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Abstract
This paper explores the connections between tem-
pering (for Sequential Monte Carlo; SMC) and
entropic mirror descent to sample from a target
probability distribution whose unnormalized den-
sity is known. We establish that tempering SMC
corresponds to entropic mirror descent applied
to the reverse Kullback-Leibler (KL) divergence
and obtain convergence rates for the tempering
iterates. Our result motivates the tempering iter-
ates from an optimization point of view, showing
that tempering can be seen as a descent scheme
of the KL divergence with respect to the Fisher-
Rao geometry, in contrast to Langevin dynamics
that perform descent of the KL with respect to
the Wasserstein-2 geometry. We exploit the con-
nection between tempering and mirror descent
iterates to justify common practices in SMC and
derive adaptive tempering rules that improve over
other alternative benchmarks in the literature.

1. Introduction
Sampling from a target probability distribution whose den-
sity is known up to a normalization constant is a fundamen-
tal task in computational statistics and machine learning.
It can be naturally formulated as optimizing a functional
measuring the dissimilarity to the target probability distribu-
tion, typically the Kullback-Leibler (KL) divergence. From
there, it is natural to consider optimization schemes over
the space of probability distributions, to design a sequence
of distributions approximating the target one. Depending
on the chosen geometry over the search space and the time
discretization, one may obtain different schemes.

For instance, one possible framework is to restrict the search
space to the Wasserstein space, i.e. probability distribu-
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tions with bounded second moments equipped with the
Wasserstein-2 distance (Ambrosio et al., 2008). The latter
is equipped with a rich Riemannian structure (Otto and Vil-
lani, 2000), which makes it possible to define Wasserstein-2
gradient flows, i.e. paths of distributions decreasing the
objective functional of steepest descent according to this
metric. It is well-known that the Wasserstein gradient flow
of the KL can be implemented by a Langevin diffusion on
the ambient space (Jordan et al., 1998) and easily discretized
in time, resulting for instance in the Langevin Monte Carlo
(or Unadjusted Langevin) algorithm (Roberts and Tweedie,
1996). The latter is one of the most famous Markov Chain
Monte Carlo (MCMC) algorithms - maybe the most canon-
ical - that generate Markov chains in the ambient space,
whose law approximates the target distribution for a large
time horizon. It is known to converge fast when the tar-
get distribution has a smooth and strongly convex potential
(Durmus et al., 2019), or is satisfies a relaxed log-Sobolev
assumption (Vempala and Wibisono, 2019). Alternative
time discretizations of the KL Wasserstein gradient flow
(Salim et al., 2020; Mou et al., 2021) or its gradient flow
with respect to similar optimal transport geometries have
been considered in the literature to propose alternative al-
gorithms (Liu, 2017; Garbuno-Inigo et al., 2020), but their
convergence also depends strongly on the log-concavity of
the target.

Another possible framework is to cast the space of probabil-
ity distributions as a subset of a normed space of measures
(such as L2), and to consider the duality of measures with
continuous functions and the mirror descent algorithm that
relies on Bregman divergences geometry, as recently con-
sidered in Ying (2020); Chizat (2022); Aubin-Frankowski
et al. (2022). While both frameworks yield optimization al-
gorithms on measure spaces, the geometries and algorithms
are very different (in particular notions of gradients and con-
vexity). Mirror descent produces multiplicative ("vertical")
updates on measures allowing for change of mass, while
Wasserstein flows corresponds to displacement of fixed mass
particles supporting the measures ("horizontal" updates).
Moreover, as recently highlighted in Aubin-Frankowski
et al. (2022), the (reverse) KL as an objective loss for sam-
pling is actually strongly convex and smooth whatever the
target π in a mirror descent geometry induced by the KL
as a Bregman divergence. In contrast, it is known that
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the KL as an optimization objective is not smooth in the
Wasserstein geometry (Wibisono, 2018), and as we have
said earlier it enjoys convexity properties only if the target
distributions does as well. Above all, the latter scheme,
namely entropic mirror descent on the KL yields a sequence
of distributions that takes the simple form of a geometric
mixture between an initial distribution and the target, a well-
known sequence referred to as tempering (or annealing) in
the Monte Carlo literature (Neal, 2001). Interestingly, en-
tropic mirror descent on an objective functional can be seen
as an Euler discretization of its Fisher Rao gradient flow
(Domingo-Enrich and Pooladian, 2023); gradient flows in
this geometry have recently attracted a lot of interest thanks
to their nice theoretical properties (Chen et al., 2023; Yan
et al., 2023).

Algorithms approximating the tempering sequence offer
an alternative to Langevin-based MCMC methods, and are
often employed when the latter suffer from poor mixing
(Syed et al., 2022) or when estimates of the normalizing
constant are needed (Gelman and Meng, 1998). A number
of algorithms have been proposed to approximate the tem-
pering sequence, including sequential Monte Carlo (SMC;
Del Moral et al. (2006)), annealed importance sampling
(AIS; i.e. an SMC sampler in which no resampling occurs
Neal (2001)), and parallel tempering (PT; Geyer (1991)).
Independently, a number of schemes aiming at directly ap-
proximating the entropic mirror descent iterates on the KL
have also been proposed (Dai et al., 2016; Korba and Portier,
2022).

Choosing the right scheduling of temperatures for the se-
quence of tempered targets (or equivalently the step-sizes
as we will explain in more detail in this paper), is critical in
practice. Adaptive selection of the sequence of temperatures
is an active area of research in the AIS literature; however,
many of these strategies are intractable (Gelman and Meng,
1998), costly (Kiwaki, 2015), limited to exponential families
(Grosse et al., 2013), or numerically unstable (Goshtasbpour
et al., 2023) as we show in our experiments. In the SMC
literature, the sequence of temperatures is normally chosen
adaptively using the effective sample size, a proxy for the
variance of the importance sampling weights (Jasra et al.,
2011). Adaptive strategies are widely used in practice but
theoretical studies on how to select the tempering iterates
are limited to specific target distributions (see Beskos et al.
(2014) for i.i.d. targets and Chopin and Papaspiliopoulos
(2020, Proposition 17.2), Dai et al. (2022, Section 3.3) for
Gaussian targets).

In this paper, we investigate the links between tempering
and mirror descent and show that algorithms which sample
from the tempering sequence (such as SMC) can be seen
as numerical approximations to entropic mirror descent ap-
plied to the KL divergence, i.e. a time-discretization of

the KL gradient flow in the Fisher Rao geometry. We thus
establish a parallel result to that of Jordan et al. (1998);
Wibisono (2018) which shows that algorithms based on the
Langevin diffusion can be seen as numerical approximations
of gradient flow of the KL in the Wasserstein-2 geometry.

We adapt the proof of convergence of mirror descent in
the space of measures of Aubin-Frankowski et al. (2022,
Theorem 4) to the case of varying step sizes and obtain a
convergence rate for the tempering iterates. From this opti-
mization point of view, we also justify the popular adaptive
strategy that identifies the tempering sequence by ensuring
that the (KL, Bregman) divergence between two consecutive
distributions in the tempered sequence is small and constant.
We show that for a generic target distribution, this tempering
sequence obeys a differential equation, that can be solved
easily analytically in some simple cases that we highlight,
or by a simple numerical approximation based on particles
in general cases.

The paper is organized as follows. Section 2 provides the
relevant background on mirror descent on the space of mea-
sures. Section 3 details the connection between temper-
ing and entropic mirror descent and its consequence on de-
signing tempering schedules. Section 4 discusses different
strategies that were employed in the literature to approxi-
mate entropic mirror descent and their pros and cons. In
Section 5 we connect our results with relevant works in the
SMC/AIS literature.

2. Mirror descent on measures
In this section, we recall the main steps to derive the mir-
ror descent algorithm on the space of measures (see Ap-
pendix C for more details). The reader may refer to Aubin-
Frankowski et al. (2022) for a detailed introduction.

