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ABSTRACT

Counterfactual explanations have been widely studied in explainability, with a
range of application dependent methods emerging in fairness, recourse and model
understanding. However, the major shortcoming associated with these methods is
their inability to provide explanations beyond the local or instance-level. While
some works touch upon the notion of a global explanation, typically suggesting to
aggregate masses of local explanations in the hope of ascertaining global proper-
ties, few provide frameworks that are either reliable or computationally tractable.
Meanwhile, practitioners are requesting more efficient and interactive explainabil-
ity tools. We take this opportunity to investigate existing global methods, with a
focus on implementing and improving Actionable Recourse Summaries (AReS),
the only known global counterfactual explanation framework for recourse.

1 INTRODUCTION

Counterfactual explanations (CEs) identify input perturbations that result in desired predictions from
machine learning (ML) models (Verma et al., 2020; Karimi et al., 2020; Stepin et al., 2021). A key
benefit of these explanations is their ability to offer recourse to affected individuals in certain sce-
narios (e.g., automated credit decisioning). Recent years have witnessed a surge of research therein,
with a focus on identifying desirable properties of CEs, developing the methods to model those
properties and understanding the weaknesses and vulnerabilities of the proposed methods (Barocas
et al., 2020; Venkatasubramanian & Alfano, 2020; Pawelczyk et al., 2021; Slack et al., 2021).

Importantly, the research efforts so far have largely centred around local analysis, generating ex-
planations for individual inputs. Such analyses can help vet model behaviour at an instance-level,
though it is seldom obvious if the insights gained therein would generalise globally. For example, a
local CE may suggest that a credit decisioning model is not biased against a protected attribute (e.g.,
gender, race), despite net biases existing across all inputs. A potential way to gain global insights
is to aggregate local explanations, but given that the generation of CEs is generally computationally
expensive, it is not evident that such an approach would scale well or even retain accuracy.

Rawal & Lakkaraju (2020) investigates this problem, proposing Actionable Recourse Summaries
(AReS), a framework that constructs global counterfactual explanations (GCEs). This work reports
our attempt to understand and implement AReS. Although a useful and flexible framework, there
exist shortcomings that limit its real-world use. Specifically, we find that AReS is a) computationally
expensive and b) sensitive to continuous features, due to a dependency on the cardinality of the set
used in the selection GCEs. We propose amendments to the algorithm and demonstrate that these
lead to significant performance improvements on two benchmarked financial datasets.

2 INVESTIGATIONS: BACKGROUND, MOTIVATION AND EXISTING METHODS

2.1 LOCAL COUNTERFACTUAL EXPLANATIONS

Wachter et al. (2018) is one of the earliest works introducing CEs in the context of understanding
black-box ML models. Their approach defines CEs as points that are close to the query input,
w.r.t. some distance metric, that result in a desired model prediction. This work inspired several
follow-up works where researchers proposed desirable properties of CEs and presented approaches
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to generate such CEs. For example, Mothilal et al. (2020) argued that generating diverse CEs is
essential for recourse. Other approaches aim to generate plausible CEs by considering proximity to
the data manifold (Poyiadzi et al., 2020; Van Looveren & Klaise, 2021; Kanamori et al., 2020) or
by taking into account causal relations among input features (Mahajan et al., 2019). Actionability
of recourse is another important desideratum, as some features may be non-actionable, and hence
should be excluded from the resulting CEs (Ustun et al., 2019). In another direction, some works
focused on generating CEs for specific model categories, such as tree-based models (Lucic et al.,
2022; Tolomei et al., 2017; Parmentier & Vidal, 2021), or differentiable models (Mothilal et al.,
2020). For a detailed survey on CEs, please refer to (Karimi et al., 2020; Verma et al., 2020).

2.2 BEYOND LOCAL COUNTERFACTUAL EXPLANATIONS: THE CURSE OF GLOBALITY

Despite a growing desire from practitioners for global explanation methods that provide summaries
of model behaviour (Lakkaraju et al., 2022), the struggles associated with summarising complex,
high-dimensional models is yet to be comprehensively solved. Some manner of aggregations of
local explanations has been suggested, though no compelling frameworks have been presented that
a) are computationally tractable and b) return reliable GCEs. Lakkaraju et al. (2022) also indicates
a desire for increased interactivity with explanation tools, alongside global summaries, but these
desiderata cannot be paired until the efficiency issues associated with global methods are addressed.

