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ABSTRACT

The physical world evolves continuously in time. Most prior works on reinforce-
ment learning cast continuous-time environments into a discrete-time Markov De-
cision Process (MDP), by discretizing time into constant-width decision inter-
vals. In this work, we propose Continuous-Time-Controlled MDPs (CTC-MDP),
a continuous-time decision process that permits the agent to decide how long each
action will last in the physical time of the environment. However, reinforcement
learning in vanilla CTC-MDP may result in agents learning to take infinitesimally
small time scales for each action. To prevent such degeneration and allow users to
control the computation budget, we further propose CTC-MDPs with a constraint
on the average time scale over a given threshold. We hypothesize that constrained
CTC-MDPs will allow agents to “budget” fine-grained time scales to states where
it may need to adjust actions quickly, and coarse-grained time scales to states
where it can get away with a single decision. We evaluate our new CTC-MDP
framework (with and without constraint) on the standard MuJoCo benchmark.

1 INTRODUCTION

Table 1: Glossary of concepts related to time, in existing MDP framework for continuous con-
trol.

Quantity Notation Definition

Frame skip n € Ny number of frames between two consecutive decisions

Time scale 0 e Ry physical elapsed time between two consecutive frames

Decision time scale n*d physical elapsed time between two consecutive decisions
Episode duration H e Ry total physical duration (e.g. in secs) for an episode
Episode decision steps [H/(nx*9d)] total number of decisions made by a policy
Episode interaction steps [H/] total number of interactions (i.e. frames) for an episode
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Figure 1: Illustration of the concepts in Table 1. We show the time evolution in the Hopper
environment. The top time axis is the episode interaction steps, and the bottom time axis is the
episode duration. Each decision a; (i = 1,2, .. .) takes effective for nd secs, i.e. n frames.

*Work was done in their spare time.
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Reinforcement learning (RL) mostly focuses on discrete-time Markov Decision Processes (MDP)
where the environment advances from one state to another, with time indexed by integers. How-
ever, many real-world control problems are inherently continuous-time. For example, the state of a
physical robot is modeled as a continuous-time differential equation and is simulated via numerical
integration (Todorov et al., 2012). To simplify the design of the sequential decision making frame-
work, most RL environments for continuous control (Brockman et al., 2016; Tassa et al., 2018)
assume the physical elapsed time between two consecutive decisions is fixed as a constant time
interval.

In most simulated environments, there are two basic quantities related to time, namely frame skip
(also known as action repetition) n € N and time scale ) € R. At each step, a policy makes a
decision, i.e. selects an action that is emitted into a simulator. The simulator simulates the dynamics
with § physical time for n consecutive internal steps (frames) with that same action. Then it returns
the last frame to the policy for the next decision. Thus, the elapsed physical time between two de-
cisions, i.e. decision time scale, is n * . We summarize the related concepts in Table 1 and Fig. 1.
Normally, the frame skip n and time scale § are set with heuristics by practitioners. Empirically,
the values of frame skip (Braylan et al., 2015; Yarats et al., 2019; Reda et al., 2020; Andrychowicz
et al., 2020) and time scale (Tallec et al., 2019) have drastic effects on agent performance, and their
optimal values vary from task to task, requiring much human effort on tuning. In principle, small
frame skips and time scales have the potential to learn a better policy, as actions can be adjusted
more frequently. However, the tradeoff is that the MDP becomes harder to optimize due to vanish-
ing reward signals through a longer episode (Tallec et al., 2019). Conversely, large frame skips and
time scales can reduce the episode decision steps (defined in Table 1), accelerating exploration and
learning (McGovern et al., 1997; Kalyanakrishnan et al., 2021), but incurs more simulation error
and implausible physical dynamics, especially in discontinuous dynamics such as contact model-
ing (Moreau & Panagiotopoulos, 2014).

