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ABSTRACT

Correlated outcomes are common in many practical problems. In some settings, one outcome is of particular interest, and others are auxiliary.
To leverage information shared by all the outcomes, traditional multi-task learning (MTL) minimizes an averaged loss function over all the
outcomes, which may lead to biased estimation for the target outcome, especially when the MTL model is misspecified. In this work, based
on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust transfer learning approach to
estimating a high-dimensional linear decision rule for the outcome of interest with the presence of auxiliary outcomes. The proposed method
includes an MTL step using all outcomes to gain efficiency and a subsequent calibration step using only the outcome of interest to correct both
types of biases. We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest.

Simulations and real data analysis are conducted to justify the superiority of the proposed method.

KEYWORDS: auxiliary outcomes; classification; high-dimensional data; multi-task learning; transfer learning.

1 INTRODUCTION

With the adoption of electronic health records and medical in-
formation systems, datasets increasingly massive in volume and
diverse in variable categories have been leveraged for knowledge
discovery and clinical decision support. In some datasets, in ad-
dition to the patient outcome of primary interest, multiple rel-
evant health outcomes are available. In this paper, we denote
these relevant outcomes as auxiliary outcomes, and our goal is
to study how to safely use these auxiliary outcomes to help pre-
dict a binary target outcome in a classification framework with
high-dimensional linear decision rules.

Our motivating example is predicting whether the improve-
ment in hip joint functions fails to achieve the minimal clini-
cal importance difference (MCID) after total hip arthroplasty
(THA). The Hip disability and Osteoarthritis Outcome Scores
for Joint Replacement (HOOS JR) survey is a commonly used
instrument to measure THA patients’” health outcomes. Predict-
ing whether the change of the overall score measured in preop-
erative and postoperative surveys exceeds the MCID can help
inform whether surgery is necessary. However, it is a challeng-
ing task due to the large variability of the reported outcomes and
the high event rates of achieving MCID (ie, imbalanced labels).
In addition to the overall score, the questionnaire also collects
disease-specific information that measures the improvement in
various perspectives, including pain, sleep, fatigue, and function

(Katakam et al., 2022; Kunze et al., 2020). This motivates us
to explore, whether we can leverage these related questionnaire
items—auxiliary outcomes to facilitate target outcome prediction
(ie, whether the overall score change exceeds MCID).

To model related outcomes jointly, multi-task learning (MTL)
has emerged, aiming to exploit commonalities and differences
across outcomes (Caruana, 1997). In MTL, it is typically as-
sumed that some parameters are similar across tasks (Ando
and Zhang, 200S; Argyriou et al., 2007; Bakker and Heskes,
2003; Maurer et al., 2013; Titsias and Lazaro-Gredilla, 2011;
Yu et al,, 2005; Zhang et al., 2008; Zhu et al., 2011), or these
tasks bear a shared sparsity structure (Gong et al., 2013; 2014;
Hernéndez-Lobato and Herndndez-Lobato, 2013; Lounici et al.,
2009; Obozinski et al., 2008; Rao et al., 2013; Wang et al., 2016;
Yang et al., 2009). Subsequently, a common feature representa-
tion can be learned through MTL, and this approach has been
widely applied in many fields (Li et al., 2014; Liu et al,, 2017;
2015; Mrksi¢ et al., 2015; Shinohara, 2016; Zhang et al., 2016,
2014). In MTL, since outcomes are equally important, the ob-
jective function to be minimized is the averaged loss across all
tasks. Different from MTL, we only address the performance
of predicting the target outcome. The decision rule learned in
MTL driven by the averaged loss might be biased towards pre-
dicting the auxiliary outcomes rather than the target outcome,
ie, the jointly learned decision rule may not perform well when
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predicting the target outcome. Thus, our objective is to develop
arobustlearning approach that is capable of exploiting common-
alities and differences across outcomes with guaranteed perfor-
mance in target outcome prediction.