Such works have been few and far between. Plumb et al. (2020) and Ley et al. (2022) have sought
global translations which transform each input point within a group to another desired target group,
in the context of low-dimensional spaces. Meanwhile, Becker et al. (2021) provides an original
method for GCE search, though openly struggles with scalability. To the best of our knowledge,
only the aforementioned AReS specifically focuses on finding GCEs in the context of recourse.

2.3 BEYOND INDIVIDUALIZED RECOURSE: ACTIONABLE RECOURSE SUMMARIES (ARES)

Recent work (Rawal & Lakkaraju, 2020) proposes AReS, a comprehensive, model-agnostic frame-
work for GCE generation. Building on the previously proposed two level decision sets (Lakkaraju
et al., 2019), AReS adopts an original, interpretable structure, termed two level recourse sets.

A two level recourse set contains triples of the form Outer-If/Inner-If/Then conditions, pictured in
Figure 1. A frequent itemset mining algorithm such as apriori (Agrawal & Srikant, 1994) is deployed
to generate candidate sets of conditions (e.g., Sex = Male, 20 ≤ Age < 30). These are combined
to generate triples, with all valid triples1 forming the ground set V . The candidate set of Outer-If
conditions is termed SD (the subgroup descriptors), while RL denotes the candidate set used to
select Inner-If or Then conditions. For apriori mining, the probability of an itemset in the data, or
support threshold p, determines the size of SD and RL, and consequently the size of V .

The subgroup descriptors SD can be set by the user to subgroups of interest, which is shown useful
in assessing fairness via the disparate impact of recourses between subgroups. Otherwise, Rawal
& Lakkaraju (2020) assign SD and RL to the same set generated by apriori. AReS deploys a
non-monotone submodular maximization algorithm (Lee et al., 2009) that selects, from the ground
set V , a final, smaller set of rules R. Interpretability constraints for the total number of triples ϵ1,
the maximum width of any Outer-If/Inner-If combination ϵ2 and the number of unique subgroup
descriptors ϵ3 in R are applied throughout. As in AReS, we take ϵ1, ϵ2, ϵ3 = 20, 7, 10.

While a novel framework, with an easily interpretable structure, AReS can fall short on two fronts:

Computational Efficiency An extremely low p value is required to achieve high-performance,
resulting in an impractically large ground set to optimise. Our work efficiently generates denser,
higher-performing ground sets, unlocking the utility that practitioners have expressed desire for.

Continuous Features AReS proposes binning continuous features prior to generating frequent
itemsets with apriori. However, we find that for models trained on continuous features, this approach
struggles to trade speed with performance. Too few bins results in unrealistic recourses, but too many
bins results in excessive computation time for apriori. We propose a modified ground set generation
algorithm that demonstrates significant improvements on continuous data.

1A valid triple requires that the features in the Outer-If/Inner-If conditions do not match, and the features in
the Inner-If/Then conditions match exactly with at least one change in feature value.
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Figure 1: Workflow for our AReS implementation (without improvements). SD and RL are assigned to
the same set generated by apriori. SD × RL2 is iterated over to compute all valid triples (Outer-If/Inner-
If/Then conditions) for the ground set V (Stage 1). Each item in V is evaluated (Stage 2), and the optimisation
procedure in Lee et al. (2009) is applied (Stage 3), returning the smaller two level recourse set, R. A more
detailed version of the framework can be found in both Rawal & Lakkaraju (2020) and Appendix B.

3 IMPLEMENTATIONS: ACTIONABLE RECOURSE SUMMARIES (ARES)
Our implementations include the original AReS framework, which follows the workflow demon-
strated in Figure 1, as well as optimisations. The ground set V is defined as the set of triples from
which the submodular maximisation algorithm (Lee et al., 2009) selects a two level recourse set
R ⊂ SD×RL2, as stated in AReS.2 We denote the dataset as X , and the set of affected individuals
with an unfavourable prediction from the model as Xaff. The objective function f(R) to be max-
imised is positive, comprising of incorrectness, coverage and cost. The metrics used in evaluating
performance are recourse accuracy (the percentage of instances in Xaff that are provided with a suc-
cessful recourse), denoted acc(R), and average recourse cost (the average cost of those individuals
in Xaff for whom prescribed recourses results in desired outcomes), denoted cost(R). Owing to
space constraints, we refer readers to Rawal & Lakkaraju (2020) and Appendix B for full details.

