row, i.e., there exists i ∈ [n] such that Xi,∗ ̸= X ′

i,∗ and Xj,∗ = X ′
j,∗ for all j ̸= i.

Definition 2.2 (Sensitivity). The sensitivity of a function f : Rn×d → Rn×d′
is: ∆ :=

maxX,X′∈Rn×d ∥f(X)−f(X ′)∥1, where X,X ′ are neighboring datasets and ∥·∥1 is the entry-wise
ℓ1-norm.

Definition 2.3 ((ϵ, δ)-DP). For ϵ > 0, δ ≥ 0, a randomized algorithm A is (ϵ, δ)-DP, if for all
S ⊆ Range(A) and for all neighboring datasets X,X ′ such that ∥X −X ′∥1 ≤ 1:

Pr[A(X) ∈ S] ≤ exp(ϵ) Pr[A(X ′) ∈ S] + δ.

When δ = 0, the algorithm is said to have pure differential privacy.

We mainly use the truncated Laplace mechanism, which has the following definitions.

Definition 2.4 (Truncated Laplace distribution). We use TLap(∆, ϵ, δ) to denote the Truncated
Laplace distribution with pdf proportional to exp(−ϵ|z|/∆) on the region [−B,B], where B =
∆
ϵ · log(1 +

exp(ϵ)−1
2δ).

Fact 2.5 (Theorem 3 in Geng et al. (2020)). Let z denote a TLap(∆, ϵ, δ) random variable. Then
we have E[z] = 0, and

Var[z] =
2∆2

ϵ2
(1− δ · log

2(1 + eϵ−1
2δ) + 2 log(1 + eϵ−1

2δ)

eϵ − 1
).

Furthermore, if δ = 0, we have Var[z] = 2∆2/ϵ2, meaning truncated Laplacian mechanism will be
reduced to the standard Laplacian mechanism.

Lemma 2.6 (Laplace mechanism, (Dwork & Roth, 2014; Geng et al., 2020), see Lemma 2.2 in
Andoni et al. (2023)). Given a numeric function f that takes a dataset X as the input, and has
sensitivity ∆, the mechanism that outputs f(X) + z where z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition,
if ϵ, δ ∈ (0, 0.5), f(X)+ z, where z ∼ TLap(∆, ϵ, δ) is (ϵ, δ)-DP. Moreover, the truncated Laplace
mechanism is always accuracy up to error B.

Algorithm 1 DP cross-attention algorithm

1: datastrucutre DPCROSSATTENTION ▷ Theorem 3.1
2: members
3: D0,D1, . . . ,Dd : DPTREESOFTMAXADAPTIVE ▷ Algorithm 8
4: end members
5: procedure INIT(K ∈ [0, R]n×d, V ∈ [−Rw, Rw]

n×d, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)) ▷ n = |K|

6: for k = 1→ d do
7: Dk.INIT(K,n, V:,k, ϵ/2, δ/2, δ

′/2, c, ϵs, pf) ▷ Compute AV
8: end for
9: D0.INIT(K,n,1n, ϵ/2, δ/2, δ

′/2, c, ϵs, pf) ▷ Compute D
10: end procedure
11: procedure QUERY(Qi ∈ [0, R]d, α ∈ (0, 1))
12: O ← 0d

13: D ←D0.DISTANCEQUERY(Qi, α)
14: for k = 1→ d do
15: Ok ← D−1 · Dk.DISTANCEQUERY(Qi, α)
16: end for
17: return O
18: end procedure
19: end datastrucutre

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 MAIN RESULTS: CROSS-ATTENTION

In this section, we show our main result for cross-attention. Theorem 3.1 states that we can ensure
the entire cross-attention module satisfies DP and is robust to adaptive queries. Our high-level idea
is based on the similarity between weighted distance problem and cross-attention. For a typical
weighted distance problem, we define the following: Let w ∈ Rn be the weights, X ∈ Rn×d be the
data matrix, where x⊤

i is the i-th row of X for i ∈ [n], and let y ∈ Rd be the query. Suppose we
need to answer ℓ1-distance query. We have∑

i∈[n]

wi︸︷︷︸
weight

∥ y︸︷︷︸
query

− xi︸︷︷︸
data

∥1.

Now we introduce cross-attention. Let Q,K, V,Attn be defined in Definition 1.1. In a standard
cross-attention process, K and V are accessible before inference, while the user input Q becomes
available only when the user provides it. Here, K and V represent values stored in memory or disks
and are considered private assets protected within the model, whereas Q is treated as public.

For the cross-attention mechanism Attn (Definition 1.1), we aim to ensure that the matrix AV
satisfies DP guarantee. Let Ai,j = exp(⟨Qi,Kj⟩/d) for i ∈ [m], j ∈ [n]. Let Vj,k ∈ R be the
(j, k)-th entry of V , for j ∈ [n], k ∈ [d]. Let D = diag(A1n), acting as a normalizing factor that
aggregates all the information. We store both K and its corresponding noises. For computing AV ,
we use the perturbed K, whereas for computing D, we rely on the original, unperturbed K. By
post-processing property (Fact B.7), to ensure that the forward output Attn(Q,K, V) = D−1AV
(Definition 1.1) satisfies DP, we only need to ensure the DP of its component AV .

The (i, k)-th entry of AV for each i ∈ [m], k ∈ [d] is computed by

(AV)i,k =

n∑
j=1

Vj,k︸︷︷︸
weight

exp(⟨ Qi︸︷︷︸
query

, Kj︸︷︷︸
data

⟩/d), (1)

which can be viewed as a weighted Softmax problem, where V provides the weights, Q is the query,
and K is the dataset. Thus, we choose to add noise to K and V based on the similarity between the
weighted distance problem and cross-attention. Furthermore, we find that we can only handle one
column of V , i.e., V∗,k ∈ Rn, in a single data structure. Therefore, we need to initialize a total of d
different data structures, each with weights V∗,k for k ∈ [d]. For computing D, we treat V = 1n,
which can be interpreted as an unweighted Softmax problem.

Here, we present our main result below.
Theorem 3.1 (Softmax cross-attention, informal version of Theorem I.12). Let Q,K, V,Attn be
defined in Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma C.7). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition I.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of
Q, denoted Qi ∈ [0, R]d, to QUERY(Qi, α ∈ (0, 1)) (Algorithm 1) for each i ∈ [m]. It
takes O(α−1ldr log2 n) time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has error

Õ(n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α+ ϵs) · (AV)i,k + ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′)))

where Õ hide logarithm dependecy on n,
– it holds with probability 1− pf (where pf is used in l),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

– it is robust to adaptive query.

In Theorem 3.1, we use our DPTREECROSSATTENTION (Algorithm 1) and guarantee that,
for each query token of cross-attention, the output process satisfies (ϵ, δ + δ′)-DP with er-
ror Õ(n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α + ϵs) · (AV)i,k + ϵ−1α−1/2lΓ2

R,sRwr
√

log(l/δ′)))

n−1(α+ ϵs) relative error and O(n−1ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n) additive error,

and O(α−1ldr log2 n) running time under adaptive query. More specifically, the algorithm creates
d + 1 DPTREESOFTMAXADAPTIVE (Algorithm 8) data structures, each requiring O(lnr) mem-
ory consumption and O(lnr) initialization time. Notably, our error is inversely proportional to n,
meaning that as the input token length increases, the error approaches zero. This is achieved by the
normalizing matrix D (Definition 1.1). We refer the reader to Section I for proof details.

Thus, our algorithm theoretically protects system prompts/RAG data in cross-attention as discussed
in Section 1. In Section 4, we provide a detailed technical overview, and in Section 5, we will present
self-attention and DP-related discussion.

Algorithm 2 DPTree initialization and query

1: datastructure DPTREE ▷ Theorem C.1
2: members
3: b : R2n−1

4: c : R2n−1

5: end members
6: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ R, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma D.3, Lemma C.3
7: b[n, 2n− 1]← a
8: for i = n→ 2n− 1 do
9: c[i]← b[i] + TLap(∆, ϵ/ log n, δ/ log n)

10: end for
11: for i = (log n)→ 1 do
12: for j = 1→ 2i−1 do
13: k ← 2i−1 + j − 1
14: b[k]← b[2k] + b[2k + 1]
15: c[k]← b[k] + TLap(∆, ϵ/ log n, δ/ log n)
16: end for
17: end for
18: end procedure
19: procedure QUERY(x ∈ [n], y ∈ [n]) ▷ Lemma D.4, D.5, D.6
20: Trace from bottom nodes of x and y to find their lowest common ancestor, then we report

the summation (based on c) by using at most 2 log n nodes on the path. Let Value be the above
summation.

21: return Value
22: end procedure
23: procedure TRUEQUERY(x ∈ [n], y ∈ [n])
24: Trace from bottom nodes of x and y to find their lowest common ancestor, then we report

the summation (based on b) by using at most 2 log n nodes on the path, where the height of the
tree is log n, and we need left and right boundary points. Let Value be the above summation.

25: return Value
26: end procedure
27: end datastructure

4 KEY DATA STRUCTURE: DPTREE

This section provides our key data structures: DPTREE (Algorithm 2), DPTREEDISTANCE (Al-
gorithm 5 and 6), DPTREEHIGHDIM (Algorithm 7), DPTREESOFTMAX (Algorithm 3), and DP-
TREESOFTMAXADAPTIVE (Algorithm 8).

In Section 4.1, we provide our high-level proof insights. In Section 4.2, we give our basic build-
ing block algorithms DPTREE, DPTREEDISTANCE and DPTREEHIGHDIM. In Section 4.3, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

present our DPTREESOFTMAX algorithm that solves the weighted Softmax problem. In Section 4.4,
we present our DPTREESOFTMAXADAPTIVE algorithm that enables DPTREESOFTMAX to handle
adaptive query problem.

4.1 TECHNIQUE OVERVIEW

Notice that Eq. (1) is not a typical distance measure like ℓ1 or ℓ2, but by using polynomial kernel
method techniques, we transform it into a distance measure. Alman & Song (2023) states that the
exponential inner product can be approximated by polynomial kernel function P (·) : Rd → Rr,
i.e., P (x)⊤P (y) ≈ exp(x⊤y/d) for two vector x, y ∈ Rd, with a relative error. Then, by the Law
of Cosines, we transform the inner product of polynomial kernel functions into a distance measure,
i.e.,

2P (x)⊤P (y) = − ∥P (x)− P (y)∥22 + ∥P (x)∥22 + ∥P (y)∥22. (2)

After transforming Eq. (1) into a distance measure, we design the DPTREE series data structures to
provide cross-attention DP guarantee.

In summary, we first design the data structure DPTREE (Algorithm 2) that builds a binary segment
tree with truncated Laplace noise added in the leaf nodes to ensure DP guarantee. Then, based on
this data structure, we design DPTREEDISTANCE (Algorithm 5 and 6) to answer one dimensional
weighted distance queries

∑n
i=1 wi · |y − xi|, which utilizes DPTREE to store and return noised

weights wi multiplied with the approximated distances between the query y and data xi. We further
decompose high dimensional ℓpp-distance problem into one dimensional ℓ1-distance problems using

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p. (3)

Based on this decomposition, we design DPTREEHIGHDIM (Algorithm 7) which is capable of
answering high dimension queries. Then, using Eq. (2) and DPTREEHIGHDIM, we design DP-
TREESOFTMAX (Algorithm 3) to answer Softmax queries. By building multiple copies of this data
structure, we boost the success probability such that it can answer any query (including adaptive
query) with an additive error, establishing the final data structure DPTREECROSSATTENTION (Al-
gorithm 1). See Section C for a more detailed outline of algorithms and proof techniques.

4.2 DPTREE, DPTREEDISTANCE, AND DPTREEHIGHDIM

The unweighted distance query has been explored in prior works (Huang & Roth, 2014; Backurs
et al., 2024; Liu et al., 2024a). Specifically, Huang & Roth (2014) leverages online learning tech-
niques to approximate the sum of distances, while Backurs et al. (2024) introduces a DP data struc-
ture based on a node-contaminated balanced binary tree. Furthermore, Liu et al. (2024a) presents a
new data representation in tree nodes, where each node stores the sum of distances from one point
to multiple points. In contrast, we focus on the weighted distance query, generalizing their results.

We design a basic data structure DPTREE (Algorithm 2) that answers summation queries by a sum-
mation segment tree with truncated Laplace noise (Definition 2.4). The algorithm first builds a
binary summation tree in an array and then adds truncated Laplace noises to each node. In query
time, we first trace from bottom nodes to find their lowest common ancestor, then report the summa-
tion by using at most 2 log n nodes on the path (Algorithm 2). Based on the parallel composition rule
of DP (Fact B.9), we find that if we have multiple disjoint interval queries, the error of the weighted
sum of the intervals can be bounded independently of the number of queries (Lemma D.8). See
more details in Section D.

