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ABSTRACT

Safety is a critical component of autonomous systems and remains a challenge for
learning-based policies to be utilized in the real world. In this paper, we propose
Sim-to-Lab-to-Real to safely close the reality gap. To improve safety, we apply
a dual policy setup where a performance policy is trained using the cumulative
task reward and a backup (safety) policy is trained by solving the safety Bellman
Equation based on Hamilton-Jacobi reachability analysis. In Sim-to-Lab transfer,
we apply a supervisory control scheme to shield unsafe actions during exploration;
in Lab-to-Real transfer, we leverage the Probably Approximately Correct (PAC)-
Bayes framework to provide lower bounds on the expected performance and safety
of policies in unseen environments. We empirically study the proposed framework
for ego-vision navigation in two types of indoor environments including a photo-
realistic one. We also demonstrate strong generalization performance through
hardware experiments in real indoor spaces with a quadrupedal robot1.

1 INTRODUCTION

Due to tight hardware constraints and high sample complexities, reinforcement learning with robots
is usually performed solely in simulated environments. However, robots’ performance often de-
grades sharply in the real world. Domain randomization has helped bridge this Sim-to-Real gap
by simulating a wide range of scenarios (Tobin et al., 2017; Sadeghi & Levine, 2017), but do not
explicitly address safety of the robots. Although training in simulation allows safety violations,
without training to avoid unsafe behavior, robots tend to exhibit similarly unsafe behavior in real
environments. Another drawback of these techniques is that they do not provide any generalization
guarantee on robots’ performance or safety to different real environments, which is necessary for
deploying autonomous systems in safety-critical scenarios (e.g., households with children).

In this work, we explore a middle-level training stage between Sim and Real, which we call Lab,
that aims to further bridge the Sim-to-Real gap. The proposed Sim-to-Lab-to-Real framework is
motivated by the conventional engineering practice that before deploying autonomous systems in
the real world after training, human designers usually test systems in a more realistic but controlled
environment, such as a test track for autonomous cars. Our intuition is that (1) after training in
diverse conditions in simulation, the robot fine-tunes in more specific environments before deploy-
ment in similar environments in the real world; (2) this second stage also provides guarantees on
the performance and safety of the system in Real deployment. Fig. 1 shows the pipeline.

In the Lab training, the autonomous system needs to explore safely to further improve the perfor-
mance. Our approach builds upon a dual policy setup where a performance policy optimizes task
reward and a backup (safety) policy ensures robots steering away from unsafe regions. We then
apply a least-restrictive control law (or shielding) (Fisac et al., 2019): the backup policy only in-
tervenes when the safety state-action value function deems the proposed action from performance
policy violates safety constraints in the future. The backup policy is pre-trained in the Sim stage
and ready to ensure safe exploration once Lab training starts. Based on safe RL training using
Hamilton-Jacobi (HJ) reachability-analysis developed in (Fisac et al., 2019; Hsu et al., 2021), our
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Figure 1: Overview of the Sim-to-Lab-to-Real framework. Sim stage trains a latent-conditioned, safety-
ensured dual policy in a wide variety of conditions. Then the Lab stage safely fine-tunes the latent distribution
in different and more specific settings, which are also closer to Real environments.

backup agent can learn from near failure with dense signals; even when the backup policy updates
itself in safety-critical conditions, the training does not rely on safety violations unlike previous
work that uses binary safety indicators (Srinivasan et al., 2020; Thananjeyan et al., 2021).

We also apply the Probably Approximately Correct (PAC)-Bayes Control framework (Majumdar
et al., 2021) to provide bounds on the expected performance and safety in unseen environments.
The framework fits our setup as its two training stages, prior and posterior, correspond to Sim and
Lab. We train a distribution of policies by conditioning the performance policy on latent variables
sampled from a distribution. After training a prior distribution in Sim stage, we fine-tune it in
Lab and obtain a posterior policy distribution and its associated generalization guarantee. Unlike
other techniques from robust control (Zhou & Doyle, 1998) and reachability analysis (Majumdar
& Tedrake, 2017), PAC-Bayes Control does not assume knowledge of the uncertainty affecting
the system (e.g., bound on actuation noise) or the environment (e.g., minimum distance between
obstacles), and allow training policies with rich sensing like vision.

2 RELATED WORK

Safe Exploration Recent methods (Srinivasan et al., 2020; Thananjeyan et al., 2021; Dalal et al.,
2018; Chen et al., 2021) address safe exploration in training with similar shielding schemes as in
this work. However, the major differences lie in how the safety state-action value function, safety
critic, is trained and how the backup action is generated. Previous work learn the safety critic from
only sparse (binary) safety labels. Srinivasan et al. (2020) use this critic to filter out unsafe actions
until the performance policy resamples a safe one, while Thananjeyan et al. (2021) train the same
critic but use action from the backup policy instead of resampling the performance policy. One
concurrent work (Chen et al., 2021) uses the same reachability-based RL to learn the backup agent.
Our method is distinct in that we propose the two-stage training to allow safer exploration and train
the reachability-based RL end-to-end from images without pre-training the visual encoder.