A natural question follows: what if we enable RL agents to automate the selection of frame skip
and time scale per task? Can we relax the assumption of a fixed frame skip and simulation time
scale throughout an episode? Intuitively, intelligent agents like humans are capable of selecting
different time scales for their actions depending on the contexts (Klapp, 1995; 2003; Schneider
et al, 2011). A number of recent works in deep RL (Durugkar et al., 2016; Vezhnevets et al., 2016;
Lakshminarayanan et al., 2017; Sharma et al., 2017) propose automating the learning of the frame
skip n, but not the time scale §, which we study in this work. In this paper, we aim to build agents
that can learn the continuous time scale ¢ for continuous control problems. Our eventual goal
for the agents is to solve the tasks within the fewest episode interaction steps (defined in Table 1),
which are the actual number of interactions between actions and environments. Such a goal cannot
be realized by learning the frame skip (Sharma et al., 2017), because the episode interaction steps
[H/4] is independent of it.

To formulate the continuous control on time scale, we first propose a generic MDP framework
named continuous-time-controlled MDP (CTC-MDP in short, Def. 3.2), a time discretization of
continuous-time optimal control problem. CTC-MDP allows a policy to select continuous time scale
depending on the state in each step, like an extra degree of freedom, within a predefined interval.
However, vanilla RL algorithms for solving CTC-MDPs may converge to always choosing a minimal
value. This is also found in previous work on action repetition (Sharma et al., 2017) and hierarchical
RL (Bacon et al., 2017). Inspired by the regularization in options framework (Harb et al., 2017),
we put a constraint on the maximal number of episode interaction steps upon CTC-MDP, named
constrained CTC-MDP. This constraint will not only mitigate the issue of degeneration, but also
give the RL practitioners an interface to control the agent behavior. For example, for applications
with accurate simulation or real robots, users can set a small value for the episode interaction steps
for cheap computation, and vice versa.

We conduct experiments on several continuous control environments to show the effectiveness of the
proposed constrained CTC-MDP and corresponding RL algorithms. Given roughly the same number
of episode interaction steps, policies with constrained continuous time control can outperform the
counterpart with fixed time scale or unconstrained setting. Behavior analysis on continuous time
control verifies our intuition that the policy will tend to exploit the dynamics by taking a suitable
time scale conditioned on the physical states. Finally, we also discuss the limitations of our new
framework for future work.
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2 RELATED WORK

In this section, we introduce the two lines of our related work. The first is learning to repeat actions,
i.e. automating the selection of frame skips. The other is continuous-time RL and semi-MDPs,
which assumes that the continuous time scale can change but is controlled by the environment.
Our work differs from them in that we aim to learn to control the continuous time scale. We also
provide an algorithm to learn to solve tasks within episode interaction steps of any given value for
regularization.

Learning to repeat actions. Action repetition, also known as macro-actions and action persis-
tence, appears as an integer hyperparameter named frame skip in many environment simulators. For
example, DQN (Mnih et al., 2013) uses frame skip number of 4 in Atari games (Bellemare et al.,
2013), i.e. repeating the same actions for 4 consecutive frames. Normally, this hyperparameter is
pre-defined and fixed by the simulator. It is critical to achieve good agent performance; optimal
frame skip empirically varies from task to task almost everywhere, including Atari games (Braylan
et al., 2015), coordinated-state-based locomotion (Reda et al., 2020) and pixel-based robots (Yarats
et al., 2019). Large frame skips can reduce the episode decision steps to accelerate exploration and
learning, with the assumption that consecutive states are similar (McGovern et al., 1997; Kalyanakr-
ishnan et al., 2021; Metelli et al., 2020). Motivated by this, a number of works (Durugkar et al.,
2016; Vezhnevets et al., 2016; Lakshminarayanan et al., 2017; Sharma et al., 2017; Hessel et al.,
2019; Lee et al., 2020; Grigsby et al., 2021; Chen et al., 2021; Yu et al., 2021; Biedenkapp et al.,
2021) automate the selection of frame skip per step, and show superior performance over the fixed
number setting. Learning to repeat actions can be thought as a special case of hierarchical RL (Dayan
& Hinton, 1993; Sutton et al., 1999) where the learned options or high-level policies select current
primitive action and its repeated times.