The overall global counterfactual search in AReS for a two level recourse set, can be partitioned
into three stages, as detailed in Figure 1 and Table 1. We generate V , evaluate V , and optimise V
(selecting a smaller, more interpretable set, R). We describe each of these stages in detail below,
alongside our respective optimisations. R is evaluated in terms of recourse accuracy and average
recourse cost, and it should be noted that, since recourse accuracy is monotonic (a new triple cannot
invalidate a previous triple), |R| ≤ |V | =⇒ acc(R) ≤ acc(V ), providing us with an upper-bound.

3.1 GROUND SET GENERATION (STAGE 1)
The optimisation algorithm (Lee et al., 2009) requires a ground set V , which is generated by iterating
through SD × RL2 and selecting valid triples. To generate larger SD or RL, and thus larger V ,
a smaller apriori threshold p is used. With no user input, we assign SD and RL to the same set
generated by apriori, giving V ⊂ RL3, a strict subset.3 We denote |RL| = n =⇒ |V | < n3.
Interpretability constraints that are independent of the optimisation, such as ϵ2, are applied in this
stage in O(n2) and not O(n3) time (see Appendix B.1). We introduce two methods to generate V .
The first method computes an identical V more efficiently, while the second computes a different V .

Contribution 1a (RL-Reduction) Iterating naively over SD × RL2 is wasteful, as many mem-
bers of RL will never form valid “If-Then” conditions. We iterate instead over RL in O(n) time and
compute feature combinations, before removing any items that contain a feature combination that
only occurs once, yielding a new RL with size αn, where 0 ≤ α ≤ 1 (note that SD = RL is left
untouched). For instance, the item “Foreign-Worker = True, Sex = Male” has a feature combination
of “Foreign-Worker, Sex”; if this only occurs once, it can be safely removed. For a given RL, the
ground set V is the same as the original method, yet (1− α2)n3 − n iterations are saved.

Contribution 1b (Then-Generation, qqq) Instead of searching SD × RL2 for triples, we search
SD×RL for If conditions, and deploy a separate method to generate Then conditions. Specifically,

2Although Rawal & Lakkaraju (2020) denote the solution to be a subset R ⊂ SD ×RL, this is mathemat-
ically impossible given that we require three conditions to form a valid triple (unless RL contains If/Then sets,
which cannot be true if SD = RL, as AReS suggests). Correspondence with the authors confirms this.

3We are guaranteed to find invalid triples in RL3. For example, if the first element of RL is “Sex = Female”,
the first iteration generates the triple “If Sex = Female, If Sex = Female, Then Sex = Female”, an invalid triple.
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(Stage 1) (Stage 2) (Stage 3)
Ground Set Generation Ground Set Evaluation Ground Set Optimisation

AReS n3 Iterations Performed Evaluates Full Ground Set Searches Full Ground Set

Ours α2n3 + n or n2m Evaluates and Shrinks Full Searches Shrunk and
Iterations Performed or Partial Ground Set Sorted Ground Set

Table 1: A summary of our AReS enhancements w.r.t. each stage of the search. Definitions in Section 3.1.

for each valid element of SD ×RL, with index i, we compute its feature combination and filter the
dataset by these features (also removing inputs that satisfy the initial If conditions), before applying
apriori again, with threshold q, to generate a set of Then conditions, denoted Ti. We can lower
bound q as 1/|X | (no observed itemset can have frequency < 1), and we find that varying q has little
impact on speed but reduces performance (Appendix C). If m = maxi|Ti| is the maximum size of
any such Ti, the number of iterations has an upper bound of n2m. The ground set generated differs
from the original method and we observe significant improvements on continuous features.