We then design DPTREEDISTANCE, a one-dimensional weighted ℓ1 distance data structure detailed
in Algorithm 5 and 6. Initialization involves rounding each data point to the nearest multiple of a
small interval and aggregating their weights into an array (illustrated in Figure 1), which is then
input into our DPTREE. At query time, we retrieve aggregated weights within small intervals and
multiply them by their distances to the query point. We introduce a relative error parameter α
to reduce the number of iterations to O(log(n)/α), improving efficiency. Guided by Eq.(3), we
design DPTREEHIGHDIM (Algorithm 7), which extends DPTREEDISTANCE to higher dimension
by constructing independent data structures for each coordinate. See details in Section F and G.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 3 Softmax query

1: datastrucutre DPTREESOFTMAX ▷ Theorem 4.2
2: members
3: D0,D1, . . . ,Dr : DPTREEDISTANCE ▷ Algorithm 5, Theorem I.7
4: P : [0,ΓR,s]

n×r ▷ Definition I.3 for ΓR,s, Eq. (9) for s, Eq. (10) for r
5: w : [−Rw, Rw]

n

6: Pwx, sw, ϵs : R
7: end members
8: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1)) ▷ Lemma C.7

9: ϵs, w, P, Pwx, sw ← ϵs, w, 0
n×r, 0, 0

10: for j = 1→ n do
11: Compute P (xj) ▷ Polynomial kernel function P (·), Lemma I.5
12: Compute wj∥P (xj)∥22
13: Pwx ← Pwx + wj∥P (xj)∥22
14: sw ← sw + wj

15: Pj,: ← P (xj)
16: end for
17: for i = 1→ r do
18: Di.INIT(P:,i, n, w, cϵ/

√
r log(1/δ′), δ/r) ▷ Algorithm 5

19: Di.INIT(P:,i, n, w, cϵ

3
√

r log(2/δ′)
, δ
3r) ▷ Algorithm 5

20: Pwx ← Pwx +Di.DISTANCEQUERY(0, α)
21: end for
22: D0.INIT(1n, n, w, ϵ/3, δ/3)
23: sw ← sw +D0.DISTANCEQUERY(0, α)
24: end procedure
25: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)) ▷ Lemma C.7
26: Value← 0
27: Compute P (y)
28: Compute ∥P (y)∥22
29: for i = 1→ r do
30: Value← Value + Di.DISTANCEQUERY(P (y)i, α) ▷ Algorithm 6
31: end for
32: Value← 0.5 · (Pwx + sw∥P (y)∥22 − Value)
33: return Value
34: end procedure
35: end datastrucutre

4.3 SOFTMAX ACTIVATION

In this section, we present DPTREESOFTMAX (Algorithm 3) that answers the weighted Softmax
query (Definition 4.1) and is further used to design DP cross-attention. First, we introduce the
definition of weighted Softmax query, an abstraction for the problem described in Eq. (1).

Definition 4.1 (Weighted Softmax query (without normalization)). For the dataset X ∈ [0, R]n×d

where x⊤
i is the i-th row of X and query y ∈ [0, R]d, we define the weighted exponential inner

product/Softmax query to be:∑
i∈[n]

wi exp(⟨xi, y⟩/d) = w⊤ exp(Xy/d).

Building on Definition 4.1, we develop a novel algorithm to answer differentially private weighted
Softmax queries using the polynomial kernel method from Alman & Song (2023). Specifically,
in Eq.(2), there is a term that computes the weighted ℓ22 distance, which we calculate using DP-
TREEHIGHDIM. We then compute the exact term for the weighted ℓ22 norms of the approximation
kernel. By summing these terms with a controlled error, we extend DPTREEHIGHDIM to answer
the Softmax query efficiently. More details can be found in Section I.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 4.2 (Softmax query, informal version of Theorem I.8). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition I.3). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Our data structure DPTREESOFTMAX (Algorithm 3) uses O(nr)
spaces to solve Softmax query problem for dataset X ⊂ [0, R]d and support following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 3) It takes O(α−1r log2 n) time to output
a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),
– the error bound satisfies |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

– it holds with probability at least 0.99.

Remark 4.3. In Theorem 4.2, the parameter ϵs is the accuracy parameter for polynomial kernel
approximation described in Section C.5. Besides, note that the error bound in Theorem 4.2 does
not depend on δ but depends on δ′. The role of δ is to control a hidden constant term in the big O
notation, i.e., increasing δ reduces the error by a small constant (Fact 2.5). In practice, we set δ as
a small positive constant close to 0. Please refer to the Lemma D.6 for more details.

4.4 ADAPTIVE QUERY DATA STRUCTURE

We adapt our DPTREESOFTMAX to DPTREESOFTMAXADAPTIVE (Algorithm 8) to solve the
adaptive query problem. By proving it can handle any query within the query space with a cer-
tain error, we ensure it effectively processes adaptive queries. We first boost the constant probability
to high probability using the Chernoff bound (Lemma B.2). Employing an ϵ0-net argument and the
union bound, we bound all query points within the net. Finally, we use the Lipschitz property of the
weighted Softmax distance function with an additive error to bound all points in the query space.
The corresponding proofs can be found in Section H and Section I.

Theorem 4.4 (Adaptive query Softmax data structure, informal version of Theorem I.11). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s := maxj∈[s]

Rj
√
j!

(Definition I.3). Let the accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, α ∈ (0, 1) be the relative error parameter
and pf be the failure probability parameter. Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREESOFTMAXADAPTIVE (Algorithm 8) that uses O(lnr) spaces to solve the weighted Softmax
query problem for the dataset X ⊂ [0, R]d and supports the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). It takes O(lnr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). It takes O(α−1lr log2 n) time to output a number z
such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),
– the error bound satisfies |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability at least 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 4.5. We describe the parallelization of our algorithms. In the second for loop of INIT
and the for loop of DISTANCEQUERY in Algorithm 3, the r DPTREEDISTANCE data structures
instantiated for each coordinate are independent of each other. In addition, the for loops in Algo-
rithm 8 are also parallelizable since the l = O(r log(dR/(ϵspf))) copies are independent. After
parallelization, we have the final time complexity of INIT to be O(nr) and DISTANCEQUERY to be
O(α−1 log2 n) in Algorithm 8 with O(lr) GPU process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 DISCUSSION

How do we extend to self-attention and other data structures? As self-attention is a more
fundamental module in LGMs, we would like to extend our data structure to this setting. However,
the challenge we faced was the dynamic update in tree nodes for each query for self-attention, which
our current analysis does not support. How we can solve this challenge is crucial, and we leave it as
our future direction.

Moreover, we observe that Li et al. (2015) introduces the DP matrix mechanism, which offers an
alternative to our currently used binary tree data structure. A preliminary idea for extending this
is as follows: consider A = exp(QK⊤/d) as defined in Definition 1.1, where Q of size m × d
represents the query matrix with m linear queries, and K serves as the database. Leveraging the
results from Li et al. (2015), we could design an alternative algorithm to enhance the current binary
tree data structure, DPTREE. We leave this exploration for future work.

Why not add noise to some other places? Where and how to add DP noises is an impor-
tant problem to ask during the DP algorithm design. In this paper, we consider the problem of∑n

i=1 wi exp(⟨xi, y⟩/d) where y, xi ∈ [0, R]d and w ∈ [−Rw, Rw]
n (Definition 4.1). Notice that

the only place where we add noises is in the most basic building block data structure DPTREE (Al-
gorihtm 2). From Lemma C.3 and the way we initialize DPTREE in Algorithm 5, we see that the
sensitivity ∆ of this problem is 2Rw.

A simple method for adding noise involves adding n noises to a length n array, with each item
wi exp(⟨xi, y⟩/d) for i ∈ [n]. However, this approach increases the error by a factor of n by basic
composition (Fact B.8) and also makes the model dependent on the number of queries. Besides,
it only supports a single query and requires rebuilding the tree for each new query, rendering it
impractical. In contrast, our current noise-adding technique (Lines 9 and 15 of Algorithm 2) utilizes
a summation tree such that the error only increases by a factor of poly log n. This method also
supports multiple queries, eliminating the need to rebuild the tree each time.

How to remove the relative error parameter α? The relative error parameter α in Theorem 3.1
appears because of the (1+α)-approximation introduced in Algorithm 5 (Remark F.3) to reduce the
number of required iterations from naive O(n) to O(log(n)/α). However, we notice that a recent
work (Liu et al., 2024a) does not utilize (1+α)-approximation and still achieves O(log n) iteration
number. They introduce a new tree node representation where each node stores the sum of distances
from one point to multiple points, enabling the answer to be divided into only log n values, each
combining two distance values, two count values, and y itself. Our DPTREE algorithms can be
integrated with their method, thus removing parameter α.

6 CONCLUSION

To our knowledge, we are the first work to provide differential privacy for cross-attention. This
paper presents the DPTREE data structures, which provide a differential privacy guarantee for the
cross-attention module in large generative models. This is achieved by transforming the cross-
attention mechanism into a weighted distance problem. Furthermore, our algorithm is robust to
adaptive queries, allowing users to interact with the model arbitrarily without extracting sensitive
information from the system prompts or RAG data. Our results may inspire more privacy algorithm
design in large generative models.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 43544–43562, 2023.

Anthropic. System prompts, 2024. https://docs.anthropic.com/en/docs/
system-prompts.

Apple. Apple intelligence, 2024. https://www.apple.com/apple-intelligence/.

Arturs Backurs, Zinan Lin, Sepideh Mahabadi, Sandeep Silwal, and Jakub Tarnawski. Efficiently
computing similarities to private datasets. arXiv preprint arXiv:2403.08917, 2024.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 560–566. IEEE,
2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-
scale vision transformer for image classification. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 357–366, 2021.

Justin Y Chen, Shyam Narayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Vincent Cohen-Addad, Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong.
Near-optimal private and scalable k-clustering. Advances in Neural Information Processing
Systems, 35:10462–10475, 2022a.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy.
Advances in Neural Information Processing Systems, 35:33702–33715, 2022b.

Itai Dinur, Uri Stemmer, David P Woodruff, and Samson Zhou. On differential privacy and adap-
tive data analysis with bounded space. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 35–65. Springer, 2023.

Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pp. 1–19. Springer, 2008.

11

https://docs.anthropic.com/en/docs/system-prompts
https://docs.anthropic.com/en/docs/system-prompts
https://www.apple.com/apple-intelligence/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Kennedy Edemacu and Xintao Wu. Privacy preserving prompt engineering: A survey. arXiv preprint
arXiv:2404.06001, 2024.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private re-
lease of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 560–578. SIAM, 2020.

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean estima-
tion with few users. In International Conference on Machine Learning, pp. 16383–16412. PMLR,
2022.

Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph. In 2022
IEEE International Symposium on Information Theory (ISIT), pp. 2190–2195. IEEE, 2022.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest sub-
graph. In International Conference on Artificial Intelligence and Statistics, pp. 11581–11597.
PMLR, 2022.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. In
Neurips Safe Generative AI Workshop 2024, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pp. 89–99. PMLR, 2020.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu. On differentially
private counting on trees. In 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261, pp. 66. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2023.

GitHub. Agentgpt, 2024a. https://github.com/reworkd/AgentGPT.

GitHub. Chatgpt system prompt, 2024b. https://github.com/LouisShark/chatgpt_
system_prompt.

GitHub. Gpt researcher, 2024c. https://github.com/assafelovic/
gpt-researcher.

GitHub. Superagi, 2024d. https://github.com/TransformerOptimus/SuperAGI.

12

https://github.com/reworkd/AgentGPT
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/assafelovic/gpt-researcher
https://github.com/assafelovic/gpt-researcher
https://github.com/TransformerOptimus/SuperAGI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Ste-
fano Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8376–8386, 2022.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex optimiza-
tion in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 5068–5089. SIAM, 2023.

Adityanand Guntuboyina and Bodhisattva Sen. L1 covering numbers for uniformly bounded con-
vex functions. In Conference on Learning Theory, pp. 12–1. JMLR Workshop and Conference
Proceedings, 2012.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially-private histograms through consistency. arXiv preprint arXiv:0904.0942, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=VtmBAGCN7o.

Samuel B Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robustness implies
privacy in statistical estimation. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, pp. 497–506, 2023.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Tianhao Huang, Tao Yang, Ivan Habernal, Lijie Hu, and Di Wang. Private language models via
truncated laplacian mechanism. arXiv preprint arXiv:2410.08027, 2024.

Zhiyi Huang and Aaron Roth. Exploiting metric structure for efficient private query release. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 523–
534. SIAM, 2014.

13

https://openreview.net/forum?id=VtmBAGCN7o

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th
International Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2021.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
language models. arXiv preprint arXiv:2407.01599, 2024.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv preprint
arXiv:1909.03577, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. The matrix mech-
anism: optimizing linear counting queries under differential privacy. The VLDB journal, 24:
757–781, 2015.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024a.

Haoran Li, Yulin Chen, Jinglong Luo, Yan Kang, Xiaojin Zhang, Qi Hu, Chunkit Chan, and Yangqiu
Song. Privacy in large language models: Attacks, defenses and future directions. arXiv preprint
arXiv:2310.10383, 2023a.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and Yangqiu Song. Multi-
step jailbreaking privacy attacks on chatgpt. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 4138–4153, 2023b.

Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory to practice.
Springer, 2017.

Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random projections.
arXiv preprint arXiv:2306.01751, 2023a.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024b.

Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent
weighted sampling. arXiv preprint arXiv:2306.07674, 2023b.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024e.

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024a.

Zhihao Liu, Jian Lou, Wenjie Bao, Zhan Qin, and Kui Ren. Differentially private zeroth-order
methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024b.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
language model inference with local differential privacy. arXiv preprint arXiv:2310.09130, 2023.

Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schölkopf, and Mrinmaya Sachan.
Differentially private language models for secure data sharing. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 4860–4873. Association
for Computational Linguistics, 2022.

Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning Theory,
pp. 3979–4027. PMLR, 2022.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation.
arXiv preprint arXiv:2310.06289, 2023.

OpenAI. Creating a gpt, 2024a. https://help.openai.com/en/articles/
8554397-creating-a-gpt.

OpenAI. Video generation models as world simulators, 2024b. https://openai.com/
research/video-generation-models-as-world-simulators.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, pp. 26724–
26768. PMLR, 2023.

Dylan Patel. Chatgpt system prompt is 1700 tokens?!, 2024. https://x.com/dylan522p/
status/1755086111397863777.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, 2023.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. In 2022 IEEE International Conference on Big
Data (Big Data), pp. 115–120. IEEE, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photo-
realistic text-to-image diffusion models with deep language understanding. Advances in neural
information processing systems, 35:36479–36494, 2022.