Focusing on the performance of predicting the target out-
come, a commonly used approach is transfer learning (Olivas
etal, 2009). Transfer learning aims to improve the performance
of target learners on target domains by transferring the knowl-
edge contained in different but related source domains (Zhuang
et al., 2020). Recently, Li et al. (2022) and Bastani (2021) ad-
dressed transfer learning problems in high-dimensional linear
regressions; Tian and Feng (2023) addressed transfer learning
problems in high-dimensional generalized linear models. In their
proposed procedures, they (1) adopt a common working model
for all auxiliary outcomes; (2) assume the contrast between the
parameters in the target model and those in the auxiliary models
are sufficiently close in I} or ly norm.

However, these assumptions are easily violated in many prac-
tical settings such as our motivating example. First, the auxiliary
outcomes are related but different, and thus, they are not likely
to share the same model. Second, the requirement regarding the
contrast between the parameters in the target model and those
in the auxiliary models can be restrictive for classification prob-
lems. For instance, considering both the target and auxiliary out-
comes follow logistic regression models, if the parameters in the
target model are twice as large as those in the auxiliary mod-
els, the contrast of the two sets of parameters is not necessarily
small in [; or Iy norm. However, from the perspective of classi-
fication problems, the optimal decision boundaries are identical
for the target and auxiliary outcomes. Thus, there is a need for a
more flexible learning approach that efficiently utilizes the possi-
ble similarity between decision boundaries, rather than focusing
on the contrast of parameters, especially for classification prob-
lems.

In this work, we develop a robust and flexible learning ap-
proach using auxiliary outcomes to aid the estimation of a high-
dimensional linear decision rule for the target outcome. Specif-
ically, we propose a two-stage procedure. In the first stage, a
common linear representation of the covariates is learned with
all auxiliary outcomes using MTL to gain efficiency by borrow-
ing relevant information from auxiliary outcomes. In the sec-
ond stage, a calibration procedure is performed to reduce or
correct the bias induced in the first stage to ensure the robust-
ness of the estimator for the target outcome prediction. Com-
pared with the existing literature, our contributions are the fol-
lowing. In the first stage, different from Li et al. (2022), Tian and
Feng (2023), where the working models for auxiliary outcomes
share similar coeflicients and intercepts, we posit different deci-
sion rules (or models) for different outcomes to accommodate
possible heterogeneity. In the second stage, instead of assuming
that the contrast between the parameters in models for auxil-
iary outcomes and the target outcome enjoys a small /; norm or
a sparse Iy norm, we define a novel concept of within-subspace
bias and against-subspace bias, and we only assume that the min-
imal against-subspace bias is sparse in [y norm or smallin [; norm,
which is aweaker condition than those in Bastani (2021), Lietal.
(2022), Tian and Feng (2023). Theoretically, we show that the
proposed estimator always has an estimation error comparable

to that of using only the target outcome, even if the conditions in
Li et al. (2022), Tian and Feng (2023) are violated. Especially,
we show that with the presence of many weakly dependent out-
comes, our proposed method can also lead to a convergence rate
faster than the derived rate in Bastani (2021), Li et al. (2022),
Tian and Feng (2023) and faster than using only the target out-
come.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed method. In Section 3, we investigate the the-
oretical properties of the proposed method. In Section 4, we con-
duct simulations to compare our method with other methods,
especially MTL and methods in Li et al. (2022). In Section S,
we apply the proposed method to the motivating study for THA
patients. We present a discussion and concluding remarks in Sec-
tion 6.

2 LEARNING USING AUXILIARY OUTCOMES
UNDER HETEROGENEOUS MODELS

Let X € R? be a p-dimensional covariate vector excluding the
intercept and Yy € {1, —1} be a univariate target outcome. We
assume that some auxiliary outcomes are available along with the
target outcome Yy. We denote the auxiliary outcomes as Y3, Y5,
-++,Y; € {1, —1}, where ] is the number of auxiliary outcomes.