Generalization Theory and Guarantees In supervised learning, generalization theory provides
guarantees on the expected loss on new samples drawn from the unknown data distribution, after
training a model using a finite number of samples. Recent work based on PAC-Bayes generaliza-
tion theory McAllester (1999) have provided non-vacuous bounds for neural networks in supervised
learning Dziugaite & Roy (2017). Majumdar et al. (2021) apply the PAC-Bayes framework in policy
learning settings and provide generalization guarantees for control policies in unseen environments.
Follow-up work has provided strong guarantees in different robotics settings including for learning
neural network policies for vision-based control Ren et al. (2021); Veer & Majumdar (2021); Agar-
wal et al. (2021). However, previous work has not adopted safety-related policy architectures nor
considered safety during training.

Safe Visual Navigation in Unseen Environments Typical approaches in robot navigation focus
on explicit mapping of the environment combined with long-horizon planning Sim & Little (2006);
Thrun & Bücken (1996). Recently there has been a line of work in applying Hamilton-Jacobi reach-
ability analysis in visual navigation to improve the safety of the agent. Bajcsy et al. (2019) solve
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for the reachability set at each step but relies on a map generated using onboard camera. Li et al.
(2020) propose supervising the visual policy using expert data generated by solving the reachability
set. Our work also leverages reachability analysis but does not build a map of the environment nor
relies on offline data generated by a different (expert) agent.

3 PROBLEM FORMULATION AND PRELIMINARIES

We consider discrete-time dynamics st+1 = fE(st, at) with state s ∈ S , control input a ∈ A, and
environment E ∈ E that the robot interacts with (e.g., a real indoor space with furniture including
initial and goal locations of the robot). We assume that environments are drawn from a distribution
D, but no direct knowledge of this distribution. Instead, we assume there are N training environ-
ments drawn (i.i.d.) from D; we denote this training dataset by S = {E1, E2, · · · , EN}. In addition,
there can be a different set of environments S′ where the space of environments E ′ ̸= E in general
(e.g., synthetic indoor spaces with randomized arrangement of furniture).

In all environments, we assume the robot has a sensor (e.g., RGB camera) that provides an obser-
vation o = hE(s) using a sensor mapping h : S × E → O. Let RE(π) denote the cumulative
reward gained over a (finite) time horizon by a deterministic policy π : O → A when deployed in
an environment E. We assume RE(π) ∈ [0, 1] but make no further assumptions such as continuity.
We use ξs,πE : [0, T ] × E → S to denote the trajectory rollout from state s using policy π in the
environment E up to a time horizon T . We further assume there are environment-dependent failure
sets FE ⊆ S. In training the robot has access to Lipschitz functions g : S × E → R such that FE is
equal to the zero superlevel set of gE , namely, s ∈ FE ⇔ gE(s) ≥ 0 (e.g., signed distance function
to the nearest obstacle around state s). We call gE(s) the safety margin function.

Goal. Our goal is to use the training environments S to learn policies that provably generalize to
unseen environments drawn from the distribution D. We employ a more general formulation where
a distribution P over policies instead of a single policy is used. In addition to maximizing the policy
reward, we want to minimize the number of safety violations, i.e., the number of times that the robot
enters failure sets. Our goal can then be formalized by the following optimization problem:

R⋆ := sup
P∈P

RD(P ), where RD(P ) := E
E∼D

E
π∼P

[
RE(π)

]
, (1)

RE(π) := RE(π)1
{
∀t ∈ [0, T ], ξs,πE (t) /∈ FE

}
, (2)

where RE(π) ∈ [0, 1] denotes the task reward that does not penalize safety violation, and P denotes
the space of probability distributions on the policy space Π. PAC-Bayes techniques allow us to
tackle this challenging problem involving the unknown environment distribution D. First, we define
the empirical reward of P as the average expected reward across training environments in S:

RS(P ) :=
1

N

∑
E∈S

E
π∼P

[
RE(π)

]
. (3)

The following theorem can then be used to lower bound the true expected reward RD(P ).

Theorem 1 (PAC-Bayes Bound for Control Policies; adapted from (Majumdar et al., 2021))
Let P0 ∈ P be a prior distribution. Then, for any P ∈ P , and any δ ∈ (0, 1), with probability at
least 1− δ over sampled environments S ∼ DN , the following inequality holds:

RD(P ) ≥ RPAC(P, P0) := RS(P )−
√
C(P, P0), where C(P, P0) :=

KL(P∥P0) + log( 2
√
N
δ )

2N
.

The lower bound requires a prior policy distribution P0 that is not trained using environments in S.
Maximizing the lower bound RPAC can be viewed as maximizing the empirical reward RS(P ) and
minimizing a regularizer C that prevents overfitting by penalizing the deviation of the posterior P
from the prior P0. We train P0 with S′ in Sim, and then by fine-tuning P0 to P in Lab with S to
maximize the bound, we obtain the generalization guarantee in new environments from D.

4 METHOD

Our proposed Sim-to-Lab-to-Real framework learns a safety-ensured dual policy with generalization
guarantees to novel environments. Fig. 2 shows the architecture of the safety-ensured policy distri-
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bution. It explicitly handles safety by leveraging a shielding classifier, which monitors the candidate
actions from the performance policy and replaces them with backup actions when necessary. We also
condition the performance policy on a latent variable to encode diverse strategies. We show how to
jointly train a dual policy conditioning on a latent distribution in Sec. 4.1 (Sim-to-Lab). The details
of Lab training and derivations of generalization guarantees are provided in Sec. 4.2 (Lab-to-Real).