15

https://help.openai.com/en/articles/8554397-creating-a-gpt
https://help.openai.com/en/articles/8554397-creating-a-gpt
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://x.com/dylan522p/status/1755086111397863777
https://x.com/dylan522p/status/1755086111397863777

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 6327–6340, 2022a.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2022b.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1–22, 2024.

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning, pp. 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pp. 32418–32462. PMLR, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Roman Vershynin. An introduction with applications in data science. Camb. Ser. Stat. Probab. Math,
47, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024a.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023b.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024b.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023c.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

David Woodruff, Fred Zhang, and Samson Zhou. On robust streaming for learning with experts:
algorithms and lower bounds. Advances in Neural Information Processing Systems, 36:79518–
79539, 2023.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-
shot adaptation of foundation models via multitask finetuning. In The Twelfth International
Conference on Learning Representations, 2023.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024b.

Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de Weijer, et al. Dynamic prompt learning:
Addressing cross-attention leakage for text-based image editing. Advances in Neural Information
Processing Systems, 36, 2024.

Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-Yan Lam.
Local differential privacy and its applications: A comprehensive survey. Computer Standards &
Interfaces, pp. 103827, 2023.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations, 2021.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

Ying Zhao and Jinjun Chen. A survey on differential privacy for unstructured data content. ACM
Computing Surveys (CSUR), 54(10s):1–28, 2022.

Chunyan Zheng, Keke Sun, Wenhao Zhao, Haibo Zhou, Lixing Jiang, Shaoyang Song, and Chunlai
Zhou. Locally differentially private in-context learning. In LREC/COLING, 2024.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

1.1 Related Work . 3

2 Preliminary 3

2.1 Notations . 3

2.2 Differential Privacy Definitions . 4

3 Main Results: Cross-Attention 5

4 Key Data Structure: DPTree 6

4.1 Technique Overview . 7

4.2 DPTree, DPTreeDistance, and DPTreeHighDim 7

4.3 Softmax Activation . 8

4.4 Adaptive Query Data Structure . 9

5 Discussion 10

6 Conclusion 10

A More Related Work 20

B More Preliminary 21

B.1 Probability Tools . 21

B.2 Algebraic Facts . 21

B.3 DP Facts . 21

B.4 Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms 22

C Proof Outline 22

C.1 Summation Segment Tree . 22

C.2 Sensitivity for Range Summation Problem . 23

C.3 Weighted ℓpp Distance Problem . 23

C.4 One-Dimensional Weighted ℓ1 Distance Data Structure 24

C.5 Softmax Activation . 25

C.6 Adaptive Query . 25

D DPTree Algorithm 26

D.1 Single Data Structure . 26

D.2 Boost the Constant Probability to High Probability 26

D.3 Algorithm of Data Structure . 27

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.4 Disjoint Intervals . 29

E Weighted ℓpp Distance 30

E.1 One Dimensional Weighted Distance . 31

E.2 High Dimensional Weighted Distance . 32

F One-Dimensional Weighted ℓ1 Distance Query 32

F.1 Runtime Analysis . 32

F.2 Privacy and Accuracy Analysis . 33

F.3 One Dimension Single Data Structure . 35

G High-Dimensional Weighted ℓ1 Query 35

G.1 Privacy and Accuracy Analysis for High Dimensional Weighted Distance 35

G.2 High Dimension Single Data Structure . 37

H Adaptive Query 38

H.1 Boost the Constant Probability to High Probability 38

H.2 From Each Fixed Query Point to All On-net Points 38

H.3 From Net Points to All Points . 39

H.4 Effect of Different Norms on the Result . 40

I Softmax Activation 42

I.1 Exponential Inner Product . 42

I.2 Algorithm Modifications . 44

I.3 Adaptive Softmax . 45

I.4 Proof of Main Result . 47

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Roadmap. The appendix is organized as follows. In Section A, we provide more related works. In
Section B, we give the preliminary of our paper. In Section C, we offer an outline of our proof tech-
niques. In Section D, we give the analysis of the data structure DPTREE that can solve summation
problem with DP and accuracy guarantee. In Section E, we show how to solve weighted distance
problem. In Section F, we give our DPTREEDISTANCE data structure that can solve one dimen-
sional ℓ1 distance problem with DP and accuracy guarantee. In Section G, we present the analysis
of our DPTREEHIGHDIM (Algorithm 7) data structure, which can address the high-dimensional
ℓ1 distance problem while ensuring differential privacy and accuracy guarantees. In Section H, we
show how we can handle adaptive query. In Section I, we show how to extend our algorithm to
Softmax activation and give the analysis of DPTREESOFTMAX (Algorithm 3) and DPTREESOFT-
MAXADAPTIVE (Algorithm 8).

A MORE RELATED WORK

Differential Privacy Guarantee Analysis. Ever since Dwork et al. (2006) proposes the notion of
differential privacy (DP), it has become one of the most essential standards of privacy protection in
both theoretical and empirical ways (Dwork, 2008; Li et al., 2017; Zhao & Chen, 2022; Ponomareva
et al., 2023; Yang et al., 2023). DP provides a powerful, robust, and quantifiable privacy definition,
allowing algorithm design with concrete privacy and accuracy guarantee (Hay et al., 2009; Esfandiari
et al., 2022; Andoni et al., 2023; Li & Li, 2023b; Huang & Yi, 2021; Ghazi et al., 2023; Backurs
et al., 2024; Cohen-Addad et al., 2022a; Epasto et al., 2024; Chen et al., 2022; Hopkins et al., 2023;
Narayanan, 2022; 2023; Jung et al., 2019; Li & Li, 2024; Fan & Li, 2022; Fan et al., 2024; Li & Li,
2023a; Cherapanamjeri et al., 2023; Cohen-Addad et al., 2022b; Dong et al., 2024; Farhadi et al.,
2022; Gopi et al., 2021; 2023; Li et al., 2022; Gopi et al., 2022; Eliáš et al., 2020; Song et al., 2023b;
Dinur et al., 2023; Woodruff et al., 2023; Song et al., 2023a; Gao et al., 2024; Liang et al., 2024a; Li
et al., 2024b). Additionally, new mechanisms have been proposed beyond the traditional Laplace,
Gaussian, and Exponential mechanisms (Dwork & Roth, 2014). For example, truncated Laplace
mechanism (Geng et al., 2020) is proved to be the current tightest the lower and upper bounds on
the minimum noise amplitude and power cross all (ϵ, δ)-DP distributions.

Cross-Attention in System Prompt, RAG, Stable Diffusion and More. Cross-attention
(Vaswani et al., 2017), first introduced in language translation, is a widely used technique in many
advanced AI systems. For example, Stable Diffusion (Rombach et al., 2022; Liang et al., 2024d;
Wang et al., 2023b;c; 2024b) and SORA (OpenAI, 2024b) employ cross-attention as a core module
for a text-to-image conditional generation. This technique is also utilized by other multimodal mod-
els (Liang et al., 2024e), including Imagen (Saharia et al., 2022) and Diffusion Transformer (Peebles
& Xie, 2023). In the realm of text-to-image editing, Hertz et al. (2022) analyzes and controls the
cross-attention module to enable editing without requiring additional training. Furthermore, Yang
et al. (2024) tackles the issue of inaccurate cross-attention maps, enhancing fine-grained control
over edited regions while preventing unintended changes to other areas. In addition, Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020; Borgeaud et al., 2022; Gao et al., 2023), a technique
that improves model responses by retrieving information from a knowledge base or external doc-
uments, extensively uses cross-attention as its core design module. Cross-attention also has other
applications. Oymak et al. (2023) demonstrates that the prompt-tuning (Liang et al., 2024c) task can
be formulated as cross-attention, while Chen et al. (2021) uses cross-attention to fuse multi-scale
features in vision transformers, thereby reducing computation. Moreover, attention-based Trans-
former architecture makes LGMs equipping many emergent ability (Wei et al., 2022), such as spa-
tial reasoning (Wang et al., 2024a), mathematical reasoning (Li et al., 2024a), in-context learning
ability (Shi et al., 2024), compositional ability (Xu et al., 2024b), few-shot adaptation ability (Shi
et al., 2022b; Xu et al., 2023), and so on. There are some other works that used cross attention in
Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al., 2024c; Xu et al., 2024a; Wu et al.,
2024a; Hu et al., 2024a;b).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B MORE PRELIMINARY

In Section B.1, we give the probability tools we use in the paper. In Section B.2, we provide the
algebraic facts we use. In Section B.3, we give the DP facts we use in the paper. In Section B.4, we
compare between popular DP mechanisms.

B.1 PROBABILITY TOOLS

In this section, we give several probability lemmas.

Lemma B.1 (Markov’s inequality). If x is a nonnegative random variable and t > 0, we have

Pr[x ≥ t] ≤ E[x]
t

.

Lemma B.2 (Chernoff bound, (Chernoff, 1952)). Let xi be a Bernoulli random variable with prob-
ability pi of being equal to 1 and 1− pi of being equal to 0, and all xi for i ∈ [n] are independent.
Let x =

∑n
i=1 xi. Let µ = E[x] =

∑n
i=1 pi. Then, for all δ > 0 we have

Pr[x ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),
and for all 0 < δ < 1

Pr[x ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
Lemma B.3 (Chebyshev’s inequality). Let x (integrable) be a random variable with finite non-zero
variance σ2 (and thus finite expected value µ). Then for any real number k > 0,

Pr[|x− µ| ≥ kσ] ≤ 1

k2
.

B.2 ALGEBRAIC FACTS

Fact B.4 (Upper bound of exponential, Fact C.9 in Liang et al. (2024d)). For a ∈ R, b ∈ R,
a, b ≤ R, where R ≥ 0, we have

| exp(a)− exp(b)| ≤ exp(R)|a− b|.

B.3 DP FACTS

In this section, we present several facts about differential privacy (DP).

We first define vector neighboring dataset and sensitivity.

Definition B.5 (Vector neighboring dataset). We define the two neighboring datasets as X,X ′ ∈ Rn

such that ∥X −X ′∥1 ≤ 1, i.e., they differ on a single data point.

Definition B.6 (Vector sensitivity). The sensitivity of a function f : Rn → Rd is defined by: ∆ :=
maxX,X′∈Rn,∥X−X′∥1=1 ∥f(X)− f(X ′)∥1.

We state the post-processing property, which means, in an algorithm, if one step is DP, all the
following steps are DP.

Fact B.7 (Post-processing, see Fact 2.1 in Ghazi et al. (2023)). Let A1 be an (ϵ, δ)-DP algorithm
and A2 be a (randomized) post-processing algorithm. Then the algorithm A(X) = A2(A1(X)) is
still an (ϵ, δ)-DP algorithm.

If we have many DP algorithms, we need a composition rule. The most straightforward composition
is the basic/sequential composition rule.

Fact B.8 (Basic composition, see Fact 2.3 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP al-
gorithm and A2 be an (ϵ2, δ2)-DP algorithm. Then A(X) = (A1(X),A2(A1(X), X)) is an
(ϵ1 + ϵ2, δ1 + δ2)-DP algorithm.

We can do much better if we know that the inputs are disjoint.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Fact B.9 (Parallel composition, see Fact 2.4 in Ghazi et al. (2023)). Let A1 be an (ϵ1, δ1)-DP
algorithm and A2 be an (ϵ2, δ2)-DP algorithm. Assume A1 and A2 depend on disjoint subsets
of input coordinates. Then the algorithm A(X) = (A1(X),A2(A1(X), X)) is a (max{ϵ1, ϵ2},
max{δ1, δ2})-DP algorithm.

In addition, we have the advanced composition, which improves the dependence of the number of
DP algorithms to square root but compromises the term δ′.
Theorem B.10 (Advanced composition, see Theorem 3.20 in Dwork & Roth (2014)). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential
privacy under k-fold adaptive composition for:

ϵ′ = kϵ(eϵ − 1) + ϵ
√
2k log(1/δ′).

B.4 COMPARISON OF TRUNCATED LAPLACE, GAUSSIAN, AND LAPLACE MECHANISMS

We first define the Laplace mechanism as below:

Definition B.11 (Laplace distribution). We use Lap(b) to denote the pdf: p(z) = 1
2b exp(−

|z|
b).

Fact B.12. For z ∼ Lap(b), E[z] = 0, and Var[z] = 2b2. Furthermore, if b = ∆/ϵ, we have
Var[z] = 2∆2/ϵ2.

In this paper, we use the Chebyshev inequality to bound the error, and from Geng et al. (2020), we
know that the truncated Laplace mechanism has the current minimum variance across all (ϵ, δ)-DP
distributions.

The variance of Gaussian mechanism in Theorem 3.22 in Dwork & Roth (2014):

Var =
2∆2 log(1.25/δ)

ϵ2
.

The variance of Laplace mechanism in Fact B.12:

Var =
2∆2

ϵ2
.

The variance of truncated Laplace mechanism in Fact 2.5, for c ∈ (0, 1]:

Var =
2∆2c

ϵ2
.

Thus, since it has the minimum variance, we choose the truncated Laplace mechanism to design our
algorithms among these popular mechanisms.

C PROOF OUTLINE

This section provides the proof outline of our paper. In Section C.1, we analyze our DPTREE data
structure. In Section C.2, we show the sensitivity of summation problem. In Section C.3, we explain
the high-level idea behind the weighted ℓpp distance query. In Section C.4, we show how to answer
one-dimensional weighted ℓ1 distance query. In Section C.5, we show how to answer Softmax
distance query using previous algorithms. In Section C.6, we show how to handle adaptive query.
By combining the results from these sections, we prove the main results in Section 4.

C.1 SUMMATION SEGMENT TREE

First, in order to solve the weighted distance problem, we need to have a basic DP algorithm (Algo-
rithm 2) that can answer simple summation queries. After analyzing its DP and error in Section D,
we state the data structure theorem.
Theorem C.1 (DPTREE data structure, informal version of Theorem D.1). There is a data structure
(see DPTREE in Algorithm 2) that uses O(n) spaces to support the following operations:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2 n),

– it holds with probability 0.99.