3.2 GROUND SET EVALUATION (STAGE 2)

The submodular maximisation (Lee et al., 2009) first evaluates the objective function f over all
triples v ∈ V , before initialising the solution R as the singleton set {v} with the maximum f({v}).
For large |V |, this evaluation becomes computationally costly (more-so does the subsequent ground
set optimisation), and many triples are also redundant. However, we require large |V | in order to
find high-performing triples and achieve an acceptable upper bound4 on the final set, R ⊆ V .

Figure 2: Redundancy in ground
set V . German Credit, p = 0.22.

We take advantage of two empirical observations: the generation of
a large ground set V is relatively cheap; and the recourse accuracy
acc(V ) of the full ground set is approached far before the whole
set has been evaluated. This allows us to efficiently shrink large
ground sets to smaller ones with comparable recourse accuracy.
For example, in 40 seconds, the apriori threshold p = 0.22 on the
German Credit dataset produces a ground set with |V | = 119708.
While acc(V ) = 84% then takes 300 seconds to evaluate, 84% is
converged to after only 5 seconds (Figure 2). The maximum value
of a single triple is also seen to converge quickly. We can generate
a large ground set, before only evaluating a small portion of this set
to yield an equally high-performing yet denser ground set. Note that simply raising p to 0.323 and
producing a smaller ground set of equal size does not yield 84% accuracy (instead, it yields 27%).

Contribution 2 (V-Reduction, rrr,r′r′r′) We evaluate a fixed number of triples and form a new ground
set in one of two ways: by adding each new triple, or by only adding triples that increase the
recourse accuracy of the new ground set (i.e. vertical steps in Figure 2, blue). We denote these r and
r′ respectively. For example, r′ = 2000 results in 2000 evaluations and less than 2000 triples added.

3.3 GROUND SET OPTIMISATION (STAGE 3)

The bottleneck in the AReS framework is, however, the submodular maximisation in Lee et al.
(2009), which takes the ground set V and returns a reduced set R that satisfies the interpretability
constraints. The time taken is a function of the size |V | of the ground set; we can thus achieve
speedups by effectively further shrinking the ground set pre-optimisation. The submodular maximi-
sation provides optimality guarantees. As such, we do not modify the algorithm itself.5 Our ground
set modifications instead provide the algorithm with a superior starting point and upper bound.

Contribution 3 (V-Selection, sss) We propose to sort the (new) ground set by recourse accuracy
(already computed), and select the s highest-performing triples. If s = r or r′, no sorting occurs.

4For instance, if acc(V ) = 25%, we cannot achieve acc(R) > 25%; conversely, a ground set with
acc(V ) = 80% requires major evaluation and will also include many low-performing, redundant triples.

5Importantly, however, with knowledge of our upper bound acc(R) ≤ acc(V ), optimisation can be termi-
nated if this bound is approached. Such a bound can also be used to determine if Stage 3 is even initiated.
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4 IMPROVEMENTS: EXPERIMENTAL RESULTS

We evaluate our methods on two benchmarked financial datasets: the German Credit dataset (Dua
& Graff, 2019) classifies credit risk on people described by a set of attributes, consisting mostly
of categorical features; the HELOC (Home Equity Line of Credit) dataset (FICO, 2018) includes
anonymised credit applications made by real homeowners, and consists solely of continuous fea-
tures. We train Deep Neural Networks (DNNs) with width 50 and depth 10 and 5 respectively on
these datasets, with an 80% training split. Continuous features are binned into 10 equal intervals
post-training (see Section 2.3 trade-off), and recourses are constructed on the training set.

We analyse the performance of AReS and our improvements cumulatively, at each stage of the
workflow. For various input parameter combinations (p, r, r′ and s), the final two level recourse
sets returned in Stage 3 achieve significantly higher recourse accuracy within a time frame of 300
seconds (5 minutes), achieving accuracies for which AReS required 45 minutes on German Credit,
and over 18 hours on HELOC. Further hyper-parameter details are located in Appendix C.

Figure 3: Computational Improvements. Top Row: German Credit. Bottom Row: HELOC. Left: Size of
Ground Set V vs Time. Centre: Ground Set acc(V ) vs Time. Right: Final Set acc(R) vs Time.

