
Under review as submission to TMLR

SIPHER: Spike based Neuromorphic Computing for Secure
Inference against Bit-Flip Attack

Anonymous authors
Paper under double-blind review

Abstract

Deep Artificial Neural Networks (ANNs) have been shown to be vulnerable to parameter at-
tacks, such as the bit-flip attack, where intentional alterations of network weights can cause
significant performance loss. Although extensive research has enhanced the efficacy of these
attacks against standard ANN models, robust and efficient defense mechanisms remain un-
derdeveloped. In this work, we propose the spike-based neuromorphic computing paradigm,
referred to as SIPHER, as a potent defense strategy that exploits the inherent properties of
Spiking Neural Networks (SNNs) to mitigate such attacks. SNNs have emerged as a biolog-
ically plausible and energy-efficient alternative to ANNs. However, their fault tolerance and
robustness against parameter attacks have not yet been thoroughly investigated. We show
that SNNs, on account of their temporal computing capability, effectively neutralize the
state-of-the-art progressive bit search method for bit-flip attack, effectively rendering the
attack equivalent to random bit-flips. Our results reveal that an 8-bit quantized ResNet-20
SNN requires 145× more malicious bit-flips compared to ANNs to achieve similar accuracy
degradation, with 250× longer average attack time per bit-flip. The resilience of SNNs in-
creases significantly with model size, with an 8-bit quantized VGG-16 SNN requiring 518×
more bit-flips than ANNs to inflict comparable degradation, thus outperforming state-of-the-
art defenses against bit-flip attack. We validate SIPHER on different models and datasets,
thereby demonstrating the robustness of the spike-based inference method.

1 Introduction

Deep Artificial Neural Networks (ANNs) have achieved remarkable success in many applications, often attain-
ing or even surpassing human-level performance in tasks such as image recognition (Krizhevsky et al., 2012),
speech synthesis (van den Oord et al., 2016), and natural language processing (Touvron et al., 2023). Despite
their impressive performance, ANNs have been shown to be vulnerable to adversarial attacks (Szegedy et al.,
2014), in which deliberately created input perturbations cause the model to produce incorrect predictions.
Although adversarial perturbations are typically imperceptible to the human eye, they can significantly de-
grade model performance, as demonstrated by previous research efforts (Szegedy et al., 2014; Goodfellow
et al., 2015; Papernot et al., 2016a; Carlini & Wagner, 2017). Various defense approaches, such as adversarial
training (Madry et al., 2018), ensemble techniques (Tramèr et al., 2018), and gradient regularization (Ross
& Doshi-Velez, 2018; Papernot et al., 2016b; Gu & Rigazio, 2014; Miyato et al., 2017), have been developed
to enhance ANN robustness against adversarial threats.

While considerable research has focused on protecting neural networks from input-based adversarial attacks,
comparatively less attention has been given to attacks targeting model parameters through vulnerabilities
in hardware. Such parameter manipulation attacks are particularly concerning because they can potentially
render a model unusable without altering the input data, making them difficult to detect. Moreover, the
emergence of ANN compression techniques, like pruning and quantization, has enabled the deployment of
models on resource-limited platforms (Han et al., 2016) that often lack robust data integrity measures. This
increases the susceptibility of models to fault injection attacks, including Row Hammer (Kim et al., 2014)
and laser-based attacks (Selmke et al., 2015).

1

Under review as submission to TMLR

Input Images

Black Box
Model

DRAM

BFA

Inference
Engine

Hardware

SNN

ANN Compromised by
Few Bit-Flips

Defense

Resilient through
Several Bit-Flips

Attacker

(a) Conceptual illustration of BFA with and without SIPHER.

0 20 40 60 80 100
Number of Bit-Flips

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

SNN (With SIPHER Defense)
ANN (Without Defense)

(b) Test accuracy vs. the number of
bit-flips for VGG-16 on the CIFAR-10
dataset.

Figure 1: Motivation for our proposed defense. (a) Illustration of the proposed SIPHER methodology,
wherein transforming a model into an equivalent Spiking Neural Network (SNN) enhances its robustness
against bit-flip attack on weight parameters. (b) Results for VGG-16 ANN (source model without defense)
with 8-bit quantized weights show that flipping only 14 bits degrades accuracy from 94% to 10%. On
the other hand, VGG-16 SNN (with SIPHER defense methodology) requires significantly more bit-flips to
achieve similar degradation in accuracy. This demonstrates that SIPHER effectively prevents the model
from becoming a random output classifier under bit-flip attacks (BFAs), thereby mitigating the impact of
BFA and enhancing security during model deployment.

The recently demonstrated bit-flip attack, henceforth referred to as BFA, has emerged as one of the most
potent parameter attacks that can compromise the security of ANNs, potentially surpassing other threats
like adversarial or backdoor attacks (Gu et al., 2017; Coalson et al., 2024). Unlike adversarial attacks
that manipulate input data to corrupt model predictions, BFA strikes the physical memory (for instance,
DRAM) where the model parameters are stored and causes bit-flips in model weights through hardware
fault injection techniques. Researchers in (Rakin et al., 2019) showed that flipping a single bit (the most
significant bit of the exponent) in a random weight of a full-precision ANN, which uses IEEE floating-point
representation, was sufficient to cause a trained ResNet-18 to malfunction. The catastrophic impact of BFA
was subsequently demonstrated on quantized ANNs as well. For example, an 8-bit quantized ResNet-18 was
successfully compromised by flipping only 13 bits out of 93 million, effectively reducing its top-1 accuracy
on ImageNet from 69% to 0.1%, as shown in (Rakin et al., 2019). The stealthy nature of BFA makes such
attacks difficult to detect and easy to evade traditional hardware defense mechanisms. For example, advanced
Row Hammer techniques have been shown to circumvent existing memory protection solutions, including
Error Correction Codes (ECC) (Cojocar et al., 2019) and Intel Software Guard Extensions (SGX) (Gruss
et al., 2018). Moreover, recent practical implementations, such as DeepHammer (Yao et al., 2020), have
demonstrated BFA in a real system by exploiting Row Hammer vulnerabilities.

