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Abstract

The recently proposed Conformer architecture001
which combines convolution with attention to002
capture both local and global dependencies has003
become the de facto backbone model for Au-004
tomatic Speech Recognition (ASR). Inherited005
from the Natural Language Processing (NLP)006
tasks, the architecture takes Layer Normaliza-007
tion (LN) as a default normalization technique.008
However, through a series of systematic stud-009
ies, we find that LN might take 10% of the010
inference time despite that it only contributes011
to 0.1% of the FLOPs. This motivates us to re-012
place LN with other normalization techniques,013
e.g., Batch Normalization (BN), to speed up014
inference with the help of operator fusion meth-015
ods and the avoidance of calculating the mean016
and variance statistics during inference. Af-017
ter examining several plain attempts which di-018
rectly remove all LN layers or replace them019
with BN in the same place, we find that the di-020
vergence issue is mainly caused by the unstable021
layer output. We therefore propose to append022
a BN layer to each linear or convolution layer023
where stabilized training results are observed.024
We also propose to simplify the activations in025
Conformer, such as Swish and GLU, by re-026
placing them with ReLU. All these exchanged027
modules can be fused into the weights of the028
adjacent linear/convolution layers and hence029
have zero inference cost. Therefore, we name030
it FusionFormer. Our experiments indicate that031
FusionFormer is as effective as the LN-based032
Conformer and is about 10% faster.033

1 Introduction034

End-to-End Automatic Speech Recognition (ASR)035

has become the standard of state-of-the-art ap-036

proaches (Li, 2021). While recurrent neural net-037

works (RNN) (Graves et al., 2013; Chan et al.,038

2016) have drawn attention as popular backbone039

architectures for ASR models to generate acous-040

tic representations (encoding) and predict charac-041

ters at different time steps (decoding), The recur-042

rent nature of RNN limits the parallelization of 043

computation and it becomes especially severe for 044

speech recognition task since speech sequences 045

are commonly long. To overcome these short- 046

comings, (Dong et al., 2018) introduced the Trans- 047

former (Vaswani et al., 2017) to ASR task, which 048

achieved better performance with markedly less 049

training cost and no-recurrence. The fundamental 050

module of Transformer is self-attention that relates 051

all the position-pairs of a sequence to generate a 052

more expressive sequence representation. Since 053

the self-attention dose not involve local context 054

whereas Convolutional Neural Networks (CNN) 055

are good at modeling such information, (Gulati 056

et al., 2020) proposed to augment the Transformer 057

network with convolution to model both local 058

and global dependencies. This novel convolution- 059

augmented Transformer architecture, called Con- 060

former, has become the de facto model for ASR 061

tasks due to its ability to capture global and lo- 062

cal features synchronously from audio signals (Li, 063

2021). It has also achieved state-of-the-art perfor- 064

mance in combination with recent developments 065

in various end-to-end speech processing tasks as 066

well (Guo et al., 2021). 067

Indeed the availability of sufficient training re- 068

sources and large scale hand-labeled datasets made 069

it possible to train powerful deep neural network, 070

i.e., Conformer, for ASR to reach very low Word 071

Error Rate (WER) and break state-of-the-art results. 072

One major drawback for using Conformer in real- 073

world is the inference resource cost, especially for 074

edge-devices that are widely used in production en- 075

vironment (Burchi and Vielzeuf, 2021). More fun- 076

damentally, this raises the question of whether there 077

has room for optimizing Conformer and achieving 078

comparative performance in ASR tasks. 079

In literature, many studies on efficient neural net- 080

works have just emerged in the past year (Meng- 081

hani, 2021) and different approaches have been 082
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(a) Parameters of model (M) (b) FLOPs of model (MFLOPs)

(c) Time cost of float32 inference (s) (d) Time cost of int8 inference (s)

