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A B S T R A C T  

Corr ela t ed out comes are common in many practical pro b lem s. In s ome s e ttings, one outcome is of pa rticula r in te res t, a nd othe rs a re auxilia ry. 
To lev erage inform ation sh are d by all the outc omes, tradition al m ulti -task lea rning (MTL) minimizes a n ave raged loss function over all the 
outc omes, which m ay lead to bi as e d estim ation for the t arget outcome, e specially when the MTL model i s mi sspec i fied. In this work, based 

on a de c omposit ion of est imat ion bias into tw o types, within-s ubspac e a nd agains t -subsp ace, we develop a robust transfer learnin g approa ch to 

est imat ing a high-dimensional linear decision rule for the outcome of in te res t with the presence of auxiliary outc omes . The propose d method 

includes an MTL step using all outcomes to gain efficiency and a s ubse quent calibration step using only the outcome of in te res t to c orre ct both 

types of bi as es. We show that the final estimator can achieve a lower est imat ion error than the one using only the single outcome of in te res t. 
Simul ation s and real data analysis are c onducte d to justify the super ior ity of the proposed method. 

KEY W OR DS : auxiliary outcomes; classification; hi gh-dime nsional data; m ulti -task lea rning; tra nsfe r lea rning. 
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1 I N T R O D U C T I O N 

ith the adoption of electronic health re c ords and me dical in-
ormation sys te m s, d atas e ts increasingly m assiv e in volume and
 iver se in variable categories have been leveraged for kno wledg e
isc ov e ry a nd clinical de cision s upport. In s ome d atas e ts, in ad-
ition to the patie n t outcome of prima ry in te res t, m ultiple rel -
va n t health outcomes are available. In this pa pe r, we de note
he se re leva n t outcomes as auxilia ry outcomes, a nd our goal is
o study how to sa fe ly use these auxiliary out comes t o help pre-
ict a binary target outcome in a classification framework with
i gh-dime nsional linea r decision rules. 
Our mot ivat ing example is predict in g whether the impro ve-
e n t in hip joint functions fails to achieve the minimal clini-

al importance difference (MCID) after total hip arthrop l asty
THA). The Hip d isabil ity a nd Os teoa rthritis Outc ome Sc ores
or Joint Rep l acement (HOO S JR ) s urv ey is a c ommonly use d
ns trume n t to measure THA patie n ts ’ health outcome s. Predict-
ng whether the change of the overall scor e measur ed in pr eop-
 rative a nd pos tope rativ e s urv eys exc e e ds the MCID can help
nform whethe r surge ry is ne c es s ary. How ev er, it is a ch alleng -
ng task due to the large variability of the reported outcomes and
he high event rates of a chievin g MCID (ie, imbalanc e d labels).
n addition to the overall scor e, the questionnair e also collects
is eas e-spec i fic infor ma tion tha t measur es the improve me n t in
a rious pe rspe ctiv es, including pain, sleep, fatigue, and function
e c eiv e d: March 22, 2023; Revised: Septe mbe r 3, 2024; Ac c epte d: Nov e mbe r 19, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te

ourn als .permis sion s@oup.com 
Katakam et al., 2022 ; K unz e et al., 2020 ). This motivates us
o exp lore, whe the r we ca n leve rage the se re lated que stionnaire
tem s–auxili ary outcomes to facilitate target outcome prediction
ie, whether the overall score change exceeds MCID). 
To model r ela t ed out comes join tly, m ulti -task lea rning (MTL)

as e me rged, aiming to exploit commonalities and diffe re nces
cross outcomes (Ca rua na, 1997 ). In MTL, it is typically as-
 ume d th at some pa ra mete rs a re simila r across tasks (Ando
 nd Zha n g, 2005 ; Argyriou et al., 2007 ; B akke r a nd He ske s,
003 ; Maurer et al., 2013 ; Titsias and Lázar o-Gr edi l la, 2011 ;
u et al., 2005 ; Zhang et al., 2008 ; Zhu et al., 2011 ), or these

asks bear a sh are d sparsity structure (Gong et al., 2013 ; 2014 ;
e rnández-Lobato a nd He rnández-L obato, 2013 ; L ounici et al.,

009 ; Obozin ski e t al., 2008 ; Rao e t al., 2013 ; Wang e t al., 2016 ;
ang et al., 2009 ). Subseque n tly, a common fea tur e r epr ese n ta-
ion can be learned through MTL, and this approach has been
idely applied in many fields (Li et al., 2014 ; Liu et al., 2017 ;
015 ; Mrkši ́c et al., 2015 ; S hinohar a, 2016 ; Zhang et al., 2016 ,
014 ). In MTL, since outcomes are equally importa n t , the ob -

e ctiv e function to be minimized is the av erage d los s acros s all
asks. Diffe re n t from MTL, we only address the pe rforma nce
f predicting the tar get outcome. T he decision rule learned in
TL drive n b y the ave raged loss mi gh t be bi as ed tow ar ds pr e-

 icting the auxil ia ry outcomes rathe r tha n the ta rget outcome,
e, the jointly learned decision rule may not perform well when
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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predicting the target outcome. Thus, our o bj ective is to develop
a robus t lea rning a ppr oach tha t is capable of exploiting common-
al ities and d iffer ences acr oss outcomes with gua ra n te e d perfor-
m anc e in target outcome prediction. 

Focusing on the pe rforma nce of predicting the target out-
c ome, a c ommonly use d a pproach is tra nsfe r lea rning (Olivas
e t al., 2009 ). Tran sfer learning aim s to improve the pe rforma nce
of targ et le arners on targ e t domain s by tran sferring the knowl-
e dge c ontaine d in different but r ela ted sour c e dom ains (Zh ua ng
et al., 2020 ). Re c e n tly, Li et al. ( 2022 ) and Bastani ( 2021 ) ad-
dres s ed tran sfer learning pro b lem s in high-dimen sional linear
r egr es sion s; Ti a n a nd Fe n g ( 2023 ) a ddres s ed tran sfer learning
pro b lem s in high-dimen sional gener aliz ed linear models. In their
pr oposed pr ocedur es, they (1) adopt a common working model
for al l auxi li ary outcomes; (2) as s ume the c on tras t betw e en the
pa ra mete rs in the target model and those in the auxiliary models
are su ffic iently close in l 1 or l 0 norm. 