Given the susceptibility of ANNs to adversarial and bit-flip attacks, it is imperative to investigate alternative
neural computing paradigms with intrinsic fault tolerance capabilities to effectively resist such attacks. In this
context, Spiking Neural Networks (SNNs) (Maass, 1997), inspired by the fault tolerance and computational
efficiency of biological neurons, have emerged as a promising solution. SNNs, commonly regarded as the
third generation of neural networks, process information through discrete binary spike events (Gerstner &
Kistler, 2002). The sparse spike-based computation and communication capability of SNNs have been shown
to yield improved energy efficiency in hardware realizations (Rathi & Roy, 2021; Davies et al., 2021). In
addition to their computational efficiency, SNNs have been shown to provide enhanced robustness against
adversarial perturbations (Sharmin et al., 2019; Liang et al., 2022). Prior works indicate that the temporal
dynamics and sparse firing patterns of SNNs contribute to their resilience, particularly in black-box attack
scenarios where the attacker lacks detailed insight into the underlying model architecture (Sharmin et al.,
2019).

In this work, we propose the spike-based neuromorphic computing methodology, referred to as SIPHER, for
secure inference that effectively defends against parameter manipulation attacks such as the bit-flip attack

2

Under review as submission to TMLR

(BFA). We use the ANN-SNN conversion framework, which transforms a pre-trained ANN into an equivalent
SNN for energy-efficient inference (Diehl et al., 2015; Rueckauer et al., 2017; Sengupta et al., 2019; Han et al.,
2020; Deng & Gu, 2021). This is achieved by reusing the weights of the pre-trained ANN and replacing the
ANN activation function, such as ReLU, with corresponding spiking activation, like the Integrate-and-Fire
(IF) neuron. SNN inference is subsequently performed on the input over multiple timesteps. Notably,
models implemented as ANNs or SNNs appear similar to an attacker in terms of weight parameters and
architecture, making it difficult to differentiate and target them effectively, as illustrated in Figure 1a. Our
results (discussed in Section 4) indicate that SNN inference exhibits significantly greater resilience than
ANN inference when subjected to BFA. For instance, Figure 1b shows that while a VGG-16 ANN can be
compromised with fewer than 20 bit-flips, its equivalent SNN requires many more bit-flips to attain a similar
level of degradation. Overall, the key contributions of our work are:

• We propose SIPHER, a methodology that maps a source ANN into its equivalent SNN for secure
inference against bit-flip attack on model parameters.

• We comprehensively validate the efficacy of SIPHER using different models and datasets, demon-
strating its superiority over state-of-the-art defense mechanisms.

• We provide analytical insights (in Section 3.3) that show how the intrinsic temporal dynamics and
the spike-based computing capability of SNNs contribute to their robustness, thereby supporting
the experimental results reported in this work.

The remainder of the paper is organized as follows. Section 2 reviews the background and related work.
Section 3 describes our proposed methodology. Section 4 reports our experiments and results while Section 5
provides a detailed analysis of the findings. Section 6 concludes the paper.

2 Background and Related Works

Overview of Bit-Flip Attack Methodology. The Bit-Flip Attack (BFA) is a simple and efficient method
designed to compromise the performance of neural networks by flipping a small number of vulnerable bits
in the weight parameters. In this work, we focus on quantized models, similar to those analyzed in (Rakin
et al., 2019), because of their widespread use during inference. The quantized weights are stored in two’s
complement form and referred to as quantized bit tensors, denoted by {Bl}L

l=1, where l corresponds to each
layer of a network. BFA targets the most vulnerable bits of the quantized weights, whose alteration causes
the maximum increase in the loss function, L. The main objective of the adversary is to maximize L while
limiting the number of flipped bits to a minimum, which can be formally expressed as

max
{B̂l}L

l=1

L
(

f
(
x; {B̂l}L

l=1
)
, t
)

,

subject to t = f
(

x; {Bl}L
l=1

)
,

H
(

{B̂l}L
l=1, {Bl}L

l=1

)
∈ {0, 1, . . . , Nb},

(1)

where x is the input, f(x; ·) denotes the network inference function, {B̂l} is perturbed weight (quantized
bit) tensor in lth layer, t is the output of the unperturbed network, and H(·, ·) computes the Hamming
distance between the original and the perturbed weights. The parameter Nb specifies the maximum number
of bit-flips permitted. Progressive Bit Search (PBS) algorithm, which consists of two stages, was proposed
in (Rakin et al., 2019) to efficiently determine the vulnerable bits. In the first stage, known as the intra-layer
search, the attack computes the gradient of the loss with respect to this quantized bit tensor in each layer,
namely ∇B̂l

L. The absolute value of these gradients indicates the sensitivity of each bit. Accordingly, the
top nb bits with the largest gradient magnitudes per layer are chosen as vulnerable candidate bits b̂l, which
can be formulated as

b̂l = Topnb

(∣∣∣∇B̂
l
L
∣∣∣). (2)

3

Under review as submission to TMLR

During the following inter-layer search stage, the candidate bits from all layers are compared depending on
their gradient magnitudes to identify the top nb candidate bits across the network. The sensitive bits thus
determined are flipped to produce the perturbed weight tensor, which results in the maximum increase in L.
The PBS algorithm is iteratively performed until either the model performance drops below a pre-specified
threshold or the bit-flip budget Nb is fully expended, i.e.,

∑Nitr
i=1 nbi

≥ Nb, where Nitr denotes the maximum
number of PBS iterations. Finally, the effectiveness of BFA is quantified by calculating the Hamming distance
between the original and perturbed weights. We refer readers to (Rakin et al., 2019) for further details on
the PBS method.

Existing Defenses against Bit-Flip Attacks on ANNs. Defense strategies against bit-flip attacks on
ANNs can be categorized into weight reconstruction and quantization based methods. Weight reconstruction
technique presented in (Li et al., 2020) recomputes the weights prior to inference to minimize the impact of
perturbations caused by BFA. Researchers in (He et al., 2020) proposed piece-wise clustering of quantized
weights as an effective defense strategy, which was validated in later studies (Bai et al., 2021; Rakin et al.,
2019). Asymmetric fixed-point quantization combined with aggressive weight clipping during training was
introduced in (Stutz et al., 2021) to enhance security against random bit errors. This method was further
improved by per-layer weight clipping in (Stutz et al., 2022), which optimizes the quantization range for each
layer to increase resilience against adversarial and random bit errors. Weight clipping-aware training (Chit-
saz et al., 2023) has been shown to learn optimal layer-wise quantization ranges during training. Among
quantization-based methods, extreme quantization techniques, such as those used in Binary Neural Networks
(BNNs), have been shown to significantly improve robustness against BFA (He et al., 2020). However, BNNs
incur a notable drop in baseline accuracy compared to higher precision models (Rastegari et al., 2016). To
enhance the accuracy and robustness of BNNs, (Rakin et al., 2021) proposed augmenting model capacity
during training alongside binarization. SIPHER, in contrast, does not require additional training overhead
and provides superior resilience over BNNs (illustrated in Section 4.4).