Figure 1: How does Conformer spend its time? This is a breakdown of parameters, FLOPs and latency in
Conformer1, reported to three significant digits. The Layer Normalization modules account for only 0.1% of the
parameters and FLOPs while over 8% (float32) and 10% (int8) of the latency. This reveals the gap between the
theoretical computation overhead (i.e., parameters or FLOPs) and the real-world inference latency, indicating that
removing Layer Normalizations could be one of the most valuable optimization for Conformer.

proposed to address the problem of integrating083

neural networks as a production-ready technology.084

Those approaches may be gathered into several085

broad categories (Han et al., 2016), such as quan-086

tization (Guo, 2018), weights sharing (Dabre and087

Fujita, 2019), pruning (Molchanov et al., 2017), ef-088

ficient architecture design (Tan and Le, 2019) and089

low-rank decomposition (Cheng et al., 2018). All090

these methods may help to reduce the computation091

requirements. In this paper, we choose to focus on092

the design of an efficient architecture to address the093

ASR problem.094

Empirically, we perform a careful and systematic095

analysis of the theoretical computation overhead096

(i.e., parameters or FLOPs) and the real-world infer-097

ence latency for Conformer (see Figure 1) and find098

that the most valuable optimization for Conformer099

could be removing Layer Normalizations (Ba et al.,100

2016). Based on our analysis, we first perform two101

direct applications of using BN instead of LN or102

simply exclude all LN. All these changes however103

result in frequent divergence in model training. To104

investigate this phenomenon, we proposed Layer105

Trend Plots (LTPs) to adapt the difference of statis-106

tics calculation between standard Conformer and 107

its variants. Then we monitor the LTPs during train- 108

ing and find that most of such divergences are due 109

to the unstable layer output. We thus propose to 110

append a BN layer to each linear or convolution 111

layer. The effectiveness of this simple modification 112

is proved not only by observed stabilized training 113

(Table 4) but also the on-par results with LN-based 114

Conformer on ASR tasks (Table 2). Besides, as- 115

cribed to the use of BN, our FusionFormer easily 116

acquire 10% speed performance gain without any 117

special optimizations. 118

2 Methodology 119

We describe the exploration of LN-free Conformer 120

design space in this section. First, we discuss the re- 121

lationships of various techniques to achieve stream- 122

ing Conformer and perform a systematic analysis 123

of how steaming Conformer spends its time. Then 124

we conduct two straightforward experiments to op- 125

timize the Conformer model and find that all these 126

1To calculate FLOPs and profile inference time, we ran-
domly sample 50 sentences from AISHELL-1 testset and run
Conformer in a streaming way, the configuration of streaming
decoding is identical to the one we used in Table 5.
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plain attempts lead to divergence. Finally we use127