How ev er, thes e as sumption s are easily vio l ate d in m any prac-
tical s e ttings such as our mot ivat ing exa mple. Firs t, the auxilia ry
outcomes ar e r ela ted but diffe re n t, a nd th us, they a re not likely
to share the same model. Se c ond, the re quire me n t rega rding the
con tras t betwee n the pa ra mete rs in the target model and those
in the auxiliary models can be restrictive for cl as sifica tion pr ob-
lem s. For in stanc e, c onsidering both the target and auxiliary out-
comes fo llow lo g i stic r egr e ssion mode ls, if the pa ra mete rs in the
t arget mode l are twice as large as those in the auxiliary mod-
els, the con tras t of the two s e ts of pa ra mete rs is not ne c es s arily
small in l 1 or l 0 norm. How ev er, from the perspe ctiv e of cl as si-
fica tion pr o b lem s, the optim al de cision bounda ries a re ide n tical
for the target and auxiliary outc omes . Thus, there is a ne e d for a
more flexible learning appr oach tha t efficiently utilizes the possi-
b le simil arity be tw e en de cision bounda ries, rathe r tha n focusing
on the con tras t of pa ra mete rs, espec ially for classi fica tion pr ob-
lems. 

In this w ork, w e dev elop a robus t a nd flexible lea rning a p-
proa ch usin g auxiliary outcomes to aid the est imat ion of a high-
d imensional l inear decision rule for the target outc ome. Spe c i f-
ically, we propose a two-stage pr ocedur e. In the first stage, a
common linear r epr ese n tation of the cov ari ates is learned with
al l auxi liary out comes using MTL t o gain efficie ncy b y borro w -
ing releva n t information from auxiliary outc omes . In the se c-
ond stage, a calibra tion pr oc e dure is performe d to re duc e or
c orre ct the bias induc e d in the first stage to ensure the robust-
ness of the estimator for the target outcome prediction. Com-
pared with the existing litera tur e, our contributions are the fol-
lowing. In the firs t s tage, diffe re n t from Li et al. ( 2022 ), Tian and
Fe ng ( 2023 ), whe re the work ing model s for auxiliary outcomes
sha re simila r coefficie n ts a nd in te rc epts, w e posit diffe re n t deci -
sion rules (or models) for diffe re n t outcomes to ac c ommodate
pos sib le he tero geneity. In the se c ond stag e, inste ad of assuming
th at the c on tras t betw e e n the pa ra mete rs in models for auxil -
ia ry outcomes a nd the ta rget outcome e njo ys a small l 1 norm or
a sparse l 0 norm, we define a novel concept of within-subspace
bias and against -subsp ace bias, and we only assume that the min-
im al against-s ubspac e bias is sparse in l 0 norm or small in l 1 norm,
which is a w eaker c ondition th a n those in Bas ta ni ( 2021 ), Li et al.
( 2022 ), Tia n a nd Fe ng ( 2023 ). The oretically, w e show th at the
propose d estim ator always h as a n es t imat ion e rror compa rable
to that of using only the target outc ome, ev en if the conditions in 

Li et al. ( 2022 ), Tian and Feng ( 2023 ) are vio l ate d. Espe cially,
we show that with the presence of many weakly depe nde n t out- 
c omes, our propose d method can also lead to a c onv e rge nce rate 
fas te r tha n the de riv e d rate in Bas ta ni ( 2021 ), Li et al. ( 2022 ),
Tia n a nd Fe ng ( 2023 ) a nd fas te r tha n using only the ta rget out-
come. 

The rest of the paper is organized as follows. Section 2 intro- 
duc es the propose d method. In Se ction 3 , w e inv es ti gate the the-
or etical pr operties of the propos ed me thod . In Sect ion 4 , w e c on- 
duct simul ation s to compare our method with other methods, 
especially MTL and methods in Li et al. ( 2022 ). In Section 5 , 
we apply the proposed method to the mot ivat ing study for THA 

patie n ts. We prese n t a d isc ussion and conclud ing re ma rks in Sec- 
tion 6 . 

2 L  E A R N I N G  U S  I N G  A U X I L  I A  RY  O U TCO M E  S  

U N D E R  H ET E R O G E N E O U S  M O D E L S  

Let X ∈ R 

p be a p-dimensional cov ari at e vect or excluding the 
in te rcept a nd Y 0 ∈ 

{ 1 , −1 

} be a univa riate ta rget outcome. We 
ass ume th at s ome auxili a ry outcomes a re av ail ab le along with the
target outcome Y 0 . We denote the auxiliary outcomes as Y 1 , Y 2 , 
· · · , Y J ∈ 

{ 1 , −1 

} , where J is the number of auxiliary outc omes . 
In our mot ivat ing exa mple, the ta rget outcome a nd auxilia ry 

outcomes are av ail ab le in the s ame d atas e t. The re a re othe r sce-
na rios whe re the ta rget outcome a nd auxilia ry outcomes a re 
not in the same dataset. For example, we may have a separate 
d atas e t containing only the auxiliary outcomes and cov ari ates, 
denoted as the s ource-only d atas e t. To accommod ate this s ce- 
n ario, w e ass ume th at w e o bs erve n s amp le s in the t arge t d atas e t
where both the target outcome and auxiliary outcomes are avail- 
able , ie , 

{
( X i , Y 0 ,i , Y 1 ,i , · · · , Y J,i ) 

}n 
i =1 ; in addition, we o bs erve 

N − n s amp les in the s ource-only d atas e t where only auxili ary 
outcomes are av ail ab le , ie , 

{
( X i , Y 1 ,i , · · · , Y J,i ) 

}N 

i = n +1 . We use 
R i = 0 t o indicat e s amp le s coming from the t arge t d atas e t, and
R i = 1 , from the source-only d atas e t. In this w ork, w e c onsider
a hi gh-dime n sional s e t ting wher e p > n . 