Introduction to Spiking Neural Networks (SNNs). SNNs compute using discrete spikes instead of
continuous activations, allowing for temporal domain processing. We use the Integrate-and-Fire (IF) spiking
neuron, which maintains an internal state known as the membrane potential to accumulate the weighted
sum of input spikes. The potential vl(t−) of the l-th layer is updated at every discrete time step before a
spike is emitted as

vl(t−) = vl(t − 1) + Wl sl−1(t), (3)

where Wl is the weight matrix connecting layer l − 1 to layer l and sl−1(t) denotes the spike train from
the preceding layer. A spike is generated when the pre-spike potential exceeds a threshold θl, which can be
expressed as

sl(t) = H
(

vl(t−) − θl
)

, (4)

where H(·) represents the Heaviside step function. Once a spike is emitted, the potential is reset according
to

vl(t) = vl(t−) − sl(t)θl. (5)

A pre-trained ANN can be converted to an SNN by replacing its activation function (e.g., ReLU) with
an equivalent spiking activation (e.g., IF neuron). ANN-SNN conversion requires careful calibration of the
layer-wise thresholds for near-lossless SNN inference (Cao et al., 2015; Diehl et al., 2015; Sengupta et al.,
2019).

Adversarial Robustness in SNNs. Previous studies have shown that SNNs trained using spike-based
error backpropagation methods (Lee et al., 2016; Wu et al., 2018; Shrestha & Orchard, 2018; Neftci et al.,
2019; Lee et al., 2020) exhibit increased robustness against adversarial attacks compared to ANNs in black-
box attack conditions (Sharmin et al., 2019). Furthermore, SNNs trained with backpropagation were shown
to possess greater adversarial robustness compared to SNNs transformed from ANNs in both white-box
and black-box scenarios (Sharmin et al., 2019; 2020). Recent research has challenged this hypothesis by
proposing an adversarially robust ANN-to-SNN conversion algorithm, which optimizes model weights and
firing thresholds during a post-conversion fine-tuning phase (Ozdenizci & Legenstein, 2024).

4

Under review as submission to TMLR

3 SIPHER Methodology

In this section, we introduce SIPHER, a spike-based fault-tolerant inference methodology designed to enhance
the robustness of quantized deep neural networks against bit-flip attacks on model parameters. We start by
defining our threat model, followed by a description of ANN-SNN conversion algorithm used in this study.
Finally, we provide analytical evidence supporting our hypothesis that the intrinsic spike-based temporal
computing capability of SNNs contribute to increased resilience against parameter attacks.

3.1 Threat Model

We assume a white-box attacker who has knowledge of the underlying architecture and weights of the
deployed neural network, as summarized in Table 1. However, the attacker lacks access to the inference
method, specifically whether the model is executed as an ANN or SNN, as well as the hyperparameters and
training data. The objective of the attacker is to degrade network performance by flipping as few bits as
possible in the weights (Rakin et al., 2019). Our proposed defense, SIPHER, leverages this lack of information
about the inference method to mitigate the impact of bit-flip attacks.

Table 1: Summary of the threat model.

Attacker’s Knowledge Has Access No Access
Network architecture ✓
Weight parameters ✓
Hyperparameters ✓
Training data ✓
Inference method (ANN or SNN) ✓

3.2 ANN-SNN Conversion

We implement the following steps for converting an ANN to its equivalent SNN prior to inference.

• We train the source ANN alongside weight and activation quantization.

• We transfer the trained weight parameters from the ANN to the architecturally equivalent SNN and
suitably initialize the neuronal firing thresholds.

• SNN inference is performed by feeding the input over a sufficient number of timesteps to minimize
performance loss during conversion.

Weight Quantization. We quantize the weights in both the linear and convolutional layers of the ANN
using a symmetric uniform quantizer comprising Nq bits. This reduces the precision of the weights, thereby
mitigating the adverse impact of a single random bit-flip prevalent in full-precision models (Rakin et al.,
2019). Given the floating-point weights W fp

l at layer l, the quantization step size ∆wl is computed as

∆wl =
max

(∣∣∣W fp
l

∣∣∣)
2Nq−1 − 1 . (6)

Quantization step size specifies the discrete levels available for mapping the continuous weight values. The
quantized weights W l are then determined by

W l = round
(

W fp
l

∆wl

)
× ∆wl. (7)

We use the straight-through estimator (Bengio et al., 2013) during training to handle the non-differentiable
rounding operation.

5

Under review as submission to TMLR

Quantization-Clip-Floor-Shift (QCFS) Activation. We use the QCFS activation (Bu et al., 2022),
which is a quantized and truncated version of the standard ReLU activation, during ANN training. QCFS
activation function has been shown to better approximate the IF neuronal dynamics, resulting in SNNs that
provide accuracy comparable to the source ANNs. For pre-activation values zl = W lal−1 at layer l, the
QCFS activation output al is obtained by

al = λl · clip
(

1
L

⌊
zlL

λl
+ φ

⌋
, 0, 1

)
, (8)

where λl is a trainable scaling parameter, L is the number of quantization levels (e.g., L ∈ {2, 4, 8, 16}),
and φ is a shift term. We jointly train the network with quantized weights and QCFS activations using the
SGD optimizer. By quantizing the activations into discrete levels, the QCFS function reduces the network’s
sensitivity to small perturbations in the pre-activation values zl. A perturbation ∆W l, in the weights, results
in a change ∆zl = ∆W l · al−1. For the quantized activation al to be affected by ∆zl, the perturbation must
be large enough to cross a quantization boundary. The condition for al to change can be formulated as

|∆zl| ≥ λl

2L
, (9)

where λl

L is the activation quantization step size and φ is set to 1
2 . This shows that minor weight perturba-

tions, such as those from a single bit-flip, are much less likely to affect the activations when using QCFS.
On the contrary, any change in zl can proportionally affect al for the ReLU function.

3.3 SNN Inference and Robustness Analysis

The trained ANN is converted into an architecturally equivalent SNN, where the QCFS activation function is
replaced by an Integrate-and-Fire (IF) neuron. The layerwise firing threshold θl of the SNN is programmed
to the QCFS scaling factor (λl in Equation 8). The expectation of conversion error between the ANN and
SNN activations was shown to approach zero if SNN inference is performed for the same number of timesteps
as the number of QCFS quantization levels (L in Equation 8) used during ANN training (Bu et al., 2022).
We observe that the conversion error is characterized by a finite variance despite having an expected value
of zero. The variance of conversion error Erri

l, whose derivation is provided in Section A.1, is estimated as

Var
(

Errl
i

)
= (θl2)

12

(
1 + T

T 2

)
+ (θl)2

12

(
1 + L

L2

)
, (10)

where Errl
i is conversion error for the i-th neuron and T is the number of inference timesteps. This variance

quantifies the additional noise present during SNN inference, distinguishing it from ANN inference with
QCFS. Further, the inherent characteristics of SNNs provide several mechanisms that enhance robustness
against BFA, as detailed below.