During the design of the data structure, we found an interesting property based on the parallel com-
position rule of DP Fact B.9. We will now state the lemma, whose proof is provided in Section D.
Lemma C.2 (Weighted sum of disjoint interval queries, informal version of Lemma D.8). If the
following conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let aj for j ∈ [t] be a series that square converges to a, i.e.,
∑t

j=1 a
2
j ≤ a.

Then, we have Alg. 2 is (ϵ, δ)-DP and output
∑t

j=1 ajQUERY(Sj) with the error upper bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

From Lemma C.2, we can see that if we have multiple disjoint interval queries, the error of the
weighted sum of the intervals can be bounded independently of the number of queries, as long as
the sum of squared weights is finite.

C.2 SENSITIVITY FOR RANGE SUMMATION PROBLEM

Our DP summation tree data structure DPTREE (Algorithm 2) requires sensitivity parameter ∆. In
this section, we show that for the summation problem, we have the sensitivity ∆ = 2R if the input
X ∈ [−R,R]n.
Lemma C.3 (Sensitivity of summation). Let X ∈ [−R,R]n. We have the sensitivity ∆ = 2R for
DPTREE.INIT in Algorithm 2.

Proof. Let’s say two neighboring datasets X and X ′ differ in xi and x′
i for some i in the array X .

Then for a summation problem, i.e. f(X) :=
∑n

i=1 xi, we have

∆ = max
X,X′

|f(X)− f(X ′)| = max
X,X′

|xi − x′
i| = 2R.

where the first step follows from Definition B.6, the second step follows from X,X ′ differ in xi, x
′
i,

and the last step follows from each coordinate of the dataset is bounded in [−R,R].

C.3 WEIGHTED ℓpp DISTANCE PROBLEM

In this section, we introduce the intuition behind the method for handling the weighted ℓpp distance
problem. The formal lemmas and proofs can be found in Section E.

Given a dataset and a query point in d dimensions, we round each coordinate of the data points
and the query point to the nearest multiple of a small interval. We then aggregate the weights of
data points that have been rounded to the same position. Finally, we compute the sum of these
aggregated weights multiplied by the distances between the query point and the data points over the
rounded positions. This approach makes the computation more efficient while maintaining sufficient
accuracy.

We provide an example of weighted ℓ1-distance of a one-dimensional dataset consisting of 10 data
points, i.e., X ∈ [0, 1]10 and a query y = 0 in Figure 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

x

x1

1
x2

2.2
x3

3.1
x4

−2
x5

−3
x6

2
x7

6
x8

0.5
x9

−1
x10

1

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
{1}
0
10

{2.2}
1
10

{∅}
2
10

{3.1,−2,−3}
3
10

{2}
4
10

{∅}
5
10

{6}
6
10

{0.5}
7
10

{∅}
8
10

{−1, 1}
9
10

{∅}
10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
c0 = 1

0
10

c1 = 2.2

1
10

c2 = 0

2
10

c3 = −1.9

3
10

c4 = 2

4
10

c5 = 0

5
10

c6 = 6

6
10

c7 = 0.5

7
10

c8 = 0

8
10

c9 = 0

9
10

c10 = 0

10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Figure 1: The visualization of how to build cj of rounded dataset X ∈ [0, 1]10 and compute the
weighted ℓ1 distance. The number above each xi is wi. See Algorithm 5 for details. Suppose y = 0.
Then

∑n
i=1 wi|y−xi| = 0.1 ·2.2+0.3 ·3.1+0.3 ·(−2)+0.3 ·(−3)+0.4 ·2+0.6 ·6+0.7 ·0.5+0.9 ·

(−1)+0.9·1 = 4.4. And
∑n

j=0 |k−j|cj/n = 0.1·2.2+0.3·(−1.9)+0.4·2+0.6·6+0.7·0.5 = 4.4.
See details in Lemma E.1.

Lemma C.4 (Weighted ℓpp-distance high dimension, informal version of Lemma E.2). If the follow-
ing conditions hold:

• Let data X ∈ [0, R]n×d and x⊤
i ∈ [0, R]d be the i-th row of x, weight w ∈ Rn, query

y ∈ [0, R]d.

• We round each dimension of X and y to an integer multiple of R/n.

• Let xi,k, yk denote the k-th coordinates of xi, y for k ∈ [d].

• Let cj,k :=
∑

j0∈Sj,k
wj0 where the set Sj,k is the set of index i such that the corresponding

xi,k is rounded to jR/n for j ∈ {0, 1, 2, . . . , n} for k ∈ [d].

• After rounding, we assume that yk is in the lkR/n position for lk ∈ {0, 1, 2, . . . , n} for
k ∈ [d].

For the weighted problem, we have
n∑

i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k.

where O(R/n) is the rounding error for each data point.
Remark C.5. In Lemma C.4, we first round the dataset. This rounding simplifies the calculation
by reducing the number of possible positions to consider, from real values in [0, R]d to the total
O(nd) spots. However, it also introduces an error O(R/n) for one data point. Then, for one spot in
the rounded dataset, we sum over the weights of that spot and multiply the corresponding distance
raised to the power of p. Additionally, since we are dealing with ℓpp distance, the rounding error is
also raised to the power of p.

C.4 ONE-DIMENSIONAL WEIGHTED ℓ1 DISTANCE DATA STRUCTURE

Based on previous discussions in Section C.1 and C.3, we can now describe our one-dimensional
weighted ℓ1 distance data structure, DPTREEDISTANCE, presented in Algorithm 5 and 6, which
generalizes the results from Backurs et al. (2024). Drawing from the intuition in Section C.3, the
initialization process is as follows: first, we round each data point in the dataset to the nearest
multiple of a small interval and build an array that aggregates the corresponding weights. This array
is then fed into our DPTREE data structure in Algorithm 2. At query time, we query the DPTREE
to obtain the aggregated weights within a small interval and multiply these weights by the distance
to the query point. Furthermore, we also introduce a relative error parameter α to reduce the total
number of queries to O(log(n)/α) instead of querying all n positions. We also analyze the DP and
the error bound; see details in Section F.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Theorem C.6 (DPTREEDISTANCE data structure, informal version of Theorem F.6). There is a
data structure DPTREEDISTANCE (Algorithm 5 and 6) that uses O(n) spaces to solve weighted
ℓ1-distance query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6) It takes O(α−1 log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ)-DP, which computes
∑

i∈[n] wi|y − xi|,
– |z −∑

i∈[n] wi|y − xi|| ≤ α
∑

i∈[n] wi|y − xi|+O(ϵ−1α−1/2RRw log3/2 n),

– it holds with probability 0.99.

C.5 SOFTMAX ACTIVATION

We then describe how we extend the previous results to Softmax activation, i.e. exponential inner
product function (Definition 4.1). From Alman & Song (2023), we know that Softmax activation
can be approximated by polynomial kernel function P (·) with a certain error. The following lemma
shows that we can transform weighted Softmax queries into polynomial kernels. More specifi-
cally, we have one term that computes the weighted ℓ22 distance, which is the place where we
add DP noises. Because of the decomposability of the ℓpp distance, i.e.

∑
i∈[n] wi∥xi − y∥pp =∑

j∈[d]

∑
i∈[n] wi|xi,j − yj |p, we can easily extend the results of Section C.4 to handle the ℓ22 dis-

tance query. After that, we compute the term for the weighted ℓ22 norms of approximation kernel
exactly. Summing all these terms, with a certain error, we can answer the Softmax query. Related
proofs can be found in Section I.

Lemma C.7 (Weighted Softmax approximation, informal version of Lemma I.6). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Let R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}).

Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition I.3). Let P (x) : [0, R]d → [0,ΓR,s]
r be the s-th order

polynomial kernel function defined in Lemma I.5. Then, we can approximate the exponential inner
product using the polynomial kernel function:

w⊤ exp(Xy/d) = − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

+ O(w⊤ exp(Xy/d) · ϵs).
Moreover, the vectors P (·) can be computed in O(r) time.

C.6 ADAPTIVE QUERY

We introduce how we can modify our algorithm to solve the adaptive query problem using some
tools in Qin et al. (2022). Our approach is based on proving that our algorithm can handle any query
within the query space with a certain error. Since adaptive queries must lie within this space, our
algorithm can effectively handle them. In Section C.5, we demonstrate our algorithm’s capability
to answer weighted Softmax distance queries with constant probability. We then use the Chernoff
bound to boost the constant probability of our algorithm to a high probability. Next, we apply the
notion of an ϵ0-net to bound all query points within the net using the union bound. Finally, we bound
all points in the query space by utilizing the Lipschitz property of the weighted Softmax distance
function and introducing an additive error. See the proofs in Sections H and I.

Lemma C.8 (Adaptive Softmax, informal version of Lemma I.10). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and let |N | be the size of the net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• We create l = O(log((R/ϵ0)
r/pf)) independent copies of the data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 3) and take the median of the outputs with each
data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d).

• Let B = O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting median of l responses is (ϵ, δ + δ′)-DP and the
error satisfies

|f(y)− Z(q)| ≤ (α+ ϵs)Z(q) +B + 2n
√
dRRw exp(R2)ϵ0.

D DPTREE ALGORITHM

In this section, we give the analysis of privacy, accuracy and runtime of our DPTREE (Algorithm 2).
In Section D.1, we give the theorem (Theorem D.1) of our data structure that can answer summation
problem. In Section D.2, we improve our data structure from constant probability to high probability
by applying Chernoff bound. In Section D.3, we give the analysis. In Section D.4, we show some
results of our data structure if the input queries are disjoint.

D.1 SINGLE DATA STRUCTURE

We give the theorem of our DPTREE data structure that can answer the summation problem with
DP, accuracy, runtime guarantee.
Theorem D.1 (DPTREE data structure, formal version of Theorem C.1). There is a data structure
(see DPTREE in Algorithm 2) that uses O(n) spaces to support the following operations:

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2 n),

– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma D.3 (running time of initialization), Lemma D.4
(running time of query), Lemma D.5 (DP of query), and Lemma D.6 (error of query) together.

D.2 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

We can use Chernoff bound to boost the high probability by repeating the data structure multiple
times.
Theorem D.2 (High-probability). There is a data structure (see DPTREEHIGHPROB in Algo-
rithm 4) that uses O(n log(1/δfail)) spaces to support the following operations

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01)). It takes
O(n log(1/δfail)) time to initialize the data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log(n) · log(1/δfail)) time to output a number z such
that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2(n) · log(1/δfail)),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

– it holds with probability 1− δfail for failure probability δfail ∈ (0, 0.01).

Proof. Note that our data structure (Theorem D.1) succeeds with probability 0.99. The success of
the algorithm (Theorem D.1) can be viewed as a Bernoulli random variable, to which we apply the
Chernoff bound (Lemma B.2). By repeating the data structure O(log(1/δfail)) times and taking the
median of the outputs, we boost the success probability. The details are following.

To boost the success probability, we assume the query is repeated l times. Let i ∈ [l], and let zi
denote the indicator random variable for the success of the i-th instance of the data structure for a
single query. Let z =

∑l
i=1 zi be the total success times. Since p = Pr[zi = 1] = 0.99, we can

have µ = E[z] =
∑l

i=1 p = lp. Note that p = 0.99. By setting δ = 0.1 and using Chernoff bound
from Lemma B.2, we can show

Pr[z ≤ l/2] ≤ Pr[z ≤ (1− δ)lp] ≤ exp(−δ2lp/2).
Note that we want z > l/2 (since we want at least half to succeed so we could take the median),

Pr[z > l/2] ≥ 1− exp(−δ2lp/2).

To ensure that failure probability is δfail, we have

exp(−δ2lp/2) = δfail.

We can make this hold by choosing l = O(log(1/δfail)).

By the DP basic composition rule (Fact B.8), we need to choose ϵ = ϵ′/O(log(1/δfail)) and δ =
δ′/O(log(1/δfail)) where ϵ′, δ′ are the ϵ, δ in Theorem D.1.

Algorithm 4 Boost constant probability

1: datastructure DPTREEHIGHPROB ▷ Theorem D.2
2: members
3: D1, . . . ,DO(log(1/δfail)) : DPTREE ▷ Alg. 2
4: end members
5: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01))
6: for i = 1→ O(log(1/δfail)) do
7: Di.INIT(a, n,∆, ϵ/O(log(1/δfail)), δ/O(log(1/δfail)))
8: end for
9: end procedure

10: procedure QUERY(x ∈ [n], y ∈ [n])
11: r ← 0O(log(1/δfail))

12: for i = 1→ O(log(1/δfail)) do
13: ri ← Di.QUERY(x, y)
14: end for
15: return Median of r
16: end procedure
17: end datastructure

D.3 ALGORITHM OF DATA STRUCTURE

In this section, we analyze the accuracy, DP, and runtime of Algorithm 2.

We first analyze the runtime.
Lemma D.3 (Runtime of initialization, Algorithm 2). For the initialization, we have the time com-
plexity of Algorithm 2 is O(n).

Proof. All the computations are dominated by O(n) time.

Lemma D.4 (Runtime of query, Algorithm 2). For each query, we have the time complexity of
Algorithm 2 is O(log n).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. Due to the property of tree, we will use at most 2 log n nodes in the tree, thus the running
time is O(log n).

We now analyze the DP.
Lemma D.5 (Privacy of query, Algorithm 2). The output process of QUERY (see Algorithm 2) is
(ϵ, δ)-DP.