Le arning a line ar decision rule to predict the target outcome Y 0 
usin g co v ari ate v e ctor X e n tails a cl as sifica tion pr o b lem . Empir-
ical risk minimization (ERM) is often used to learn such a linear 
de cision rule. Spe cifically, ERM minimizes a c onv ex s urr oga te of 
the loss function, ie, 

min 

θ0 

� ( θ0 ) := E 

[
φ

{
Y 0 ( X 

� β0 + c 0 ) 
} | R = 0 

]
, (1) 

where φ(·) is a surro gate los s, θ0 = ( β0 , c 0 ) � , β0 indicates the 
l inear d irection of X and c 0 indicat es the int er cept for pr edict- 
ing Y 0 . By s o lving opt imizat ion pro b lem ( 1 ), the decision rule,
d 

∗
0 ( X ) , with the form d 

∗
0 ( X ) = sgn 

(
X 

� β∗
0 + c ∗0 

)
, can be used 

for prediction purposes, where θ∗
0 = ( β∗

0 , c 
∗
0 ) 

� is the minimizer 
of opt imizat ion pro b lem ( 1 ). Our goal is to use the a uxiliary out -
comes to improve the est imat ion θ∗

0 . 

2.1 Step one: learn a linear r epr esent at ion us ing MTL 

In this se ction, w e introduc e our propose d method, which c on- 
sists of two steps. The first step is to learn a linear r epr ese n tation 
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sin g MTL incorporatin g the auxiliary outc omes . D enote the in-
ex s e t of auxili ary outcomes as J = 

{
1 , 2 , · · · , J 

}
. 

In this w ork, w e c on sider the fo llowing MTL me thod. We o b-
ain a linear r epr ese n tation ̂  w J by s o lving 

min 

w , { c j } j∈J ̂
 E N 

⎡ 

⎣ 

∑ 

j∈J 
φ

{
Y j ( X 

� w + c j ) 
}⎤ 

⎦ + λN 

‖ w ‖ 1 , (2) 

here λN 

is a tuning parameter and 

̂ E N 

[ ·] is the empirical
xpectation of both the ta rget a nd source-only datasets. In this
roc e dure, w e estim ate J decision rules for { Y j } j∈J , sim ulta ne-
usly. The se decision rule s a re s tructured to lea rn a common
a ra mete r w , which is the dire ction sh are d by all outc omes .
n addition, the in te r cept r epr ese n ted b y c j ’s ca n be diffe re n t
or each outcome to ac c ommod ate pos sib le he tero geneity.
 everag ing informa tion fr om auxiliary outcomes (and/or

he s ource-only d atas e t), the estimator ̂ w J can approach w 

∗
J 

ith a low est imat ion err or, wher e w 

∗
J is the minimizer of

in w , { c j } j∈J E 

[ ∑ 

j∈J φ
{

Y j ( X 

� w + c j ) 
}] 

. Although the first
te p t ake s advant age of sh are d inform at ion across mult iple
utcome s, the e stimator ̂  w J may be bi as ed w. r.t. β∗

0 , e specially
hen w 

∗
J is bi as ed w.r.t. β∗

0 . 

emark 1 In ou r pro p osed MTL s t ep, we pr imar i ly speci fy di fferent
 ntercep ts to a ccom mo date po ssible h eterogen eity. Not e tha t, we c an
llow any low-dim en sion a l sub-vector of the coefficients to be different
 o acco mmoda t e het erogene ous effe cts. Mo re deta iled d iscussio ns c an
 e fou nd in the online Supplementary Materials . 

2.2 Step two: a novel c a libration step 

n this se ction, w e prese n t how to de-bias ̂ w J and construct
n improv e d estim a tor for β∗

0 thr ou gh a nove l calibration ste p.
o s ta rt with, w e de c ompos e the bi as of w 

∗
J , bi as ( w 

∗
J ) :=

 

∗
J − β∗

0 = (1 − γ ) w 

∗
J − δ, where δ := β∗

0 − γ w 

∗
J , ie, β∗

0 =
w 

∗
J + δ. The firs t te rm in this de c omposition, (1 − γ ) w 

∗
J ,

s along the direction of w 

∗
J , a nd th us, we refe r to it as the

ithin-s ub spa ce bias ; the re maining te rm δ is r eferr ed to as the
 gains t-s ub space bias . Nota b ly, β∗

0 is unknown . To de termine
ppr opria te γ and δ, we leverage the fact that β∗

0 minimizes
 

[
φ

{
Y 0 ( X 

� β0 + c 0 ) 
}]

. Thus, we rep l ace β0 by γ w 

∗
J + δ and

ropose to solve 

min 

δ,γ ,c 0 
E 

[
φ

{
Y 0 ( X 

� δ + γ X 

� w 

∗
J + c 0 ) 

}]
. (3) 

he loss function in ( 3 ) incorporates two adjus tme n ts to w 

∗
J ,

hich corresponds to the within-subspace bias and against-
s ubspac e bias . First, w e cal ibrate the scal ing pa ra mete r γ along
he s ubspac e ge ne rated b y w 

∗
J . The te rm γ ide n tifies the within-

s ubspac e bias . For ins ta nce, if w 

∗
J = 2 β∗

0 , then, setting γ = 1 / 2
an eliminate such a bias. Second, we calibrate the subspace gen-
 rated b y w 

∗
J usin g δ. This calibration a c c oun ts for the agains t-

s ubspac e bias . If w 

∗
J = β∗

0 − e , then s e tting δ = e can ac c ount
or such a bias, where e = (1 , 0 , · · · , 0) � . 