Notations. Fix a vector space of (signed) measures M(Rd).
Let M∗(Rd) the dual of M(Rd). For µ ∈ M(Rd) and
f ∈ M∗(Rd), we denote ⟨f, µ⟩ =

∫
Rd f(x)µ(dx). We

denote by P(Rd) the set of probability measures on Rd.
The Kullback-Leibler divergence is defined as follows: for
ν, µ ∈ P(Rd), KL(ν|µ) =

∫
log(dν/dµ)dν if ν is abso-

lutely continuous w.r.t. µ with Radon-Nikodym density
dν/dµ, and +∞ else.

2.1. Background on Mirror Descent

Let F : P(Rd) → R+ be a functional on P(Rd). Consider
the optimization problem

min
µ∈P(Rd)

F(µ).

Mirror descent is a first-order optimization scheme rely-
ing on the knowledge of the derivatives of the objective
functional, and a geometry on the search space induced by
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Bregman divergences. These two notions are introduced in
the following definitions.

Definition 1. If it exists, the first variation of F at ν is the
function ∇F(ν) : Rd → R s. t. for any µ ∈ P(Rd), with
ξ = µ− ν:

lim
ϵ→0

1/ϵ(F(ν + ϵξ)−F(ν)) = ⟨∇F(ν), ξ⟩ (1)

and is defined uniquely up to an additive constant.

Definition 2. Let ϕ : P(Rd) → R+ a convex functional
on P(Rd). The ϕ-Bregman divergence is defined for any
ν, µ ∈ P(Rd) by:

Bϕ(ν|µ) = ϕ(ν)− ϕ(µ)− ⟨∇ϕ(µ), ν − µ⟩ (2)

where ∇ϕ(µ) is the first variation of ϕ at µ.

Consider a sequence of step-sizes (γn)n≥0. Starting from an
initial µ0 ∈ P(Rd), one can generate a sequence (µn)n∈N

µn+1 = argmin
µ∈P(Rd)

{F(µn) + ⟨∇F(µn), µ− µn⟩

+(γn+1)
−1Bϕ(µ|µn)

}
. (3)

The first variation of ϕ, denoted ∇ϕ : P(Rd) → C(Rd),
maps an element of the primal (a distribution) to an element
of the dual (a function). In particular, writing the first order
conditions of (3) we obtain the dual iteration

∇ϕ(µn+1)−∇ϕ(µn) = −γn+1∇F(µn). (4)

The scheme (3)-(4) is referred to as mirror descent (Beck
and Teboulle, 2003). It has been shown recently in Aubin-
Frankowski et al. (2022), that the mirror descent scheme
converges linearly as soon as there exists 0 ≤ l ≤ L such
that F is relatively l-strongly convex and L-smooth with
respect to ϕ, a condition that can be written as lBϕ(ν|µ) ≤
BF (ν|µ) ≤ LBϕ(ν|µ), for constant stepsizes smaller than
1/L; extending the results of Lu et al. (2018) to the infinite-
dimensional setting of optimization over measures. In par-
ticular it applies to the case where both the objective and
Bregman divergence are chosen as the KL.

2.2. Entropic mirror descent on the KL

Consider the negative entropy functional:

ϕ : µ 7→
∫

log(µ(x))dµ(x) (5)

where µ also denotes its density w.r.t. the Lebesgue measure
on Rd. Since the first variation of ϕ at µ writes ∇ϕ(µ) =
log(µ), one gets from (2) that Bϕ(ν|µ) = KL(ν|µ), and
choosing ϕ as (5) yields the following multiplicative update
named entropic mirror descent:

µn+1 ∝ µne
−γn+1∇F(µn) (6)

by exponentiating (4). Notice that the latter scheme is an
Euler discretization of the Fisher-Rao gradient flow of the
functional F , as noticed in Domingo-Enrich and Pooladian
(2023) (see Appendix D for details).

Moreover, if F(µ) = KL(µ|π) (the reverse KL with respect
to π), ∇F(µ) = log(µ/π) and we obtain entropic mirror
descent on the KL iterates:

µn+1 ∝ µ(1−γn+1)
n πγn+1 . (7)

Since F is 1-strongly convex and 1-smooth with respect to
ϕ since BF = Bϕ (i.e. l = L = 1), as soon as one uses
step-sizes γn < 1, the KL objective decreases at each step
of the scheme (7), and converges at a linear rate as stated in
the Proposition below.

Proposition 1. Let µ0 ∈ P(Rd) an initial distribution.
Entropic mirror descent iterates on F = KL(·|π) as defined
in (7) converge at a rate:

KL(µn|π) ≤
Cn

γ1
KL(π|µ0); C

−1
n =

n∑
k=1

k∏
i=1

γk/γ1
1− γi

. (8)

where (γk)
n
k=1 is the sequence of step-sizes. In particular,

a simple induction argument shows that Cn ≤
∏n

k=1(1−
γk) → 0 as n→ ∞ when γn ≤ 1 for all n ≥ 1. Hence, the
mirror descent iterates (7) satisfy

KL(µn|π) ≤ (γ1)
−1

n∏
k=1

(1− γk)KL(π|µ0). (9)

The proof of Proposition 1 is given in Appendix A. It ex-
tends the result of Aubin-Frankowski et al. (2022, Theorem
4) to the case of varying step-sizes, γn ̸= γ for all n ≥ 1.
We derived our result by carefully adapting the proof of
Aubin-Frankowski et al. (2022, Theorem 4) or Lu et al.
(2018, Theorem 3.1); the extension is non-trivial and in-
volves verifying a recursion that is the same as the one in
the latter references for constant or decreasing step sizes (as
detailed in Appendix A.1) or a different one for general step-
sizes (as detailed in Appendix A.2). We consider the two
cases separately, as this allows us to obtain sharper rates.

Proposition 1 shows that if KL(π|µ0) < ∞ and the step
sizes are smaller than 1 (the inverse of the smoothness con-
stant L = 1), C−1

n → ∞, and entropic mirror descent on
the KL converges to the target distribution. We note that
Korba and Portier (2022, Lemma 2) show a similar result
on the total variation1. We also note that our (discrete-time)
rate is coherent with the convergence rate of its continuous-
time counterpart, i.e. Fisher-Rao dynamics for the KL (Lu
et al., 2023, Theorem 2.4), that is known to converge expo-
nentially fast under a warm-start assumption on the support

1notice that Pinsker’s inequality combined with our result (9)
recover their rate on the TV.

3



A Connection between Tempering and Entropic Mirror Descent

of the initial distribution with respect to the target. Finally,
if the sequence of (γn)n≥0 is fixed to γ constant, mirror
descent converges at a linear rate proportional to (1− γ)n,
as already shown in Lu et al. (2018, Eq. (27)).

3. A connection between Mirror Descent and
Tempering

We now turn to the connection between entropic mirror de-
scent and tempering, that, to the best of our knowledge, we
are the first to to highlight and exploit (see Domingo-Enrich
and Pooladian (2023) for a similar connection in continous
time). In particular we will show that the tempering sched-
ule is deeply connected to optimization/step-sizes dynamics
of the corresponding entropic mirror descent scheme.

In the Monte Carlo literature, it is common to consider the
following tempering (or annealing) sequence (Gelman and
Meng, 1998; Neal, 2001)

µn+1 ∝ µ
1−λn+1

0 πλn+1 , (10)

where 0 = λ0 < λ1 < · · · < λT = 1, to sample from a
target distribution π. There is a correspondence between
(10) and (7) if

λn = 1−
n∏

k=1

(1− γk) (11)

which by induction yields γ1 = λ1, γn = (λn −
λn−1)/1− λn−1 for 1 ≤ n < T and γT = λT = 1.
Notice that reversely, if we have a sequence γn defined as
γn = (λn − λn−1)/1− λn−1, as soon as the λ’s are in
(0, 1), γn < 1, guaranteeing descent of the KL objective at
each step.