our proposed Layer Trend Plots (LTPs) to analyze128

the reasons for the divergence of the above initial129

attempts and propose a solution to build a robust130

LN-free Conformer.131

2.1 Streaming Conformer132

In this paper, we mainly focus on streaming speech133

recognition. Streaming ASR is an important sce-134

nario in online application. It emits tokens as135

soon as possible after receiving a partial utterance136

from the speaker. However, the insufficient future137

context may lead to performance degradation and138

there exists a trade-off between latency and accu-139

racy (Chen et al., 2021). The original Attention-140

based Encoder-Decoder (AED) model, i.e. Trans-141

former or Conformer, for ASR are not streaming142

in nature by default, as the global attention mech-143

anism requires all input feature sequence for the144

calculation of monotonic attention alignment to145

generate context information. To address stream-146

ing issues for AED, several methods have been147

proposed:148

1. Chunk-wise methods (Tian et al., 2020; Wang149

et al., 2020) segment the input into small150

chunks and recognize on each chunk individ-151

ually.152

2. Memory based methods (Wu et al., 2020; In-153

aguma et al., 2020) introduce a contextual154

vector to encode history information.155

3. Time-restricted methods (Yu et al., 2020; Tri-156

pathi et al., 2020) control time cost by simply157

masking left and right context in Transformer.158

All these existing methods have their own draw-159

backs. For chunk-wise methods, the accuracy drops160

significantly as the relationship between different161

chunks are ignored. For memory based methods,162

they break the parallel nature of Transformer in163

training, requiring a longer training time. For time-164

restricted methods, a large latency is introduced as165

the reception field grows linearly with the number166

of Transformer layers. To overcome these short-167

comings and reach a balance between training cost,168

runtime cost, and accuracy, (Wu et al., 2021) com-169

bines chunk-wise processing and time-restricted170

context to handle streaming scenario, where audio171

signals are truncated into several segments and pro-172

cessed chunk by chunk with the accessibility to173

previous chunks to model relationships between174

chunks. Besides, to guarantee the training effi- 175

ciency, there is no overlap between chunks in train- 176

ing. In order to conduct efficient decoding for the 177

proposed streaming Conformer (called U2++), (Wu 178

et al., 2021) also implemented an efficient decoder 179

based on beam search with C++, coupled with a 180

high-performance WebSocket server specially tai- 181

lored for U2++ and can be used in real production 182

environment2. Due to its state-of-the-art accuracy, 183

open sourced reproducibility and widespread adop- 184

tion by industry, we choose U2++ in (Wu et al., 185

2021) as our baseline streaming Conformer and 186

profile it in the next subsection. 187

2.2 Is There Any Room for Optimizing 188

Streaming Conformer? 189

In Figure 1, we show the breakdown of parameters, 190

floating-point operations per second (FLOPs) and 191

latency among the main components of the Con- 192

former network (see Figure 3). We observe that 193

calculations in the Layer Normalization modules 194

account for only 0.1% of the total parameters and 195

FLOPs. However, they account for 8.1% and 10.4% 196

of the latency in float32 inference and int8 infer- 197

ence, respectively. Given that huge gap between 198

FLOPs and latency, it’s nature to turn our focus to 199

removing the Layer Normalizations since it allows 200

us to get the maximum benefit at the minimum 201

cost. 202

2.3 Initial Attempts 203

As for initial attempts, we conduct two straightfor- 204

ward experiments by: 205

1. Simply removing all LN layers (denoted as 206

Conformer-NoNorm). 207

2. Directly replacing all LN layers by BN layers 208

at the same place (denoted as Conformer-BN). 209

Our model is based on standard version of U2++ 210

Conformer (denoted as Conformer-LN), and all 211

the other hyperparameters follow the settings in 212

Appendix A.3. Unexpectedly, these plain designs 213

lead to convergence problems, i.e., the model is 214

very unstable to frequently crash during early-stage 215

training or unable to exceed the current local op- 216

tima. The validation and training curves in Figure 2 217

with three different models reveal that LN plays 218

an important role to stabilize the training of Con- 219

former and we have to dig out how LN works. We 220

hypothesize these divergences are originated from 221

2https://github.com/wenet-e2e/wenet

3



(a) Validation Loss (b) Training Loss

Figure 2: The validation loss and training loss of Conformer-NoNorm, Conformer-BN, Conformer-LN on AISHELL-
1 for the first 100 epochs.