Temporal Integration Attenuates Weight Perturbations. The ANN-SNN conversion method used
in this work employs rate coding, where the spiking neuronal output is represented by the average firing rate
over inference timesteps. The average firing rate ϕl(T) across T timesteps can be formulated as

ϕl(T) = 1
T

T∑
t=1

sl(t), (11)

where sl(t) is the spike output at time t. We now show that the temporal computing capability effectively
attenuates the impact of weight perturbations induced by bit-flip attacks. A weight perturbation ∆W l

causes an incremental change ∆vl(t) in membrane potential, which can be estimated as

∆vl(t) = ∆W l · sl−1(t). (12)

The perturbed potential triggers an update ∆sl(t) in spike output only if it is high enough to cross the firing
threshold. The cumulative change ∆ϕl(T) in the average firing rate is then obtained by

∆ϕl(T) = 1
T

T∑
t=1

∆sl(t). (13)

6

Under review as submission to TMLR

Assuming that the weight perturbation influences the spike output only at a limited number of timesteps
Np ≪ T , the change in average firing rate can be approximated as

∆ϕl(T) ≈ Np

T
. (14)

Equation 14 shows that the effect of weight perturbation is attenuated by a factor of 1/T in SNNs. On the
other hand, weight perturbation has a relatively larger impact on ANNs, where the change in activation ∆al

is given by
∆al = ∆W l · al−1. (15)

SNNs, on account of temporal integration, require larger or more frequent perturbations to experience the
same level of degradation as ANNs.

Threshold-Driven Sparsity Filters Minor Perturbations. The spiking neuron incorporates a firing
threshold θl, which acts as a filter against minor perturbations. A weight perturbation ∆W l affects the
neuron’s output only if it causes the membrane potential vl(t) to exceed the threshold, which occurs when

|∆vl(t)| = |∆W l · sl−1(t)| ≥ θl − vl(t). (16)

The weight perturbation in quantized models, which use Nq bits for weight representation, is bounded by

|∆W l| ≤ wmax

2Nq−1 , (17)

where wmax is the maximum weight value. We hypothesize that weight quantization along with spiking
sparsity makes it difficult for minor weight perturbations to satisfy Equation 16, thus enhancing the resilience
of SNNs against BFA, as empirically validated in Section 4.3.

Reset Mechanism Mitigates Error Accumulation. The membrane potential of a spiking neuron is
reset after it fires, preventing the accumulation of perturbation over time. The reset mechanism lowers the
potential by the firing threshold, as shown in Equation 5. This ensures that even if a bit-flip successfully
affects the membrane potential, the influence is limited to a specific time window rather than propagating
across timesteps. The temporal isolation, in effect, requires larger perturbations to mount a potent attack.

4 Experimental Results

4.1 Experiment Setup

We perform experiments on three commonly used datasets, namely, CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2010), and Tiny-ImageNet. We train models with quantized weights at 6-bit and 8-bit precision,
together with QCFS activation at quantization levels of L = 4 and L = 8. After training, we evaluate
our defense mechanism against bit-flip attacks by performing SNN inference for different timesteps. For
the BFA implementation, we use an attack sample size of 128 across all experiments. Additional details
about the experimental setup are provided in Section A.2. In our work, we adapt BFA for SNNs using
surrogate gradients, ensuring that the attack remains potent and that comparisons are fair. Surrogate
gradient methods for backpropagating errors in SNNs have matured significantly, allowing accurate and
robust gradient approximation through non-differentiable spiking functions (Deng et al., 2022; Zhang & Li,
2020).

4.2 Evaluation Metric

We validate the efficacy of SIPHER against BFA using several key metrics, which are described below.
The Clean Accuracy (CA) represents the percentage of test samples correctly classified by the clean model.
The Post-Attack Accuracy (PA) reflects the accuracy of the perturbed model after the attack. We quantify
robustness by reporting the number of bit-flips required to either reduce the model accuracy to that of a
random classifier (e.g., 10% for CIFAR-10 and 1% for CIFAR-100) or until a predefined maximum number

7

Under review as submission to TMLR

of attack iterations is reached (e.g., 500 for CIFAR-10 and 1000 for CIFAR-100). The Average Attack Time
(AAT) (in seconds) specifies the average time taken per iteration to perform BFA. Finally, we introduce
Redundant Bit-Flips (RBF) to measure the attack inefficiency, estimated as

RBF = Nflipped − H
Nflipped

, (18)

where Nflipped is the total number of bit-flip operations performed and H is the hamming distance between
the original and perturbed weights. An RBF of zero indicates no inefficiency (each bit was flipped only
once), while higher values suggest that the same bits were flipped multiple times.

4.3 Resilience Evaluation

SIPHER on CIFAR-10. We conduct experiments on VGG-16, ResNet-18, ResNet-20, and ResNet-32
model architectures with 6-bit and 8-bit weight quantization. The results, summarized in Table 2, indicate
that SIPHER substantially improves robustness compared to ANN inference across all models. For example,
while the 8-bit quantized ResNet-20 ANN requires an average of only 9 bit-flips to severely degrade its
performance, the equivalent SNN (using T = 32 timesteps) requires over 1,311 bit-flips, which is more
than 145× the number needed by ANN to suffer a similar loss in accuracy. The AAT increased from 0.032
seconds to 8.01 seconds, a 250× increase in duration, making the attack significantly more time-consuming.

The improvements are even more pronounced in some of the other models. For ResNet-18 SNN, the bit-flip
attack reduced accuracy by only about 3% (from 92.4% to 89.49%) with more than 1,500 bit-flips. Sim-
ilarly, VGG-16 SNN maintained accuracy above 25% with 14,000 bit-flips, representing a 518× increase
in the required number of bit-flips compared to ANN, which needed only 27 bit-flips on average to reduce
its performance to that of a random classifier. Furthermore, we observed that SNN inference significantly
outperforms ANN inference (with QCFS function) in terms of robustness. These findings demonstrate the
superior efficacy of SIPHER against BFA by requiring more bit-flips and longer average attack times.