In our motivating example, the target outcome and auxiliary
outcomes are available in the same dataset. There are other sce-
narios where the target outcome and auxiliary outcomes are
not in the same dataset. For example, we may have a separate
dataset containing only the auxiliary outcomes and covariates,
denoted as the source-only dataset. To accommodate this sce-
nario, we assume that we observe n samples in the target dataset
where both the target outcome and auxiliary outcomes are avail-
able, ie, {(X,-, Yo Yigw oo, YJ”')}?=1; in addition, we observe

N — n samples in the source-only dataset where only auxiliary

N
outcomes are available, ie, {(X,-, Yig, - ’Y]'i)}i=n+1' We use

R; = 0 to indicate samples coming from the target dataset, and
R; = 1, from the source-only dataset. In this work, we consider
a high-dimensional setting where p > n.

Learningalinear decision rule to predict the target outcome Y;
using covariate vector X entails a classification problem. Empir-
ical risk minimization (ERM) is often used to learn such a linear
decision rule. Specifically, ERM minimizes a convex surrogate of
the loss function, ie,

H;iﬂz(oo) =E[¢ {YO(XTﬂ0+Co)} |IR=0], (1)

where ¢ () is a surrogate loss, @y = (B0, co) ", Bo indicates the
linear direction of X and ¢, indicates the intercept for predict-
ing Yp. By solving optimization problem (1), the decision rule,
dj (X ), with the form d}(X) = sgn (X " 8§ + c}), can be used
for prediction purposes, where 05 = (85, c§ )T is the minimizer
of optimization problem (1). Our goal is to use the auxiliary out-
comes to improve the estimation 6.

2.1 Step one: learn a linear representation using MTL

In this section, we introduce our proposed method, which con-
sists of two steps. The first step is to learn a linear representation
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using MTL incorporating the auxiliary outcomes. Denote the in-
dex set of auxiliary outcomes as J = {1, 2,0, ]}

In this work, we consider the following MTL method. We ob-
tain a linear representation w 7 by solving

min EN Zqﬁ{Yj(XTw-i—cj)} + Anllwll,  (2)

w,{c, 7 jed

where Ay is a tuning parameter and EN[] is the empirical
expectation of both the target and source-only datasets. In this
procedure, we estimate ] decision rules for {Y}};c 7, simultane-
ously. These decision rules are structured to learn a common
parameter w, which is the direction shared by all outcomes.
In addition, the intercept represented by c;’s can be different
for each outcome to accommodate possible heterogeneity.
Leveraging information from auxiliary outcomes (and/or
the source-only dataset), the estimator W can approach w
with a low estimation error, where w*j is the minimizer of

minw’{cj}lej E [Zjej P {Y;(XTw+ cj)}] . Although the first
step takes advantage of shared information across multiple
outcomes, the estimator w7 may be biased w.r.t. B, especially
when w’; is biased w.r.t. B7.

Remark 1 In our proposed MTL step, we primarily specify different
intercepts to accommodate possible heterogeneity. Note that, we can
allow any low-dimensional sub-vector of the coefficients to be different
to accommodate heterogeneous effects. More detailed discussions can
be found in the online Supplementary Materials.

2.2 Step two: a novel calibration step

In this section, we present how to de-bias w7 and construct
an improved estimator for B through a novel calibration step.
To start with, we decompose the bias of w, bias(w*J) =
W — By =(1— y)w*J — 8, where § := B — yw"‘},ie,ﬂz =
yw’ + 8. The first term in this decomposition, (1— y)w*j,
is along the direction of w”, and thus, we refer to it as the
within-subspace bias; the remaining term § is referred to as the
against-subspace bias. Notably, 5 is unknown. To determine
appropriate ¥ and 8, we leverage the fact that B} minimizes
E[¢ {Yo(XTBo + co)}] - Thus, we replace B, by yw? + dand
propose to solve
811)1/1n E[¢ {Yo(XT8+ yX w' +)}]. (3)
The loss function in (3) incorporates two adjustments to w,
which corresponds to the within-subspace bias and against-
subspace bias. First, we calibrate the scaling parameter y along
the subspace generated by w”;. The term y identifies the within-
subspace bias. For instance, if w”; = 2, then, settingy = 1/2
can eliminate such a bias. Second, we calibrate the subspace gen-
erated by w”; using . This calibration accounts for the against-
subspace bias. If w%, = B — e, then setting § = e can account
for such a bias, where e = (1,0, ---,0)".
The decomposition of bias(w?;), ie, bias(w?) =
(1 — y)w? — 8 provides multiple options to adjust for possible
bias. For each choice of ¥, we can obtain a corresponding § that
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leads to a unique decomposition of the bias. For example, when
¥ = 1, the corresponding 8 = B — w’;; when y = 1/2, the
corresponding § = f; — w?/2. Both y =1 and y =1/2
lead to a specification of § such that B; = yw?; + 8. However,
under different choices of y, the §'s may be different in terms of
their Iy and [; norms, resulting in different levels of difficulties
in estimating them. For example, the contrast, w”; — B,, may
not be sparse in [y norm nor small in /; norm. In this case,
the contrast w’; — B may not be easy to estimate. Among
all possible decompositions, the y’s that can lead to a sparse
(lo norm) or a small (/; norm) against-subspace bias, §, are
preferable. For ease of exposition, we focus on the § with the
least I; norm. The results under [ norm can be found in the
online Supplementary Materials.