Figure 2: Architecture of the safety-ensured policy
distribution

For training, we use a proxy reward function rE :
S × A × E → R (e.g., dense reward in distance
to target) as a single-step surrogate for the task
reward RE(π). At each step the robot also re-
ceives a safety cost gE(s) (e.g., distance to near-
est obstacle). We train the dual policy with modi-
fications of the Soft Actor-Critic (SAC) algorithm
(Haarnoja et al., 2018). We denote the neural net-
work (NN) weights of the actor and critic θ and
w. We use superscripts (·)p and (·)b to denote
critics, actors, and actions from the performance
or backup agent. The performance policy is con-
ditioned on latent variable z ∈ Rnz sampled from
a multivariate Gaussian distribution with diago-
nal covariance as z ∼ N (µ,Σ), where µ ∈ Rnz

is the mean and Σ ∈ Rnz×nz is the diagonal co-
variance matrix. We further denote σ ∈ Rnz the
element-wise square-root of the diagonal of Σ, and define ψ = (µ, σ), Nψ := N (µ, diag(σ2)).

4.1 PRE-TRAINING DIVERSE DUAL POLICY IN SIMULATOR

In this Sim stage, we use the dataset S′ that contains environments that are not necessarily similar
to those from the target environment distribution D. They contain randomized properties such as
random arrangement of furniture in indoor space and random camera tilting angle on the robot.

Safety through Reachability-Based Reinforcement Learning Failures are usually catastrophic
in safety-critical settings; thus worst-case safety, instead of an average safety over the trajectory,
should be considered. For training the backup policy, we incorporate reachability-based reinforce-
ment learning (Fisac et al., 2019) and optimize the discounted safety Bellman equation (DSBE):

Qb(ot, at) := (1− γ)gE(st) + γmax
{
gE(st), min

at+1∈A
Qb(ot+1, at+1

)}
, (4)

where ot = hE(st) and γ is the discount factor. This discount factor represents how much the RL
agent cares about future outcomes: if γ is small, the RL agent is myopic and only cares about the
current “danger”, and as γ → 1, it recovers the infinite-horizon safety state-action value function.
In training, we initialize γ = 0.8 and gradually anneal γ → 1 as the backup policy improves.

Figure 3: Safe and diverse trajectories generated by
the safety-ensured policy distribution. The inset shows
safety values Q(o, πb(o)) with the observation o taken
when the heading angle fixed to the one at time instant
tsh.

The safety critic in (4) captures the maximum
cost gE along the trajectory starting from st
with action at even if the best control input
is applied at every instant afterward. Thus,
minat∈AQ(ot, at) > 0 indicates the robot is
predicted to hit an obstacle in the future. DSBE
allows the backup agent to learn the safety
critic from near failure, which significantly re-
duces failure events during training. DSBE also
updates the backup agent with dense signals,
which is more suitable for the joint training of
performance and backup agents.

Shielding We leverage shielding to reduce the number of safety violations in both training and
deployment. Besides the backup policy πb, we also train a performance policy πp to maximize task
reward. Before a candidate action from the performance policy is applied, a shielding classifier ∆sh
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checks if it is safe. We replace it with the action from the backup policy if and only if that candidate
action is predicted to cause safety violation in the future. The shielding criterion is summarized in
(5). This ensures minimum intervention by the backup policy while the performance policy guides
the robot towards the target (Fisac et al., 2019; Alshiekh et al., 2018).

πsh(o) =

{
πp(o), ∆sh(o, πp, πb) is True
πb(o), otherwise . (5)

The safety value function learned by DSBE represents the maximum cost along the trajectory in the
future if the learned policy is followed. Based on this, we propose Value-based Shielding with a
physically meaningful shielding threshold, i.e., it represents the margin to failure. Once the robot
receives the current observation o and uses performance policy to generate action ap, the backup
policy overrides the action if and only if Qb(o, ap) > vthr. Fig. 3 shows an example of shielding
that prevents applying unsafe actions from the performance policy (with shielding, the red dotted
lines are replaced with green dotted lines in the inset). We compare the safety critic based on DSBE
with ones learned with sparse safety indicators (Srinivasan et al., 2020; Thananjeyan et al., 2021) in
Sec. 5 and Fig. 6; our approach affords much better safety during training and deployment.

Algorithm 1 Joint training in simulator

Require: S′, πp, πb,Nψ0
:= N (0, σI), ρ = 1, ϵ = 0, γ =

γinit
1: Sample E ∼ S′ and z ∼ Nψ0

, reset environment
2: for t← 1 to num prior step do
3: With probability ρ, sample action at ∼ πb(·|ot); else

sample at ∼ πp(·|ot, z)
4: With probability ϵ, apply shielding ash

t =

πsh(πb, ot, at)

5: Step environment rt, ot, st+1 ∼ P(·|st, ash
t )

6: Save (ot+1, ot, at, ash
t , z, rt) to replay buffer

7: Update πp with reward and πb with DSBE
8: Anneal ρ→ 0, ϵ→ 1, γb → 1
9: if timeout or failure then

10: Sample E ∼ S′ and z ∼ Nψ0
, reset environment

11: end if
12: end for
13: return πp, πb,Nψ0

Joint Training of Dual Policy. In Sim stage,
we fix the latent distribution to be a zero-mean
Gaussian distribution with diagonal covariance
Nψ0

, where ψ0 = (0, σ0). For each episode
during training, we sample a latent variable z ∼
Nψ0

and condition the performance policy on it
for the whole episode. The training procedure
is illustrated in Algorithm 1.