In the tempering sequence (10), λT = 1 to ensure that we
are targeting the correct distribution π. In the case of the
mirror descent iterates (7) the convergence to π is in the limit
n → ∞. We can thus interpret (10) as performing T − 1
mirror descent steps towards π and then one final bridging
step to reach π. Hence, it is interesting to look at the speed of
convergence of the iterates (7) to gain some intuition on the
number of bridging distributions µn necessary to get close
enough to π to guarantee that the final step (corresponding
to λT = 1) is stable. In this case, combining and (9) and
(11) we get that

KL(µn|π) ≤ (λ1)
−1(1− λn)KL(π|µ0), (12)

which approaches 0 as λn → 1, and gives an explicit rate of
convergence of the sequence (10). Provided one can obtain
an approximation of KL(π|µ0), we can infer the value of
λn necessary to guarantee that the n−th tempering iterate
is sufficiently close to π. Later in this section, we derive
several examples.

3.1. A principled strategy for tempering

As the speed of convergence of the mirror descent iterates
depends on the sequence (λn)n≥1, we now discuss rele-
vant strategies to select temperatures, in the light of the
optimization scheme.

Notice that (10) admits an exponential family representation
(Brekelmans et al., 2020; Syed et al., 2021)

µn+1(x) ≡ µλn+1
(x) ∝ µ0 exp {λn+1s(x)} (13)

where s(x) := log π(x)/µ0(x).

A popular strategy in the SMC/AIS literature to identify the
sequence (λn)

T
n=0 is to fix λ0 = 0 and then select λn itera-

tively, ensuring that the χ2 divergence between successive
distributions is constant and sufficiently small, e.g. setting
χ2(µn−1|µn) = β for some small value of β (see Jasra et al.
(2011) for χ2 in SMC, and more recently Goshtasbpour et al.
(2023) for α-divergences in AIS). This quantity is related to
the variance of the importance weights and ensures that this
variance remains low.

The following Proposition, whose proof can be found
in Appendix B, shows that, up to higher order terms,
the χ2−divergence can be replaced by any f−divergence
whose f is twice differentiable (see also Amari (2016, Sec-
tion 3.4)), in particular the KL divergence. LetDf (λ

′|λ) :=∫
µλf(µλ′/µλ) be the f−divergence of µλ′ relative to µλ.

Proposition 2. Provided f is twice differentiable, one has:

Df (λ
′|λ) = f ′′(1)I(λ)

2
× (λ′ − λ)2 +O

(
(λ′ − λ)3

)
,

where I(λ) = Varµλ
[s(X)] is the Fisher information.

This proposition applies in particular to the KL divergence
(f(x) = x log x, f ′′(1) = 1), the reverse KL (f(x) =
− log x, f ′′(1) = 1), all α−divergences (f ′′(1) = 1), the
χ2−divergence (f(x) = (x−1)2, f ′′(1) = 2), hence fixing
the χ2-divergence constant or the KL between consecutive
iterates only differs by a multiplicative factor (resp. β or
β/2).

The tempering strategy previously described can be jus-
tified by looking at the convergence of the correspond-
ing entropic mirror descent scheme on the KL (7) where
both F and Bϕ are chosen as the KL divergence. Indeed,
as shown in Eq. (24) in Appendix A, the (Bregman) di-
vergence between iterates Bϕ(µn−1|µn) = KL(µn−1|µn)
provides a lower bound on the decay of the objective
F(µ) = KL(µ|π) achieved by one iteration of mirror de-
scent : since γn ≤ L−1 = 1 for all n, we have

KL(µn−1|π)−KL(µn|π) ≥ KL(µn−1|µn) =
β

2
. (14)
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Proposition 2 above suggests the following recipe to choose
successive λn values (see Iba (2001, Eq. (10)) for a similar
result in the PT literature):

λn − λn−1 = cI(λn−1)
−1/2 (15)

for a certain c ≥ 0; we recover χ2(µn−1|µn) = β taking
c =

√
β (standard practice is to take β = 1, which is equiv-

alent to ESS = N/2, see Section 4). For a model where π
and µ0 correspond to the distribution of d i.i.d. components,
it is well known that I(λ) = dI1(λ) where I1 denotes the
Fisher information corresponding to one component. We
automatically get therefore that the number of successive
steps to move from λ0 = 0 to λT = 1 should be O(d1/2),
as already observed by Chopin and Papaspiliopoulos (2020,
Proposition 17.2) and Dai et al. (2022, Section 3.3) in the
context of SMC (for Gaussian targets) and Atchadé et al.
(2011, Section 2.3) in the context of PT. We point out that
Proposition 2 is a result about the sequence of distribu-
tions (10) and not about a specific class of algorithms like
the results of Beskos et al. (2014). See Figure 2 for a numer-
ical experiment illustrating this point.

3.2. Examples of tempering sequences

We now consider the simplified scenario in which π and µ0

correspond to the distribution of d i.i.d. components. For
some examples of proposals µ0 and targets π the optimal
tempering sequence satisfying (15) can be found (at least for
large d) analytically. Our aim is to use the correspondence
between γn and λn to obtain the convergence rate of the
corresponding mirror descent scheme.

For large d, it makes sense to replace the sequence λn by a
continuous function λ(t), and solve the ODE:

λ̇ = cI(λ)−1/2. (16)

As a first simple case, consider targeting a pair of Gaus-
sians with the same mean but different variances. Let
π = N (0, τ2 Id) starting from µ0 = N (0, Id). In
this case s(x) = x2(1 − 1/τ2)/2 − log τ , and we
have µλ = N

(
0,
(
1− λ+ λ/τ2

)−1
Id
)

and I(λ) ∝(
1− λ+ λ/τ2

)−2
. The corresponding ODE is λ̇ = c(1 +

αλ) with α = 1/τ2 − 1. If τ > 1, then α < 0, and the solu-
tion is λ(t) = 1− exp(αt), which behaves likes a negative
exponential. This corresponds to a constant γ = 1−exp(α).
Conversely, if τ < 1, then α > 0, and the solution is
λ(t) = exp(αt) − 1, which corresponds to exponential
growth.

We then consider the case in which the variance is the same,
but the means are different. Let µ0 = N (0, Id) and π =
N (m, Id), so µλ is N (λm, Id), s(x) = mx−m2/2 , and
I(λ) = m2 is constant. In this case, λ(t) = mt grows
linearly.

For each of the examples of tempering sequences (λn)n≥1

exhibited in this subsection, we have seen at the beginning
of this section that the tempered sequence converges at a
rate Cn ≤ 1−λn. Figure 1 provide some illustrations of the
joint evolutions of temperatures (λn)n≥1, mirror descent
step sizes (γn)n≥1 and rate of convergence (Cn)n≥1 in
these three different Gaussian scenarios.

4. Algorithmic approximations
Having identified the connection between the mirror descent
iterates (7) and the tempering iterates (10), we now turn to
existing (and potentially improvable) algorithms approxima-
tions, and identify their connections. Indeed, while (7) is
attractive for its nice convergence properties, it is not feasi-
ble to run this iteration in practice for several reasons: each
iteration depends on the whole densities, and it requires a
normalization step.

Notice from (6) that it is natural to approximate entropic
mirror descent on F = KL(·|π) by

µn+1 ∝ qn exp(−γngn) (17)

where gn is an approximation of the gradient of the KL
objective log(µn/π); and qn is an approximation of µn. We
discuss here a common strategy in the Monte Carlo literature
to approximate (10) based on importance sampling and show
that the exponential update is performed on the importance
weights.

Sequential Monte Carlo (SMC) samplers Del Moral et al.
(2006) provide a particle approximation of the temper-
ing iterates (10) using clouds of N weighted particles
{Xi

n,W
i
n}Ni=1. The fundamental ingredients of an SMC

sampler are the sequence (λn)
T
n=0 with 0 = λ0 < · · · <

λT = 1, a family of Markov kernels (Mn)
T
n=1 used to

propagate the particles forward in time and a resampling
scheme.