Denote the set of §’s with the least /; norm as §*. To pin down
the y such that § € §*, we propose a special treatment: we first
separate the space of § into several domains such that in each do-
main, the solution is unique; then, we select the final estimator
through a cross-fitting procedure. Below we introduce how these
domains are defined, and show that, at least one solution to (3)
in these domains satisfies that § € §*.

Remark 2 If we only focus on the § with the least I, norm, we can
directly solve (3) with a lasso penalty and this special treatment is
not required. However, if we focus on the 8 with the least Iy norm, we
need to solve (3) with a ly penalty, which is not trivial. The proposed
procedure provides a unified approach with theoretical guarantees re-
gardless of how sparsity or scale of against-subspace bias is defined.

We construct the following domain ', =
{6=1(81.82,-+-.8,)" : 8 =0}, where k=1,--,p.
Let S, be the set of indexes of the non-zero coefficients of w’;.
Due to the strict convexity of ¢ and the assumption that the
coordinates of X are not linearly dependent, for any k € S%,
there exists a unique y such that 8; — yw”; € I't. This implies
that the objective function in (3) on each I'y has a unique
minimizer, for any k € S%,.

Lemma 1 further implies that to determine the y such that§ €
§*, we only need to solve the optimization problem (3) within
each domain.

Lemma 1 Thereexistsak € S%; such that the minimizer of the op-
timization problem (3) in the domain Ty is the minimizer of the op-
timization problem (3) with § € §*.

Motivated by this, we consider a set of optimization problems

pmin B [ (XX 8+ yX Ty + o)} + A8l (4)
for k € S, where 7»,, is a tuning parameter and S is a set of pre-
specified indices. The objective function in (4) is the empirical
version of that in (3), and the domain of § is constrained to a
set ['. In each Iy, the solution of optimization (4) is unique for
k € S; when S} C S, the optimization is guaranteed to identify

dsuchthatd € §*.In ourimplementation, A, is chosen via cross-
validation and Sis chosen as the index set of nonzero coefficients
inw 7.

To select the final estimator among the different domains of
d, we propose a cross-fitting procedure. First, we split the entire
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target dataset into M folds. Denote the index set of the m-th fold
as Z,, and the dataset excluding the m-th fold as 7\ . For each fold
m € {1,---, M} and each k € S, we calculate the minimizer
of optimization (4) using the data in Z,. Denote its minimizer
as Ezél(k), yz: (k), cz: (k). Subsequently, we have EI; (k) =
?3\1; (k) + Vz: (k)w 7. Then, we calculate the loss OfBIfn (k) and
¢z (k) using the data in Z,, and denote the calculated loss as

L, (k) e, Lz, (K) = Bz, [ {Yo(X "By, (6) + 7, (K)) | | and

EI,,, [-] is the empirical average of the data in Z,,. We repeat
this procedure for each m € {1, --- , M} and each k € S. Fi-
nally, we calculate the averaged loss L(k) = Zi\f: Lz, (k) /M,
and choose the k* that minimizes L(IQ among all If.\ € S.
Then, we calculate the final estimator B, and % by By =
Zi\le Bz (K*)/M, andcy = Zf\f:l’c}; (k*)/M. In our simula-
tion and real data analysis, we choose M = 2 for ease of compu-
tation. A summary of the entire algorithm can be found in the
online Supplementary Materials.