Proof. Suppose that our dataset is X ∈ [−R,R]n. Note that we only add noise in the pre-processing
stage. There is no noise in the query stage. Since the problem we care about is summation, if we
change one leaf node, the sensitivity ∆ = 2R (see Lemma C.3). Since we add noise to each node
in the tree, and each leaf node count will contribute to log n nodes, it is equivalent to our output
function being in log n dimension. We will then blow up the DP parameter by log n factor. Thus,
using the basic composition rule (Fact B.8), the DP guarantee for the whole tree data structure is
((ϵ/ log n) · log n, (δ/ log n) · log n) which is (ϵ, δ)-DP.

We now analyze the accuracy.
Lemma D.6 (Accuracy of query, Algorithm 2). Let ϵ ∈ (0, 1) and δ ∈ (0, 1). Then, using Cheby-
shev’s inequality and Fact 2.5, we have the error of QUERY(see Algorithm 2) output is upper
bounded by:

O(ϵ−1∆ log3/2 n).

with probability 0.99.

Proof. For an interval S, we define TRUEQUERY(S) to be the output of DPTREE.TRUEQUERY in
Algorithm 2. Let QUERY(S) denote the noised interval query answer returned by DPTREE.QUERY
in Algorithm 2. Let z := QUERY(S) − TRUEQUERY(S), which from Algorithm 2 we can see
this is the sum of O(log n) independent truncated Laplace random variables each with parameter
TLap(∆, ϵ/ log n, δ/ log n). Thus,

z =

O(logn)∑
i=1

zi

where zi ∼ TLap(∆, ϵ/ log n, δ/ log n), and every zi are independent to each other.

We know µ = E[z] = 0 since E[zi] = 0. From Fact 2.5, we know the variance for each zi is
Var[zi] = cϵ−2∆2 log2 n where 0 < c ≤ 2 and c = 2 when δ = 0.

Therefore, we can show

Var[z] = Var[

O(logn)∑
i=1

zi]

=

O(logn)∑
i=1

Var[zi]

= O(cϵ−2∆2 log3 n) (4)
where the first step follows from definition of z, the second step follows from every zi are indepen-
dent to each other, and the last step follows from Var[zi] = O(cϵ−2∆2 log2 n).

Note that we wish to bound |z| = |QUERY(S)− TRUEQUERY(S)| as our error.

Using Lemma B.3, we can have

Pr[|z| ≥ kσ] ≤ 1

k2
.

We know that σ =
√
Var[z] = O(c1/2ϵ−1∆ log3/2 n). Picking k = 10, we have

Pr[|z| < 10σ] ≥ 0.99.

Thus, we conclude that error is bounded by O(c1/2ϵ−1∆ log3/2 n) = O(ϵ−1∆ log3/2 n) (since
c ∈ (0, 2]) with probability 0.99.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.4 DISJOINT INTERVALS

In this section, we show some interesting results for our DPTREE data structure if the input queries
are disjoint.

Lemma D.7 (Sum of disjoint interval queries). If the following conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

Then, we have Algorithm 2 is (ϵ, δ)-DP and outputs
∑t

j=1 QUERY(Sj) with the error upper bounded
by

O(t1/2ϵ−1∆ log3/2 n)

with probability 0.99.

Proof. From Lemma D.5, we know that DPTree.QUERY is (ϵ, δ)-DP. Then, from Fact B.9 and the
disjoint intervals in Algorithm 6, we can conclude that the value returned is (ϵ, δ)-DP.

Let TRUEQUERY(Sj) denote the true interval query answer returned by DPTREE.TRUEQUERY in
Algorithm 2 for interval Sj . Let QUERY(Sj) denote the noised interval query answer returned by
DPTREE.QUERY in Algorithm 2 for interval Sj . Let zj := QUERY(Sj) − TRUEQUERY(Sj) and
z =

∑t
j=1 zj . From the proof of Lemma D.6, we know zj is the sum of O(log n) independent trun-

cated Laplace random variables each with parameter TLap(∆, ϵ/ log n, δ/ log n) and the variance
is bounded by

Var[zj] = O(ϵ−2∆2 log3 n)

Since the intervals Sj are disjoint, they are independent to each other. Then, we have

Var[z] = Var[

t∑
j=1

zj]

=

t∑
j=1

Var[zj]

= O(tϵ−2∆2 log3 n)

where the first step follows from definition of z, the second step follows from the intervals are
disjoint, and the last step follows from Var[zj] = O(ϵ−2∆2 log2 n).

Note that we wish to bound |z| as our error.

Using Lemma B.3, we can have error bounded by

O(t1/2ϵ−1∆ log3/2 n)

with probability 0.99.

Moreover, this can be generalized to weighted sum of queries.

Lemma D.8 (Weighted sum of disjoint interval queries, formal version of Lemma C.2). If the fol-
lowing conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let aj for j ∈ [t] be a series that square converges to a, i.e.,
∑t

j=1 a
2
j ≤ a.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Then, we have Alg. 2 is (ϵ, δ)-DP and output
∑t

j=1 ajQUERY(Sj) with the error upper bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

Proof. The DP proof is the same as in the proof of Lemma D.7.

Let TRUEQUERY(Sj) and QUERY(Sj) be same in the proof of Lemma D.7 Let zj := QUERY(Sj)−
TRUEQUERY(Sj) and z =

∑t
j=1 ajzj . From the proof of Lemma D.7, we know the variance of zj

is bounded by

Var[zj] = O(ϵ−2∆2 log3 n)

Since the intervals Sj are disjoint, they are independent to each other. Then, we have

Var[z] = Var[

t∑
j=1

ajzj]

=

t∑
j=1

Var[ajzj]

=

t∑
j=1

a2j Var[zj]

=

t∑
j=1

a2j ·O(ϵ−2∆2 log3 n)

= O(aϵ−2∆2 log3 n)

where the first step follows from the definition of z, the second step follows from the intervals are
disjoint, the third step follows from the Var[az] = a2 Var[z] for a random variable z and a constant
a, the fourth step follows from the Var[zj] = O(ϵ−2∆2 log2 n), and the last step follows from∑t

j=1 a
2
j ≤ a.

Note that we wish to bound |z| as our error.

Using Lemma B.3, we can have error bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

E WEIGHTED ℓpp DISTANCE

In this section, we introduce how to handle weighted ℓpp distance problem in the high level idea.
In Section E.1, we show how to solve one dimensional weighted problem. In Section E.2, we
show how to solve high dimensional weighted problem by decomposing each coordinate of the high
dimensional dataset.

Suppose we have the original data X ∈ [0, R]n and weight w ∈ Rn and query y ∈ [0, R]. We want
to compute the weighted ℓ1-distance, i.e.

n∑
i=1

wi · |y − xi|.

For data in d-dimension, due to the decomposability of ℓpp distance, our problem will be: given
xi ∈ [0, R]d and wi ∈ R for i ∈ [n], and y ∈ [0, R]d, we can compute

n∑
i=1

wi · ∥y − xi∥pp =

d∑
j=1

n∑
i=1

wi · |yj − xi,j |p

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where xi,j , yj means the j-th coordinates of xi, y for j ∈ [d].

Therefore, we can solve one dimension problem first, and then the high dimension case can be
solved automatically.

E.1 ONE DIMENSIONAL WEIGHTED DISTANCE

Now we can give the lemma for weighted distance of dataset.

Lemma E.1 (Weighted distance one dimension). If the following conditions hold:

• Let data X ∈ [0, R]n, weight w ∈ Rn, query y ∈ [0, R].

• We round X and y to an integer multiple of R/n.

• Let cj =
∑

j0∈Sj
wj0 where set Sj is the set of index i such that the corresponding xi is

rounded to jR/n for j ∈ {0, 1, 2, . . . , n}.
• After rounding, we assume y is in the kR/n position for k ∈ {0, 1, 2, . . . , n}.

For the weighted problem, we have
n∑

i=1

wi · |y − xi| =
n∑

j=0

(|k − j|R/n+O(R/n))cj .

Moreover, we have
n∑

i=1

wi · |y − xi|p =

n∑
j=0

(|k − j|R/n+O(R/n))pcj

where O(R/n) is the rounding error for each data point.

Proof. For each i, we have:

wi · |y − xi| = wi · (
|k − j|R

n
+O(

R

n
)).

where O(R/n) is the rounding error introduced by each data point, since each data point will be at
most O(R/n) away from its true position.

We can construct cj by

cj =
∑
j0∈Sj

wj0

where set Sj is the set of index i such that the corresponding xi is rounded to jR/n. Moreover, cj
can be negative.

Summing over all i and grouping by j, we get:
n∑

i=1

wi · |y − xi| =
n∑

j=0

(
|k − j|R

n
+O(

R

n
))cj .

The total rounding error will be O(R) because we have n data points, each with an error of at most
O(R/n).

Moreover, we have
n∑

i=1

wi · |y − xi|p =

n∑
j=0

(
|k − j|R

n
+O(

R

n
))pcj .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.2 HIGH DIMENSIONAL WEIGHTED DISTANCE

Finally, we can solve the problem of weighted distance for d-dimensional dataset.
Lemma E.2 (Weighted ℓpp-distance high dimension, formal version of Lemma C.4). If the following
conditions hold:

• Let data X ∈ [0, R]n×d and x⊤
i ∈ [0, R]d be the i-th row of x, weight w ∈ Rn, query

y ∈ [0, R]d.

• We round each dimension of X and y to an integer multiple of R/n.

• Let xi,k, yk denote the k-th coordinates of xi, y for k ∈ [d].

• Let cj,k :=
∑

j0∈Sj,k
wj0 where set Sj,k is the set of index i such that the corresponding

xi,k is rounded to jR/n for j ∈ {0, 1, 2, . . . , n} for k ∈ [d].

• After rounding, we assume yk is in the lkR/n position for lk ∈ {0, 1, 2, . . . , n} for k ∈ [d].

For the weighted problem, we have

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k

where O(R/n) is the rounding error for each data point.

Proof. We can show

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p

=

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k

where the first step follows from decomposability of ℓpp-distance by dimension, the second step
follows from Lemma E.1.

F ONE-DIMENSIONAL WEIGHTED ℓ1 DISTANCE QUERY

In this section, we generalize the algorithms in Backurs et al. (2024) to weighted distance. Here,
we compute the problem of one-dimensional weighted ℓ1 distance query i.e.

∑
i∈[n] wi|y − xi|

for a given query y ∈ [0, R], weights w ∈ [−Rw, Rw]
n and dataset X ⊂ [0, R] and n = |X|.

In Section F.1, we analyze the runtime of our algorithm. In Section F.2, we analyze the DP and
accuracy of our algorithm. In Section F.3, we give the theorem for our DPTREEDISTANCE data
structure.

F.1 RUNTIME ANALYSIS

We first analyze the runtime.
Lemma F.1 (Runtime of initialization, Algorithm 5). For the initialization, we have the time com-
plexity of INIT in Algorithm 5 is O(n).

Proof. In the initialization of INIT, the computations need O(n) time to compute the count and
O(log n) time to build the tree. Thus, total time is O(n).

Lemma F.2 (Runtime of DISTANCEQUERY, Algorithm 6). For the ℓ1 distance query, we have the
time complexity of DISTANCEQUERY in Algorithm 6 is O(α−1 log2 n).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Algorithm 5 Pre-processing data structure

1: datastructure DPTREEDISTANCE ▷ Theorem F.6
2: members
3: D : DPTREE ▷ Alg. 2
4: X : [0, R]n

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma E.1
8: X,w, a← X,w, 0n+1

9: for i = 1→ n do
10: j ← ROUND(xi, n) ▷ xi ∈ X for i ∈ [n]
11: aj ← aj + wi

12: end for
13: D.INIT(a, n+ 1, 2Rw, ϵ, δ) ▷ Alg. 2, Lemma C.3
14: end procedure
15: procedure ROUND(x ∈ [0, R], n ∈ N+)
16: Let j ∈ {0, 1, 2, . . . n− 1} denote the integer such that jR/n ≤ x < (j + 1)R/n
17: if |x− (j + 1)R/n| ≤ |x− jR/n| then
18: j ← j + 1
19: end if
20: return j
21: end procedure
22: end datastructure

Algorithm 6 One dimensional weighted ℓ1 distance query

1: datastructure DPTREEDISTANCE ▷ Theorem F.6
2: procedure DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)) ▷ Lemma F.2, Lemma F.4, Lemma F.5
3: y ← ROUND(y, n) · (R/n) ▷ Alg. 5
4: Value← 0
5: for j = 0, 1, ..., O(log(n)/α) do
6: lj ← ROUND(y + R

(1+α)j+1 , n)

7: rj ← ROUND(y + R
(1+α)j , n) ▷ Consider the points to the right of y

8: Value← Value + D.QUERY(lj , rj) · R
(1+α)j ▷ Alg. 2

9: end for
10: for j = 0, 1, ..., O(log(n)/α) do
11: lj ← ROUND(y − R

(1+α)j , n)

12: rj ← ROUND(y − R
(1+α)j+1 , n) ▷ Consider the points to the left of y

13: Value← Value + D.QUERY(lj , rj) · R
(1+α)j ▷ Alg. 2

14: end for
15: Return Value
16: end procedure
17: end datastructure

Proof. In DISTANCEQUERY, the computations need O(log n) time to compute one value from DP-
TREE.QUERY and this process need to be repeated O(α−1 log n) times.

Remark F.3. In Line 8 and 13 of Algorithm 6, we use R/(1 + α)j to approximate the distance of
each data point to the query in Lemma E.1, i.e. |k − j|R/n. This will introduce α relative error but
also reduce the numbers of iteration from O(n) to O(log(n)/α).

F.2 PRIVACY AND ACCURACY ANALYSIS

We show the DP.
Lemma F.4 (Privacy of DISTANCEQUERY, Algorithm 6). The output process of DISTANCEQUERY
(Algorithm 6) is (ϵ, δ)-DP.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Proof. From Lemma D.5, we know that the process of DPTree.QUERY is (ϵ, δ)-DP. We observe that
intervals in Algorithm 6 are disjoint. Then, following the same logic in the proof of Lemma D.8, we
can conclude that the output process to return the value is (ϵ, δ)-DP.