The de c omposition of bias ( w 

∗
J ) , ie, bias ( w 

∗
J ) =

(1 − γ ) w 

∗
J − δ provides multiple options to adjust for possible

 ias. For each cho ice of γ , we can obtain a corresponding δ that
eads to a unique de c omposition of the bi as. For examp le, when
= 1 , the corresponding δ = β∗

0 − w 

∗
J ; when γ = 1 / 2 , the

orresponding δ = β∗
0 − w 

∗
J / 2 . Both γ = 1 and γ = 1 / 2

ead to a spec i fication of δ such that β∗
0 = γ w 

∗
J + δ. However,

nde r diffe re n t choices of γ , the δ’s may be diffe re n t in te rms of
heir l 0 and l 1 norms, resulting in diffe re n t levels of d iffic ulties
n est imat ing them . For examp le, the contrast, w 

∗
J − β∗

0 , may
ot be sparse in l 0 norm nor small in l 1 norm. In this case,

he con tras t w 

∗
J − β∗

0 may not be easy t o estimat e. Among
ll pos sib le de c ompositions, the γ ’s th at can lead to a sparse
 l 0 norm) or a small ( l 1 norm) against -subsp ace bias, δ, are
referab le. For eas e of exposition, we focus on the δ with the

east l 1 norm. The results under l 0 norm can be found in the
nline Supplemen ta ry Mate rials . 
Denote the s e t of δ’s with the least l 1 norm as δ∗. To pin down

he γ such that δ ∈ δ∗, we propose a special tr ea tme n t: we firs t
ep arate the sp ac e of δ into sev eral dom ains s uch th at in each do-

ain, the s o lution is unique; then, we s ele ct the fin al estim ator
hr ough a cr oss-fit ting pr oc e dure. Below w e introduc e how these
omains are defined, and show tha t, a t least one s o lution to ( 3 )

n these domains satisfies that δ ∈ δ∗. 

ema rk 2 If w e on ly f o cus on t he δ wit h t h e least l 1 n o rm, we c an
 irectl y solve ( 3 ) with a lasso pen a lty an d this specia l treatment is
o t requ ired. However, if we focus on the δ with the least l 0 norm, we
e ed t o solve ( 3 ) with a l 0 pen a lty, which is not trivial. The proposed
r ocedur e pr ovides a uni fied approa ch with the o ret ic al gua ra nt e es re-
ardless of how sparsity or scale of aga inst-subs pace bi as is define d. 

We construct the following domain �k =
δ = (δ1 , δ2 , · · · , δp ) � : δk = 0 

}
, where k = 1 , · · · , p.

et S 

∗
J be the set of indexes of the non-zero coefficients of w 

∗
J .

ue to the strict c onv exity of φ and the ass umption th at the
 oordin ates of X are not linearly dependent, for any k ∈ S 

∗
J ,

he re exis ts a unique γ s uch th at β∗
0 − γ w 

∗
J ∈ �k . This implies

hat the o bj ect ive funct ion in ( 3 ) on each �k has a unique
inimizer, for any k ∈ S 

∗
J . 

Le mma 1 furthe r imp lies that to de termine the γ s uch th at δ ∈
∗, w e only ne e d to s o lve the opt imizat ion pro b lem ( 3 ) within
ach domain. 

emma 1 There e x ists a k ∈ S 

∗
J such that the m in im izer of the op-

 imiza t io n problem ( 3 ) in the domain �k is the mi ni mizer of the op-
 imiza t io n problem ( 3 ) with δ ∈ δ∗. 

Motivate d by this, w e c on sider a s e t of opt imizat ion pro b lem s 

min 

δ∈ �k ,γ ,c 0 ̂
 E n 
[
φ

{
Y 0 ( X 

� δ + γ X 

� ̂ w J + c 0 ) 
}] + ̃

 λn ‖ δ‖ 1 (4)

or k ∈ S , where ̃  λn is a tuning parameter and S is a s e t of pre-
spec i fied indices. The o bj ect ive funct ion in ( 4 ) is the empirical
 ersion of th at in ( 3 ), and the dom ain of δ is c onstraine d to a
 e t �k . In each �k , the s o lution of optimization ( 4 ) is unique for
 ∈ S ; when S 

∗
J ⊂ S , the opt imizat ion is gua ra n te e d to ide n tify

s uch th at δ ∈ δ∗. In our imple me n tation, ̃  λn is chose n vi a cros s-
 alid ation and S is chosen as the index s e t of nonzero coefficients
n ̂  w J . 

To select the final es timator a mong the diffe re n t domains of
, we propose a cross-fitting proc e dure. First, w e split the e n tire

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
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targe t d atas e t into M folds . D enote the index s e t of the m -th fold
as I m 

and the d atas e t excluding the m -th fold as I 

c 
m 

. For each fold
m ∈ 

{ 1 , · · · , M 

} and each k ∈ S , we calculate the minimizer
of opt imizat ion ( 4 ) using the data in I 

c 
m 

. De note its minimize r
as ̂  δI c m 

( k) , ̂ γI c m 
( k) , ̂  c I c m 

( k) . Subseque n tly, we have ̂ βI c m 
(k) =

 δI c m 
(k) + ̂  γI c m 

(k) ̂  w J . Then, we calculate the loss of ̂  βI c m 
(k) and

 c I c m 
(k) using the data in I m 

and denote the calcul ated los s as

L I m (k) , ie, L I m (k) = ̂

 E I m 

[ 
φ

{ 

Y 0 ( X 

� ̂ βI c m 
(k) + ̂  c I c m 

(k)) 
} ] 

and
 E I m [ ·] is the empirical average of the data in I m 

. We r epea t
this proc e dure for each m ∈ 

{ 1 , · · · , M 

} and each k ∈ S . Fi-
n ally, w e calculate the av erage d loss L (k) = 

∑ M 

m =1 L I m (k) /M,
and choose the k ∗ that minimizes L (k) among all k ∈ S .
Then, we calculate the final estimator ̂ β0 and ̂ c 0 by ̂ β0 =∑ M 

m =1 ̂
 βI c m 

(k ∗) /M, and ̂  c 0 = 

∑ M 

m =1 ̂  c I c m 
(k ∗) /M. In our simula-

tion and real data an alysis, w e choose M = 2 for ease of compu-
tation. A s umm ary of the entire algorithm can be found in the
online Supplemen ta ry Mate rials . 