Since we train both policies with modifications
of the off-policy SAC algorithm, we can use
transitions with actions proposed by either pol-
icy. The transitions are stored in a shared replay
buffer. At every step during training, the robot
needs to select a policy to follow. We introduce
ρ, the probability that the robot chooses an ac-
tion from the backup policy. We initialize ρ to
1, which means initially all actions are sampled
from the backup policy. Intuitively, the backup
policy needs to be trained well before shielding is used in training. We gradually anneal ρ→ 0. We
then introduce another parameter ϵ, the probability that the shielding is activated at the step. This
parameter represents how much the backup policy is trusted to shield the performance policy. We
typically anneal ϵ from 0 to 1. The influence of ρ and ϵ are further analyzed in Appendix A.5.

After the joint training, we obtain the dual policies πp and πb, and the latent distribution Nψ0 that
encodes diverse trajectories in the environments. We now fix the weights of the two policies, and
consider the latent variable z also part of parameterization of the dual policy. This gives rise to the
space of policies Π := {πpz , πb : O 7→ A | z ∈ Rnz}; hence, the latent distribution Nψ0

can be
equivalently viewed as a distribution on the space Π of policies. In the next section, we will consider
Nψ0

as a prior distribution P0 and “fine-tune” it by searching for a posterior distribution P = Nψ ,
which comes with the generalization guarantee from PAC-Bayes Control.

4.2 SAFELY FINE-TUNING POLICIES IN LAB

In Lab stage we consider more safety-critical environments such as test tracks for autonomous cars
or indoor lab space. After pre-training the performance and backup policies with shielding, the
robot can safely explore and fine-tune the prior policy distribution P0 in a new set of environments
S sampled from the unknown distribution D. Leveraging the PAC-Bayes Control framework, we
can provide “certificates” of generalization for the resulting posterior policy distribution P . The
overall algorithm is similar to Algorithm 1. To avoid safety violations, we always apply value-based
shielding to the proposed action (ϵ = 1) during Lab training.
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The PAC-Bayes generalization bound RPAC associated with P from Eq. (1) consists of (1) RS(P ),
the empirical reward of P as the average expected reward across training environments in S (3),
which can be optimized using SAC; (2) a regularizer C(P, P0) that penalizes the posterior P from
deviating from the prior P0. Note that the only term in C(P, P0) that involves P is the KL diver-
gence term between P and P0. We modify the SAC formulation to include minimization of the
KL divergence term. We consider stochasticity of the policy from the latent distribution instead of
the policy network; this leads to removing the policy entropy regularization in SAC and adding a
weighted KL divergence term to the actor loss. In practice, we find the gradient of the KL diver-
gence term heavily dominates the noisy gradient of actor and critic, and thus we approximate the
KL divergence with an expectation on the posterior:

max
P

Eo,z
[
Ea∼πθ(·|o,z)

[
Qp(o, a)

]
− α log

P (z)

P0(z)

]
. (6)

where α ∈ R is a weighting coefficient to be tuned. After Lab training, we calculate the generaliza-
tion bound Rbound(P ) using the posterior P . Please refer to Appendix A.1 for more details about the
calculation. Overall, our approach provides generalization guarantees in novel environments from
the distribution D: as policies are randomly sampled from the posterior P and applied in test envi-
ronments, the expected success rate over all test environments is guaranteed to be at least Rbound(P )
(with probability 1− δ over the sampling of training environments; δ = 0.01 for all experiments).

5 EXPERIMENTS

We aim to answer the following in experiments: does our proposed Sim-to-Lab-to-Real achieve (1)
lower safety violations during Lab training compared to other safe learning methods, (2) stronger
generalization guarantees on performance and safety compared to previous work in PAC-Bayes
Control, and (3) better empirical performance and safety during deployment compared to baselines?

(a) (b) (c) (d) 

Figure 4: Samples of environments used in experiments: (a) Sim training in Vanilla-Env; (b) Sim training in
Advanced-Env; (c) Advanced-Realistic training; (d) Real deployment with a quadrupedal robot.

Environments. We evaluate the proposed methods by performing ego-vision navigation task in
two types of environment. Vanilla-Env consists of undecorated rooms of 2m× 2m with cylindrical
and rectangular obstacles of different dimensions and poses, and the robot needs to reach a green
door (Fig. 4a). A camera on the robot provides RGB images of 48× 48 pixels. We treat the robot as
a point mass when checking collision. Advanced-Env uses the same room dimensions but places
realistic furniture models from the 3D-FRONT dataset Fu et al. (2021) (Fig. 4b). The robot needs
to reach some target location using distance and relative bearing to the target. An onboard camera
provides RGB images of 90× 160 pixels. When checking collisions, we approximate the robot as a
circular shape of radius 25cm, roughly the same as the quadrupedal robot in Real deployment.