Continuous-time RL and semi-MDPs. While most deep RL algorithms focus on discrete-time
MDPs, there are also a rich history of continuous-time RL (Baird, 1994; Bradtke & Duff, 1995;
Munos & Bourgine, 1997; Doya, 2000; Ramstedt & Pal, 2019; Xiao et al., 2020) where the state,
action, and reward are indexed over continuous time instead of discrete integers. The time scales are
often set as an infinitesimal number to approximate the underlying continuous-time optimal control
problem (Bryson & Ho, 2018) (Def. 3.1). Semi-MDPs (Ross, 2013; Howard, 2012; Du et al., 2020)
generalize the continuous-time RL problem to allow the time scales to vary through one episode,
but the time scale transition probabilities are preset by the environment. Similar to the frame skip, a
small time scale adds difficulty to policy optimization (Tallec et al., 2019).

3 CONTINUOUS-TIME-CONTROLLED MDP

We derive CTC-MDPs by beginning with the classic formulation of continuous-time optimal con-
trol (Def. 3.1, then introduce an approximation through time discretization, i.e. continuous-time-
controlled MDPs (CTC-MDPs, Def. 3.2). Finally, we provide a deep RL algorithm for the CTC-
MDPs.

3.1 FORMULATION: DISCRETIZING THE CONTINUOUS TIME

As a background, we first introduce the raw formulation of continuous control.

Definition 3.1 (Continuous-Time Optimal Control (CTOC)). CTOC (Bryson & Ho, 2018) can
be defined as a tuple (S, A, f, po, 7,7, H): S and A are state and action space, f : S x A — S is the
dynamics in the form of differential equations, py is the initial state distribution, and r : S x A — R
is the reward function, v € (0, 1] is the discount factor, and H € (0,00] is the maximal time
horizon.! The RL objective is to find a policy 7 : S — Distr(.A) maximizing the discounted
cumulative rewards:

H
JOTOC () = / Ar(s(t), alt)) dt 0
st s(0) ~ pols).  &(t) = f(s(t).at)),  alt) ~(s(t)), Vte [0, H] @
O

"We allow early stopping in one episode that has episode horizon less than H. Although it is equivalent to
have zero rewards after the stop in CTOC, it will make a difference in constrained MDP (Sec. 4.1).



Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

In optimal control literature, the dynamics f are usually assumed to be known or have some simple
form (e.g. affine w.r.t. control), and the reward r is also known or quadratic, so that the problem
could be analytically solved via Hamilton—Jacobi-Bellman equation.

In deep reinforcement learning, both dynamics and reward are unknown to the policy (Sutton &
Barto, 2018). The optimal policy should be learned from the collected trajectories through inter-
action with environment. To computationally interact with a CTOC environment, we replace the
integral with a summation over a finite number of time scales. Here we propose a generic and
flexible time discretization formulation as follows.

Definition 3.2 (Continuous-Time-Controlled MDP (CTC-MDP)). We consider a generic for-
mulation on time discretization: given a CTOC problem (S, A, f, po, 7,7, H), CTC-MDP can be
represented as (S, Acrc, f, po, 7,7y, H) where the new action space Acrc = AU A is augmented
with an extra continuous 1-dimensional action space on time scale A. For simplicity, we consider
As = [Omin, Omax] Where 0 < dmin < Omax are in physical unit of seconds. CTC-MDP can be

constructed for any frame skip, but for simplicity we also assume the frame skip n = 1 so that the
time scale is equal to decision time scale (Table 1).