We now analyze the accuracy of the algorithm.

Lemma F.5 (Accuracy of DISTANCEQUERY, Algorithm 6). If the following conditions are satisfied:

• Let X ∈ [0, R]n be a dataset consisting of n one-dimensional numbers, with weights w ∈
[−Rw, Rw]

n.

• Let α ∈ (0, 1) represent the relative error parameter utilized in Algorithm 6.

• Let Ã denote the output of the DISTANCEQUERY in Algorithm 6.

• Let A∗ :=
∑

i∈[n] wi|y−xi| represent the true distance query value for a specific query y.

Then with probability 0.99, we have

|Ã−A∗| ≤ αA∗ +O(ϵ−1α−1/2RRw log3/2 n).

Proof. To simplify the explanation, we consider only the distance query for the points in X located
to the right of y. The proof can be symmetrically applied to the case of points to the left of y. For
an interval Sj := (lj , rj) where lj , rj are defined in Algorithm 6, we define TRUEQUERY(Sj) to be
the output of DPTREE.TRUEQUERY in Algorithm 2. Let

Â :=

O(log(n)/α)∑
j=0

R

(1 + α)j
· TRUEQUERY(Sj).

Since TRUEQUERY returns the sum of the corresponding weights, it aligns with the true answer
A∗ :=

∑
i∈[n] wi|y − xi|. Thus, we have

|Â−A∗| ≤ α ·A∗,

because for all j, the distances between y and different points in X vary only by a multiplicative
factor of (1 + α).

Next we show the additive error. Let QUERY(Sj) denote the noised interval query answer returned
by DPTREE.QUERY in Algorithm 2. Algorithm 6 outputs Ã =

∑O(log(n)/α)
j=0

R
(1+α)j · QUERY(Sj).

We wish to bound

|Â− Ã| ≤ |
O(log(n)/α)∑

j=0

R

(1 + α)j
· (TRUEQUERY(Sj)− QUERY(Sj))|.

Let zj := QUERY(Sj) − TRUEQUERY(Sj), which from Algorithm 2 we can see this is the sum of
O(log n) independent truncated Laplace random variables.

From Lemma D.8, we only need to show that the series 1
(1+α)j for j ∈ {0, 1, . . . , O(log(n)/α)}

square converges to 1/α, since R is a constant.

We can show
O(log(n)/α)∑

j=0

1

(1 + α)2j
≤

∞∑
j=0

1

(1 + α)2j

≤
∞∑
j=0

1

(1 + α)j

=
1

1− 1
1+α

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

= 1 +
1

α
= O(1/α)

where the first step follows from we extend the finite sum to infinite sum, the second step follows
from 1

(1+α)2j ≤ 1
(1+α)j , the third step follows from the closed form of geometric sum, the fourth

step follows from simple algebra, and the last step follows from α ∈ (0, 1).

Then from the proof of Lemma D.8, we can know that the variance is given by

O(
R2R2

w log3 n

αϵ2
) (5)

since the sensitivity ∆ = 2Rw from Lemma C.3.

Using Lemma B.3, we can have additive error bounded by

O(
R ·Rw log3/2 n

ϵ
√
α

).

with probability 0.99.

F.3 ONE DIMENSION SINGLE DATA STRUCTURE

We therefore have the data structure that can solve weighted ℓ1-distance problem.

Theorem F.6 (DPTREEDISTANCE data structure, formal version of Theorem C.6). There is a data
structure DPTREEDISTANCE (Algorithm 5,6) that uses O(n) spaces to solve weighted ℓ1-distance
query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6) It takes O(α−1 log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y− xi|,
– |z −∑

i∈[n] wi|y − xi|| ≤ α
∑

i∈[n] wi|y − xi|+O(ϵ−1α−1/2RRw log3/2 n),

– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma F.1 (running time of initialization), Lemma F.2
(running time of query), Lemma F.4 (DP of query), and Lemma F.5 (error of query) together.

G HIGH-DIMENSIONAL WEIGHTED ℓ1 QUERY

In this section, we show how we can solve the high dimensional weighted ℓ1 distance problem,
generalizing results from Backurs et al. (2024). In Section G.1, we give the analysis of Algorithm 7.
In Section G.2, we give the theorem of our DPTREEHIGHDIM data structure.

Algorithm 5,6 can be naturally extended to higher dimensions because of the decomposability of the
ℓ1 distance function. We construct d separate one-dimensional distance query data structures, each
corresponding to a coordinate projection of the dataset.

G.1 PRIVACY AND ACCURACY ANALYSIS FOR HIGH DIMENSIONAL WEIGHTED DISTANCE

We now give the analysis of our Algorithm 7 for high dimensional weighted ℓ1-distance query.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Algorithm 7 High-dimensional weighted ℓ1 distance query

1: datastrucutre DPTREEHIGHDIM ▷ Theorem G.3
2: members
3: D1, . . . ,Dd : DPTREEDISTANCE ▷ Alg. 5
4: X : [0, R]n×d

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1)) ▷ Lemma E.2

8: X ← X
9: w ← w

10: for i = 1→ d do
11: Di.INIT(X:,i, n, w, cϵ/

√
d log(1/δ′), δ/d) ▷ Alg. 5

12: end for
13: end procedure
14: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)) ▷ Lemma G.1, Lemma G.2
15: Value← 0
16: for i = 1→ d do
17: Value← Value + Di.DISTANCEQUERY(yi, α) ▷ Alg. 6
18: end for
19: return Value
20: end procedure
21: end datastrucutre

Lemma G.1 (Privacy of DISTANCEQUERY, Algorithm 7). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
7, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 represent the true distance query value.

• Let ϵ = O(log(1/δ′)).

Then, we have the output process of DISTANCEQUERY (Algorithm 7) is (ϵ, δ + δ′)-DP.

Proof. The (ϵ, δ + δ′)-DP guarantee follows from the approximate DP advanced composi-
tion result Theorem B.10. Our algorithm instantiate each one-dimensional data structure with
(cϵ/

√
d log(1/δ′), δ/d)-DP total d times.

From advanced composition in Theorem B.10, for a sufficient small parameter ϵ and constant c, we
have the final privacy loss parameter be:

O(cϵ
√
2d log(1/δ′)/

√
d log(1/δ′)) = O(ϵ)

and the final failure probability parameter be:

dδ/d+ δ′ = δ + δ′.

Lemma G.2 (Accuracy of DISTANCEQUERY, Algorithm 7). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
7, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 represent the true distance query value.

With probability 0.99, we have

|A−A∗| ≤ αA∗ +O(ϵ−1α−1/2RRwd
√
log(1/δ′) · log3/2 n).

Proof. Let Ai be the i-th dimension output returned by Di in Algorithm 7. Let A∗,i be the true
distance query value in the i-th dimension. Observe that A∗ =

∑d
i=1 A∗,i and A =

∑d
i=1 Ai.

We follow the similar idea in the proof of Lemma F.5. Let zj,i be the random variables that represent
zj (used in the proof of Lemma F.5) for the i-th coordinate. We can observe that the overall error
across d coordinates can be upper bounded by

|
d∑

i=1

O(log(n)/α)∑
j=0

Rzj,i
(1 + α)j

|

where each zj,i is the sum of O(log n) truncated Laplace random variables independent to others.
With ϵ scaled down by cϵ/

√
d log(1/δ′) and δ scaled down by δ/d, the variance of each individual

dimension is given by (see Eq. (5))

O(α−1ϵ−2dR2R2
w log(1/δ′) log3 n).

Thus, the total variance for d instantiated data structures is then

O(α−1ϵ−2d2R2R2
w log(1/δ′) log3 n).

Finally, from Lemma B.3, we have the additive error given by

O(α−1/2ϵ−1dRRw

√
log(1/δ′) · log3/2 n).

G.2 HIGH DIMENSION SINGLE DATA STRUCTURE

We have the data structure that can solve weighted ℓ1-distance problem in d-dimensional data.

Theorem G.3 (DPTREEHIGHDIM data structure). There is a data structure DPTREEHIGHDIM
(Algorithm 7) that uses O(nd) spaces to solve weighted ℓ1-distance query problem for dataset X ⊂
[0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1)). (Algorithm 7) It takes O(nd) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 7) It takes O(α−1d log2 n) time to
output a number z such that

– the process of output z satisfies is (ϵ, δ + δ′)-DP private, which computes∑
i∈[n] wi∥y − xi∥1,

– |z−∑
i∈[n] wi∥y−xi∥1| ≤ α

∑
i∈[n] wi∥y−xi∥1+O(ϵ−1α−1/2RRwd

√
log(1/δ′) ·

log3/2 n),
– it holds with probability 0.99.

Proof. For the runtime analysis, since we loop data structure DPTREEDISTANCE d times, an addi-
tional d factor will appear for both initialization and query time complexity. The DP is proved by
Lemma G.1. The accuracy is proved by Lemma G.2.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

H ADAPTIVE QUERY

In this section, we introduce how we can solve the adaptive query problem by our algorithm, using
some tools from Qin et al. (2022). Our idea is that, if we can prove that our algorithm can solve any
query in the query space with certain error. Then, since adaptive query must lie in this space, we can
handle adaptive query. In Section H.1, we show how we can boost the constant probability of our
algorithm to high probability. In Section H.2, we show how we can apply the notion of ϵ0-net and
bound all query points in net. In Section H.3, we show how we can bound all points in the query
space by introducing an additive error. In Section H.4, we examine the effects of different norms on
our adaptive query proof.

First, from Theorem G.3, given query y ∈ [0, R]d, α ∈ (0, 1) we have DISTANCEQUERY(y, α) that
can solve d-dimension weighted ℓ1-distance problem with constant probability 0.99. Now we show
how to improve it to solve adaptive query problem.

H.1 BOOST THE CONSTANT PROBABILITY TO HIGH PROBABILITY

We can repeat the data structure multiple times and take the median to boost the constant probability
using Chernoff bound from Lemma B.2.

Lemma H.1 (Using Chernoff bound to boost the probability). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log(1/pf)) independent copies of data structure DPTREEHIGHDIM and
take the median of the outputs with each data structure instantiated with (ϵ/l, (δ + δ′)/l)-
DP.

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 be the true answer.

• Let B = O(ϵ−1α−1/2lRRwd
√
log(l/δ′) · log3/2 n).

Then for each fixed query point y, we can have the process of outputting the median of l responses
is (ϵ, δ + δ′)-DP and the error is upper bounded by αA∗ +B with probability 1− pf .

Proof. By basic composition Fact B.8, we prove the DP. Similar to the proof of Theorem D.2, we
prove the error by Chernoff bound (Lemma B.2).

H.2 FROM EACH FIXED QUERY POINT TO ALL ON-NET POINTS

In this section, we build ϵ0-net and generalize from each fixed query point to all on-net points.

Definition H.2 (ℓp ϵ0-net, see Definition 4.2.1 in Vershynin (2017)). We define N be ℓp ϵ0-net of
B := {q ∈ [0, R]d} such that, for every point q in B, there exists y ∈ N satisfying ∥y − q∥p ≤ ϵ0.

Fact H.3 (ℓ∞ ϵ0-net). Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N . We have |N | ≤
(5R/ϵ0)

d.

Fact H.4 (ℓ2 ϵ0-net, see Lemma 5 in Woodruff (2014)). Let N be the ℓ2 ϵ0-net of B, and |N | be the
size of net N . We have |N | ≤ (5R/ϵ0)

d.

Fact H.5 (ℓ1 ϵ0-net, see Theorem 2 in Guntuboyina & Sen (2012)). Let N be the ℓ1 ϵ0-net of B, and
|N | be the size of net N . We have |N | ≤ (5R

√
d/ϵ0)

d.

Lemma H.6 (From for each query point to for all points in net). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

• We create l = O(log(|N |/pf)) independent copies of data structure DPTREEHIGHDIM
and take the median of the outputs with each data structure instantiated with (ϵ/l, (δ +
δ′)/l)-DP.

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 be the true answer.

• Let B = O(ϵ−1α−1/2lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1− pf , for all query points y ∈ N , we can have the process of outputting the
median of l responses is (ϵ, δ + δ′)-DP and the error is upper bounded by αA∗ +B.

Proof. By basic composition Fact B.8, we prove the DP. From Lemma H.1, we know for each
y ∈ N , the error is upper bounded by αA∗ +B with probability 1− pf/|N |.
Then, by union bound, with probability 1− pf , the error of all |N | query points in the net y ∈ N is
upper bounded by αA∗ +B.

H.3 FROM NET POINTS TO ALL POINTS

In this section, we show how to generalize points from net to all points in the query space. Since
adaptive query must lie in this space, we complete the proof of adaptive query.
Lemma H.7 (Lipschitz of query function). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1.

• Let L = nRw.

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi∥y − xi∥1 −
∑
i∈[n]

wi∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · |∥y − xi∥1 − ∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · ∥y − ỹ∥1

= nRw · ∥y − ỹ∥1
where the first step follows from definition of Z(y), the second step follows from triangular in-
equality, the third step follows from reverse triangular inequality, the fourth step follows from
w ∈ [−Rw, Rw]

n.

Lemma H.8 (From points in net to all points in query space). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
d/pf)) independent copies of data structure

{DPTREEHIGHDIMj}lj=1 and take the median of the outputs with each data struc-
ture instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREEHIGHDIMj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1, where Z(y) is L-Lipschitz with L = nRw.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

• Let B = O(ϵ−1α−1/2lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfy

|f(y)− Z(q)| ≤ αZ(q) +B + 2Ldϵ0.

Proof. By basic composition Fact B.8, we prove the DP.