In Sim training, we randomize obstacle and furniture configurations, and also camera poses (tilt and
roll angles) in Advanced-Env to account for possible noise in real experiments. Sim training uses
100 environments in Vanilla-Env and 500 environments in Advanced-Env. After Sim training, we
can fine-tune the policies in different types of Lab environments listed below:

• Vanilla-Normal: shares the same environment parameters as ones in the Sim stage.
• Vanilla-Dynamics: increases the lower bound of forward and angular velocity.
• Vanilla-Task: the robot needs to enter the target region with heading within some range.
• Advanced-Dense: assigns a higher density of furniture in the rooms.
• Advanced-Realistic: uses realistic room layouts (Fig. 4c) and associated furniture configura-

tions from the 3D-FRONT dataset. We perform Lab-to-Real transfer with policies trained in
this Lab (Fig. 4d). More details about the dataset can be found in Appendix A.3.
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(a) Vanilla-Env (averaged over 5 seeds) (b) Advanced-Env (averaged over 3 seeds)

Figure 5: Comparison of safety violations during Lab training and unsuccessful trials at test time.

Policy. We parameterize the performance and backup agents with NNs consisting of convolutional
(CONV) layers and fully connected (FC) layers. The actor and critic of each agent share the same
CONV layers. In Vanilla-Env, a single RGB image is fed to the CONV layers, and in Advanced-Env,
we stack 4 previous RGB images while skipping 3 frames between two images to encode the past
trajectory of the robot. More details of NN and training can be found in Appendix A.2.

Baselines. We consider two variants of Sim-to-Lab-to-Real: PAC Shield that trains a safety-
ensured policy distribution and Shield that trains a single safety-ensured policy without conditioning
on latent variables. We consider four types of baselines: (1) unconstrained RL that neglects safety
violations (Base), (2) reward shaping that adds penalty to reward when violating constraints (RP),
(3) PAC-Bayes control that trains a diverse policy distribution (PAC Base and PAC RP (Majum-
dar et al., 2021)), and (4) a separate safety agent (SQRL (Srinivasan et al., 2020) and Recovery
RL (Thananjeyan et al., 2021)). The major distinction between Sim-to-Lab-to-Real and PAC-Bayes
control is that the latter does not handle the safety explicitly but only relies on diverse policies and
fine-tuning to prevent unsafe maneuver. Sim-to-Lab-to-Real differs from SQRL and Recovery RL
in that the latter train the safety critic with sparse safety indicators shown below,

Qb(ot, at) := IE(st) + γ
(
1− IE(st)

)
min

at+1∈A
Qb(ot+1, at+1

)
,

where IE(st) = 1{gE(st) > 0} is the indicator function of the safety violations.

Results. We compare all the methods by (1) safety violations in Lab training and (2) success and
safety at deployment (Figure 5). We calculate the ratio of number of safety violations to the number
of episodes collected during training. For deployment, we show the percentage of failed trials (solid
bars in Figure 5) and unfinished trials (hatched bars). We summarize the main findings below:

1. Among all Lab training, our proposed Sim-to-Lab-to-Real (PAC Shield) achieves fewest safety
violations. This demonstrates the efficacy of using reachability-based safety critic for shielding
as it learns from near failure with dense cost signals (as opposed to risk-based safety critics).
Adding penalty in the reward function does not reduce safety violations significantly.

2. During deployment, Sim-to-Lab-to-Real achieves the lowest unsuccessful ratio of trajectories
(solid bars plus hatched bars) and the fewest safety violations (solid bars). This suggests that (1)
enforcing hard safety constraints explicitly improves the safety and (2) training a diverse and
safe policy distribution achieves better generalization performance to novel environments. We
show stronger generalization guarantees compared to PAC-Bayes baselines.

3. Sim-to-Lab-to-Real achieves the best performance and safety among baselines when the poli-
cies are deployed on a quadrupedal robot navigating through real indoor environments. The
empirical performance and safety also validate the theoretical generalization guarantees.

Reachability vs. Risk-Based Safety Critic. Sim-to-Lab-to-Real and previous safe RL
methods differ in (1) the metric used to quantify safety and (2) training of the backup
agent. With reachability-based RL, we enforces the constraint that the distance to obsta-
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cles should be no lower than a threshold. In comparison, SQRL and Recovery RL define
safety by the risk of colliding with obstacles in the future and use binary safety indicators.

(a) Lab: Vanilla-Normal

(b) Lab: Advanced-Realistic

Figure 6: 2D slices of safety critic val-
ues when the robot is facing to the right.

We argue that risk-based threshold can easily overfit to spe-
cific scenarios since the probability heavily depends on the
discount factor used. In addition, reachability objective al-
lows the backup agent to learn from near failure, while the
risk critic in SQRL and Recovery RL needs to learn from
complete failures, leading to more safety violations in Lab
training. Fig. 6 shows 2D slices of the safety critic values
in both environment settings. Reachability-based critics out-
put thicker unsafe regions next to obstacles, while risk critics
fail to recognize many unsafe regions or consider unsafe only
when very close to obstacles. Among different Lab setups,
compared to the baselines, our method reduces safety viola-
tions by 77%, 4%, 76%, 62%, and 23% in training and 38%,
26%, 54%, 34%, and 28% in deployment. Through experi-
ments we also find the value threshold vthr used in shielding
an important parameter; see Appendix A.5 for more analysis.