3 THEORETICAL PROPERTIES

To provide theoretical support for the proposed method, we in-
vestigate the convergence rate of the proposed estimator. The
proof of all the lemmas, theorems, and corollaries can be found
in the online Supplementary Materials.

We first introduce some additional notations. We denote the
index set of the non-zero coordinates of 8 as S*. The cardinality
of $* is denoted as s*. We also define @ and h;, such that

var | Y v (X + )X x| = 0,
<7

sup ‘E [Yl-qﬁ/ {Yj(XTw} + CT)} X | X]‘ < Chy,
jeJ

forallk € {1, 2, -, p},where @' () isthe first order derivative
of ¢(+), X is the k-th covariate, and C is a sufficiently large con-
stant. Assuming ¢’ (-) is bounded, these inequalities automati-
cally hold with ¢ = 2 and h;, = O(1). Under certain assump-
tions, these inequalities may hold with & < 2 and h, — 0 (or
h, = 0). For example, when Yj’s are mutually independent con-
ditional on X, we can take « = 1; when

P(Y;=1|X)/{1-P(;=1|X)}
=¢ (—XTw*j — cjf) /¢’ (XTw*j + c;‘) . (5

we can take i, = 0. Note that, when ¢ () is alogistic loss, model
(S) is equivalent to logistic models with the same coefficients
and different intercepts for auxiliary outcomes. From these ex-
amples, we can see that o controls the mutual dependence be-
tween Y}’s, conditional on X, and h;, controls the bias of P(Yj =
1 | X) w.r.t.model (S). Thus, by incorporating  and h;, our the-
oretical results can accommodate dependent Y;’s and model mis-
specification w.r.t. model (5). A detailed discussion can be found
in the online Supplementary Materials. Furthermore, we define

(6)

h = inf sup Hywj.‘ - B
v

9
jeg !

where  w* and c* are the minimizer  of

j j
min,, ., £ [d) {Yj(XTw + cj)}] .

Remark 3 The definition (6) implies a relationship for the cosine
angle between w’; and B (decision boundaries differ up to an inter-

/ (1851, |:],)
> (|51, =)/ (|81, + 1) -

cept). Specifically, we have

sup |(B3)" ] W]
jeJ

To investigate the theoretical property of 8, we introduce the
following assumptions.

Assumption 1 There is a constant C; such that | X||,
Supy ; |XTw;f |, and |c}|’s are upper bounded by Cy with prob-
ability 1.

Assumption 2 Define X = (1, X). There is a positive constant
Amin such that the smallest eigenvalue of £ (i)? T) is lower bounded
by )"min'

Assumption 3 We assume that supy |XTﬂ3| <Gy and |cf| <
C, with probability 1, where C, is a constant. We also require that
the ratios between the k-th coefficients in By and w; are bounded for
any k € S. We also assume that s* log p/n — 0.

Assumption 4 Define X, = (XTW*J, X_i, 1), where X _y is the
vector of covariates X excluding the kth covariate. We assume that
there is a positive constant Amin such that the smallest eigenvalue of

E (ikiZ) is lower bounded byiminfor allk € S.

Assumptions 1 and 3 impose a uniform upper bound on the
design matrix for technical simplicity. Assumptions 2 and 4 im-
pose auniform lower bound for the eigenvalues of the design ma-
trix to ensure the identifiability of B, c;, 8, and y forall k € S.
In Assumption 4, we also assume that the ratios between the k-th
coefficients in B and w”; are bounded, for any k € S.To achieve
this, we could specify S such that extremely small coeflicients in
w7 are excluded. In addition, we assume that s* log p/n — 0.
When s* = O(rn*) and N = O(n"/0%)) with 0 < x < 1, this
assumption requires that p = o{exp (N 1_2’() }.