The optimal control objective of CTC-MDP can be viewed as an approximation of that of CTOC: to
find an optimal policy 7 : S — Distr(Actc)

T
JOTC-MDP (1 ZVEi:l O (54, at)dy
~—

t=1

R(s¢,a¢,04) (3)
L g
~ Yt [ (), a(t) de 19O
t=1 f—1 Ok
T
s.t. 89 ~ P0(8)7 St4+1 = F(f, 3t7at75t)za (at>5t) ~ 77(315)7 Zét <H 4)
t=1
where the dynamics is approximated by some numerical integrator F' (Bulirsch et al., 1991), in the

simple case that it could be forward Euler method, i.e. F(f,s,a,d) := s+ f(s,a)d . The reward
function is approximated by linearization, i.e. R(s,a,d) = r(s,a)d. The time scale §; and episode

interaction steps 1" follow the constraint that Zthl 0y < H. O

Intuitively, the policy in CTC-MDP can control the time scale §; € A4; in each time step ¢. Between
two consecutive time steps ¢, t+ 1, the action at the previous time step a; would hold in the dynamics
during that period, i.e. repeat the action for d; physical seconds.

Connection with previous formulations. There are several alternatives to discretizing the time
in continuous-time optimal control problem. Here we list the main previous approaches in Table 2.
(Discrete-time) MDPs are a standard approach that assumes the time scales (and frame skips) are
constant. Action repetition frameworks (Sharma et al., 2017) extends MDPs, where the policy can
control the frame skip, but not the time scale. Moreover, when 7 * 0, < 1 < 1 < 1% Jpay, it
is a strict subset of CTC-MDP. Semi-MDPs (Bradtke & Duff, 1995; Ross, 2013) support adaptive
continuous time scales, but it is determined by the environment, not the policy. Therefore, CTC-
MDP can be viewed as a generalization of the MDPs above, which indicates the performance of an
optimal policy in CTC-MDP should be at least as good as that in those MDPs given the same time
scale space.

3.2 REINFORCEMENT LEARNING ON CTC-MDP
To solve CTC-MDPs with RL, we can define a policy evaluation operator 7" and Bellman opti-
mality operator 7* similar to those in MDPs. Let Q value function @ : S x (A x As) — R:

Tﬂ—Qﬂ—(sa a, 5) = R(S, a, 5) + ’7675Es’wF(f,s,a,(s),(a’,5/)~7r(s’) [Qﬂ(slv CL/, 5/)] %)

T*Q*(Sa a, 6) = R(Sa a, 6) + 76tE’s’~F(f,s,a,6) I{B%’}/{ Q*(S/a a/7 6/) (6)

*We refer to s(t) as the state at physical time ¢ € R, and s; as the ¢-th state where ¢ € N, same applied to
action a.
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Table 2: Comparison among different MDPs on the spaces of frame skip and time scale. The math
symbols follow § € R4, n € Ny and dmin, Omax € R.

. Space of Space of Can Control
Formulation . . .
Frame Skip Time Scale  Time Scale?
(Discrete-time) MDP (Bellman, 1957) {n} {6} X
Action Repetition Learning (Sharma et al., 2017) | {1,...,n} {6} X
Semi-MDP (Bradtke & Duff, 1995; Ross, 2013) {n} [Omin, Omax] X
Continuous-Time-Controlled MDP (Ours) {n} [Omin, Omax] v

In the tabular case, the operators are contractive since 7° < 7° = 1. In general cases, we can
train deep RL policies for continuous control such as DDPG (Lillicrap et al., 2015) based on the
operators.

However, there exists a potential issue: the optimal policy is free to make the time scales as small as
it likes, without penalty. Although this may be effective in realizing higher overall returns, this will
excessively slow down the simulation cost of each episode, and result in more environment interac-
tion steps. This is typically followed by lower performance because the agent does not experience as
many episode resets as needed for good exploration. We demonstrate this phenomenon in Sec. 5.1.
In fact, this is not limited to CTC-MDPs; action repetition frameworks without penalty (Sharma
et al., 2017, Table 6) also suffer from expensive data collection due to small frame skips. In the
next section, we provide a solution to it, by introducing a constraint on the maximum of episode
interaction steps to encourage efficient task solving.