unstable layers, which may be observed with some222

abnormal statistics in the hidden outputs.223

2.4 Analysis224

The recently proposed Signal Propagation Plots225

(SPPs) (Brock et al., 2021) are proved to be help-226

ful to find out the key reason that contributing to227

model divergence. SPPs are originally designed228

for deep ResNets where the statistics of the hid-229

den activations, i.e., the activations of each residual230

block before training, are used as a simple set of231

visualizations. We notice that although SPPs theo-232

retically analyzed signal propagation in ResNets, it233

is a static analysis of a randomly initialized model234

and we find that practitioners rarely empirically235

evaluate the scales of different layer outputs across236

different training times when designing new mod-237

els or proposing modifications to existing archi-238

tectures. By contrast, we found that plotting the239

dynamic statistics of the layer outputs at differ-240

ent training steps on a batch of either real training241

examples or random Gaussian inputs, can be ex-242

tremely beneficial. This practice not only allows us243

to identify special phenomena which might be chal-244

lenging to derive from scratch, but also enables us245

to immediately detect hidden bugs in our plain im-246

plementations. To formalize this good practice, we247

propose Layer Trend Plots (LTPs), a simple graphi-248

cal method for visualizing layer behaviours across249

training stage on the forward pass in Conformer.250

To monitor the trend of layer output, we plot the251

following statistics for every layer in Conformer:252

1. Mean, computed as the average value of the253

layer output.254

2. Variance, computed as the variance of all ele- 255

ments in the layer output. 256

We generally find these statistics to be informative 257

measure of the training magnitude, and to clearly 258

show explosion or attenuation. To generate LTPs, 259

we provide the network with a batch of input exam- 260

ples sampled from a standard normal distribution. 261

We also experiment with feeding real data samples 262

instead of random noise and find this does not af- 263

fect the key trends. With LTPs, we observe several 264

meaningful patterns as plotted in Appendix A.1 265

and Figure 4, where the y-axis denotes the val- 266

ues of corresponding statistics, and the x-axis de- 267

notes the index of the training epochs. For Con- 268

former, there are 11 linear/convolution layers for 269

each block, while detailed position of each layer 270

can be found in Figure 3. 271

First, we find that most of the layers in Conformer- 272

NoNorm changed rapidly and abnormally at the 273

very beginning of training, which is consistent with 274

our observation in Figure 2 that the model will face 275

crash problems at early stage. Second, different 276

from Conformer-NoNorm, models with normaliza- 277

tion such as Conformer-BN and Conformer-LN 278

have controllable statistics at beginning. However, 279

Conformer-BN may suffer from “layer crash” at 280

the later training stages, especially for layers in 281

Feed Forward and Self Attention. These patterns 282

are double-checked in LTPs of Variance and we 283

show them in Appendix A.1 and Figure 5. 284

2.5 Solutions 285

Based on our observations in section 2.4, we argue 286

that the convergence problem is mainly contributed 287
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Figure 3: Schematic representations outlining the difference between Conformer Encoder and FusionFormer
Encoder structures. Note that BN & ReLU are highlighted with color gradient, which means that they can be further
fused into previous layers to accelerate inference.

Model Architecture Hidden Heads Params (M)
12CE + 6CD 12 Conformer Encoder + 6 Conformer Decoder 256 4 48
12FE + 6CD 12 FusionFormer Encoder + 6 Conformer Decoder 256 4 48
12FE + 6FD 12 FusionFormer Encoder + 6 FusionFormer Decoder 256 4 48
16CE + 6CD 16 Conformer Encoder + 6 Conformer Decoder 384 6 98
16FE + 6CD 16 FusionFormer Encoder + 6 Conformer Decoder 384 6 98
16FE + 6FD 16 FusionFormer Encoder + 6 FusionFormer Decoder 384 6 98

Table 1: Detailed architecture configurations for Conformer and FusionFormer.