Generalization Guarantees. We evaluate the PAC-Bayes
generalization guarantees obtained after Lab training, and the
effect of adding reachability-based shielding in the policy ar-
chitecture to the bounds. Table 1 shows the bounds and test
results on safety (not colliding with obstacles) and success (safely reaching the goal) in Advanced-
Realistic Lab. The true expected success and safety are tested with environments that are similar to
the Lab training environments (of the same distribution) but unseen before. We compare the bound
trained using PAC Shield with previous PAC-Bayes Control method (PAC Base). With shielding,
the bound improves from 0.366 to 0.786 for task completion and from 0.367 to 0.794 for safety sat-
isfaction. Thus, explicitly enforcing hard safety constraints not only improves empirical outcomes
but also provides stronger certification to policies in novel environments. Due to space constraint,
we show the bounds for other Labs in Appendix A.4.

Table 1: Results of PAC-Bayes guarantees and physical
experiments with Advanced-Realistic Lab.

Advanced-Realistic

Method PAC Shield PAC Base SQRL
# Lab Environments 1000 1000 1000

Success Bound 0.701 0.297 -
True Expected Success 0.786 0.366 0.712

Real Robot Success 0.767 0.433 0.667

Safety Bound 0.708 0.304 -
True Expected Safety 0.794 0.367 0.713

Real Robot Safety 0.867 0.433 0.667

Physical Experiments. To demonstrate em-
pirical performance and safety in real envi-
ronments (Lab-to-Real transfer) and verify the
generalization guarantees, we evaluate the poli-
cies in 10 real indoor environments with di-
verse layouts (see Appendix A.4 for more de-
tails). We deploy a Ghost Spirit quadrupedal
robot equipped with a ZED 2 stereo camera at
the front (Fig. 4d), matching the same dynam-
ics and observation model used in Advanced-
Realistic Lab. Before each trial, the robot
is given the ground-truth distance and relative
bearing to the goal at the initial location, and then it uses the localization algorithm native to the
camera to update the two quantities.

We run policies trained with PAC Shield (ours), PAC Base (PAC-Bayes baseline), and SQRL (best
overall among other baselines). Each policy is evaluated at one environment 3 times (30 trials total).
The results are shown in Table. 1. Our policy is able to achieve the best performance (0.767) and
safety (0.867), validating the theoretical guarantees from PAC-Bayes Control. The upper-right of
Fig. 1 shows a trajectory when running policies trained with PAC Shield in a kitchen environment.

6 CONCLUSION

We propose the Sim-to-Lab-to-Real framework that combines Hamilton-Jacobi reachability analysis
and PAC-Bayes generalization guarantees to safely close the sim2real gap. We demonstrate signifi-
cant reduction in safety violations in training and stronger performance and safety during test time.
In future work, we plan to allow the policies to adjust the shielding value threshold online in each
environment. We also aim to perform fine-tuning in real Lab spaces in the future.
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A APPENDIX

A.1 CALCULATIONS OF THE PAC-BAYES BOUND

After Lab training, we can calculate the generalization bound using the optimized posterior P . First,
note that the empirical reward RS(P ) involves an expectation over the posterior and thus cannot
be computed in closed form. Instead, it can be estimated by sampling a large number of policies
z1, ..., zL from P : R̂S(P ) := 1

NL

∑
E∈S

∑L
i=1R(π

p,b
zi ;E), and the error due to finite sampling

can be bounded using a sample convergence bound RS Langford & Caruana (2002). The final
bound Rbound(P ) ≤ RD(P ) is obtained from RS and C(P, P0) by a slight tightening of CPAC from
Theorem 1 using the KL-inverse function Majumdar et al. (2021). Please refer to Appendix A2 in
Ren et al. (2021) for detailed derivations.

A.2 NN ARCHITECTURE AND TRAINING DETAILS

We show the training hyperparameters used in Sim and Lab training in Table. A1 and Table. A2. In
Vanilla-Env, the latent variable is appended to the output of the last CONV layer before FC layers.
In Advanced-Env, the stacked images are concatenated with the first 10 dimensions of the latent
variable by repeating each dimension to the image size. Rest of the dimensions is appended to the
output of the last CONV layer. The two auxiliary signals ℓE(s) and ∆E(s) are also appended to the
output of the last CONV layer.
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Table A1: Hyperparameters for PAC Shield in Sim training. Same NN architecture is used
for performance and backup policies.

Environment Setting

Vanilla-Normal/Dynamics Vanilla-Task Advanced-Env

# training steps 500000 1000000 4000000
Replay buffer size 50000 (steps) 100000 (steps) 5000 (trajectories)

Optimize frequency 2000 2000 20000
# updater per optimize 1000 1000 1000

Value shielding threshold -0.05 -0.05 -0.05

Latent Distribution

Latent dimension (nz) 20 20 30
Augmented reward coefficient (β) 2 2 2

Prior standard deviation 2 2 2

Optimization

Optimizer Adam Adam Adam
Batch size (Performance) 128 128 128

Discount factor (Performance) 0.99 0.99 0.99
Learning rate (Performance) 0.0001 0.0001 0.0001

Batch size (Backup) 128 128 128
Discount factor (Backup) 0.8 → 0.999 0.8 → 0.999 0.8 → 0.99
Learning rate (Backup) 0.0001 0.0001 0.001

NN Architecture

Input channels 3 3 22a

CNN kernel size [5,3,3] [5,3,3] [7,5,3]
CNN stride [2,2,2] [2,2,2] [4,3,2]