3 T H E O R ET I C A  L  P R O P E RT I E  S  

To provide the oretical s upport for the proposed method, we in-
ves ti gate the conve rge nce rate of the proposed estimator. The
proof of all the lemm as, the ore ms, a nd coro ll a ries ca n be found
in the online Supplemen ta ry Mate rials . 

We first introduce some additional notations. We denote the
index s e t of the non-zer o coor dina tes of β∗

0 as S 

∗. The card inal ity
of S 

∗ is denoted as s ∗. We also define α and h b such that 

var 

⎡ 

⎣ 

∑ 

j∈J 
Y j φ

′ 
{ 

Y j ( X 

� w 

∗
J + c ∗j ) 

} 

X k | X 

⎤ 

⎦ ≤ CJ α, 

sup 

j∈J 

∣∣∣E 

[ 
Y j φ

′ 
{ 

Y j ( X 

� w 

∗
J + c ∗j ) 

} 

X k | X 

] ∣∣∣ ≤ Ch b , 

for all k ∈ 

{
1 , 2 , · · · , p 

}
, where φ′ (·) is the first order derivative

of φ(·) , X k is the k-th cov ari ate, and C is a su ffic iently large con-
s ta n t. Assuming φ′ (·) is bounded, these inequalit ies automat i-
cally hold with α = 2 and h b = O (1) . Under certain assump-
tion s, thes e inequalities may hold with α < 2 and h b → 0 (or
h b = 0 ). For ex ample, w hen Y j ’s are mutually independent con-
ditional on X , we can take α = 1 ; when 

P (Y j = 1 | X ) / 
{

1 − P (Y j = 1 | X ) 
}

= φ′ 
(
−X 

� w 

∗
J − c ∗j 

)
/φ′ 

(
X 

� w 

∗
J + c ∗j 

)
, (5)

we can take h b = 0 . Note that, when φ(·) is a logistic loss, model
( 5 ) is equivale n t to log i stic model s with the sa me coefficie n ts
a nd diffe re n t in te rcepts for auxilia ry outc omes . From these ex-
a mples, we ca n se e th at α c on trols the m utual depe nde nce be-
tw e en Y j ’s, c ondition al on X , and h b c ontro ls the bi as of P (Y j =
1 | X ) w. r.t. mode l ( 5 ). Th us, b y incorporating α a nd h b , our the-
or etical r es ults can ac c ommodate depe nde n t Y j ’s a nd model mis-
spec i fication w. r.t. mode l ( 5 ). A det ailed d isc ussion can be found
in the online Supplemen ta ry Mate rials . Furthe rmore, we define 

h ≡ inf 
γ

sup 

j∈J 

∥∥∥γ w 

∗
j − β∗

0 

∥∥∥
1 
, (6)
whe re w 

∗
j a nd c ∗j a re the minimize r of 

min w ,c j E 

[
φ

{
Y j ( X 

� w + c j ) 
}]

. 

Rema rk 3 The definit io n ( 6 ) implies a rela t io nship fo r th e cosin e
a ngle b etween w 

∗
j a nd β∗

0 (de cisio n b ou nda r ie s differ up to an inter-
cep t). S pe cific ally, we have 

sup 

j∈J 

∣∣∣( β∗
0 ) 

� w 

∗
j 

∣∣∣ / (∥∥β∗
0 

∥∥
2 

∥∥∥w 

∗
j 

∥∥∥
2 

)
≥ (∥∥β∗

0 

∥∥
2 − h 

)
/ 
(∥∥β∗

0 

∥∥
2 + h 

)
. 

To inves ti ga te the theor etical pr ope rty of ̂  β0 , we in troduce the 
fo llowing as sumption s. 

Ass umption 1 T here is a co ns tant C 1 s uch tha t ‖ X ‖ ∞ 

, 
sup X , j | X 

� w 

∗
j | , and | c ∗j | ’s are upper bo un ded by C 1 with prob- 

ability 1. 

As sumption 2 Defin e ˜ X = (1 , X ) . Th ere is a positive constant 
λmin such that the sm a llest eigenva l u e of E 

(˜ X ̃

 X 

� 

)
is lower b ou nded 

by λmin . 

Ass umption 3 We assu me that s up X | X 

� β∗
0 | ≤ C 2 , and | c ∗0 | ≤

 2 with pro b ability 1, where C 2 is a co ns t ant. We a lso re qui re that
the ra t ios betwe en t he k-t h co efficients in β∗

0 and w 

∗
J are bo un de d f or

any k ∈ S . We also assume that s ∗ log p /n → 0 . 

As sumption 4 Defin e ̃  X k = ( X 

� w 

∗
J , X −k , 1) , wh ere X −k is the 

ve ct o r of cova ri a t es X excl u ding t he kt h cova ri a t e. We ass ume tha t
there is a positive constant ̃  λmin such that the sm a llest eigenva l u e of 
E 

(˜ X k ̃  X 

� 

k 

)
is lower b ou nded by ̃  λmin for all k ∈ S . 

As sumption s 1 and 3 impose a uni for m upper bound on the 
design matrix for technical simp licity. As sumption s 2 and 4 im- 
pose a uni for m lower bound for the eigenvalues of the design ma- 
trix to ensure the ide n tifiability of β∗

0 , c 
∗
0 , δ, and γ for all k ∈ S .

In Ass umption 4, w e als o as s ume th a t the ra tios betw e en the k-th
coefficie n ts in β∗

0 and w 

∗
J are bounded, for any k ∈ S . To achieve 

this, w e c ould spe c i fy S s uch th a t extr eme ly s m all c oefficie n ts in
 w J are excluded. In addition, we assume that s ∗ log p/n → 0 . 

When s ∗ = O (n 

κ ) and N = O (n 

1 / (1 −κ) ) with 0 ≤ κ < 1 , this 
ass umption re quires th at p = o{ exp 

(
N 

1 −2 κ
)} . 