Takeaways In Stage 1, we demonstrate that RL-Reduction is capable of generating an equivalent
ground set V orders of magnitude faster than the original method. Our Then-Generation technique
also constructs (different) ground sets rapidly. Stage 2 V-Reduction (r = 5000) performs signifi-
cantly better than full evaluation, and Then-Generation erases many of the limitations surrounding
continuous features. We finally observe vast speedups in Stage 3, owing to the construction of small
yet high-performing ground sets: r, r′ and s restrict the size of V yet retain a near-optimal acc(V ).

We note that the choice of SD = RL affects performance (selecting a fixed SD would reduce the
size of |Xaff| and V ) though argue then that we are emphasising the scalability of our new approach.

5 CONCLUSION

This work studies the current state of global counterfactual explanations (GCEs), and addresses in
detail the scalability/performance issues we find in the recently proposed AReS framework (Rawal
& Lakkaraju, 2020). We investigate works on both global and local counterfactual explanations
before implementing and improving AReS. With mounting desire from a practitioner viewpoint for
access to fast, interactive explainability tools (Lakkaraju et al., 2022), it is crucial that such methods
are not inefficient. We propose improvements to the AReS framework that speed up the generation
of GCEs by orders of magnitude, also witnessing significant accuracy improvements on continuous
data. Our hope is that this will inspire further research into the particularly under-studied area of
GCEs, and prove useful as the development of explainability tools grows in the coming years.
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APPENDIX

This appendix is formatted as follows.

1. We discuss the Datasets and Models used in our work in Appendix A.
2. We discuss the Implementation Details of our work in Appendix B.
3. We list the Experimental Details of our work and analyse Further Results in Appendix C.

A DATASETS AND MODELS

Two benchmarked financial datasets are employed in our experiments, both of which are a) binary
classification and b) publicly available. Details are provided below and in Table 2. Our experiments
include just one type of model, Deep Neural Networks, which we also describe below and in Table 3.

A.1 DATASETS

The German Credit dataset (Dua & Graff, 2019) can be obtained from and is described in detail
at the following URL: https://archive.ics.uci.edu/ml/datasets/statlog+(german+
credit+data). We augment input dimensions by performing a one-hot encoding over necessary
variables (Sex, Foreign-Worker, etc). The documentation for this dataset also details a cost matrix,
where false positive predictions induce a higher cost than false negative predictions, but we ignore
this in model training. Note that this is distinct from the also common Default Credit dataset.

The HELOC (Home Equity Line of Credit) dataset (FICO, 2018) can upon request be ob-
tained from and is described in detail at the following URL: https://community.fico.com/s/
explainable-machine-learning-challenge. Missing values in the dataset are represented
with negative integers; we drop inputs where all feature values are missing, and replace the remain-
ing missing values in the dataset with the median value for that feature. We also drop any duplicate
inputs in the dataset. Notably, the majority of features are monotonically increasing/decreasing.

Name Categorical Continuous Input Dim. No. Train No. Test
German Credit 17 3 71* 800 200

HELOC 0 23 23 7896* 1975*

*Denotes values post-processing (one-hot encoding inputs, dropping inputs).

Table 2: Summary of the datasets used in our experiments. Although German Credit includes continuous fea-
tures, we find that they have limited effect on the model both during training and in the resulting explanations.

A.2 MODELS

We train Deep Neural Networks (DNNs) with width 50 and depth 10 and 5 respectively on these
datasets, with an 80% to 20% train to test split. Layers include dropout, bias and ReLU activation
functions. We map the final layer to the output using softmax, and use Adam to optimise a cross-
entropy loss function in the standard manner. Table 3 details various model parameters/behaviours.

Name Width Depth Dropout Train Acc. Test Acc |Xaff| |Xaff|/|X |
German Credit 50 10 0.3 82% 79% 162 20%

HELOC 50 5 0.5 74% 73% 3882 49%

Table 3: Summary of the DNNs used in our experiments. The proportion of negative labels in the dataset were
30% and 53% for German Credit and HELOC respectively; our models roughly follow suit (20% and 49%).