to the unstable Mean and Variance of layer output288

and putting normalization in appropriate position289

can alleviate this problem to a certain extent, i.e.,290

by placing LN at each residual branch like what291

standard Conformer has done or simply appending292

BN to each linear/convolution layer. We therefore293

propose our solution in the right part of Figure 3,294

where LN is removed and BN is added after each295

layer. Besides stabilizing the layer output, another296

advantage of appending BN is that we can fuse BN297

into preceding linear/convolution layers which is298

a quite mature technique for speedup (Duan et al.,299

2018). We can never do similar things for LN300

since LN needs to calculate the mean and variance301

statistics during inference while BN does not (Yao302

et al., 2021).303

We also propose to simplify the activation in Con-304

former for extra speedup. In the left part of305

Figure 3, Conformer uses Swish activation (also306

known as SiLU) for most of the modules. How-307

ever, it switches to a Gated Linear Unit (GLU)308

for its convolution module. Such a heterogeneous309

design seems over-complicated and quantization-310

unfriendly (Kim et al., 2022). From a practical311

view, multiple activations complicates hardware 312

deployment, as an efficient implementation of int8 313

activation requires custom approximations or look 314

up tables (Kim et al., 2021; Yu et al., 2021). To 315

address this, we propose to replace the GLU and 316

Swish activation with ReLU (Agarap, 2018), uni- 317

fying the choice of activation function throughout 318

the entire model. We note that ReLU can also be 319

fused into the previous layers (Stevewhims, 2021). 320

Since Conformer decoder only contains Feed For- 321

ward and Attention modules, it is simple and 322

straightforward to apply similar modifications to 323

decoder, detailed structures of decoder can be seen 324

in Appendix A.2. 325

It is well known that fewer layers means faster 326

speed and less quantization accuracy loss (Guo, 327

2018). With all the above optimizations, we get 328

a new architecture called FusionFormer, which is 329

speed-oriented and quantization-friendly. 330

3 Experiments 331

Models. Following the architecture described in 332

(Wu et al., 2021), we construct standard U2++ 333

Conformer with 12 encoder blocks and 6 decoder 334
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Model 1st-s-16-4 1st-s-16-∞ 1st-ns-∞-∞ 2nd-s-16-4 2nd-s-16-∞ 2nd-ns-∞-∞
12CE + 6CD 6.15 5.96 5.33 5.12 5.09 4.72
12FE + 6CD 6.39 6.30 6.01 5.31 5.27 4.97
12FE + 6FD 6.43 6.35 5.83 5.32 5.27 4.98
16CE + 6CD 5.90 5.87 5.26 5.09 5.00 4.68
16FE + 6CD 6.17 6.08 5.54 5.19 5.10 4.82
16FE + 6FD 6.12 6.05 5.63 5.22 5.12 4.85

Table 2: WER (%) Comparison of different models with different decoding methods on AISHELL-1.

Model Decoding Method WER Correct Substitute Delete Insert

12CE + 6CD

1st-s-16-4 6.15 98429 6139 197 107
1st-s-16-∞ 5.96 98633 5975 157 110
1st-ns-∞-∞ 5.33 99290 5349 126 104
2nd-s-16-4 5.12 99500 5128 137 101

2nd-s-16-∞ 5.09 99529 5096 140 98
2nd-ns-∞-∞ 4.72 99914 4730 121 93

12FE + 6CD

1st-s-16-4 6.39 98183 6407 175 112
1st-s-16-∞ 6.30 98264 6328 173 103
1st-ns-∞-∞ 6.01 98760 5839 166 294
2nd-s-16-4 5.31 99299 5302 164 92

2nd-s-16-∞ 5.27 99327 5278 160 83
2nd-ns-∞-∞ 4.97 99635 4972 158 79

12FE + 6FD

1st-s-16-4 6.43 98132 6457 176 107
1st-s-16-∞ 6.35 98213 6380 172 103
1st-ns-∞-∞ 5.83 98756 5853 156 103
2nd-s-16-4 5.32 99287 5314 164 97

2nd-s-16-∞ 5.27 99335 5269 161 87
2nd-ns-∞-∞ 4.98 99633 4975 157 88

Table 3: WER (%) comparison of different models with different decoding methods on AISHELL-1, including all
kinds of misrecognitions.