T heore m 1 Under Assum pt io ns 1–4, t a king λN 


|J | √ 

log |J | /N , and 

λN 

≥
√ 

2(|J | α + |J | 2 h 

2 
b ) log p/N ∨ |J | log p/N, and 

 λn �
√ 

log p/n , we have 

max 
(∥∥∥̂ β0 − β∗

0 

∥∥∥2 

2 
, 
∥∥̂

 c 0 − c ∗0 
∥∥2 

2 

)

� 

(
s ∗λ2 

N 

/ | J 

| 2 + λN 

C 
h/ | J 

| ) ∧ ( C 
h ) 2 

+ 

(̃
 λ2 
n + ̃

 λn h 

∗
δ ∧ ( h 

∗
δ ) 2 

) + log (| S | ∨ n ) /n 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
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ith pro b ability appro aching t o 1, w h ere h 

∗
δ is th e m in im izer of

in γ ‖ β∗
0 − γ w 

∗
J ‖ 1 s.t. β∗

0 − γ w 

∗
J ∈ ∪ k∈ S �k , and C 
 is define d

n Lemma 2 in online Supplementary Materials . 

The re sult a n t rate in Theorem 1 is structured as the sum
f three terms. The first term, 

(
s ∗λ2 

N 

/ | J 

| 2 + λN 

C 
h/ | J 

| ) ∧
( C 
h ) 2 , is r ela t ed t o the est imat ion err or of ̂  w J . The C 
 r e-

ects the he tero geneity in the design matrix in (gener aliz ed)
inear models, which is ass ume d to be a cons ta n t in Tia n a nd
e ng ( 2023 ) b y their Assumption 4 or Li et al. ( 2022 ) by their
ondition 4. The se c ond term, ̃  λ2 

n + ̃

 λn h 

∗
δ ∧ 

(
h 

∗
δ

)2 , is as s oci ated
ith the minimal against -subsp ace bias of w 

∗
J . The third term,

og (| S | ∨ n ) /n , ac c ounts for the v ari ability of s electing k ∗ in the
lgorithm. 
Compared with the conve rge nce rate of using only n sam-

les and the target label Y 0 , ie, O p ( s ∗ log p/n ) , the c onv e rge nce
ate shown in Theorem 1 can be faster. For ex ample, w hen
  n and C 
h � s ∗

√ 

N log p/n 

2 , the first term is smaller than
 

∗ log p/n . For the se c ond te rm, whe n h 

∗
δ � s ∗

√ 

log p/n , we
 av e ̃  λ2 

n + ̃

 λn h 

∗
δ � s ∗ log p/n . The third term is always negli gi -

le c ompare d with s ∗ log p/n . Henc e, when N is su ffic iently large
 ompare d with n , h 

∗
δ � s ∗

√ 

log p/n can lead to a c onv ergenc e
at e fast er than O p ( s ∗ log p/n ) . The c onv ergenc e rate shown in
heorem 1 can also be faster than O p ( s ∗ log p/n ) even if N = n .
 de tailed dis cus sion can be found in the online Supplemen ta r
 Materials . 

e mark 4 To a chieve the req uirement that C 
h �
 

∗√ 

N log p/n 

2 and h 

∗
δ � s ∗

√ 

log p/n , the choice of J is im-
 orta nt. Without a n appro pri a t e sele ct io n of J , the co n ver gence
a t e of ̂  β0 is n ot n ece ssar ily fas t er t han t he con ver gence rate o bt ained
si ng on l y the ta r get la be l Y 0 (with sa mp le size n ); th is p h en om en on

s r eferr ed to as the nega t iv e transf er (Ti a n a nd Feng, 2023 ). T he
r ansfer able source det e ct io n algo rithm pro p ose d i n Ti a n a nd Feng
 2023 ) can also be applied in our proposed m eth od to av o id a
 ossib le n e ga t iv e transf er (se e the o n li n e Supplem ent ary Mat erials

or a detailed discussion). 

em ark 5 The o rem 1 is est ablished un der definit io n ( 6 ). The defi-
it io n of h enables an upper bo un d on the l 1 norm of γ w 

∗
J − β∗

0 . In
he on li ne Supplement ary Mat erials , w e deriv e an oth er con ver gence
a t e using the l 0 norm of γ w 

∗
J − β∗

0 . 

4 S I M U L AT I O N S  

n this se ction, w e c onduct simul ation s to compa re the pe r-
orm anc e of our propos ed me thod (Calibrated) with other
xis ting a pproaches (eg, MTL a pproaches a nd othe r tra nsfe r
ea rning a pproaches). One of the comparison methods, re-
erred to as the baseline approach, uses solely the target out-
 ome and dire ctly s o lves min β0 ,c 0 ̂

 E n 
[
φ

{
Y 0 ( X 

� β0 + c 0 ) 
}] +

n ‖ β0 ‖ 1 , , where the log i stic loss i s chose n for φ(·) a nd λn 
s tuned by cros s-v alid ation . The other approaches for com-
arison include a direct transfer learnin g approa ch and two
TL appr oaches. The dir ect tra nsfe r lea rning a pproach im-

le me n ts a modified al gorithm, whe re one fixes γ = 1 , and
 j ’s in Step one are ass ume d to be the same. This modified
l gorithm ca n be conside red as an extension of the oracle
rans -L asso Algorithm (TransferDirect) proposed in Li et al.
 2022 ). The MTL approach 1 (MultiTask1) extends the algo-
ithm proposed in Obozinski et al. ( 2008 ) using a log i stic loss
ith a grouped l as s o penalty. The MTL approach 2 (Multi-
ask2) s o lves min w , { c j } j∈J∪ 0 ̂

 E n 

[ ∑ 

j∈J φ
{

Y j ( X 

� β + c j ) 
}] +

n ‖ β‖ 1 . MultiTask2 shares a similar loss function as the MTL
sed in Step One for our proposed appro ach. Comp aring the
ropos ed me thod with the bas eline a pproach, we ca n exa mine

he pe rforma nce gained from using the auxiliary outcome. Com-
aring the proposed method with direct tra nsfe r lea rning, we
an see the benefit of the proposed method over the existing
ra nsfe r lea rning a pproaches . By c omparing the tw o MTL ap-
roaches, we can examine the differenc e betw e en transfer learn-

ng and MTL approaches when focusing on target label predic-
ion. 