CNN channel size [8,16,32] [8,16,32] [16,32,64]
MLP dimensions [130+nz

b ,128] [132+nz
b ,128] [248+nz

b ,256,256]

Hardware Resource

# CPU threads 8 8 16
GPU Nvidia V100 (16GB) Nvidia V100 (16GB) Nvidia A100 (40GB)

Runtime 8 hours 14 hours 12 hours
a We stack 4 previous RGB images while skipping 3 frames between two images and concatenate the stacked images

with the first 10 elements of the latent variable (each element is repeated to match the same shape of a channel in
an image).

b The input of the first linear layer is composed of the output from the convolutional layers, latent variables and
auxiliary signals, which is 128 + nz + 2 in Vanilla-Normal/Dynamics, 128 + nz + 4 in Vanilla-Task and
256 + (nz − 10) + 2 in Advanced-Env.

Table A2: Hyperparameters for PAC Shield in Lab training.

Environment Setting

Vanilla-Env Advanced-Env

# training steps 500000 3000000
Replay buffer size 50000 (steps) 5000 (trajectories)

Optimize frequency 2000 20000
# updater per optimize 1000 1000

Value shielding threshold -0.05 -0.05
The number of environments (N ) 1000 1000

Optimization

Learning rate for latent mean 0.0001 0.0001
Learning rate for latent std 0.0001 0.0001

KL-divergence coefficient (α) 1 2
Optimizer Adam Adam

Batch size (Performance) 1024 128
Discount factor (Performance) 0.99 0.99
Learning rate (Performance) 0.0001 0.0001

PAC-Bayes Bound

The number of latent variables (L) 1000 1000
Precision (δ) 0.01 0.01

Hardware Resource

# CPU threads 8 8
GPU Nvidia V100 (16GB) Nvidia A100 (40GB)

Runtime 6 hours 16 hours
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(a) Sim training (b) Lab training

Figure A1: Samples of robot observations in Advanced-Env: for better view here, the virtual camera is
placed at a higher location than the robot.

A.3 ENVIRONMENT SETUP FOR ADVANCED-ENV

In order to train the navigating agent in realistic environments before Real deployment, we use the
3D-FRONT dataset Fu et al. (2021) that offers a larger number of synthetic indoor scenes with pro-
fessionally designed layouts and high-quality textured furniture. This is the richest dataset we find
suitable to indoor navigation task, as training with domain randomization and PAC-Bayes Control
framework often requires more than 1000 environments.

For Sim training, we use 7m × 7m undecorated rooms as room layouts, and randomly placing 5
pieces of furniture from the dataset. We use 4 categories of furniture: Soft (2701 pieces available),
Chair (1775 pieces), Cabinet/Shelf/Desk (5725 pieces), Table (1090 pieces). We also randomly
sample textures from the dataset to add to the walls and floor: for walls, we use categories Tile,
Wallpaper, and Paint (911 images available in total), and for floor, we use Flooring, Stone, Wood,
Marble, Solid Wood Flooring (466 images). We set the minimum clearance between furniture,
around the initial location, and around the goal to be 1m. The minimum distance between the initial
location and the goal is 5m. Fig. A1(left) shows samples of observations at the initial locations.
For Advanced-Dense Lab where the furniture density is higher, we place 6 instead of 5 pieces of
furniture, and the minimum clearance is 0.8m instead of 1m.

For Lab training, we instead use the professionally designed room layouts (with furniture configura-
tion) from the dataset. The dataset contains 6813 different house layouts (each with multiple rooms).
Since our focus is on obstacle avoidance with relatively short horizon, in each house, we sample ini-
tial and goal locations within one room. Unfortunately the dataset does not provide corresponding
wall and floor textures in each layout, and we resort to random samples as in Vanilla-Env. Again
we maintain a minimum clearance of 1m between furniture, around the initial and goal locations.
To check the environment is solvable, we extract a 2D occupancy map for each room and run the
Dijkstra algorithm. We also ensure there is at least one piece of furniture along the line connecting
the initial and goal locations. At the end, we process 2000 room environments, which are then split
for training and testing. Fig. A1(right) shows samples of observations at the initial locations.

A.4 SUPPLEMENTARY EXPERIMENT RESULTS

We present the PAC-Bayes bound for different labs in Table. A3. For all labs, explicitly handling
safety constraints with shielding improves the performance and safety bound as well as the empirical
results. Fig. A2 shows the 10 real environments and robots’ trajectories when running policies
trained with PAC Shield. The first and third images on top of the figure show the robot’s view
when shielding successfully guides robot away from the sofa stool and the cabinet. In the second
environment, the backup policy keeps shielding the robot away from center of the room with vthr =
−0.10, and all three trials ended as unfinished. We also test with vthr = −0.05, and the robot is
able to reach the target without shielding always activated. This highlights the need for adapting the
shielding value threshold online in future work.
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Figure A2: Environments for physical robot experiments and robot trajectories/observations with
PAC Shield: we run the policy three times in each environment by sampling different latent variables from
the posterior distribution. The three numbers in images indicates success/unfinished/failure split. Green dots
indicates shielding in effect. Green star indicates success in reaching the target. Red star indicates colliding
with obstacles. We scan the environment using an iPad Pro tablet before experiments to generate the 2D map.
The robot trajectory is obtained using localization algorithm of the onboard camera, and is inaccurate at places
(intersecting obstacles; not exactly reaching the target but the robot deems so, which we consider success).