For simplicity, we focus here on the case in which the
Markov kernels Mn are µn-invariant, the resulting SMC
algorithm is summarized in Algorithm 1 in Appendix E.
At iteration n the weighted particle set {Xi

n−1,W
i
n−1}Ni=1

is resampled to obtain the equally weighted particle set
{X̃i

n−1, 1/N}Ni=1 and the kernel Mn is applied to propose
new particle locations Xi

n ∼ Mn(·, X̃i
n−1). The weights

are proportional to

wn(x) =
ηn(x)

ηn−1(x)
=

(
π(x)

µ0(x)

)λn−λn−1

(18)

where ηn := µ1−λn
0 πλn and µn = ηn/Zn. Recalling the

relationship between the sequence of γn and of λn, γn =
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Figure 1: Sequence of (λn)n≥1, (γn)n≥1 and rate Cn for the negative exponential, positive exponential and linear evolution
of (λn)n≥1. The dotted lines in the right-most plot show the bound 1− λn on Cn.

(λn − λn−1)/(1− λn−1), we find that

wn(x) =

(
π(x)

ηn−1(x)

)γn

∝
(

π(x)

µn−1(x)

)γn

, (19)

where the normalizing constant can be discarded due to
the re-normalization, showing that the importance weights
used within an SMC sampler approximate the exponential
update in (17). The approximation of µn provided by SMC
is qSMC

n (x) =
∑N

i=1W
i
nδXi

n
(x), where δ(·) denotes the

Dirac’s delta function and W i
n = wn(X̃

i
n−1).

Remark 1. In Appendix E we discuss two alternative strate-
gies to SMC based on importance sampling that directly
approximate (6) (Dai et al., 2016; Korba and Portier, 2022).
We highlight in particular that MD on measures can be im-
plemented through SMC with a better complexity than the
scheme proposed in Dai et al. (2016) (the weights (18) do
not depend on the N particle set and can be computed in
O(1) time while those of Dai et al. (2016) depend on the N
particle set and require O(N) cost, see Appendix E).

In the SMC literature, the tempering schedule {λn}Tn=1

is normally chosen adaptively, by ensuring that the χ2 di-
vergence between successive distributions is constant and
sufficiently small. The χ2 divergence is approximated as
χ2(µn−1|µn) ≈ N

ESSn(λn)
− 1 (see, e.g. Chopin and Pa-

paspiliopoulos (2020, Section 8.6) for a justification), where
ESSn denotes the effective sample size

ESSn(λ) :=

(
N∑
i=1

wn(X̃
i
n−1)

)2

/

N∑
i=1

(wn(X̃
i
n−1))

2.

Given β > 0, in standard adaptive SMC we need to solve
ESSn(λ) = N/(β + 1) at each iteration n. This is nor-
mally achieved via the bisection method, since ESSn(λ) is
a nonlinear function of λ taking values in [1, N ].

We conducted a numerical experiment to study the possi-
ble behaviors of the tempering sequences found by such
adaptive strategies when using SMC samplers. Our numer-
ical results are obtained using waste-free SMC (Dau and

Chopin, 2022), as there is evidence that it improves on stan-
dard SMC, which in turns outperforms annealed importance
sampling (Jasra et al., 2011).

We use throughout the adaptive tempering SMC sam-
pler as implemented in the package particles, with
all its settings set to defaults; see https://github.
com/nchopin/particles: the Markov kernels are
random-walk Metropolis kernels, , automatically cali-
brated on the current particle sample; the next temper-
ing exponent is chosen so that ESSn = N/2, and
N = 104 and d = 25. The code is available
at https://github.com/FrancescaCrucinio/
MirrorDescentTempering.

Figure 2 (left) plots the tempering sequence (λn)n≥1 com-
puted adaptively on a toy example where µ0 = Nd(0d, Id),
π = Nd(m,Σ), m = 1d, and various choices for Σ: (a)
Σ = 10−2 Id; (b) Σ = 102 Id; and (c) Σ = diag(v), with
the first (d/2) elements of v equal to 10−2, and the remain-
ing elements equal to 102. Cases (a) and (b) illustrates our
theoretical tempering rates of Section 3.2; when the target
has smaller (resp. larger) variance along all directions, the
tempering sequence behaves like a positive (resp. negative)
exponential. Case (c) is particularly interesting as it shows
that the tempering sequence may behave as a mix between
the two cases; when the variance of the target is both larger
in certain directions and smaller in other directions (relative
to µ0), then the tempering sequence must slow down both at
the beginning and at the end. The bottom line of this experi-
ment is that what constitutes a "good" tempering sequence
varies strongly according to the pair (µ0, π), and thus using
an adaptive strategy is essential for good performance.

Figure 2 (right) plots the number of tempering steps ob-
tained from the algorithm as a function of d, in the "smaller
variance" scenario, Σ = 10−2 Id. One recovers the O(d1/2)
scaling derived in Section 3.1. The reader may refer to
Appendix E for more details on the implementation.

Remark 2. Proposition 2 provides alternative methods to
approximately solve χ2(µn−1|µn) = β in a equivalent way
(up to higher order terms) from the current set of particles.
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Figure 2: Left: adapted tempering sequences for different
Σ. Right: Length of tempering sequence as a function of d
in scenario (a); one recovers the O(d1/2) scaling.

A first one is to fix to a constant:

KL(µn−1|µn) ≈ − 1

N

N∑
i=1

logwn(X̃
i
n−1)

+ log
1

N

N∑
i=1

wn(X̃
i
n−1),

which is likely to be more stable than the ESS, since it
involves the log-weights rather than the weights them-
selves. The second one is set the next λn as λn =
λn−1 + (β/Î(λn−1))

1/2, where Î(λn−1) is

1

N

N∑
i=1

(
log

π(X̃i
n−1)

µ0(X̃i
n−1)

)2

−

(
1

N

N∑
i=1

log
π(X̃i

n−1)

µ0(X̃i
n−1)

)2

.

5. Related work
In this section we discuss alternative tempering strategies
and algorithmic approximations related to the tempering
update.

Tempering, KL divergence optimization and normaliz-
ing constant estimation.

The insight given by the mirror descent perspective allows
us to relate sampling and estimation of the normalizing
constant Z of π. In the AIS literature, the optimal sequence
of distributions (µn)n≥1 is normally chosen to minimize the
bias of the log-weights (Grosse et al., 2013; Goshtasbpour
et al., 2023)

logZ − E[logwn] =

T∑
n=1

KL(µn−1|µn).

Assuming the first (n− 1) iterates are fixed, one finds µn

by minimizing KL(µn−1|µn), which corresponds to the
approach adopted in the SMC literature described above.

Grosse et al. (2013) derive optimal paths for exponential

families and show that

µλ = argmin
µ

[(1− λ)KL(µ|µ0) + λKL(µ|π)] .

This corresponds to the first step of entropic mirror descent,
i.e. (3) with n = 0 and λ = γ1.

Goshtasbpour et al. (2023, Proposition 3.2) show that the
tempering sequence is the path of steepest descent for the
KL; i.e. that minimizes (1) infinitesimally, where the per-
turbation ξ is a smooth (C1) perturbation with bounded
variance. Given (n− 1) tempering iterates, they select the
next one minimizing KL(µn|π) instead and identify a tem-
pering schedule that decreases this objective with constant
rate and satisfies the ODE

λ̇ = c [I(λ)(1− λ)]
−1
. (20)

This differs from ours in (16) which keeps the KL between
successive entropic mirror descent iterates constant. Both
strategies can be justified using the well known identity
(Brekelmans et al. (2020, Section 4.4) and Appendix F)

KL(µλ|µλ′) =

∫ λ′

λ

(λ− u)I(u)du.