SIPHER on CIFAR-100. We analyzed the effectiveness of SIPHER on the CIFAR-100 dataset using an 8-
bit quantized ResNet-18 and 6-bit quantized VGG-16, both of which are trained using QCFS activation with
L = 4. Table 3 clearly indicates that both ResNet-18 SNN and VGG-16 SNN exhibit improved robustness
against BFA by requiring an order of magnitude more bit-flips while still having a higher post-attack accuracy
compared to ANN. For instance, the top-1 accuracy of ResNet-18 SNN decreased only slightly from 73.73%
to 68.69% even after incurring 1,957 bit-flips, demonstrating significant resilience. Overall, these results
further reinforce the capability of SIPHER to provide enhanced resistance to bit-flip attacks.

SIPHER on Tiny-ImageNet. To further validate the robustness claims of SIPHER, we conducted experi-
ments on the Tiny-ImageNet dataset using an 8-bit quantized VGG-16 architecture. The results, summarized
in Table 4, demonstrate SIPHER’s significant robustness advantage (200× increase in the number of bit-flips
and 15× longer AAT) over traditional ANN implementations against bit-flip attack.

4.4 Comparison with Existing Defenses

Several defenses have been proposed to protect neural networks against bit-flip attack, predominantly using
standard neural network architectures (e.g., ANNs, BNNs). Table 5 compares the performance and ro-
bustness of these defenses with our proposed SIPHER approach using the 8-bit quantized ResNet-20 model
inferred on the CIFAR-10 dataset. Our results indicate that SIPHER, which deploys ResNet-20 SNN dur-
ing inference, significantly outperforms existing methods like piece-wise clustering (He et al., 2020), binary
quantization (He et al., 2020), and weight reconstruction (Li et al., 2020). Our method is comparable in
terms of robustness to RA-BNN (Rakin et al., 2021). We would like to point out that the efficacy of SIPHER
defense increases with model size; for larger models, the required number of bit-flips can reach the order of
104, as illustrated in Section 4.3.

8

Under review as submission to TMLR

Table 2: SIPHER robustness analysis on CIFAR-10 for various models. Vanilla models are baseline models
with ReLU activation and weight quantization only. Models using QCFS activation are indicated with their
quantization levels (L). The ANN/SNN column specifies the inference type (ANN or SNN), with timesteps
(T) for SNNs. Clean Accuracy (CA) and Post-attack Accuracy (PA) denote top-1 accuracies. Average Attack
Time (AAT) is specified in seconds. Bit-flips are measured for a maximum of 500 attack iterations.

Model & Quantization ANN/SNN CA (%) PA (%) AAT (sec) Bit Flips

VGG-16 (8-bit)

Vanilla ANN 94.31 10.39 0.054 27
QCFS (L=4) ANN 93.38 10.74 0.08 48
SIPHER: QCFS (L=4) SNN (T=16) 93.06 79.67 1.9 1250

VGG-16 (6-bit)

Vanilla ANN 94.70 10.15 0.053 32
QCFS (L=8) ANN 93.81 10.3 0.079 21
SIPHER: QCFS (L=8) SNN (T=16) 93.09 39.05 2.3 987

ResNet-18 (8-bit)

Vanilla ANN 95.30 10.4 0.22 55
QCFS (L=4) ANN 94.59 10.85 0.138 107
SIPHER: QCFS (L=4) SNN (T=4) 92.42 89.49 1.73 1505

ResNet-18 (6-bit)

Vanilla ANN 95.51 10.2 0.22 53
QCFS (L=4) ANN 94.57 10.95 0.40 111
SIPHER: QCFS (L=4) SNN (T=4) 92.73 89.40 1.50 1284

ResNet-20 (8-bit)

Vanilla ANN 91.14 10.02 0.032 9
QCFS (L=8) ANN 90.53 10.78 0.052 18
SIPHER: QCFS (L=8) SNN (T=32) 90.37 10.05 8.01 1311

ResNet-20 (6-bit)

Vanilla ANN 91.58 10.1 0.031 13
QCFS (L=8) ANN 90.68 10.43 0.052 17
SIPHER: QCFS (L=8) SNN (T=32) 90.34 10.01 3.94 328

ResNet-32 (8-bit)

Vanilla ANN 92.66 10.93 0.067 14
QCFS (L=4) ANN 91.59 10.17 0.118 22
SIPHER: QCFS (L=4) SNN (T=32) 91.29 14.88 9.56 647

ResNet-32 (6-bit)

Vanilla ANN 92.55 10.2 0.066 12
QCFS (L=4) ANN 91.33 10.78 0.116 21
SIPHER: QCFS (L=4) SNN (T=32) 92.73 12.73 10.29 645

5 Analysis

In this section, we perform an in-depth analysis of bit-flips induced by BFA during SNN inference and
compare them with those occurring in ANN inference.

Bit-Flip Behavior in SNN vs. ANN Inference. In ANN inference, the BFA typically requires flipping
only a few bits to significantly degrade model accuracy, and the same bit is rarely flipped multiple times;
consequently, the RBF metric is often zero. In each attack iteration, flipping a single bit is usually sufficient
to increase the loss, as the top nb gradients are non-zero. This enables PBS algorithm (Rakin et al., 2019)
to efficiently identify and flip the vulnerable bit per attack iteration.

9

Under review as submission to TMLR

Table 3: SIPHER robustness analysis on CIFAR-100. Clean Accuracy (CA) and Post-attack Accuracy (PA)
are presented as top-1/top-5 accuracies. Average Attack Time (AAT) is specified in seconds. Bit-flips are
measured for a maximum of 1000 attack iterations.

Model & Quantization ANN/SNN CA (%) PA (%) AAT (sec) Bit Flips

ResNet-18 (8-bit)

Vanilla ANN 76.26/94.02 1.9/6.47 0.084 69
QCFS (L=4) ANN 77.19/94.11 1.87/29.5 0.174 144
SIPHER: QCFS (L=4) SNN (T=4) 73.73/92.53 68.69/91.74 1.123 1957

VGG-16 (6-bit)

Vanilla ANN 75.44/92.62 1.22/6.49 0.051 12
QCFS (L=4) ANN 74.13/93.72 1.72/11.40 0.074 43
SIPHER: QCFS (L=4) SNN (T=8) 72/92.78 12.03/30.17 1.111 1897

Table 4: Results for 8-bit VGG-16 on Tiny-ImageNet dataset.

Model CA
(%)

PA
(%) AAT Bit-

flips
Vanilla 54.42 10.2 0.2 11
QCFS (L = 4) 49.78 10.05 0.305 82
SIPHER (L = 4, T = 8) 49.35 10.1 3.1 2305

Table 5: Comparison of SIPHER with the state-of-the-art defenses using 8-bit quantized ResNet-20 on the
CIFAR-10 dataset.