Let βU 0 be the coefficie n ts r ela t ed t o the late n t va riable U 0 for
he target outcome. We ge ne rate expe rime n t al dat a following the
imul ation s c en arios below: 

(i) We s e t n = N. Let βU 0 = (1 , −1 , 1 , −1 , 0 , · · · , 0 , 

0 . 5 , −0 . 5 , 2 , −2 , 0 . 5 , 0 . 5 , 0 , · · · , 0) � and U 0 =
5 G ( X 

� βU 0 ) + 0 . 2 εU 0 , where εU 0 follows a s ta nda rd
normal distribut ion. The funct ion G (·) is the cu-
m ulative dis tribution function of a s ta nda rd normal
distribution . Se t ˜ U = 5 G ( X 

� β˜ U 

) + 0 . 2 ε ˜ U 

, where
ε˜ U 

follows a s ta nda rd normal dis tribution, a nd the
q -th c oordin ate of β˜ U 

satisfies that β˜ U ,q = βU 0 ,q for
q � = 2 , 4 and β˜ U , 2 = β˜ U , 4 = 1 . T he tar get outcome
is ge ne rated b y s e t ting Y 0 = sgn 

(
U 0 − u 0 , 1 / 4 

)
, wher e

u 0 , 1 / 4 is the first quartile of U 0 . We further introduce
a wei gh ting pa ra mete r ω a nd ge ne rate the auxilia ry
outcome Y 1 by s e t ting Y 1 = sgn 

(
U 1 − u 1 , 3 / 4 

)
, wher e

U 1 = (1 − ω) U 0 + ω ̃

 U , and u 1 , 3 / 4 is the third quartile
of U 1 . 

(ii) We s e t n = 0 . 2 N and βU 0 =
(1 , −1 , 1 , −1 , 0 , · · · , 0) � . We ge ne rate U 0 based
on a binomial distribution B 

{
8 , G ( X 

� βU 0 ) 
}

, where the
n umbe r of trials equals 8 and the s uc c es s pro bability
e quals G ( X 

� βU 0 ) . Then, w e c orrupt this U 0 : when
U 0 ≤ 3 , we s e t U 1 = U 0 + B (3 , ω) ; when U 0 > 4 ,
we s e t U 1 = U 0 − B (3 , ω) . T he tar ge t outcome is s e t
as Y 0 = 1 

{ U 0 > 0 

} ; the auxiliary outcomes are s e t as
Y j = 1 

{
U 1 − (2 j − 1) 

}
, where j = 1 , 2 , 3 , 4 . 

Sc en arios (i) and (ii) both inv olv e a parameter ω that con-
r ols the r elevancy betw e e n auxilia ry a nd ta rget outc omes . The
elev ance be tween auxili ary and targe t outcomes gradually de-
reases with the increase of ω. Spec i fically, with the increase of ω,
 

∗
J inv olv es more against-s ubspac e bias . When ω = 0 , be cause
 0 = U 1 in both s e ttings, w e can show th at β∗

0 = γ w 

∗
J for some

under a Gaus si an design . 
For cov ari at e vect or X , we have the following two designs. In
esign I, the cov ari at e vect or X follows Gaussian distribution
( 0 , I p ) . In Design II, we first generate a p-dimensional vec-

or following N( 0 , �p ) , where the (l, k) th c oordin ate of �p is

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae144#supplementary-data
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FIG URE 1 Simul a tion r es ults for Sc en ario I with the change of s amp le sizes and ω. 
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0 . 5 

| l−k| ; then, for l = 1 , · · · , � p/ 4 � , we rep l ace the 4 l-th coordi-
nates in the ge ne rate d v e ctor with a binary v ari ab le. This binary
v ari ab le is 1 if and only if the generated coor dina te is gr ea te r tha n
0. Compared with Design I, Design II has corr ela ted and dis cre te
cov ari at es. We t e st our methods using both de si gns for Sce na rios
(i) and (ii). 

To compare the perform anc e of different approaches, we gen-
erate a testing d atas e t with s amp le size n = 10 

4 and calculate
tw o sc ores . Let ̂  E test [ ·] be the empirical expecta tion calcula ted
using the te sting dat aset. The first score is the a ccura cy. Given
a n es tim ate d de cision rule ̂ d 0 ( X ) = sgn ( X 

� ̂ β0 + ̂  c 0 ) , the ac-
curacy is defined as ̂  E test [1 { Y 0 = 

̂ d 0 ( X ) } ] . The other score is
the rank corr ela tion. We calcula te the rank corr ela tion betw e en
X 

� βU 0 and X 

� ̂ β0 and use it as a proxy of the est imat ion error. In 

thes e simul ation s, we v ary the s amp le siz e of the tr aining d atas e t
from N = 200 , 350, to 500 and fix p = 1000 . In Sc en ario (i), w e
change ω from 0 to 1 with an increment of 0.25. In Sc en ario (ii), 
w e ch ange ω from 0 to 0.3 with a n incre me n t of 0.1. We r epea t
each simulation setting for 500 times. 

Fi gures 1 a nd 2 i l lus trate how the pe rforma nce me trics v ary
with the increase of sample sizes and ω, for simulation Sc en arios 
(i) and (ii), respe ctiv ely. In Sc en ario (i), in terms of the a ccura cy 
a nd the ra nk corr ela tion, the pr oposed method outperforms the 
b aseline appro ach r egar dles s of the change of s amp le sizes and 

ω. Compared with MultiTask1 and MultiTask2, our proposed 

method and TransferDir ect ar e mor e r obus t w.r.t. the cha nge of 
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FIG URE 2 Simul a tion r es ults for Sc en ario II with the change of s amp le sizes and ω. 