Using (14), we find that

0 ≤ KL(µn−1|µn) ≤ KL(µn−1|π)−KL(µn|π),

which shows that the (16) and (20) fulfil opposite goals, i.e.
(20) aims to find µn which minimizes KL(µn|π) i.e. an
upper bound on KL(µn−1|µn). From the numerical point
of view, both strategies employ the importance weights to
select the next λ; however, in our strategy the weights are
those obtained by importance sampling with target µλn

and
proposal µλn−1

, in Goshtasbpour et al. (2023) the target is π.
As a consequence, their method is more numerically unsta-
ble due to the higher variance of the weights. To see this we
reproduce their narrow Gaussian experiment in Figure 3 and
compare with waste-free SMC with the same setup of Sec-
tion 4; we also include the results of SMC and AIS with the
same setup but γ = 0.05 constant (see Appendix F.1 for im-
plementation details). The target is π = N (1d, 0.1

2 Id) and
µ0 = N (0d, Id). Adaptive SMC better approximates π and
requires only 5 tempering steps, while Goshtasbpour et al.
(2023) provides worse approximations and require more
than 6000 steps. Similarly, the algorithms with constant γ
require more steps and provide worse approximations than
adaptive SMC.

Kiwaki (2015) consider the variance of logwn instead and
derive an ODE similar to (16). Their method however re-
quires running AIS twice to select the successive λ, while
our rule (15) only requires to evaluate Î(λ)

An ODE involving I(λ) was also derived in Gelman and
Meng (1998), but, as mentioned by the authors, it often
results in intractable optimal paths.
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Figure 3: Approximations of π = N (1d, 0.1
2Id). (a): adap-

tive SMC, 5 tempering steps, ESS = 0.79. (b): Goshtasbpour
et al. (2023), 6257 tempering steps, ESS = 0.38. (c): SMC
with constant step size γ = 0.05, 730 tempering steps, ESS
= 0.99. (d): AIS with constant step size γ = 0.05, 730
tempering steps, ESS = 0.04.

Effect of the dimension on tempering/SMC in Beskos
et al. (2014). In this paper the authors investigate the effect
of dimension on the stability of SMC methods. There, stabil-
ity refers to the ability of the SMC algorithm to produce ac-
curate approximations of the target distribution as the dimen-
sion increases, while keeping the computational cost rea-
sonable. The authors show that for a certain class of target
densities (an i.i.d. target of the form π(x) =

∏d
i=1 π

i(xi)
where x = (x1, . . . , xd) ∈ Rd), SMC with the temper-
ing sequence defined as λn = λ1 + (n − 1)(1 − λ1)d

−1,
1 ≤ n ≤ d, is stable, i.e. the ESS converges weakly to a
non-trivial limit (ESS ∈ (1, N)) as d grows and the number
of particles is kept fixed. This result suggests using O(d)
tempering iterations contrary to the O(d1/2) found in Propo-
sition 2 and confirmed by our numerical results. We leave
further investigation of the optimal scaling with d of SMC
samplers for future work.

Parallel tempering. The tempering iterates (10) are also
at the basis of Parallel Tempering (PT) (Geyer, 1991;
Hukushima and Nemoto, 1996), a class of Markov chain
Monte Carlo algorithms which relies on interacting Markov
chains to sample from (10). PT is not based on importance
sampling, hence the connection with Mirror Descent is less
clear since identifying an update of the form (17) is not pos-
sible. It is customary in PT (Syed et al., 2022, e.g. Section
4) to fix the tempering sequences so that the acceptance
probability of a swap between two successive λn is constant
in n. One may use Proposition 1 of Predescu et al. (2004),
see also Theorem 2 in Syed et al. (2022), which is similar
in spirit to our Proposition 2, but not equivalent: Proposi-
tion 2 applies to the f divergence between µλ and µλ′ , for
λ′ ≈ λ, where f is differentiable, whereas the acceptance
rate of a PT swap is the TV distance between µλ ⊗ µλ′ and

µλ′ ⊗ µλ, again for λ′ ≈ λ. Moreover, the TV distance is a
f -divergence with f(t) = |t−1|, which is not differentiable
at 1.

Adaptive tempering. In Korba and Portier (2022), the au-
thors propose to choose the step-size γn as follows. At time
n draw mn particles from qSRAIS

n . Let P =
∑mn

l=1 u
l
nδXl

n

and Q =
∑mn

l=1(mn)
−1δXl

n
the reweighted and uniform

distribution on the particles (X l
n)

mn

l=1 respectively, where
uln = un(X

l
n) = π(x)/qn(x) are the importance weights

between the target distribution π and the current approxi-
mate iterate qn of µn. Korba and Portier (2022) propose
to set γn as γn = 1 − Rα(P |Q)/ log(mn), where Rα is
Renyi’s α-divergence (Rényi et al., 1961) of P from Q, in
particularR1(P ||Q) = KL(P |Q), and log(mn) normalizes
the ratio between 0 and 1. Hence, for α = 1 and without
the discrete particle approximation, their rule can be written
γn = 1−KL(µn|π). Since γn = (λn−λn−1)/(1−λn−1),
by the decrease of KL formula (14), this rule can also be
seen as enforcing a gap between consecutive λ’s as a con-
stant.

6. Conclusion
This paper establishes a connection between entropic mirror
descent and tempering to sample from a target probability
distribution known up to a normalizing constant. We show
that the two strategies are equivalent and obtain an explicit
convergence rate for the tempering iterates. This conver-
gence rate does not depend on the convexity properties of
the target π, contrary to the rates for Langevin Monte Carlo
(Durmus et al., 2019; Vempala and Wibisono, 2019; Karimi
et al., 2016).

We provide an optimization point of view on sequential
Monte Carlo by identifying the SMC update as (17) and
motivate the adaptive strategy commonly used in the lit-
erature through mirror descent. Furthermore, we identify
that for a number of algorithms based on importance sam-
pling, the importance weights carry the gradient information,
and propose strategies to reduce their numerical error (see
Appendix E). By comparing several approximations of en-
tropic mirror descent and several adaptive strategies to select
the sequence, we find that SMC has generally lower cost
and the tempering rule (16) is more stable than alternatives.
This connection enabled us to tackle the selection of the
tempering schedule in a principled way, and derive several
conclusions that were not known in or contradicts the pre-
vious tempering literature, for instance that the length of
the tempering schedule should scale as

√
d. Our approach

yields a simpler and more numerically stable tempering rule
than other schemes (minus the standard ESS−based rule in
the SMC literature, which gives essentially the same results
as ours).
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Impact statement
Our paper has a theoretical and practical interest for the
litterature on sampling and MCMC algorithms. On the the-
oretical side, our study yields a rate of convergence for the
target sequence that SMC algorithms are tracking. On the
practical side, we show that common practices such as the
ESS-based rules, are more theoretically grounded, simpler
and more efficient than alternative proposals. This may have
a substantial impact in the deployment of Bayesian infer-
ence tasks which rely on MCMC algorithms, and enable to
predict with uncertainty.
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A. Proof of Proposition 1
The proof below is written for a generic L-smooth and l-strongly convex functional F relatively to a Bregman potential ϕ.
Recall that in the case of F being the Kullback-Leibler divergence and negative entropy, L = l = 1.

We first state a preliminary result, known as the "three-point inequality" or "Bregman proximal inequality", which can be
found in Aubin-Frankowski et al. (2022, Lemma 3).

Lemma 1 (Three-point inequality). Given µ ∈ M(Rd) and some proper convex functional G : M(Rd) → R ∪ {+∞}, if
∇ϕ(µ) exists, as well as ν̄ = argminν∈C{G(ν) +Bϕ(ν|µ)}, then for all ν ∈ C ∩ dom(ϕ) ∩ dom(G):

G(ν) +Bϕ(ν|µ) ≥ G(ν̄) +Bϕ(ν̄|µ) +Bϕ(ν|ν̄). (21)

We can now start the proof of mirror descent convergence rate. Since F is L-smooth relative to ϕ and γn+1 < 1/L implies,
we have

F(µn+1) ≤ F(µn) + ⟨∇F(µn), µn+1 − µn⟩+ LBϕ(µn+1|µn) (22)

≤ F(µn) + ⟨∇F(µn), µn+1 − µn⟩+
1

γn+1
Bϕ(µn+1|µn).