Of note is the scalability of AReS, which struggled with HELOC, a dataset that contained signifi-
cantly more points to explain (|Xaff|) than German Credit. Additionally, the proportion of points with
positive predictions (80% for German Credit and 51% for HELOC) influences the ease with which
AReS finds recourses. For stringent models (those which scarcely predict positively), it would make
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sense that the vast majority of frequent itemsets generated by apriori are representative of feature
value combinations that exist in the inputs with negative predictions, and we might therefore expect
to need to generate an enormous number of triples before we can identify successful recourses.

B IMPLEMENTATION DETAILS

We use this Appendix to provide further details regarding the implementation of each stage of the
AReS workflow. Our implementation of AReS, without improvements, does in fact differ slightly
from that proposed in Rawal & Lakkaraju (2020), and as such we will justify our changes herein.
We of course acknowledge that this implementation is far from the most efficient possible, though
hope that the patterns and improvements we have identified can aid further development of not only
this framework, but others in the global counterfactual explanations space also.

B.1 GROUND SET GENERATION (STAGE 1)

As stated in the main text, our implementation applies constraints during ground set generation
where possible. AReS includes interpretability constraints for the total number of triples ϵ1, the
maximum width of any Outer-If/Inner-If combination ϵ2 and the number of unique subgroup de-
scriptors ϵ3 in R. As in AReS, we take ϵ1, ϵ2, ϵ3 = 20, 7, 10. In our implementation, we expedite
the ϵ2 width constraint to the ground set generation process by constraining apriori to only return
frequent itemsets that have length ϵ2 − 1 or less, since those already with width ϵ2 cannot then be
further combined with another itemset to form Outer-If/Inner-If conditions. If the width constraint
is not violated for the If conditions, the resulting triple will automatically satisfy the constraint.

The implication of this is that we can apply the constraint in Stage 1 while we generate the ground
set (in the first two levels of the iteration through RL3). This avoids applying the width constraint
mid-optimisation in Stage 3, reducing the time complexity of the operation from O(n3) to O(n2). It
also reduces the number of constraints used in Lee et al. (2009), speeding up Stage 3. Since it makes
sense that triples which violate the maximum width condition should not be generated in Stage 1,
we assume that a similar approach is deployed (though not stated) in Rawal & Lakkaraju (2020).

Then-Generation A lower bound for the threshold q used in Then-Generation was also alluded
to in the main text. In fact, there always exists a lower bound when mining frequent itemsets, such
as in apriori, since no observed itemset can occur less than once. Thus, setting q < 1/|X | would be
redundant. This allows us to analyse the full effect of 1/|X ≤ q ≤ 1 in Appendix C.

B.2 GROUND SET EVALUATION (STAGE 2)

Our improvement (Contribution 2) evaluates the objective function f (see Section B.3) over a fixed
number of triples in V (recall that AReS evaluates the entirety of V ). As we’ve demonstrated
empirically, albeit on the two datasets tried in this investigation, evaluating the entire ground set
is wasteful, given that performance of the first r elements of V saturates quickly, and more so if
one considers that Stage 3 must then perform submodular maximisation over a space potentially
hundreds of times as large, and that Lee et al. (2009) only guarantees polynomial time.

However, there is a distinction between evaluating the objective function f and evaluating the acc
and cost terms used in evaluation. Fortunately, no extra major computation is required to evaluate
the acc and cost terms, since the objective function f returns model predictions and costs, and
although the two processes differ, they can be carried out efficiently in tandem. This is promising,
as not only does our method allow us to terminate evaluation once saturation has been reached,
but it also provides us with the upper bound acc(R) ≤ acc(V ). In many of our experiments, this
upper bound is actually reached in Stage 3 far before the algorithm has finished, presenting us with
a straightforward opportunity for early termination of the algorithm. This could further save time
dramatically, though was not included in our experiments.