Defenses CA PA Order of
bit-flips

Weight Reconstruction (Li et al., 2020) 90.83 10.00 10
Piece-wise Clustering (He et al., 2020) 90.02 10.07 10
Binary Weight (He et al., 2020) 88.36 10.13 102

RA-BNN (Rakin et al., 2021) 90.18 10.00 103

SIPHER (L = 8 , T = 32) 90.37 10.05 103

Conversely, in SNN inference, a larger number of bit-flips is often necessary to experience similar levels
of accuracy degradation. Flipping a single bit per attack iteration may not increase the loss. Therefore,
multiple bits may be flipped in each attack iteration. In addition, we observe that the magnitudes of the top
nb gradients can become zero, which causes PBS method to get stuck in local minima during the search for
vulnerable bits. As the attack progresses, the same bits can be flipped multiple times, resulting in a higher
RBF in SNN inference (as summarized in Table 6) and rendering the attack equivalent to random bit-flips.

Table 6: Analysis of RBF for VGG-16 with QCFS activation (L = 4) during SNN inference on CIFAR-10
and CIFAR-100 datasets, using 8-bit and 6-bit weight quantization, respectively.

SNN (T) Dataset Bit Flips
/ Hamming Distance RBF

T = 16 CIFAR-10 14,024 / 6,694 0.52
T = 8 CIFAR-100 1,897 / 1,227 0.35

Layer-Wise Sensitivity to BFA. We now analyze the layer-wise distribution of bit-flips required to degrade
the ResNet-20 model. Our results, shown in Figure 2, indicate that most bit-flips are concentrated in the
initial layers for ANN inference, suggesting that these layers produce higher gradient magnitudes and are
therefore more susceptible to perturbations. In contrast, SNN inference exhibits a shift in sensitivity toward

10

Under review as submission to TMLR

the later layers. Specifically, Stage-4 layers are more susceptible due to their higher gradient magnitudes.
Similarly, the classifier layer, which has been implemented as a linear layer without IF neurons similar to
that used in ANN, contributes relatively more to the overall gradients.

Sta
ge

-1

Sta
ge

-2

Sta
ge

-3

Sta
ge

-4

Clas
sifi

er

Layer

0

2

4

6

8

10

Av
er

ag
e

Nu
m

be
r o

f B
it-

Fl
ip

s

2.75

9.95

2.50
1.50 1.15

(a) Average number of bit-flips per layer in ANN inference.

Sta
ge

-1

Sta
ge

-2

Sta
ge

-3

Sta
ge

-4

Clas
sifi

er

Layer

0

50

100

150

200

Av
er

ag
e

Nu
m

be
r o

f B
it-

Fl
ip

s

8.25
25.75 32.00

235.00

113.00

(b) Average number of bit-flips per layer in SNN inference
at T = 16.

Figure 2: Layer-wise distribution of the average number of bit-flips required to compromise the ResNet-20
model on the CIFAR-10 dataset. Here, ‘Stage-1’ to ‘Stage-4’ correspond to successive residual blocks in the
network, and ‘Classifier’ refers to the final fully-connected layer. The average is computed across different
weight bit-widths (6-bit and 8-bit) and QCFS levels (L = 4 and L = 8).

The layer-wise distribution of bit-flips differs significantly between ANN and SNN inference, although the
underlying weights remain largely identical in both settings. We conducted additional experiments by se-
lectively freezing the sensitive SNN layers during BFA, specifically the Stage-4 block and the final classifier.
With these layers excluded, the number of bit-flips required to achieve comparable degradation reduces
considerably, as illustrated in Figure 3. This shows that the enhanced robustness observed during SNN
inference largely originates in the later layers. When the attack is forced to rely solely on the initial layers,
the robustness benefit of SIPHER diminishes.

QCFS (L = 4) QCFS (L = 8)
Model Configuration

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

Nu
m

be
r o

f B
it-

Fl
ip

s

340

671

101
33

All Layers
Freezing Stage-4 &
Classifier Layers

Figure 3: Impact of freezing sensitive layers on the number of bit-flips required to compromise the 6-bit
quantized ResNet-20 model during SNN inference using T = 16 timesteps.

Impact of Timesteps on Attack Complexity. When mounting attacks on ANN model architectures,
BFA has a computational cost proportional to the number of layers and the candidate bits examined (Rakin
et al., 2019). However, for SNNs, this cost increases drastically because each attack iteration must process
information over multiple timesteps. Although the weight parameters remain identical, calculating how bit-
flips affect the network requires tracing through the entire temporal sequence during the forward pass. This
effectively multiplies the computational complexity by the number of timesteps, creating a natural barrier
that makes attacks on SNNs significantly more time-consuming than on ANNs.

11

Under review as submission to TMLR

Practical Realization of SIPHER. SIPHER requires that the inference engine (illustrated in Figure 1a)
is capable of executing both ANNs and SNNs. SIPHER can be realized using general-purpose computing
platforms such as CPUs and GPUs as well as custom hardware accelerators that support both ANN and
SNN processing elements (Pei et al., 2019; Singh et al., 2020). SIPHER does not introduce any additional
computational overhead during training compared to other defenses. However, it leads to higher inference
latency due to processing over multiple time steps, albeit with higher energy efficiency over ANNs.

6 Conclusion

In this work, we introduced SIPHER, a methodology that transforms an ANN into an architecturally equiva-
lent SNN, for enhancing security against bit-flip attacks on neural network weights. The improved robustness
of SIPHER stems from the intrinsic spike-based sparse computing capability, temporal dynamics, and fault
tolerance of spiking neurons. Our extensive experiments revealed that SNNs require up to three orders
of magnitude more bit-flips to experience similar levels of performance degradation as their ANN counter-
parts. In addition, we presented analytical insights to quantify the distinctive attributes of SNN inference,
supporting the experimental results presented in this study.