We define an event E such that:

∀y ∈ N

|f(y)− Z(y)| ≤ αZ(y) +B.

From Lemma H.1, with l = O(log(|N |/pf)) we know

Pr[event E holds] ≥ 1− pf

We can show

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

where the first step follows from definition of l, the second step follows from Fact H.3.

We condition on event E to be held. Then, by definition of ℓ∞ ϵ0-net (see Definition H.2), for each
q /∈ N , there exists y ∈ N such that

∥y − q∥∞ ≤ ϵ0 (6)

We know

|Z(y)− Z(q)| ≤ L · ∥y − q∥1
≤ L · d∥y − q∥∞
≤ L · dϵ0 (7)

where the first step follows from Lemma H.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from Eq. (6).

Using the on-net query y to answer the off-net query q, for any q /∈ N , we have

|f(y)− Z(q)| ≤ |f(y)− Z(y)|+ |Z(q)− Z(y)|
≤ |f(y)− Z(y)|+ L · d · ϵ0
≤ αZ(y) +B + L · d · ϵ0
≤ αZ(q) +B + 2L · d · ϵ0 (8)

where the first step follows from triangular inequality, the second step follows from Eq. (7), the third
step follows from Lemma H.6, and the last step follows from Eq. (7).

Thus, we complete the proof.

Therefore, even adaptive queries can be answered accurately, since any adaptive query can be as-
sumed in B.

H.4 EFFECT OF DIFFERENT NORMS ON THE RESULT

In the above proof, we have two different measure spaces, i.e. ℓ∞ distance of ϵ0-net (Definition H.2)
and ℓ1 Lipschitz (Lemma H.7).

One might ask, will the norm we choose in two spaces have an impact on the final result? We can
show that the norm we choose currently is sufficient to use.

For different norms, the only differences in the proofs will be Lipschitz smoothness in Eq. (7) and
the cardinality of ϵ0-net, i.e. |N | in Fact H.3.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Lemma H.9. If we use ℓ∞ ϵ0-net and use ℓ1 Lipschitz in Lemma H.8, we have copies of data
structure l = O(d log(nR/pf)).

Proof. If we use ℓ∞ to bound the distance to net, Eq. (7) is:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw · d∥y − q∥∞
≤ nRw · dϵ0

where the first step follows from Lemma H.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from ℓ∞ ϵ0-net.

Then, Eq. (8) is

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · d · ϵ0

For ℓ∞ distance, we have |N | ≤ (5R/ϵ0)
d in Fact H.3.

We can choose ϵ0 = Θ(1/n) to hide nRw · d · ϵ0 term in B in Lemma H.8. Thus,

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

= O(log((nR)d/pf))

= O(d log(nR/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

Lemma H.10. If we use ℓ2 ϵ0-net and use ℓ1 Lipschitz in Lemma H.8, we have copies of data
structure l = O(d log(nR/pf)).

Proof. If we use ℓ2 to bound the distance to net, Eq. (7) changes to be:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw ·

√
d · ∥y − q∥2

≤ nRw · ϵ0
√
d

where the first step follows from Lemma H.7, the second step follows from ∥x∥1 ≤
√
d · ∥x∥2 for

x ∈ Rd, and the last step follows from ℓ2 ϵ0-net.

Then, Eq. (8) changes to be

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · ϵ0
√
d

For ℓ2 distance, we also have |N | ≤ (5R/ϵ0)
d in Fact H.4.

We can choose ϵ0 = Θ(1/n) to hide nRw ·
√
d · ϵ0 term in B in Lemma H.8. Thus,

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

= O(log((nR)d/pf))

= O(d log(nR/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

Lemma H.11. If we use ℓ1 ϵ0-net and use ℓ1 Lipschitz in Lemma H.8, we have copies of data
structure l = O(d log(ndR/pf)).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Proof. If we use ℓ1 to bound the distance to net, Eq. (7) changes to be:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw · ϵ0

where the first step follows from Lemma H.7, and the last step follows from ℓ1 ϵ0-net.

Then, Eq. (8) changes to be

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · ϵ0

For ℓ1 distance, we have |N | ≤ (5R
√
d/ϵ0)

d.

We can choose ϵ0 = Θ(1/n) to hide nRw · ϵ0 term in B in Lemma H.8. Thus,

l = O(log(|N |/pf)
= O(log((R

√
d/ϵ0)

d/pf)

= O(log((nR
√
d)d/pf))

= O(d log(nRd/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

From the above analysis, we can show that ℓ∞ or ℓ2 ϵ0-net is slightly better than ℓ1 ϵ0-net.

• ℓ∞ ϵ0-net, Lemma H.9: we have l = O(d log(nR/pf)).

• ℓ2 ϵ0-net, Lemma H.10: we have l = O(d log(nR/pf)).

• ℓ1 ϵ0-net, Lemma H.11: we have l = O(d log(nRd/pf)).

Thus, the norm we choose for ϵ0-net is sufficient good.

I SOFTMAX ACTIVATION

In this section, we introduce how we extend previous ℓ1 distance results to the Softmax activation
function, which is the most widely used distance measure in attention mechanism based models.

In Section I.1, we show how to extend to the Softmax distance function in Lemma I.6. In Section I.2,
we show how to adjust our algorithms. In Section I.3, we extend our algorithm to be robust to
adaptive query. In Section I.4, we give the proof of our main result Theorem 3.1.

I.1 EXPONENTIAL INNER PRODUCT

In this section, we show how we obtain the Softmax distance using ℓ22 distance query. First, we
provide some helpful results from Alman & Song (2023).

Definition I.1 (Definition 3.1 in Alman & Song (2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma I.2 (Lemma 3.4 in Alman & Song (2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ R, and
∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 0.1), there is a
positive integer s bounded above by

s = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
, (9)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

and a positive integer r bounded above by

r ≤
(
2s+ 2d

2s

)
(10)

such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition I.1) of A ∈ Rn×n.
Furthermore, the matrices U1 and U2 defining Ã can be computed in O(n · r) time.

Here we consider the vector version of Lemma I.2.
Definition I.3. We define ΓR,s := maxj∈[s]

Rj
√
j!

.

Then, we have P (x) : [0, R]d → [0,ΓR,s]
r where P (·) is polynomial kernel function defined in

Alman & Song (2023).
Remark I.4. We use ΓR,s to denote the value range of our polynomial kernel methods function,
i.e., P (x) : [0, R]d → [0,ΓR,s]

r. The factorial term in ΓR,s comes from Taylor approximation
coefficients. We take the maximum overall s order approximation terms to get the upper bound of
our value range.

We use the polynomial approximation method, which has been applied to accelerate Transformer
model extensively Alman & Song (2023; 2024a;b); Liang et al. (2024e;b).
Lemma I.5 (Polynomial approximation). For any accuracy parameter ϵs ∈ (0, 0.1), let R ≥ 1,
and let P (x) : [0, R]d → [0,ΓR,s]

r be the s-th order polynomial kernel function defined in Alman
& Song (2023) where r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Then, for any x, y ∈

[0, R]d, we have

|P (x)⊤P (y)− exp(x⊤y/d)| ≤ ϵs ·min{exp(x⊤y/d), P (x)⊤P (y)}
Furthermore, the vectors P (x) and P (y) can be computed in O(r) time.

Proof. Let n = 1. The proof follows from directly applying Lemma I.2.

Using the results from Alman & Song (2023) above, we can extend our results to Softmax activation.
Lemma I.6 (Weighted Softmax approximation, formal version of Lemma C.7). Let accuracy pa-
rameter be ϵs ∈ (0, 0.1). Let R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}).

Let P (x) : [0, R]d → [0,ΓR,s]
r be the s-th order polynomial kernel function defined in Lemma I.5.

Then we can approximate exponential inner product using polynomial kernel function:

w⊤ exp(Xy/d) = − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

+ O(w⊤ exp(Xy/d) · ϵs)
Moreover, the vectors P (·) can be computed in O(r) time.

Proof. From Lemma I.5, we can use polynomial kernel to approximate the Softmax function:

w⊤ exp(Xy/d) =
∑
i∈[n]

wiP (xi)
⊤P (y) +O(w⊤ exp(Xy/d) · ϵs).

The proof of approximation error and time complexity of constructing P (·) follows from Lemma I.5.

Then, we can show

2
∑
i∈[n]

wiP (xi)
⊤P (y) = −

∑
i∈[n]

wi∥P (xi)− P (y)∥22 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

= −
∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

where the first step follows from ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩, and the second step follows
∥x∥22 =

∑d
j=1 |xj |2 for x ∈ Rd.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

I.2 ALGORITHM MODIFICATIONS

Based on Lemma I.6, we can now extend our DP algorithms to handle Softmax activation. First,
we need to construct P (y) and P (xi) for i ∈ [n], each costing O(r) time. Then, for the second
term in Lemma I.6, i.e. 1

2

∑
i∈[n] wi(∥P (xi)∥22 + ∥P (y)∥22), we don’t need to add DP noises in it;

instead, we calculate this term exactly, preprocess it, and store the results in the algorithm. For the
first term,− 1

2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−P (y)j |2, we can adjust our high dimensional DP distance

query algorithm to solve it.

Due to the decomposability of ℓpp norm, i.e.∑
i∈[n]

wi∥xi − y∥pp =
∑
j∈[d]

∑
i∈[n]

wi|xi,j − yj |p,

we can compute ℓ22 norm easily (see details in Lemma E.2). We then show how to extend our one
dimensional ℓ1 distance algorithm (Algorithm 5 and 6) to ℓ22 distance with minor modifications.

Theorem I.7 (DPTREEDISTANCE ℓ22 distance). With α scaled down by a factor of 2 and all QUERY
instead multiplied by R2/(1 + α/2)2j in Lines 8 and 13 of Algorithm 6, i.e., from

• Lines 8 and 13: Value← Value + D.QUERY(lj , rj) · R
(1+α)j

to

• Lines 8 and 13: Value← Value + D.QUERY(lj , rj) · R2

(1+α/2)2j .

The data structure DPTREEDISTANCE (Algorithm 5,6) uses O(n) spaces to solve weighted ℓ22-
distance query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6)

It takes O(α−1 log2 n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y−xi|2,

– |z −∑
i∈[n] wi|y − xi|2| ≤ α

∑
i∈[n] wi|y − xi|2 +O(ϵ−1α−1/2R2Rw log3/2 n),

– it holds with probability 0.99.

Proof. The proof is similar to that of Theorem F.6, except that now our additive error includes R

increased by a power of 2, i.e., from O(ϵ−1α−1/2RRw log3/2 n) to O(ϵ−1α−1/2R2Rw log3/2 n).

Now we can give our result that can answer Softmax query.

Theorem I.8 (Softmax query, formal version of Theorem 4.2). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s be defined in Definition I.3. Let accuracy parameter
be ϵs ∈ (0, 0.1). There is a data structure DPTREESOFTMAX (Algorithm 3) that uses O(nr) spaces
to solve Softmax query problem for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 3) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 3) It takes O(α−1r log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

– |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

– it holds with probability 0.99.

Proof. Let Pwx :=
∑

i∈[n] wi∥P (xi)∥22 and sw :=
∑

i∈[n] wi. Observe that Pwx =∑
i∈[n] wi∥P (xi) − 0∥22, meaning we can calculating Pwx using query 0. Similarly, sw =∑
i∈[n] wi∥1n− 0∥22, meaning we can calculating sw using data 1n and query 0. Thus, we compute

Pwx, sw in Line 20 and 23 in Algorithm 3 in this way.

From the privacy proof of Lemma G.1 and the way we choose privacy parameters, similarly we get
the output process of calculating Pwx and Value is (ϵ/3, δ/3 + δ′/2)-DP. Also, the output process
of calculating sw is (ϵ/3, δ/3)-DP. Then, by Fact B.8, overall process is (ϵ, δ+ δ′)-DP in Line 32 of
Algorithm 3.

We then show the time complexity. From Lemma I.6, we know that constructing P (·) requires O(r)
time. In the first for loop of INIT, the dominating time consumption is O(nr). The second for loop
also has a time complexity of O(nr). Therefore, the total time complexity for INIT is O(nr). In
the DISTANCEQUERY function, constructing P (y) takes O(r) time. Within the for loop, it requires
O(α−1r log2 n). Thus, the total time complexity for DISTANCEQUERY is O(α−1r log2 n).

The space complexity is O(nr), since storing the n× r matrix P is the dominating factor.

The proof of the error follows from the triangle inequality by combining the errors in Lemma I.6
and Theorem I.7. Here, we omit the constant factors of 2 and 3 used for the privacy guarantee in
Algorithm 3, incorporating it into the big-O notation for the error analysis.

I.3 ADAPTIVE SOFTMAX

In this section, we show how to make Algorithm 3 robust to adaptive query. We follow the
same idea from Section H. We notice that, in the Softmax activation, we have query function
Z(y) := w⊤ exp(Xy/d) different from the ℓ1-distance in Section H. Therefore, we need to re-
calculate Lipschitz constant first.
Lemma I.9 (Lipschitz of weighted Softmax). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) := w⊤ exp(Xy/d).

• Let L = nd−1/2RRw exp(R2).

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi exp(x
⊤
i y/d)−

∑
i∈[n]

wi exp(x
⊤
i ỹ/d)|

≤
∑
i∈[n]

|wi| · | exp(x⊤
i y/d)− exp(x⊤

i ỹ/d)|

≤
∑
i∈[n]

|wi| exp(R2)|x⊤
i y/d− x⊤

i ỹ/d|

≤
∑
i∈[n]

|wi| exp(R2)∥xi∥2 · ∥y − ỹ∥2/d

≤ nRw exp(R2)
√
dR · ∥y − ỹ∥2/d

≤ nd−1/2RRw exp(R2)∥y − ỹ∥1
where the first step follows from definition of Z(y), Z(ỹ), the second step follows from triangu-
lar inequality, the third step follows from Fact B.4, the fourth step follows from Cauchy–Schwarz

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

inequality |u⊤v| ≤ ∥u∥2 · ∥v∥2 for u, v ∈ Rd, the fifth step follows from wi ∈ [−Rw, Rw] and
xi ∈ [0, R]d, and the last step follows from ∥u∥2 ≤ ∥u∥1 for u ∈ Rd.