B.3 GROUND SET OPTIMISATION (STAGE 3)

We introduce two key modifications to Stage 3 of our implementation. The first is to the objective
function, the second is to the submodular maximisation in Lee et al. (2009).
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Objective Function The objective function f(R) in Rawal & Lakkaraju (2020) is designed to be
non-normal, non-negative, non-monotone and submodular, and to have constraints that are matroids.
These conditions are required for the submodular maximisation in Lee et al. (2009) to have a formal
guarantee of convergence. This results in four terms in f(R): incorrectrecourse, cover, featurecost,
featurechange. Bar the cover term, all of these are subtracted from f(R) (i.e., maximising correct
recourse by maximising the negative of incorrectrecourse). Such an objective function with three
adjustable hyperparameters can be very difficult to tune. For that reason, we also trial in our exper-
iments an objective that consists very simply of acc(R) − λ × cost(R), which we maximise. We
argue that the formal guarantees of convergence (polynomial time) are largely a misdirection of ef-
forts in the original method. Polynomial time is not particularly helpful when the size of ground sets
required for certain datasets/models is huge, and thus we instead focus on reducing the size of the
ground set while retaining quality before the submodular maximisation (Lee et al., 2009) is applied.

Submodular Maximisation The algorithm states that, for k constraints, you can exchange up to
k elements from your solution set R alongside the addition of one element from V . Stated also is
that the optimisation should be repeated k+1 times, before the best solution for R is then chosen. In
reality, both of these induce high computational costs. Trivially, for the latter, ignoring the maximum
width constraint (Appendix B.1) and taking k + 1 = 3, we will mostly increase the time taken by
AReS three-fold. Having observed that both of these steps do not improve the performance of AReS
significantly in our experiments, we omit them from the original and improved implementations.

C EXPERIMENTAL DETAILS AND FURTHER RESULTS

We use the training data from each dataset to learn recourses in our experiments (future work could
analyse the effectiveness of such rules on unseen test data). Since AReS struggles to achieve suf-
ficient recourse accuracy within reasonable time-frames for our datasets and models, we set the
hyperparameters for featurecost and featurechange, or λ, to 0, also finding that the average cost of
recourses were low and did not vary a large amount, justifying the decision to target correctness. The
remaining hyperparameters used in the Figure 3 experiments (Section 4) are as detailed in Table 4.

Figure 4: Effect of apriori threshold q in the proposed
Then-Generation method (German Credit).

Recall also that we have bounded the range of
the apriori threshold q used in Then-Generation
to 1/|X | ≤ q ≤ 1 (Section 3.1 and Ap-
pendix B.1). Figure 4 demonstrates that for q >
1/|X |, we slightly reduce the time taken by the
algorithm, at the expense of a much larger drop
in performance. Observe that the red and brown
lines (where p is held constant and q is varied)
converge to the green and purple lines (where
q = 1/|X | and p is varied) respectively. The
brown and purple plots also indicate that com-
bining our two improvements RL-Reduction
and Then-Generation performs sub-optimally.
We thus decide to evaluate these improvements
separately with a fixed q = 1/|X | threshold
used in the Then-Generation method.

Stage 1 Stage 2 Stage 3

German
Credit

OG: 0.169 ≤ p ≤ 0.390 −→
RL: 0.39 ≤ p ≤ 0.149 −→
Then: 0.9 ≤ p ≤ 0.303 −→

q = 0.00125

OG: r = 5000
RL: r = 5000
Then: r = 5000, q = 0.00125
OG: 0.316 ≤ p ≤ 0.26, r = |V |

OG: 0.39 ≤ p ≤ 0.305, r = |V |
RL: p = 0.245
Then: p = 0.48,

q = 0.00125

HELOC
OG: 0.325 ≤ p ≤ 0.285 −→
RL: 0.325 ≤ p ≤ 0.203 −→
Then: 0.75 ≤ p ≤ 0.563 −→

q = 0.000127

OG: r = 5000
RL: r = 5000
Then: r = 5000, q = 0.000127
OG: 0.325 ≤ p ≤ 0.3, r = |V |

OG: 0.324 ≤ p ≤ 0.318, r = |V |
RL: p = 0.245
Then: p = 0.48,

q = 0.000127

Table 4: The keys OG (Original AReS), RL (RL-Reduction) and Then (Then-Generation) refer to the gener-
ation process of the ground set, as per Section 3.1. Arrows indicate values carried from one stage to the next.
Apriori thresholds p and q are listed. Remaining parameters r, r′ and s are listed in the original Figure 3 plots.
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