Theorem 1 Under

|T|\/log|J|/N, and

Ay > \/z(|j|a + TR log p/N V |T|log p/N,  and

P w112
max o — ¢ H2

< (A2/ 1T + AnCsh/1T1) A (Csh)
+ (24T A (H)?) +log(IS| v 1) /n

Assumptions  1-4,  taking Ay >

7»,[ = /log p/n, we have

Bo— B3|

2
)
2
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with probability approaching to 1, where hy is the minimizer of
miny, |5 — ywi |1 st By — yw’ € UresD'y, and Cs is defined
in Lemma 2 in online Supplementary Materials.

The resultant rate in Theorem 1 is structured as the sum

of three terms. The first term, (s*klz\,/ |T > + AnCsh/ |j|) A

(Csh)?, is related to the estimation error of w 7. The Cyx re-
flects the heterogeneity in the design matrix in (generalized)
linear models, which is assumed to be a constant in Tian and
Feng (2023) by their Assumption 4 or Li et al. (2022) by their

Condition 4. The second term,’zi + ’th}‘ A (h:;)z, is associated
with the minimal against-subspace bias of w”;. The third term,
log(|S| Vv n)/n, accounts for the variability of selecting k* in the
algorithm.

Compared with the convergence rate of using only n sam-
ples and the target label Y, ie, O, (s* log p/n), the convergence
rate shown in Theorem 1 can be faster. For example, when
N >» nandCsgh < s*,/Nlog p/n?, the first term is smaller than
s*log p/n. For the second term, when h§ < s*,/log p/n, we
have Xﬁ + 7»,,h§ &« s*log p/n. The third term is always negligi-
ble compared with s* log p/n. Hence, when N is sufficiently large
compared with n, hi < s*,/log p/n can lead to a convergence
rate faster than O, (s* log p/n). The convergence rate shown in
Theorem 1 can also be faster than O, (s* log p/n) evenif N = n.
A detailed discussion can be found in the online Supplementar
y Materials.

Remark 4 To achieve the requirement that Cyxh <
s*/Nlog p/n* and hy < s*\/log p/n, the choice of J is im-
portan£ Without an appropriate selection of J, the convergence
rate of B is not necessarily faster than the convergence rate obtained
using only the target label Y (with sample size n); this phenomenon
is referred to as the negative transfer (Tian and Feng, 2023). The
transferable source detection algorithm proposed in Tian and Feng
(2023) can also be applied in our proposed method to avoid a
possible negative transfer (see the online Supplementary Materials
for a detailed discussion).

Remark S Theorem 1 is established under definition (6). The defi-
nition of h enables an upper bound on the I norm of yw”, — Bg. In
the online Supplementary Materials, we derive another convergence
rate using the lo norm of yw, — Bg.

4 SIMULATIONS

In this section, we conduct simulations to compare the per-
formance of our proposed method (Calibrated) with other
existing approaches (eg, MTL approaches and other transfer
learning approaches). One of the comparison methods, re-
ferred to as the baseline approach, uses solely the target out-
come and directly solves ming, , En [q’) {Yo (XTBy + co)}] +
XullBoll1,, where the logistic loss is chosen for ¢(-) and A,
is tuned by cross-validation. The other approaches for com-
parison include a direct transfer learning approach and two
MTL approaches. The direct transfer learning approach im-
plements a modified algorithm, where one fixes y = 1, and
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¢j’s in Step one are assumed to be the same. This modified
algorithm can be considered as an extension of the oracle
Trans-Lasso Algorithm (TransferDirect) proposed in Li et al.
(2022). The MTL approach 1 (MultiTaskl) extends the algo-
rithm proposed in Obozinski et al. (2008) using a logistic loss
with a grouped lasso penalty. The MTL approach 2 (Multi-
Task2) solves min,, {

) ci}isjuo Er [Z]Ej ¢ {Y](XTﬂ * Cj)}] +
AullBll1- MultiTask2 shares a similar loss function as the MTL
used in Step One for our proposed approach. Comparing the
proposed method with the baseline approach, we can examine
the performance gained from using the auxiliary outcome. Com-
paring the proposed method with direct transfer learning, we
can see the benefit of the proposed method over the existing
transfer learning approaches. By comparing the two MTL ap-
proaches, we can examine the difference between transfer learn-
ing and MTL approaches when focusing on target label predic-
tion.