Then we can show how to extend our algorithm to be robust to adaptive query.

Lemma I.10 (Adaptive Softmax, formal version of Lemma C.8). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
r/pf)) independent copies of data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 3) and take the median of the outputs with
each data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d), where Z(y) is L-Lipschitz with L = nd−1/2RRw exp(R2).

• Let B = O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfies

|f(y)− Z(q)| ≤ (α+ ϵs)Z(q) +B + 2n
√
dRRw exp(R2)ϵ0.

Proof. The proof follows from the same idea as the proof of Lemma H.8, except that we use Theo-
rem I.8 and the Lipschitz in Lemma I.9.

Theorem I.11 (Adaptive query Softmax data structure, formal version of Theorem 4.4). Let R ≥ 1.
Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s be defined in Definition I.3. Let

accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset, w ∈ [−Rw, Rw]
n be

weights, y ∈ [0, R]d be the query, α ∈ (0, 1) be the relative error parameter, and pf be the failure
probability parameter. Let l = O(r log(dR/(ϵspf))). There is a data structure DPTREESOFT-
MAXADAPTIVE (Algorithm 8) that uses O(lnr) spaces to solve weighted Softmax query problem
for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). (Algorithm 8) It takes O(lnr) time to initialize the
data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 8) It takes O(α−1lr log2 n) time
to output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We only need to show how to pick ϵ0 in the parameter l, because everything else is
the same as Lemma I.10. We know the additive error introduced by adaptive query is Ea :=
O(n
√
dRRw exp(R2)ϵ0) and the relative error introduced by polynomial kernel approximation is

Ep := w⊤ exp(Xy/d) · ϵs. It can be shown that:

Ep := w⊤ exp(Xy/d) · ϵs

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

≤ ϵs∥w∥2 · ∥ exp(Xy/d)∥2
= O(nRwϵs exp(R

2))

where the first step follows from definition of Ep, the second step follows from Cauchy–Schwarz
inequality, and the last step follows from w ∈ [−Rw, Rw]

n, X ∈ [0, R]n×d, and y ∈ [0, R]d.

Picking ϵ0 = Θ(ϵs√
dR

), we can hide the error of adaptive query Ea in Ep. Thus, we have

l = O(log((R/ϵ0)
r/pf))

= O(log((
√
dR2/ϵs)

r/pf))

= O(r log(dR/(ϵspf)))

where the first step comes from the definition of l, the second step comes from picking ϵ0 =
Θ(ϵs√

dR
), and the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b <

1, d > 1.

Algorithm 8 Adaptive query data structure

1: datastructure DPTREESOFTMAXADAPTIVE ▷ Theorem 4.4
2: members
3: D1, . . . ,DO(r log(dR/(ϵspf))) : DPTREESOFTMAX ▷ Algorithm 3
4: end members
5: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈
(0, 1), c ∈ (0, 0.1)), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))

6: l← O(r log(dR/(ϵspf)))
7: for i = 1→ l do
8: Di.INIT(X,n,w, ϵ/l, δ/l, δ′/l, c, ϵs)
9: end for

10: end procedure
11: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1))
12: l← O(r log(dR/(ϵspf)))
13: r ← 0l

14: for i = 1→ l do
15: ri ← Di.DISTANCEQUERY(y, α)
16: end for
17: return Median of r
18: end procedure
19: end datastructure

I.4 PROOF OF MAIN RESULT

In this section, we give the proof of our main result of Theorem 3.1.

Theorem I.12 (Softmax cross-attention, formal version of Theorem 3.1). Let Q,K, V,Attn be
defined in Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma C.7). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition I.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREECROSSATTENTION (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention DP
and supports the following operations:

• INIT(K,V, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈ (0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))
(Algorithm 1). It takes O(lnrd) time to initialize.

• At query time, for user input Q, we process one token at a time by passing the i-th row of
Q, denoted Qi ∈ [0, R]d, to QUERY(Qi, α ∈ (0, 1)) (Algorithm 1) for each i ∈ [m]. It
takes O(α−1ldr log2 n) time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

– the process of output z has error

Õ(n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α+ ϵs) · (AV)i,k + ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′)))

where Õ hide logarithm dependecy on n,
– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We first prove the privacy and then prove error for each coordinate of the output O of Algo-
rithm 1.

Proof of Privacy:

From Theorem I.11,Dk.DISTANCEQUERY for k ∈ {0, 1, . . . , d} in Algorithm 1 answer (ϵ/2, δ/2+
δ′/2)-DP queries that are robust to adpative queries. By Fact B.8, the procedure for calculating each
coordinate of vector O is (ϵ, δ + δ′)-DP in Line 15 of Algorithm 1.

Proof of Error:

We prove the error bound of the cross-atteniton module. We omit the constant factor of 2 used for
the privacy guarantee in Algorithm 1, incorporating it into the big-O notation for the error analysis.
Let AV be the true value and ÃV be the noisy value. Let D be the true value and D̃ be the noisy
value. First, we use triangular inequality to decompose the error:

|(D−1AV)i,k − (D̃−1ÃV)i,k|
≤ |(D−1AV)i,k − (D−1ÃV)i,k|+ |(D−1ÃV)i,k − (D̃−1ÃV)i,k| (11)

We now prove for each term.

Part 1: Error bound for AV

From Section 3, we know that we can ensure matrix AV in cross-attention computation satisfies DP.
Next, from Theorem 4.4, for i ∈ [m], j ∈ [n], k ∈ [d], we have (AV)i,k is (ϵ, δ + δ′)-DP and also
robust to adaptive query.

Let ζ := ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n denote the additive error. Then, from Theo-

rem I.11, we have

|(AV)i,k − (̃AV)i,k| ≤ (α+ ϵs) · (AV)i,k +O(ζ) (12)

For Di,i, we can show

Di,i = (A · 1n)i =

n∑
j=1

exp(⟨Qi,Kj⟩/d) ≥ n (13)

because ⟨Qi,Kj⟩ ≥ 0 for bounded Q,K.

Finally, we can show the error of first term in Eq. (11) is bounded by

|(D−1AV)i,k − (D−1ÃV)i,k| = |D−1
i,i ((AV)i,k − (̃AV)i,k)|

= |D−1
i,i | · |((AV)i,k − (̃AV)i,k)|

≤ n−1(α+ ϵs) · (AV)i,k +O(n−1ζ)

where the first step follows from definition, the second step follows from simple algebra, and the
last step follows from Eq. (12) and (13).

Part 2: Error bound for D

We initialize one DPTREESOFTMAXADAPTIVE with INIT(K,n,1n, ϵ, δ, δ
′, c, ϵs, pf). Let us name

this data structure D-DPTREE. Notice that we input 1n as the third argument.

We wish to bound ∥Kj−K̃j∥2 for j ∈ [n]. Observe that D-DPTREE only add noises in K, so ∥Kj−
K̃j∥2 is the ℓ2-norm of a d-dimension vector where corrdinates are independent truncated laplace

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

noises. Similar to the proof of Lemma D.6, we prove the bound using Chebyshev’s inequality.
The variance of the sum of d independent truncated laplace noises is give by Õ(dϵ−2∆2). Then
by Lemma B.3, with high probabiltiy, we have ∥Kj − K̃j∥2 ≤ ∥Kj − K̃j∥1 ≤

√
d/ϵ, where the

sensitivity for D-DPTREE is 1 since we initialize D-DPTREE with 1n as third argument. Therefore,
we have ∥Kj − K̃j∥2 ≤

√
d/ϵ.

We show the lower bound of ⟨Qi, K̃j⟩ below:

⟨Qi, K̃j⟩ =⟨Qi, K̃j −Kj +Kj⟩
=⟨Qi, K̃j −Kj⟩+ ⟨Qi,Kj⟩
≥⟨Qi, K̃j −Kj⟩
≥ − ∥Qi∥2 · ∥K̃j −Kj∥2
≥− ∥Qi∥2 ·

√
d/ϵ

≥−Rd/ϵ

where the first step follows from simple algebra, the second step follows from linearity of inner
product, the third step follows from ⟨Qi,Kj⟩ ≥ 0 for bounded Qi,Kj ∈ [0, R]d, the fourth step
follows from ∥Kj − K̃j∥2 ≤

√
d/ϵ, the fifth step follows from Cauchy-Schwarz inequality, and the

last step follows from Qi ∈ [0, R]d.

Thus, from above we have

D̃i,i = (Ã · 1n)i =

n∑
j=1

exp(⟨Qi, K̃j⟩/d) ≥
n∑

j=1

exp(−Rd/(dϵ)) = n exp(−R/ϵ). (14)

Similarly, the upper bound of ⟨Qi, K̃j⟩ is

⟨Qi, K̃j⟩ = ⟨Qi, K̃j −Kj⟩+ ⟨Qi,Kj⟩
≤ ∥Qi∥2 · ∥K̃j −Kj∥2 + ∥Qi∥2 · ∥Kj∥2
≤ Rd/ϵ+R2d = dR(R+ 1/ϵ)

Then, we can show the upper bound of |Di,i − D̃i,i| is

|Di,i − D̃i,i| = |
n∑

j=1

exp(⟨Qi,Kj⟩/d)−
n∑

j=1

exp(⟨Qi, K̃j⟩/d)|

≤
n∑

j=1

| exp(⟨Qi,Kj⟩/d)− exp(⟨Qi, K̃j⟩/d)|

≤
n∑

j=1

exp(dR(R+ 1/ϵ)/d) · |⟨Qi,Kj⟩/d− ⟨Qi, K̃j⟩/d)|

≤
n∑

j=1

exp(R(R+ 1/ϵ)) · ∥Qi∥2 · ∥K̃j −Kj∥2/d

≤
n∑

j=1

exp(R(R+ 1/ϵ)) ·Rd/(dϵ)

= ϵ−1nR exp(R(R+ 1/ϵ))

where the first step follows from Definition of D, the second step follows from triangular inequality,
the third step follows from Fact B.4 and the upper bound of ⟨Qi, K̃j⟩ above, the fourth step follows
from Cauchy-Schwarz inequality, the fifth step follows from the upper bounds of ∥Qi∥2 and ∥K̃j −
Kj∥2, and the last step follows from simple algebra.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Then, we can show

|D−1
i,i − D̃−1

i,i | =
|Di,i − D̃i,i|
Di,i · D̃i,i

≤ |Di,i − D̃i,i|
n2 · exp(−R/ϵ)

≤ ϵ−1nR exp(R(R+ 1/ϵ))

n2 · exp(−R/ϵ)

= n−1ϵ−1R exp(R2 + 2R/ϵ)

where the first step follows from simple algebra, the second step follows from Eq.(13) and (14), the
third step follows from the upper bound of |Di,i− D̃i,i| above, and the last step follows from simple
algebra.

From Eq. (12), we have

|(̃AV)i,k| ≤ (1 + α+ ϵs) · (AV)i,k +O(ζ)

We consider the second term in Eq.(11). Then,

|(D−1ÃV)i,k − (D̃−1ÃV)i,k| = |D−1
i,i (ÃV)i,k − D̃−1

i,i (ÃV)i,k|
= |D−1

i,i − D̃−1
i,i | · |(ÃV)i,k|

≤ n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α+ ϵs) · (AV)i,k +O(ζ))

Part 3: Final error bound

Combining results from Part 1 and 2, the final error bound is

|(D−1AV)i,k − (D̃−1ÃV)i,k|
≤ |(D−1AV)i,k − (D−1ÃV)i,k|+ |(D−1ÃV)i,k − (D̃−1ÃV)i,k|
= n−1(α+ ϵs) · (AV)i,k +O(n−1ζ)

+ n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α+ ϵs) · (AV)i,k +O(ζ))

≤ n−1ϵ−1R exp(R2 + 2Rϵ−1)((1 + α+ ϵs) · (AV)i,k +O(ζ))

Therefore, we prove the error bound.

50

	Introduction
	Related Work

	Preliminary
	Notations
	Differential Privacy Definitions

	Main Results: Cross-Attention
	Key Data Structure: DPTree
	Technique Overview
	DPTree, DPTreeDistance, and DPTreeHighDim
	Softmax Activation
	Adaptive Query Data Structure

	Discussion
	Conclusion
	More Related Work
	More Preliminary
	Probability Tools
	Algebraic Facts
	DP Facts
	Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms

	Proof Outline
	Summation Segment Tree
	Sensitivity for Range Summation Problem
	Weighted Distance Problem
	One-Dimensional Weighted Distance Data Structure
	Softmax Activation
	Adaptive Query

	DPTree Algorithm
	Single Data Structure
	Boost the Constant Probability to High Probability
	Algorithm of Data Structure
	Disjoint Intervals

	Weighted Distance
	One Dimensional Weighted Distance
	High Dimensional Weighted Distance

	One-Dimensional Weighted Distance Query
	Runtime Analysis
	Privacy and Accuracy Analysis
	One Dimension Single Data Structure

	High-Dimensional Weighted Query
	Privacy and Accuracy Analysis for High Dimensional Weighted Distance
	High Dimension Single Data Structure

	Adaptive Query
	Boost the Constant Probability to High Probability
	From Each Fixed Query Point to All On-net Points
	From Net Points to All Points
	Effect of Different Norms on the Result

	Softmax Activation
	Exponential Inner Product
	Algorithm Modifications
	Adaptive Softmax
	Proof of Main Result