Applying Lemma 1 to the convex function Gn(ν) = γn+1⟨∇F(µn), ν − µn⟩, with µ = µn and ν̄ = µn+1 yields

⟨∇F(µn), µn+1 − µn⟩+
1

γn+1
Bϕ(µn+1|µn) ≤ ⟨∇F(µn), ν − µn⟩+

1

γn+1
Bϕ(ν|µn)−

1

γn+1
Bϕ(ν|µn+1).

Fix ν, then (22) becomes:

F(µn+1) ≤ F(µn) + ⟨∇F(µn), ν − µn⟩+
1

γn+1
Bϕ(ν|µn)−

1

γn+1
Bϕ(ν|µn+1). (23)

This shows in particular, by substituting ν = µn and since Bϕ(ν|µn+1) ≥ 0, that

F(µn+1) ≤ F(µn)−
1

γn+1
Bϕ(µn|µn+1), (24)

i.e. F is decreasing at each iteration. Since F is l-strongly convex relative to ϕ, we also have:

⟨∇F(µn), ν − µn⟩ ≤ F(ν)−F(µn)− lBϕ(ν|µn)

and (23) becomes:

F(µn+1) ≤ F(ν) +

(
1

γn+1
− l

)
Bϕ(ν|µn)−

1

γn+1
Bϕ(ν|µn+1), (25)

i.e., multiplying the previous equation by (γ−1
n+1 − l)−1, we get(

1

1− γn+1l

)
F(µn+1) ≤

(
1

1− γn+1l

)
F(ν) +

1

γn+1
Bϕ(ν|µn)−

1

γn+1

(
1

1− γn+1l

)
Bϕ(ν|µn+1). (26)

A.1. Proof for (γn)n≥1 decreasing or constant

Similarly to Lu et al. (2018), we now consider for n ≥ 1:

P(n) :

n∑
k=1

(
1

1− γkl

)k

F(µk) ≤
n∑

k=1

(
1

1− γkl

)k

F(ν) +
1

γ1
Bϕ(ν|µ0)−

1

γn

(
1

1− γnl

)n

Bϕ(ν|µn).

We first have that

P(1) :

(
1

1− γ1l

)
F(µ1) ≤

(
1

1− γ1l

)
F(ν) +

1

γ1
Bϕ(ν|µ0)−

1

γ1

(
1

1− γ1l

)
Bϕ(ν|µ1)

12
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is true by (26). Then, assume P(n) holds. We have by (26):

n+1∑
k=1

(
1

1− γkl

)k

F(µk) =

n∑
k=1

(
1

1− γkl

)k

F(µk) +

(
1

1− γn+1l

)n+1

F(µn+1)

≤
n∑

k=1

(
1

1− γkl

)k

F(ν) +
1

γ1
Bϕ(ν|µ0)−

1

γn

(
1

1− γnl

)n

Bϕ(ν|µn)

+

(
1

1− γn+1l

)n+1

F(ν) +
1

γn+1

(
1

1− γn+1l

)n

Bϕ(ν|µn)−
1

γn+1

(
1

1− γn+1l

)n+1

Bϕ(ν|µn+1)

≤
n+1∑
k=1

(
1

1− γkl

)k

F(ν) +
1

γ1
Bϕ(ν|µ0)−

1

γn+1

(
1

1− γn+1l

)n+1

Bϕ(ν|µn+1)

where we used in the last inequality (to upper bound the sum of the third and fifth term by zero) that s 7→ s−1(1− s)−n was
a monotone increasing function and that the sequence (γn)n≥1 was decreasing, showing P(n+ 1) holds. Hence P(n) is
true for all n ≥ 1. Then, using the monotonicity of (F(µn))n≥0 on the left hand side and the positivity of Bϕ(ν|µn) on the
right hand side of P(n), we have

n∑
k=1

(
1

1− γkl

)k

(F(µn)−F(ν)) ≤ 1

γ1
Bϕ(ν|µ0)−

1

γn

(
1

1− γnl

)n

Bϕ(ν|µn) ≤
1

γ1
Bϕ(ν|µ0).

This shows that

F(µn)−F(µ) ≤ Cn

γ1
Bϕ(ν|µ0), where C−1

n =

n∑
k=1

(
1

1− γkl

)k

.

A.2. Proof for general (γn)n≥1

Consider for n ≥ 1:

P(n) :

n∑
k=1

γk
γ1

k∏
i=1

1

1− γil
F(µk) ≤

n∑
k=1

γk
γ1

k∏
i=1

1

1− γil
F(ν) +

1

γ1
Bϕ(ν|µ0)−

1

γ1

n∏
i=1

1

1− γil
Bϕ(ν|µn)

We first have that

P(1) :

(
1

1− γ1l

)
F(µ1) ≤

(
1

1− γ1l

)
F(ν) +

1

γ1
Bϕ(ν|µ0)−

1

γ1

(
1

1− γ1l

)
Bϕ(ν|µ1)

is true by (26). Then, assume P(n) holds. We have by (26):

n+1∑
k=1

γk
γ1

k∏
i=1

1

1− γil
F(µk) =

n∑
k=1

γk
γ1

k∏
i=1

1

1− γil
F(µk) +

γn+1

γ1

n+1∏
i=1

1

1− γil
F(µn+1)

≤
n∑

k=1

γk
γ1

k∏
i=1

1

1− γil
F(ν) +

1

γ1
Bϕ(ν|µ0)−

1

γ1

n∏
i=1

1

1− γil
Bϕ(ν|µn)

+
γn+1

γ1

n∏
i=1

1

1− γil

((
1

1− γn+1l

)
F(ν) +

1

γn+1
Bϕ(ν|µn)−

1

γn+1

(
1

1− γn+1l

)
Bϕ(ν|µn+1)

)

=

n+1∑
k=1

γk
γ1

k∏
i=1

1

1− γil
F(ν) +

1

γ1
Bϕ(ν|µ0)−

1

γ1

n+1∏
i=1

1

1− γil
Bϕ(ν|µn+1),

showing P(n+ 1) holds. Hence P(n) is true for all n ≥ 1. Then, using the monotonicity of (F(µn))n≥0 on the left hand
side and the positivity of Bϕ(ν|µn) on the right hand side of P(n), we have

n∑
k=1

γk
γ1

k∏
i=1

1

1− γil
(F(µn)−F(ν)) ≤ 1

γ1
Bϕ(ν|µ0)−

1

γ1

n∏
i=1

1

1− γil
Bϕ(ν|µn) ≤

1

γ1
Bϕ(ν|µ0).

13
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This shows that

F(µn)−F(µ) ≤ Cn

γ1
Bϕ(ν|µ0), where C−1

n =

n∑
k=1

γk
γ1

k∏
i=1

1

1− γil
.

In particular for l = 1 and γk = (λk − λk−1)/(1− λk−1),

C−1
n =

1

λ1

n∑
k=1

(
λk − λk−1

1− λk−1

1− λ0
1− λk

)
=

1

λ1

n∑
k=1

(
λk − λk−1

(1− λk−1)(1− λk)

)
,

where we used λ0 = 0.

A.3. Bounds on convergence rate

In this section we prove upper bounds on the convergence rates previously obtained. Our bounds are obtained in the case
l = 1 and γn ≤ 1/L = 1 for all n ≥ 1.

We show that

Cn =

(
n∑

k=1

γk
γ1

k∏
i=1

1

1− γi

)−1

≤
n∏

k=1

(1− γk). (27)

To see this we consider for n ≥ 1, P(n) :
∑n

k=1
γk

γ1

∏k
i=1

1
1−γi

≥
∏n

k=1(1 − γk)
−1. We trivially have that P(1) :(

1
1−γ1

)1
≥ (1− γ1)

−1 is true. Then, assume P(n) holds. We have

n+1∑
k=1

γk
γ1

k∏
i=1

1

1− γi
=

n∑
k=1

γk
γ1

k∏
i=1

1

1− γi
+
γn+1

γ1

n+1∏
i=1

1

1− γi
≥

n∏
k=1

(1− γk)
−1 + γn+1

n+1∏
k=1

(1− γk)
−1

=

n∏
k=1

(1− γk)
−1
[
1 + γn+1(1− γn+1)

−1
]
=

n+1∏
k=1

(1− γk)
−1

since γ1 ≤ 1 for all n ≥ 1, showing P(n+ 1) holds. Hence (27) is true for all n ≥ 1.