Table A3: PAC-Bayes bound in different Labs.

Vanilla-Normal Vanilla-Dynamics Vanilla-Task

Method PAC Shield PAC Base PAC Shield PAC Base PAC Shield PAC Base
# Lab Environments 1000 1000 1000 1000 1000 1000

Success Bound 0.876 0.735 0.820 0.778 0.757 0.468
True Expected Success 0.945 0.886 0.880 0.843 0.851 0.590

Safety Bound 0.911 0.816 0.835 0.815 0.884 0.663
True Expected Safety 0.954 0.902 0.887 0.852 0.939 0.796

Advanced-Dense Advanced-Realistic

Method PAC Shield PAC Base PAC Shield PAC Base
# Lab Environments 1000 1000 1000 1000

Success Bound 0.623 0.254 0.701 0.297
True Expected Success 0.703 0.327 0.786 0.366

Safety Bound 0.630 0.259 0.708 0.304
True Expected Safety 0.709 0.332 0.794 0.367

A.5 OTHER STUDIES

Ablation Study: importance of two-stage training We evaluate the significance of Lab training
by testing the prior policy distribution (without fine-tuning in Lab) in Vanilla-Env. Without Lab
training, the unsuccessful ratio in deployment increases by 16%, 8% and 14%. This suggests that
Lab training is essential to policies adapting to real dynamics and new distribution of environments.
Additionally, we test the importance of Sim training with the baseline Shield (no policy distribution).
Without Sim training, the safety violations in Lab training increases by 60%, 11% and 65%. This
demonstrates that Sim training enables the backup agent to monitor and override unsafe behavior
from the beginning of Lab training.

Sensitivity analysis: value threshold Through experiments, we find the value threshold used in
shielding essential to performance and safety. vthr = 0 naturally results in more safety violations
during training compared to vthr = −0.05 and vthr = −0.10. Policies trained with vthr = 0
also performs the worst at test time, which indicates that less shielding during training makes the
robot learn unsafe or aggressive maneuver. Next we evaluate how the value threshold affects robot
trajectories at test time. Fig. A3 shows the trajectories using different thresholds in the two settings.
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(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure A3: Rollout trajectories using different value threshold for shielding: higher threshold (more neg-
ative) results in more conservative maneuver, i.e., farther away from obstacles. In Advanced-Env, we tend to
find too high threshold prevents the robot from reaching the goal and accidentally steers it towards tight space.

Small threshold leads to robot passing very closely next to obstacles, while a bigger threshold leads
to more conservative behavior. We also would like to highlight the challenges of learning safe
policies in Advanced-Env. As shown in the figure, with vthr = −0.15 the robot avoids the first
obstacle, and then the backup policy steers the robot away from the target, potentially deeming the
clearance next to the target not sufficient. However, this brings the robot near the wall, and due
to imperfect training of the backup actor, the robot fails to escape. With tight spacing and large
dimensions of the robot in Advanced-Env, we find the backup agent more difficult to train, and the
final test performance and safety can be sensitive to the shielding threshold. In Advanced-Realistic,
average test success rate with vthr = −0.05,−0.1,−0.15 are 0.678, 0.786, and 0.762 respectively.
Future work could look into adapting the threshold after short experiences in different environments.

Sensitivity analysis: the probability of sampling actions from the backup policy (ρ) and the
probability of activating shielding (ϵ) One of the main contributions of our work is the effective
joint training of both performance and back agents (realized in Sim training). The two parameters,
ρ and ϵ, directly affect the exploration in Sim training. With high ρ or high ϵ, the RL agent basically
only explores conservatively within a small safe region. However, in the beginning of the training,
we should allow the RL agent to collect diverse state-action pairs. On the other hand, we also
gradually anneal ρ→ 0 and ϵ→ 1 since we want the performance policy to be aware of the backup
policy. In other words, the performance policy is effectively in shielded environments towards end
of Sim training. Fig. A4 shows the Sim training progress under different ρ and ϵ scheduling. With
constant ρ = 0 or ϵ = 0, the number of safety violations is much higher than that with both
parameters annealing. Even worse, ϵ = 0 results in the number of safety violations increase at
constant speed and the training success fluctuates significantly. On the other hand, with ρ = 1 or
ϵ = 1, the number of safety violations is only half as that with both parameters annealing. However,
this is at the expense of exploration and leads to worse success rate in deployment. In Vanilla-Env
ρ = 1 leads to very poor training success. Although in Vanilla-Env ϵ = 1 does not have significant
effect on training success, in the Advanced-Env, insufficient exploration hinders training progress.
Also note that Sim training is not safety-critical and we do not aim to reduce safety violations then.

(a) Vanilla-Env (b) Advanced-Env

Figure A4: Effect of ρ and ϵ scheduling in Sim training: annealing ρ and ϵ helps balance between safety
violations and task completion. For Vanilla-Env, ρ initializes at 1 and decays by 0.5 every 25000 steps, and ϵ
initializes at 0 with 1− ϵ decaying by 0.5 every 50000 steps. For Advanced-Env, ρ initializes at 0.5 and decays
by 0.5 every 500000 steps, and ϵ initializes at 0 with 1− ϵ decaying by 0.5 every 200000 steps.
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