4 CONSTRAINED CTC-MDP

4.1 FORMULATION: CONSTRAINT ON EPISODE INTERACTION STEPS

We want the agent to intelligently choose an appropriate time scale for each state, instead of learn-
ing to always predict the minimal time scale. We implement this by imposing a constraint on the
number of episode interaction steps 7T'. This is similar to the idea of regularization on the horizon
of options (Harb et al., 2017). We could directly constrain 7" to be smaller than a target value, but it
will have the risk of encouraging the policy to stop early as a local optima, given that we allow the
episode to stop early in the original CTOC problem (Def 3.1).

Instead, we constrain the average time scale (involving the episode interaction steps 1") posed on the
CTC-MDP objective (Eq. 3):
T
Zt:l (St > A
—r =

(7

where A is the target average timescale, a constant. Note that the episode horizon ZtT:1 d; is not
a constant, but less than maximum value H, i.e. Zthl 6; < H. Thus, the constraint above controls
the upper bound of average episode steps, with 7' < %

Definition 4.1 (Constrained CTC-MDP). By transforming CTC-MDP (Def. 3.2) with the con-
straint (Eq. 7 involving the constant A) into an unconstrained optimization by the method of La-
grange multipliers, we can define the objective of constrained CTC-MDP JCTC-MDP (7 A A):

I§1>1101HlaX JETC- MDP(W A A) Z’YZ’“ 16kR(5t,at,5t + A <Z O — TA) )
t=1 t=1

Constrained CTC-MDP objective can be alternatively trained by the policy 7 and Lagrange multi-
plier A that balances the return and episode interaction steps:

penalty term
—
max JeTe- MDP (m; A, A) Z’YZ" 198 (R(s¢, at, 01) + A0 — A)) 9

R/ (s¢,at,0¢,)\)

min JETC MDP()\ m, A) ( Z(St > (10)

A>0

where we assume v — 1 to incorporate the penalty term mto the new rewards R'. If we let A = 0,
then the constrained CTC-MDP reduces to CTC-MDP. O
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4.2 REINFORCEMENT LEARNING ON CONSTRAINED CTC-MDP

Now we consider practical RL algorithms to solve the constrained CTC-MDP (Def. 4.1), given
a target time scale A. We follow the idea of soft actor-critic (SAC) with a constraint on policy
entropy (Haarnoja et al., 2018) to derive the actor and critic objectives for off-policy RL. The spirit
is to let the actor explicitly optimize the penalty term A(§; — A) through backprop, instead of treating
the penalty term as a scalar non-differentiable signal. This is possible because the time scale, like
the rest of the actions, is differentiable w.r.t. the policy parameters, i.e. (at,dt) ~ w(-, - | $¢).

The critic’s objective is based on the following policy evaluation operator £™* (similar to Eq. 5, but
adding the penalty term into the Q value on next state):

L7Q(s,a,0) = R(5,a,6) + Y Egop (ar.6)mr Q8,0 6") + A — A)] (11)
With the critic parameterized as (04 and the actor as mg, we can define the critic objective:

min By q.5)~p [(ch(S? a,8) = L7 Qy(s, a, 5))2} (12

where D is off-policy collection and Cj); is the target Q value function in TD.

The actor objective is defined as follows:

maxE, p (a,5)~m(s) Qs(s,a,0) + A0 — A)| =E[Q4(s,a,d) + Ad] (13)
6 N—_——
depend on 6

where we use pathwise derivative to optimize §. We emphasize that the penalty term (the time scale
0) depends on the actor parameter 6.

Finally, the Lagrange multiplier \’s objective is defined as

I)TlZlIg]ESND7(',6)N7r9(S)[)\(6 - A)} (14)

where we use the truncated version of Eq. 10 similar to the policy entropy constraint in SAC.

5 EXPERIMENTS

In this section, we aim to compare the effectiveness of constrained CTC-MDP (Def. 4.1), with two
baselines: unconstrained CTC-MDP (Def. 3.2) and the standard MDP, through empirical results
with deep RL algorithms trained on each environment.

We aim to answer two important questions:

1. (Sec. 5.1) Performance of RL on constrained CTC-MDP over baseline MDPs. How
does the performance of a constrained CTC-MDP compare to a standard MDP, given the
same (target) average time scale? How does RL on CTC-MDP compare to RL on an
unconstrained CTC-MDP?