Let By, be the coeflicients related to the latent variable U, for
the target outcome. We generate experimental data following the
simulation scenarios below:

(i) Wesetn = N.Let By, = (1,—1,1,—1,0,---,0,
0.5,-0.5,2,-2,0.5,0.5,0,---,0)" and U, =
5G(X " By,) + 0.2¢€y,, where €y, follows a standard
normal distribution. The function G(-) is the cu-
mulative distribution function of a standard normal
distribution. Set U = 5G(X " By) +0.2¢5, where
€i follows a standard normal distribution, and the
g-th coordinate of B satisfies that ﬂg’q = Bu,.q for
q# 2,4 and By, = By, = 1. The target outcome
is generated by setting Yy = sgn (Uo — Up1 /4), where
uo,1/4 is the first quartile of Up. We further introduce
a weighting parameter w and generate the auxiliary
outcome Y; by setting Y; = sgn (U1 — u1,3/4), where
U =1-w)lU+ a)ﬁ, and u; 34 is the third quartile

OfUl.
(i) We set n=0.2N and Bu, =
(1,-1,1,—1,0,---,0)". We generate U, based

on a binomial distribution B {8, G(X"Bu,) } , where the
number of trials equals 8 and the success probability
equals G(X T By,). Then, we corrupt this Up: when
U() < 3, we set U1 = Uo +B(3, a)); when U() > 4,
we set Uy = Uy — B(3, w). The target outcome is set
as Yo = 1 {Up > 0}; the auxiliary outcomes are set as
Y; =1{U; — (2j — 1)}, where j = 1,2, 3,4.

Scenarios (i) and (ii) both involve a parameter w that con-
trols the relevancy between auxiliary and target outcomes. The
relevance between auxiliary and target outcomes gradually de-
creases with the increase of w. Specifically, with the increase of ,
w‘*7 involves more against-subspace bias. When w = 0, because
U = U, inboth settings, we can show that 7 = yw?; for some
y under a Gaussian design.

For covariate vector X, we have the following two designs. In
Design I, the covariate vector X follows Gaussian distribution
N(o, 1 p). In Design II, we first generate a p-dimensional vec-
tor following N (0, X,,), where the (I, k)th coordinate of X, is
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FIGURE 1 Simulation results for Scenario I with the change of sample sizes and w.

0.5k then, forl =1, , Lp/4], wereplace the 4I-th coordi-
nates in the generated vector with a binary variable. This binary
variable is 1 if and only if the generated coordinate is greater than
0. Compared with Design I, Design I has correlated and discrete
covariates. We test our methods using both designs for Scenarios
(i) and (ii).

To compare the performance of different approaches, we gen-
erate a testing dataset with sample size n = 10* and calculate
two scores. Let [Etest[ ] be the empirical expectation calculated
using the testing dataset. T}f first score is thi accuracy. Given
an estimated decision rule dg(X) = sgn(X' B, +73), the ac-
curacy is defined as Etest[l{Yo = do(X)}]. The other score is
the rank correlation. We calculate the rank correlation between

X" By, and X Tﬁo and use it as a proxy of the estimation error. In
these simulations, we vary the sample size of the training dataset
from N = 200, 350, to S00 and fix p = 1000. In Scenario (i), we
change @ from 0 to 1 with an increment of 0.25. In Scenario (ii),
we change w from 0 to 0.3 with an increment of 0.1. We repeat
each simulation setting for 500 times.

Figures 1 and 2 illustrate how the performance metrics vary
with the increase of sample sizes and w, for simulation Scenarios
(i) and (ii), respectively. In Scenario (i), in terms of the accuracy
and the rank correlation, the proposed method outperforms the
baseline approach regardless of the change of sample sizes and
. Compared with MultiTaskl and MultiTask2, our proposed
method and TransferDirect are more robust w.r.t. the change of
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FIGURE 2 Simulation results for Scenario II with the change of sample sizes and w.

w; compared with TransferDirect, our proposed method shows
great advantages in terms of prediction accuracy. In Scenario (ii),
our proposed method also performs better than other methods
regardless of the change of sample sizes and w.