blocks and scale it up to 16 encoder blocks. In par-335

ticular, we apply the proposed architecture changes336

in Section 2.5 to construct FusionFormer from Con-337

former, retaining the model size. Detailed architec-338

ture configurations are described in Table 1.339

Training Details. Because the training recipes340

and codes for Conformer have been fully open-341

sourced3, we strictly follow the settings except that342

we use dynamic left chunks to simulate different343

context for streaming decoding. We train both344

Conformer and FusionFormer on a public Man-345

darin speech corpus, named AISHELL-1 (Bu et al.,346

2017), for 700 epochs on 4 GeForce-RTX-3090,347

More details for the training setup are given in Ap-348

pendix A.3.349

Decoding Methods. U2++ supports two-pass de-350

3https://github.com/wenet-
e2e/wenet/blob/main/examples/aishell/s0/conf

coding where encoder is used to generate n-best 351

hypotheses, either in a streaming manner or in a 352

non-streaming manner, for the first pass and the 353

hypotheses are then rescored by the decoder to get 354

the second pass result. We therefore get 6 different 355

decoding configurations: 356

1. 1st-s-16-4: First pass streaming result with 357

chunksize=16 and accessibility to previous 4 358

chunks. 359

2. 1st-s-16-∞: First pass streaming result with 360

chunksize=16 and accessibility to all previous 361

chunks. 362

3. 1st-ns-∞-∞: First pass non-streaming result 363

with chunksize=∞, it is equal to standard of- 364

fline speech recognition. 365

4. 2nd-s-16-4: Second pass streaming result 366

with chunksize=16 and accessibility to pre- 367
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Decoding Method lr=0.003 lr=0.0025 lr=0.002 lr=0.0015 lr=0.001* lr=0.0005
1st-s-16-4 6.50 6.46 6.43 6.53 6.61 6.68
1st-s-16-∞ 6.38 6.43 6.35 6.43 6.53 6.64

1st-ns-∞-∞ 5.89 5.88 5.83 5.90 6.06 6.21
2nd-s-16-4 5.34 5.37 5.32 5.40 5.42 5.48
2nd-s-16-∞ 5.27 5.34 5.27 5.29 5.35 5.44

2nd-ns-∞-∞ 4.98 5.07 4.98 5.01 5.10 5.16

Table 4: Analysis on different learning rate for different decoding methods. Experiments are conducted with 12FE +
6FD. We find that FusionFormer is trained smoothly without any crashes and is extremely robust to learning rate (lr).
* indicates the best setting for LN-based model, it’s also the default setting for training our Conformer-LN baseline.