References
Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, and Shu-Tao Xia. Targeted attack against

deep neural networks via flipping limited weight bits. In ICLR, 2021. 4

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 5

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In ICLR, 2022. 6, 16, 17

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for energy-
efficient object recognition. In IJCV, pp. 54–66, 2015. 4

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (SP), pp. 39–57, 2017. 1

Kamran Chitsaz, Goncalo Mordido, Jean-Pierre David, and François Leduc-Primeau. Training DNNs re-
silient to adversarial and random bit-flips by learning quantization ranges. Transactions on Machine
Learning Research, 2023. 4

Zachary Coalson, Jeonghyun Woo, Shiyang Chen, Yu Sun, Lishan Yang, Prashant Nair, Bo Fang, and
Sanghyun Hong. PrisonBreak: Jailbreaking large language models with fewer than twenty-five targeted
bit-flips. arXiv preprint arXiv:2412.07192, 2024. 2

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting correcting codes: On the
effectiveness of ecc memory against rowhammer attacks. pp. 55–71. IEEE, 2019. 2

Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca Guerra, Prasad
Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic computing with loihi: A survey of
results and outlook. Proceedings of the IEEE, 109(5):911–934, 2021. 2

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking neural
networks. arXiv preprint arXiv:2103.00476, 2021. 3

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural
network via gradient re-weighting. In International Conference on Learning Representations, 2022. 7

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017. 18

12

Under review as submission to TMLR

Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. Fast-
classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2015. 3, 4

Wulfram Gerstner and Werner M Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, 2002. 2

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In ICLR, 2015. 1

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall of rowhammer defenses. In IEEE Symposium on
Security and Privacy (SP), pp. 245–261, 2018. 2

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial examples.
arXiv preprint arXiv:1412.5068, 2014. 1

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017. 2

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential neuron for
enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 13558–13567, 2020. 3

Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In ICLR, 2016. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016. 18

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan. Defending and harnessing
the bit-flip based adversarial weight attack. In CVPR, pp. 14095–14103, 2020. 4, 8, 10

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of dram
disturbance errors. In Proceedings of the 41st Annual International Symposium on Computer Architecture
(ISCA), pp. 361–372. IEEE, 2014. 1

Alex Krizhevsky, Vinod Nair, and Geoffery E Hinton. CIFAR- 10 and 100 (canadian institute for advanced
research). "http://www.cs.toronto.edu/~kriz/cifar.html", 2010. 7

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, pp. 1097–1105, 2012. 1

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in Neu-
roscience, 14, 2020. 4

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using backprop-
agation. Frontiers in neuroscience, 10:508, 2016. 4

Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan, and Chaitali
Chakrabarti. Defending bit-flip attack through dnn weight reconstruction. In Proceedings of the 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020. 4, 8, 10

Ling Liang, Kaidi Xu, Xing Hu, Lei Deng, and Yuan Xie. Towards robust spiking neural network against
adversarial perturbation. In NIPS, 2022. 2

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural
Networks, 10(9):1659–1671, 1997. 2

13

http://www.cs.toronto.edu/~kriz/cifar.html

Under review as submission to TMLR

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018. 1

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-supervised text
classification. In ICLR, 2017. 1

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal
Processing Magazine, 36(6):51–63, 2019. 4

Ozan Ozdenizci and Robert Legenstein. Adversarially robust spiking neural networks through conversion.
Transactions on Machine Learning Research, 2024. 4

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings. In IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387, 2016a. 1

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense
to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on Security and
Privacy (SP), pp. 582–597, 2016b. 1

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou, Zhenzhi
Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip architecture. Nature,
572(7767):106–111, 2019. 12

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-Flip Attack: Crushing neural network with progressive
bit search. In ICCV, pp. 1211–1220, 2019. 2, 3, 4, 5, 9, 11

Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao, Chaitali Chakrabarti, Yu Cao, Jae sun Seo, and Deliang
Fan. RA-BNN: Constructing robust accurate binary neural network to simultaneously defend adversarial
bit-flip attack and improve accuracy. arXiv preprint arXiv:2103.13813, 2021. 4, 8, 10

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. In European conference on computer vision, pp. 525–542.
Springer, 2016. 4

Nitin Rathi and Kaushik Roy. DIET-SNN: A low-latency spiking neural network with direct input encoding
and leakage and threshold optimization. IEEE Transactions on Neural Networks and Learning Systems,
34(6):3174–3182, 2021. 2

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability of
deep neural networks by regularizing their input gradients. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2018. 1

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in
neuroscience, 11:682, 2017. 3

Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise laser fault injections into 90-nm
and 45-nm sram-cells. In Revised Selected Papers of the 14th International Conference on Smart Card
Research and Advanced, pp. 193–205. Springer-Verlag, 2015. 1

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking neural
networks: Vgg and residual architectures. Frontiers in neuroscience, 2019. 3, 4

Saima Sharmin, Priyadarshini Panda, Syed Shakib Sarwar, Chankyu Lee, Wachirawit Ponghiran, and
Kaushik Roy. A comprehensive analysis on adversarial robustness of spiking neural networks. In In-
ternational Joint Conference on Neural Networks, pp. 1–8, 2019. 2, 4

14

Under review as submission to TMLR

Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial robustness of
deep spiking neural networks: Effects of discrete input encoding and non-linear activations. In ECCV, pp.
399–414. Springer-Verlag, 2020. 4

Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike layer error reassignment in time. In NIPS, pp.
1412–1421, 2018. 4

Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen Lu, Kezhou Yang, Abhronil Sengupta,
Vijaykrishnan Narayanan, and Chita R Das. Nebula: A neuromorphic spin-based ultra-low power ar-
chitecture for snns and anns. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 363–376. IEEE, 2020. 12

David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt Schiele. Bit error robustness for energy-
efficient dnn accelerators. arXiv preprint arXiv:2006.13977, 2021. 4

David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt Schiele. Random and adversarial bit
error robustness: Energy-efficient and secure dnn accelerators. arXiv preprint arXiv:2104.08323, 2022. 4

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2014. 1

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. 1

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel.
Ensemble adversarial training: Attacks and defenses. In ICLR, 2018. 1

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016. 1

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018. 4

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: Depleting the intelligence of deep neural
networks through targeted chain of bit flips. In 29th USENIX Security Symposium (USENIX Security
20), pp. 1463–1480, 2020. 2

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking neural
networks. In Proceedings of the 34th International Conference on Neural Information Processing Systems,
2020. 7

15

Under review as submission to TMLR

A Appendix

A.1 Proof of the Conversion Error Variance Between ANN Inference with QCFS and SNN Inference

In this section, we provide detailed proof of the variance of the conversion error between an Artificial Neural
Network (ANN) with Quantized Clip-Floor-Shift (QCFS) activation functions and its equivalent Spiking
Neural Network (SNN). While the expectation of the conversion error has been shown to be zero in the
QCFS paper (Bu et al., 2022), we focus here on calculating the variance of the conversion error, which
quantifies the additional noise present during SNN inference. Consider an ANN layer l with the QCFS
activation function, output is given by:

ϕl
ANN = λl

L
·
⌊

zlL

λl
+ φ

⌋
, (19)

where zl is the pre-activation input to layer l, λl is a scaling parameter (trainable during training), L is the
number of quantization levels in the activation function (e.g., L ∈ {2, 4, 8, 16}), and φ is the shift term, set
to φ = 1