2. (Sec. 5.2) Policy interpretability. Can we learn a meaningful policy in constrained CTC-
MDP? Intuitively, regions of state space where the dynamics are smooth are less sensitive
to choice of time scale, while states with non-smooth dynamics (e.g. a leg making contact
with the ground) are more sensitive to choice of time scale. We hypothesize that in such
tasks, a learned policy can select a suitable time scale corresponding to current state.

We use the standard MuJoCo benchmark (Todorov et al., 2012) as our testbed. To enable contin-
uous time control in MuJoCo, we augment the arguments in the step (action) function in the
environment into step (action, dt). Inthe uncontrolled setting (i.e. MDPs), dt is a constant;
while in controlled setting (i.e. CTC-MDPs), dt comes from the policy output, and the policy can
only modify the continuous dt, but leave the number of frame skips fixed. We add policy entropy
bonus (Haarnoja et al., 2018) into rewards to encourage exploration. Please see the appendix for
environment and training details.
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5.1 CONSTRAINED CTC-MDP OVER UNCONSTRAINED ONE AND MDP

In Fig. 2, we show the learning curves in three continuous control environments, namely, Ant,
Hopper, and Walker in MuJoCo simulator. We set the constraint on episode interaction steps as
the original value of the corresponding MDP. We find that policies trained within constrained CTC-
MDP perform the best episode returns in Ant and Hopper, and perform comparably to MDP in
Walker. Moreover, it has similar episode interaction steps with MDP, meeting the average time
scale constraint. On the contrary, (unconstrained) CTC-MDP degrades to learn to take a very small
decision time scale and cause very large episode steps in Ant, resulting in lower performance.

This shows that constrained CTC-MDPs can induce policies with both high episode returns and
similar episode decision steps to those in MDPs. We also show the learning curves in Fig. 4 with
x-axis being the total physical duration, with similar findings.
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Figure 2: Learning curves on constrained CTC-MDP, CTC-MDP, and MDP setting. We show
the results in three continuous control tasks Ant, Hopper, Walker, and report the episode return (top
row), and episode decision steps (bottom row), which is proportional to episode interaction steps
due to fixed frame skip.

5.2 INTEPRETABILITY OF CONTINUOUS CONTROL ON TIME

To analyze how the policy controls the time, we first plot the time series through the episode decision
steps of the learned time scale and physical states, in Hopper environment. Fig. 3 shows the time
series plots of two physical quantities: the height of Hopper (t orso_z; in meter) and binary signal
of contacting the floor (contact_floor). We also show the scatter plots between height and
corresponding learned time scales in Fig. 5.

From time series plots, when Hopper contacts the floor (with lower height), it will take a very large
time scale; when it hops in the air (with higher height), it will take a very small time scale. Similarly,
the scatter plots show that Hopper takes a large time scale when it accelerates to hop above the floor.
We hypothesize that the policy achieves higher returns by learning to exploit the dynamics; as the
contact dynamics are highly non-smooth, a large time scale may lead to implausible simulation
which allows the agent to skip past some bad intermediate states.

6 DISCUSSION

Limitations. Introducing an extra DoF on time scale As = [0in, Omax] in the CTC-MDP frame-
work affords the agent flexibility to achieve higher returns, but also has some caveats, mostly around
hyperparameter selection of i, and dax. (1) Too small 6,3, may cause difficulty in policy opti-
mization (Tallec et al., 2019) and induce long episodes, if policy learns to adjust actions frequently.
(2) Too large ,,.x are prone to large simulation errors, especially notorious for non-smooth dynam-
ics such as contact modeling. The simulation becomes an inaccurate approximation of real world
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Figure 3: Time series between learned time scales (in blue) and the height of Hopper (in red; left
figure) and the binary signal of contacting the floor (in red; right figure). The black horizontal line
is the target time scale.