B. Proof of Proposition 2
B.1. Tempering sequence as a parametric model

Let us recall that the tempering sequence is defined as:

µλ(x) =
µ1−λ
0 (x)πλ(x)

exp {ψ(λ)}
= µ0(x) exp {λs(x)− ψ(λ)}

for λ ∈ [0, 1], where s(x) := log π(x)/µ0(x), and

ψ(λ) := log

∫
µ0(x) exp {λs(x)} dx

is the partition function (log-normalizing constant).

In our case, the Fisher’s score is: tλ(x) = s(x)−ψ′(λ) (the score has expectation zero, as expected since ψ′(λ) = Eλ[s(X)]),
and

I(λ) := Varλ [tλ(X)] = Eλ

[
tλ(X)2

]
= Varλ [s(X)] .

Note also the well-known identity:

I(λ) = −Eλ[t
′
λ(X)] = −Eλ

[
∂2 logµλ(X)

∂λ2

]
.
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B.2. Proof

Recall that f must be convex and such that f(1) = 0.

By the standard properties of f−divergence, it is clear that the function φλ : λ′ → Df (λ
′|λ) is non-negative, and zero at

λ′ = λ, hence its first derivative must be zero at λ′ = λ. In fact,

φ′
λ(λ

′) =

∫
µ′
λ′f ′(µλ′/µλ) =

∫
µλ′tλ′f ′(µλ′/µλ)

and note we have indeed φ′
λ(λ) = f ′(1)

∫
µ′
λ = 0. For the second derivative

φ′′
λ(λ

′) =

∫
µλ′(t′λ′ + t2λ′)f ′

(
µλ′

µλ

)
+

∫
(µλ′tλ′)

2

µλ
f ′′
(
µλ′

µλ

)
and at λ′ = λ:

φ′′
λ(λ) = f ′(1)

∫
µλ(t

′
λ + t2λ) + f ′′(1)

∫
µλ (tλ)

2

= f ′′(1)I(λ).

This ends the proof.

C. Derivation of mirror descent
To obtain (4) write the first order conditions of (3), i.e. let G(µ) = ⟨∇F(µn), µ − µn⟩ + Bϕ(µ|µn) where Bϕ(µ|µn) is
given in (2), differentiate w.r.t. µ and set the differential of G to 0.

To obtain the entropic mirror descent update (6), notice that if in (4), ϕ is chosen as the negative entropy (5) where
∇ϕ(µ) = log(µ). Then (4) becomes log(µn+1) = log(µn)− γn+1∇F(µn). Exponentiating both sides we obtain (6) since
µn+1 is constrained to be a probability distribution; as we only know that the density is proportional to the r.h.s. of (6), it
should be renormalized accordingly.

When choosing the objective as a KL, we relate this scheme to tempering sequences through (7). However, we note that
other choices of KL objectives enable to relate this scheme to other algorithms, such as Expectation-Maximization or
Sinkhorn’s algorithm (Aubin-Frankowski et al., 2022; Karimi et al., 2023).

D. Entropic mirror descent is a time-discretization of Fisher-Rao flow
Entropic mirror descent iteration on F starting from µ0, is an Euler (or Forward) time-discretisation of the Fisher-Rao flow
of F (Lu et al., 2023). Indeed, the FR flow of a functional F can be written

∂µt

∂t
= −µtF ′(µt), hence,

∂ log(µt)

∂t
= −F ′(µt).

An Euler discretization of the previous continuous dynamics write:

log(µl+1)− log(µl) = −γl+1F ′(µl) , (28)

which recovers (6) by exponentiating the equality.

E. Algorithms details
We collect here further details on the SMC samplers described in Section 4 and describe other strategies based on importance
sampling that approximate the mirror descent iterates (6).

E.1. Other schemes

Particle Mirror Descent (PMD). Similarly to SMC, Dai et al. (2016) propose an approximation of the mirror descent
iterates (7) based on importance sampling. The mirror descent iterate at time n is approximated by a kernel density estimator
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Algorithm 1 SMC samplers (Del Moral et al., 2006).
1: Inputs: sequences of temperatures (λn)Tn=1, Markov kernels (Mn)

T
n=1, initial proposal µ0.

2: Initialize: set λ0 = 0, sample X̃i
0 ∼ µ0 and set W i

0 = 1/N for i = 1, . . . , N .
3: for n = 1, . . . , T do
4: if n > 1 then
5: Resample: draw {X̃i

n−1}Ni=1 independently from {Xi
n−1,W

i
n−1}Ni=1 and set W i

n = 1/N for i = 1, . . . , N .
6: end if
7: Propose: draw Xi

n ∼Mn(·, X̃i
n−1) for i = 1, . . . , N .

8: Reweight: compute and normalize the weights W i
n ∝ wn(X̃

i
n−1) for i = 1, . . . , N .

9: end for
10: Output: qn(x) =

∑N
i=1W

i
nδXi

n
(x)

(KDE)

qPMD
n (x) :=

N∑
i=1

V i
nKhn(x−Xi

n), (29)

where {Xi
n, V

i
n}Ni=1 denotes a weighted particle set and Khn

is a smoothing kernel with bandwidth hn. At iteration n
the weighted particle set {Xi

n−1, V
i
n−1}Ni=1 is resampled to obtain the equally weighted particle set {X̃i

n−1, 1/N}Ni=1, the
kernel Khn

is applied to propose new particle locations Xi
n ∼ Khn

(· − X̃i
n−1). The weights for the proposed particle set

are then proportional to

vn(x) =

(
π(x)

qPMD
n−1(x)

)γn

. (30)

It is then clear that the Particle Mirror Descent (PMD) scheme summarized in Algorithm 2 in the Appendix is of the form
(17).

Comparing PMD with SMCand with the vast literature on SMC algorithms (see, e.g., Chopin and Papaspiliopoulos (2020)
for a comprehensive introduction) we find that PMD is an SMC algorithm targeting the sequence of distributions

µ̃n(x) ∝
∫
µn−1(x

′)Khn(x− x′)dx′
(

π(x)

ηn−1(x)

)γn

, (31)

which converges to the mirror descent iterates (7) as hn → 0. The kernel Khn
is replacing the µn-invariant kernel Mn as

proposal and the importance weights are given by (30). However, PMD is not a standard SMC algorithm, since the weights
vn are approximations of the idealized weights v⋆n(x) = π(x)/

∫
Khn

(x− x′)µn−1(x
′)dx′ obtained by plugging the KDE

qPMD
n−1 in place of the denominator. Hence PMD uses one more approximation than standard SMC samplers.

Leveraging the connection between mirror descent and tempering established in Section 3, it is easy to see that v⋆n → wn as
hn → 0 (see (19)). Hence, we could replace vn with wn in Algorithm 2 to reduce its computational cost and numerical
error, since vn requires an O(N) cost due to the presence of the kernel density estimator qn−1, while the cost of wn is O(1).
Nevertheless, this does not lead to an SMC algorithm targeting µ̃n (or µn).

Safe and Regularized Adaptive Importance Sampling (SRAIS). Korba and Portier (2022)) propose an algorithm detailed
in Algorithm 3 in the Appendix, that samples at each iteration a particle Xn from a proposal qSRAIS

n . Similarly to PMD
which relies on the KDE estimator (29), SRAIS relies on a KDE estimate to approximate the mirror descent iterates

qSRAIS
n (x) =

n∑
i=1

UiKhi
(x−Xi), (32)

where {Xi, Ui}ni=1 denotes a weighted particle set. However, in this case the size of the particle population is not fixed and
the KDE estimate uses all particles from previous iterations. Notice that the particle sampling step (Step 4 of Algorithm 3)
can be repeated, resulting in sampling a batch mn of particles at step n. The weights for the proposed particles are

un(x) =

(
π(x)

qSRAIS
n−1 (x)

)γn

, (33)
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Algorithm 2 Particle Mirror Descent (PMD; Dai et al. (2016)).
1: Inputs: sequences of bandwidths (hn)n=1,...,T , learning rates (γn)n=1,...,T , initial proposal µ0.
2: Initialize: sample X̃i

0 ∼ µ0 and set W i
0 = 1/N for i = 1, . . . , N .