5 APPLICATION TO PREDICTING
OUTCOMES AFTER THA

In this section, we apply our proposed method to predict the
event of not achieving MCID in terms of HOOS JR scores for
THA patients. In this dataset, we have 202 patients who under-
went an index THA hospitalization, and we consider 13 vari-
ables, including race, Risk Assessment and Prediction Tool, and

preoperative HOOS JR survey responses, as covariates. The tar-
get outcome is the event of not achieving the anchor-based
MCID in their (overall) improvement (Fontana et al., 2019);
Yo = 1, if the patient did not achieve the MCID and Y, = —
otherwise. For the choice of auxiliary outcomes, several other
survey questionnaires (eg, improvement in pain) are considered.
If the survey outcome is continuous or ordinal, we calculate the
quartiles and then define a binary outcome based on whether
the original outcome surpasses each quartile or not, and use the
transformed outcomes as auxiliary outcomes.

To compare different methods, we randomly split the dataset
into a training dataset (70% of the entire dataset) and a testing
dataset (30% of the entire dataset). We fit the proposed and other
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TABLE 1 Comparison of the mean (standard error) of accuracy and
the Area Under Receiver Operating Characteristic Curve (AUC) es-
timated from five methods by repeated sample-splittings of the real
data.

Method Accuracy AUC

Calibrated 0.746 (0.003) 0.712 (0.004)
TransferDirect 0.740 (0.003) 0.701 (0.004)
MultiTask1 0.712 (0.003) 0.660 (0.004)
MultiTask2 0.739 (0.003) 0.713 (0.004)
Baseline 0.731 (0.003) 0.663 (0.004)

comparison methods on the training dataset and calculate the
accuracy and the Area Under Receiver Operating Characteris-
tic Curve (AUC) on the testing dataset. The accuracy reflects
the estimation error attributed to both coeflicients and intercept
estimation, allowing for a scalar multiplier difference, ie, if two
sets of coeflicients and intercepts are proportional, their accu-
racy will be the same. The AUC calculated by using the coeffi-
cients with varying intercepts primarily reflects the estimation
error of coefficients (up to a scalar difference). The entire proce-
dure is repeated 500 times. The mean and standard error of the
accuracy and AUC are reported in Table 1.

The results therein show that the proposed method achieves
the highest accuracy compared with all other methods in terms
of prediction accuracy; the proposed method performs compa-
rable to MultiTask2 in terms of the AUC. This implies that the
coeflicients derived from MultiTask2 and the proposed method
are similar (up to a scalar difference), but the intercept estima-
tion from MultiTask2 is more biased. This also implies that the
estimation error of MultiTask2 is mainly attributed to the within-
subspace bias rather than the against-subspace bias. The on-
line Supplementary Materials provide an additional application
to MCID prediction where our proposed method achieves the
highest AUCs among all methods.

6 DISCUSSION

In this work, we develop a robust and flexible learning approach
to improving decision rule estimation using auxiliary outcomes.
Our approach involves a two-step procedure that takes advan-
tage of the information provided by auxiliary outcomes and re-
tains robustness against the bias introduced by auxiliary out-
comes. Our novel bias decomposition allows for weaker required
conditions and achieves superior performance against existing
approaches.

One possible extension is to propose a transfer learning ap-
proach under a more relaxed condition. The proposed esti-

<

1
s*/log p/n, which is less restrictive than the requirement in Li
et al. (2022), Tian and Feng (2023). A more mild condition is,

*
V1
) <L s*y/log p/n or

< /s*log p/n.It could be interest-

mator achieves a fast rate when inf, sup jeg yw;‘.‘ - B

for example, that sup jes inf,, H yw? - B

sup ;. 7 infy, | ywi — Bg ,
ing to see a transfer learning approach that achieves faster con-
vergence rates under these milder conditions. In addition, the
proposed method can also be modified to suit various practi-

cal needs. For example, we may use a distributed learner (Duan
etal,, 2022) to overcome the communication barrier in the first
step. This communication barrier comes from the fact that the
datasets from different owners (eg, hospitals) cannot be pooled
on a single machine due to privacy regulations (eg, HIPAA on
sharing medical records).
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