ω  

g  

o  

r

I  

e  

T  

w  

a  

p  

g  

M  

Y  

o  

s  

I  

q  

t  

t
 

i  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae144/7922997 by Flagler H
ospital user on 04 April 2025
; c ompare d with TransferDire ct, our propose d method shows
r ea t adva n t age s in terms of pre diction ac curacy. In Sc en ario (ii),
ur proposed method also performs better than other methods
 egar dless of the change of s amp le sizes and ω. 

5 A P P L I C AT I O N TO  P R E D I C T I N G  

O U TCO M E  S  A  F T E R  T H A  

n this se ction, w e apply our proposed method to predict the
ve n t of not a chievin g MCID in terms of HOOS JR scores for
HA patie n ts. In this d atas e t, w e h av e 202 patie n ts who unde r-
e n t a n index THA hosp itali zation, and w e c on sider 13 v a ri -

bles, includin g ra ce, Risk As s es sme n t a nd Predict ion Tool , and
r eopera tive HOOS JR survey respon s es, as cov ari ates. The tar-
et outcome is the eve n t of not a chievin g the anchor-based

CID in their (overall) improve me n t (Fon ta na et al., 2019 );
 0 = 1 , if the patie n t did not achieve the MCID a nd Y 0 = −1 ,
therwise. For the choice of auxiliary outc omes, sev e ral othe r
 urv ey questionn aires (e g, improv e me n t in pain) a re conside red.
f the s urv ey outc ome is con tin uous or ordinal, we calculate the
ua rtiles a nd the n define a bina ry outc ome base d on whether

he origin al outc ome s urpas s es each quartile or not, and use the
ransforme d outc omes as auxiliary outc omes . 

To compa re diffe re n t methods, we ra ndomly sp lit the d atas e t
nto a training d atas e t (70% of the entire d atas e t) and a testing
 atas e t (30% of the e n tire d atas e t). We fit the proposed and other
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TABLE 1 Comparison of the mean (standard err or ) of a ccura cy and 

the Area Under Re c eiv er Operating Ch aracteristic Curv e (AUC) es- 
tim ate d from fiv e methods by r epea ted s amp le-sp littings of the real 
data. 

Method Accuracy AUC 

Calibrated 0.746 (0.003) 0.712 (0.004) 
Tra nsfe rDirect 0.740 (0.003) 0.701 (0.004) 
MultiTask1 0.712 (0.003) 0.660 (0.004) 
MultiTask2 0.739 (0.003) 0.713 (0.004) 
Baseline 0.731 (0.003) 0.663 (0.004) 
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comparis on me thods on the training d atas e t and calcul ate the
a ccura cy and the Area Under Re c eiv er Operating Characteris-
tic Curve (AUC) on the testing d atas e t. The a ccura cy reflects
the est imat ion err or a t tribut ed t o both coefficie n ts a nd in te rcept
est imat ion, allowing for a s cal ar multip l ier d ifference , ie , if two
s e ts of coefficie n ts a nd in te rcepts a r e pr oport ional , their accu-
rac y w i l l be the s ame. The AUC calcul ate d by using the c oeffi-
cie n ts with va rying in te rc epts prim arily refle cts the estim ation
er ror of coeffic ients (up to a s cal a r diffe re nce). The e n tir e pr oce-
dur e is r epea te d 500 times . The mea n a nd s ta nda rd e rror of the
a ccura cy and AUC are reported in Table 1 . 

The results therein show that the proposed method achieves
the hi ghes t a ccura c y compared w ith all othe r methods in te rms
of prediction a ccura cy; the proposed method performs compa-
rab le to Multi Task2 in term s of the AUC. This implies that the
coefficie n ts de rived from MultiTask2 and the proposed method
a re simila r (up to a s cal a r diffe re nce), but the in te rce pt e stima -
tion from MultiTask2 is more biased. This als o imp lies that the
est imat ion error of MultiTask2 is mainly attribut ed t o the within-
s ubspac e bias rather than the against -subsp ace bias. The on-
line Supplemen ta ry Mate rials provide a n additional a pplication
to MCI D predict ion wher e our pr opos ed me thod achieves the
hi ghes t AUCs among all methods. 

6 D I S  C U S S  I O N 

In this w ork, w e dev elop a robus t a nd flexible lea rning a pproach
to impro vin g de cision rule estim ation using auxiliary outc omes .
Our approach inv olv es a tw o-step proc e dure th at t ake s advan-
tage of the information provided by auxiliary outcomes and re-
tain s ro bustnes s again st the bias introduc e d by auxiliary out-
c omes . Our nov el bias de c omposition allows for w eaker re quire d
c onditions and achiev es s upe rior pe rforma nce agains t exis ting
approaches. 

One pos sib le exten sion is to propos e a tran sfer learning ap-
proach under a more relaxed condition. The proposed es ti -
m ator achiev es a fas t rate whe n inf γ sup j∈J 

∥∥∥γ w 

∗
j − β∗

0 

∥∥∥
1 
�

s ∗
√ 

log p/n , which is less restrictive than the r equir e me n t in Li
e t al. ( 2022 ), Ti a n a nd Fe ng ( 2023 ). A more mild condition is,
for example, th at s up j∈J inf γ

∥∥∥γ w 

∗
j − β∗

0 

∥∥∥
1 
� s ∗

√ 

log p/n or

sup j∈J inf γ
∥∥∥γ w 

∗
j − β∗

0 

∥∥∥
2 
� √ 

s ∗ log p/n . It could be in te res t-
ing to see a tra nsfe r lea rning a ppr oach tha t achieves fas te r con-
ve rge nce rates under these milder c onditions . In addition, the
propos ed me thod can als o be modified to suit va rious practi -
cal ne e ds . For example, w e m ay use a distribute d lea rne r (Dua n
et al., 2022 ) to ov erc ome the communication barrier in the first 
s tep. This comm unication ba rrie r comes from the fact that the 
d atas e ts from diffe re n t owne rs (eg, hospitals) ca nnot be pooled 

on a sin gle ma chine due to privacy r egula t ions (eg, H I PAA on 

sh aring me dical re c ords). 
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