3: for n = 1, . . . , T do
4: if n > 1 then
5: Resample: draw {X̃i

n−1}Ni=1 independently from {Xi
n−1, V

i
n−1}Ni=1 and set V i

n = 1/N for i = 1, . . . , N .
6: end if
7: Propose: draw Xi

n ∼ Khn
(· − X̃i

n−1) for i = 1, . . . , N .
8: Reweight: compute and normalize the weights V i

n ∝ vn(X
i
n) for i = 1, . . . , N .

9: end for
10: Output: qn(x) =

∑N
i=1 V

i
nKhn

(x−Xi
n).

and we can identify SRAIS to be of the form (17). Similarly to PMD, one could replace un with wn in SRAIS.
Remark 3. In the original scheme proposed by Korba and Portier (2022), the proposal at each iteration is defined as
q̃n+1 = (1− rn+1)qn+1 + rn+1q0 where qn+1 is the KDE (32), (rn)n≥0 is a sequence in [0, 1] converging to 0 and q0 is a
"safe" density (e.g. with heavy tails) preventing the importance weights from degeneracy. In Algorithm 3 we removed the
dependency with the safe density and took the sequence (rn)n≥0 constant equal to zero for a clearer presentation.

Algorithm 3 Safe and Regularized Adaptive Importance sampling (SRAIS; Korba and Portier (2022))
1: Inputs: Sequences of bandwidths (hn)n=1,...,T , learning rates (γn)n=1,...,T , initial proposal µ0.
2: Initialize: sample X1 ∼ µ0 and set U1 = (π(X1)/µ0(X1))

γ1 .
3: for n = 1, . . . , T do
4: Propose: draw Xn+1 ∼ qn
5: Reweight: compute the weight Un+1 ∝ un+1(Xn+1) and normalize the weights.
6: Update the proposal as in (32).
7: end for
8: Output: qn+1(x) =

∑n+1
i=1 U

iKhi
(x−Xi).

E.2. Comparison of algorithms

As discussed in the previous sections, both SMC samplers and PMD are an instance of SMC algorithms (albeit not a
standard one in the case of PMD). The convergence properties of SMC defined in Algorithm 1 are guaranteed by the
wide literature on SMC algorithms (see, e.g., Del Moral (2004) for a complete account). In particular, one can show (see
Del Moral (2004, Theorem 7.4.3) and Crisan and Doucet (2002)) that every measurable bounded function φ : Rd → R with
∥φ∥ := supx∈Rd |φ(x)| <∞,

E
[∣∣∣∣∫ φdµn −

∫
φdqSMC

n

∣∣∣∣] ≤ BSMC
n ∥φ∥
N1/2

where BSMC
n denotes a finite constant which does not depend on N .

A similar result for Algorithm 2 has been established in Dai et al. (2016, Theorem 5). The approximation error of PMD is
divided into an optimisation error, due to the fact that the algorithm is stopped at time T , and the following approximation
error arising from the particle approximation to the target µ̃n in (31)

E
[∣∣∣∣∫ φdµ̃n −

∫
φdqPMD

n

∣∣∣∣] ≤ BPMD
n ∥φ∥
N1/2

,

where BSMC
n denotes a finite constant which does not depend on N .

In the case of SMC samplers, there is no optimisation error since Algorithm 1 targets µn directly (and not the smoothed
version (31)) and, by construction, at time T we have λT = 1 so that µT = π.

Furthermore, when implementing Algorithm 1 there is no need to introduce the kernel Khn to obtain a KDE at each iteration,
this results in a simpler algorithm than Algorithm 2 which does not require the bandwidth parameter hn whose tuning is
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notoriously difficult (Silverman, 1986). Additionally, KDE performs poorly if the dimension of the underlying space is large
(Chacón and Duong, 2018).

The presence of the KDE in PMD also causes the algorithm to have a higher computational cost than standard SMC samplers,
in fact, the presence of the KDE in the weights (30) means that these weights require an O(N) cost to be computed for each
particle, against the O(1) per particle of the weights (18). These results in a O(NT ) cost for Algorithm 1 and O(N2T ) for
Algorithm 2. Clearly, the O(N2T ) of PMD could be reduced to O(NT ) by replacing the weights (30) with (18), since the
former are an approximation of the idealized weights v⋆n(x) = (π(x)/µn−1(x))

γn which are proportional to (18) as shown
in (19), at the cost of targeting a slightly different distribution.

The computational cost of iteration n of SRAIS is O(n) because of the KDE in the weights (33). Hence, the cost of
Algorithm 3 is

∑T
n=1 O(n) ≈ O(T 2). In practice, to reduce computational cost, one could use only the last iterations as the

first ones can be considered as “burn-in” steps.

F. Further discussion on (20) and implementation details
Consider the well-known identity Brekelmans et al. (2020, Section 4.4)

KL(µλn−1
|µλn

) =

∫ λn

λn−1

(λn − λ)Varλ [s(X)] dλ (34)

=

∫ λn

λn−1

(λn − λ)I(λ)dλ.

We want to study the infinitesimal behaviour of the KL when λn−1 = λ(t) but λn is fixed. As suggested in Goshtasbpour
et al. (2023) a natural requirement is to keep the derivative of the KL w.r.t. time constant

d

dt
KL(µλ(t)|µλn

) =
d

dt

(∫ λn

λ(t)

(λn − λ)I(λ)dλ

)

=
dλ(t)

dt
(λn − λ(t))I(λ(t)) = c,

where we used Leibniz integral rule for differentiation under the integral sign under the assumptions that all quantities are
well-defined. This gives us the following ODE for λ(t)

dλ(t)

dt
= c [(λn − λ(t))I(λ(t))]

−1
. (35)

If we set λn = 1, i.e. we want to decrease the KL between µλ(t) and π at a constant rate we obtain

dλ(t)

dt
= c [(1− λ(t))I(λ(t))]

−1
,

i.e. the ODE given in Goshtasbpour et al. (2023), where we used the fact that

Varµλ(t)

(
log

(
π

µλ(t)
(x)

))
= (1− λ(t))2Varµλ(t)

(
log

(
π

µ0
(x)

))
= (1− λ(t))2I(λ(t)). (36)

If we instead assume that λn is sufficiently close to λ(t) that λn−λ(t) ≈ dλ(t)/dt we obtain the ODE in (16). Or, equivalently,
by discretizing (35) we obtain

λn − λn−1 = c [(λn − λn−1)I(λn−1)]
−1
,

which is equivalent to (15).
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F.1. Numerical implementation for Figure 3

We reproduce the narrow Gaussian experiment of Goshtasbpour et al. (2023): the target is π = N (1d, 0.1
2 Id) and

µ0 = N (0d, Id) where d = 2.

To place all algorithms on equal footing we use the same number of particles N = 104 and the same Markov kernels, i.e.
random-walk Metropolis kernels automatically calibrated on the current particle sample. In the case of SMC, we select
the next tempering sequence so that ESSn = N/2, or, equivalently, by setting β = 1 in (14). For the constant rate AIS of
(Goshtasbpour et al., 2023), we follow their recommendation and set δ = 1/32 (higher values of δ give slightly shorter
tempering sequences but considerably worse approximations of π). To make their algorithm more numerically stable we
replace line 11 in their Algorithm 1 with (36). We also compare with SMC and AIS in which the step-size γ is constant
γ = 0.05.

We point out that the resampling cost in SMC is negligible, and that a shorter tempering sequence does correspond to a
shorter runtime (< 1 second for SMC and ≈ 14 seconds for AIS).
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