systems if the policy learns to exploit the dynamics (Sec. 5.2). That being said, in real world en-
vironments such as robotics, we do not need to worry about large time scales as there would not
be simulation error. (3) A good choice of [dmin, dmax] varies from dynamics to dynamics and from
simulator to simulator, which requires some human effort to tune. (4) We also found it hard to learn
the discrete frame skip together with the continuous time in our framework, due to the mixture
of continuous and discrete actions introducing additional complexity to actor-critic algorithms. (5)
Finally, we tried to generalize the constrained CTC-MDP JCTC-MPP (7 \- A) to a contextual one
where the context is the target average time scale A, but found some mixed results when compar-
ing to a standard contextual MDP without time scale control. We suspect that solving a contextual
CTC-MDP requires better algorithms for adaptive sampling context variables during training, which
generally remains an open problem in multi-task RL.

Future work. (1) On the algorithmic side, we could investigate non-Gaussian distributions of the
learned time scale actions, to see if they are easier to learn or more expressive. (2) On the framework
side, we could extend constrained CTC-MDPs to contextual ones where an agent can condition on
the target average timescale A to learn a multi-task policy that generalizes to unseen timescales. As
mentioned before, this may depend on general innovations in online RL algorithms for contextual
MDPs. (3) On the experimental side, we could conduct real robot experiments to evaluate our
framework, given that real robots are exempt from simulation error. In a real robot system, the agent
would select the physical time interval until its next action computation.
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A ENVIRONMENT DETAILS

We adopt the Hopper, Walker, and Ant from standard MuJoCo benchmark?, use their default param-
eters such as frame skips and episode duration, and introduce continuous time scale 4. The bounds
of A; are roughly tuned per environment to avoid numerical issues in simulation. Table 3 shows the
details of environment parameters.

| Hopper ~ Walker ~ Ant

Episode duration H (secs) 8 8 50
Original fixed time scale & (secs) 0.002 0.002 0.01
Minimal time scale d,,;, (secs) 0.00064 0.00064 0.002
Maximal time scale ;.5 (secs) 0.0064 0.0064 0.02
Frame skip n 4 4 5
Target average time scale A (secs) 0.008 0.008 0.1

Table 3: Environment setting. We keep the default frame skip n, and set the target average time
scale as A = oy * 1 to match the default setting.

To match the default MDP’s reward function r,; when § = d;4, we define the CTC-MDP’s reward
function R as:

R(s,a,0) = roi(s, a)%

so that we can directly compare the returns between MDPs and CTC-MDPs.

B TRAINING DETAILS

We use SAC with policy entropy constraint (Haarnoja et al., 2018) to train RL for continuous control.
For MDPs, we use the default hyperparameters of SAC. For (constrained) CTC-MDPs, we find
SAC is very sensitive to the value of target policy entropy, so we tune this hyperparameter for each
environment within {—3, —4, —5, —6, —7, —8} and find —5 works well for all the environments,
which is finally taken in the plots in the main paper.

C ADDITIONAL FIGURES
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Figure 4: Learning curves on constrained CTC-MDP, CTC-MDP, and MDP setting. We change the
x-axis from total decision steps (in Fig. 2) to total physical duration (in secs). We find similar
pattern: constrained CTC-MDP can achieve comparable performance as MDP with same physical
duration, and is faster and more stable than unconstrained CTC-MDP.

3https ://www.gymlibrary.ml/pages/environments/mujoco/
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Figure 5: Scatter plots between the height of Hopper (t orso_z; left figure) or the height velocity
(torso_zv; right figure) in x-axis, and corresponding learned time scales in y-axis. The black
horizontal line is the target time scale.

13



	Introduction
	Related Work
	Continuous-Time-Controlled MDP
	Formulation: Discretizing the Continuous Time
	Reinforcement Learning on CTC-MDP

	Constrained CTC-MDP
	Formulation: Constraint on Episode Interaction Steps
	Reinforcement Learning on Constrained CTC-MDP

	Experiments
	Constrained CTC-MDP over Unconstrained One and MDP
	Intepretability of Continuous Control on Time

	Discussion
	Environment Details
	Training Details
	Additional Figures