2. In the equivalent SNN, the neuron’s output over T time steps is given by:

ϕl
SNN = θl

T
·
⌊

zlT + vl(0)
θl

⌋
, (20)

where θl = λl is the firing threshold, vl(0) = θlφ = θl

2 is the initial membrane potential (since φ = 1
2), and

T is the number of time steps during SNN inference. Our goal is to analyze the variance of the conversion
error between the ANN and SNN activations, defined by:

Errl = ϕl
SNN − ϕl

ANN. (21)

While the expected value E
[
Errl

]
= 0 has been established in (Bu et al., 2022). Substituting the expressions

from Equations equation 19 and equation 20 into Equation equation 21, we have:

Errl = θl

T
·
⌊

zlT + vl(0)
θl

⌋
− λl

L
·
⌊

zlL

λl
+ φ

⌋
= θl

(
1
T

⌊
zlT + θlφ

θl

⌋
− 1

L

⌊
zlL

θl
+ φ

⌋)
, (22)

since θl = λl and vl(0) = θlφ. As every element in the vector zl behaves identically, we only need to consider
a single element zl

i. Defining Errl
i as the conversion error for the i-th element:

Errl
i = θl

(
1
T

⌊
zl

iT + θlφ

θl

⌋
− 1

L

⌊
zl

iL

θl
+ φ

⌋)
. (23)

We can decompose the error by adding and subtracting zl
i:

Errl
i =

(
θl

T

⌊
zl

iT + θlφ

θl

⌋
− zl

i

)
+
(

zl
i − θl

L

⌊
zl

iL

θl
+ φ

⌋)
(24)

= eSNN + eANN, (25)

where:

eSNN = θl

(
1
T

⌊
zl

iT + θlφ

θl

⌋
− zl

i

)
, (26)

eANN = θl

(
zl

i − 1
L

⌊
zl

iL

θl
+ φ

⌋)
. (27)

16

Under review as submission to TMLR

Under the assumption that eSNN and eANN are independent, we can write the variance of Errl
i as:

Var
(

Errl
i

)
= Var (eSNN) + Var (eANN) . (28)

Since the expectation E [eSNN] = 0 and E [eANN] = 0 as shown in (Bu et al., 2022), we can compute the
variances by calculating the second moments:

Var
(

Errl
i

)
= E

[
e2

SNN
]

+ E
[
e2

ANN
]

. (29)

Consider a scenario in which a random variable x defined on the interval [0, θ] is uniformly distributed within
each subinterval [mt, mt+1] for t = 0, 1, . . . , T . In each of these subintervals, the corresponding probability
density is denoted by pt. The subinterval boundaries are defined such that m0 = 0 and mT +1 = θ, with the
intermediate points given by

mt =
(
t − 1

2
)

θ

T
for t = 1, 2, . . . , T.

Under this setup, one can determine the second moment of x as follows:

Ex

(
x − θ

T

[
Tx

θ
+ 1

2

])2
= θ2

12

(
1 + 1

T

)
Proof for the second moment can be shown as:

Ex

(
x − θ

T

[
Tx

θ
+ 1

2

])2

=
∫ θ/2T

0
p0

(
x − θ

T

[
Tx

θ
+ 1

2

])2
dx

+
T −1∑
t=1

∫ (2t+1)θ/2T

(2t−1)θ/2T

pt

(
x − θ

T

[
Tx

θ
+ 1

2

])2
dx

+
∫ θ

(2T −1)θ/2T

pT

(
x − θ

T

[
Tx

θ
+ 1

2

])2
dx

Therefore, the integrals become:

= p0

∫ θ/2T

0
x2dx +

T −1∑
t=1

pt

∫ (2t+1)θ/2T

(2t−1)θ/2T

(
x − tθ

T

)2
dx

+pT

∫ θ

(2T −1)θ/2T

(x − θ)2
dx

=
(

θ

2T

)3
[

p0

3 +
T −1∑
t=1

2pt

3 + pT

3

]
Since p0 = pT = 2T

θ and pt = T
θ by considering uniform distribution in each interval, we get:

Ex

(
x − θ

T

[
Tx

θ
+ 1

2

])2
=
(

θ

2T

)2
·
(

T + 1
3

)
= θ2

12

(
1 + T

T 2

) (30)

Similarly, we can write variance of Errl
i as:

Var
(

Errl
i

)
= (θl2)

12

(
1 + T

T 2

)
+ (θl)2

12

(
1 + L

L2

)
(31)

17

Under review as submission to TMLR

A.2 Experiment Details

In our experiments, we utilized three well-known image classification datasets: CIFAR-10, CIFAR-100, and
Tiny ImageNet.

CIFAR-10. The CIFAR-10 dataset consists of 60,000 color images with dimensions of 32 × 32 pixels.
These images are equally divided into 10 different classes. We used 50,000 images for training the models
and 10,000 images for testing their performance.

CIFAR-100. Similar to CIFAR-10 in terms of image size and total number of images, the CIFAR-100
dataset contains 60,000 color images of 32 × 32 pixels. However, these images are categorized into 100
classes, each containing 600 images. The dataset is split into 50,000 training images and 10,000 test images.

Tiny ImageNet. The Tiny ImageNet dataset is a subset of the ImageNet dataset. It comprises 110,000
color images with dimensions of 64 × 64 pixels, organized into 200 different classes. Each class has 500
training images, 50 validation images, and 50 test images. We utilized the 100,000 training images and
evaluated model performance on the 10,000 test images.

We utilized the Cutout data augmentation technique (DeVries & Taylor, 2017) alongside standard augmen-
tation methods to enhance model performance and mitigate overfitting. Our architecture incorporates the
residual learning framework from (He et al., 2016), enabling stable training of deeper networks. For opti-
mization, we used momentum-based SGD (batch size: 128) with L2 regularization (weight decay: 1 × 10−4).
The learning rate was initialized at 0.01 and automatically reduced by a factor of 10 at the 150th and 180th

epochs during the 200-epoch training cycle. All implementations were developed in PyTorch and executed
on NVIDIA GeForce RTX 4090 GPUs.

18

	Introduction
	Background and Related Works
	SIPHER Methodology
	Threat Model
	ANN-SNN Conversion
	SNN Inference and Robustness Analysis

	Experimental Results
	Experiment Setup
	Evaluation Metric
	Resilience Evaluation
	Comparison with Existing Defenses

	Analysis
	Conclusion
	Appendix
	Proof of the Conversion Error Variance Between ANN Inference with QCFS and SNN Inference
	Experiment Details