vious 4 chunks.368

5. 2nd-s-16-∞: Second pass streaming result369

with chunksize=16 and accessibility to all pre-370

vious chunks.371

6. 2nd-ns-∞-∞: Second pass non-streaming re-372

sult with chunksize=∞, it is equal to standard373

offline speech recognition.374

3.1 Main Results375

We use Word Error Rate (WER) as metric and the376

main results are shown in Table 2.377

Conformer Encoder vs. FusionFormer Encoder.378

Compared to the LN-based Conformer (12CE +379

6CD), BN-based FusionFormer (12FE + 6CD) suf-380

fers a significant drop in first pass decoding (6.15 /381

5.96 / 5.33 vs. 6.39 / 6.30 / 6.01). We additionally382

check all types of misrecognitions in Table 3, and383

find that this gap is mainly due to higher substitu-384

tion errors (6139 / 5975 / 5349 vs. 6407 / 6328 /385

5839). However, after the second pass decoding,386

this situation is mitigated (5.12 / 5.09 / 4.72 vs.387

5.31 / 5.27 / 4.97 and 5128 / 5096 / 4730 vs. 5302388

/ 5278 / 4972). Considering the initial divergence,389

these comparable results demonstrate the practi-390

cality of LTPs and the reliability of the proposed391

modifications.392

Conformer Decoder vs. FusionFormer Decoder.393

To verify our proposed method works equally well394

for the decoder, we also evaluate the performance395

of FusionFormer Encoder + FusionFormer Decoder.396

By comparing 12FE + 6CD and 12FE + 6FD, we397

can clearly see that our methods generalize well on398

Decoder since WER is almost the same.399

Deeper Conformer vs. Deeper FusionFormer.400

As shown in the last three lines of Table 2, our401

architecture scales well to larger models and con-402

sistently achieves the on-par results with LN-based403

counterparts. 404

3.2 Further Analysis 405

Stability. To validate our conjecture in Section 2.5 406

that the convergence problem is mainly caused by 407

the unstable Mean and Variance of layer output 408

and putting normalization in appropriate position 409

can alleviate this problem, we present some WER 410

comparisons with different hyper-parameter setups 411

in Table 4. It is well known that Self Attentions 412

are very sensitive to hyper-parameters, especially 413

to learning rate (Popel and Bojar, 2018). There- 414

fore, huge efforts have to be devoted to hyper- 415

parameter tuning. However, by applying our pro- 416

posed modifications which append BN to each con- 417

volution/linear layers and simplify activation func- 418

tions, there is no more crashes and the performance 419

is much more stable. Besides, the results also sug- 420

gest that it’s better to use a higher learning rate (lr) 421

when training our proposed FusionFormer while 422

the optimal learning rate for Conformer is smaller. 423

Speed. Run Time Factor (RTF) is obtained by cal- 424

culating the ratio of the total decoding time to the 425

total audio time and is widely adopted as a model- 426

level end-to-end speed metric in ASR. We run tests 427

on AISHELL-1 testset for both Conformer and Fu- 428

sionFormer to evaluate the speed performance. As 429

Table 5 shows, by fusing operations such as BN and 430

ReLU into previous layers, the inference speed of 431

FusionFormer consistently outperforms Conformer 432

and achieves over 10% speedup, without noticeable 433

WER changes. 434

4 Related Work 435

Transformer (Vaswani et al., 2017) is initially pro- 436

posed for Natural Language Processing (NLP) 437

tasks and the great success in this field encourages 438

the researchers in Computer Vision (CV) commu- 439

nity (Dosovitskiy et al., 2021) and Speech commu- 440
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Model RTF(float32) RTF(int8)
12CE + 6CD 0.1053 0.07064
12FE + 6FD 0.08962 0.06047

Table 5: RTF comparison of different model with de-
coding method 2nd-s-16-∞. All our experiments are
conducted on Intel(R) Core(TM) i7-10510U CPU @
1.80GHz with single thread.

nity (Dong et al., 2018) to apply Transformer in441

their own tasks. Along these directions, injecting442

convolution into Transformer has been proved to443

be a general enhancement for all tasks (Liu et al.,444

2021; Gulati et al., 2020), which results in a new445

state-of-the-art backbone called Conformer. While446

Conformer achieves strong performance, we note447

that it still leverages Layer Normalization (LN) as448

the de facto normalization scheme while incorporat-449

ing Batch Normalization (BN) is not well-studied450

in speech areas. Although both BN and LN nor-451

malizes the activation of each layer by mean and452

variance statistics, the main advange of BN is that453

it is generally faster in inference than other batch-454

unrelated normalizations such as LN, due to an455

avoidance of calculating the mean and variance456

statistics during inference.457

In NLP literature, early attempts of using BN in458

NLP tasks faced significant performance degrada-459

tion (Shen et al., 2020). The conclusion of this460

paper is the same as ours that it is not feasible to461

replace LN with BN directly in the original posi-462

tion. To address this problem, (Shen et al., 2020)463

proposed Power Normalization (PN), an enhanced464

version of BN, to reduce the variation of statistics.465

By contrast, based on our observations on LTPs,466

we alleviate the statistic issue with a simple but467

effective method, i.e., instead of retaining the posi-468

tion of normalizations, we propose to remove LN469

and append BN to every linear/convolution layer.470

We note that our modifications are completely sup-471

plement to (Shen et al., 2020) that we can also put472

PN to the aforementioned positions and we leave473

this to our future works.474

In CV literature, the effectiveness of BN when com-475

bined with Convolutional Neural Networks (CNNs)476

is widely validated by the past success in vision477

tasks. As for vision Transformer/Conformer (Doso-478

vitskiy et al., 2021; Liu et al., 2021), most of the479

work just inherits LN from NLP and pays rare at-480

tentions on BN. We notice that (Yao et al., 2021)481

is the first to introduce Batch Normalization to482

Transformer-based vision architectures, by adding 483

a BN layer in-between the two linear layers in the 484

Feed Forward module. Since vision tasks usually 485

only contains the encoder part and the structure of 486

vision Transformer encoder is totally different from 487

that used in NLP and Speech, i.e., each encoder 488

block in vanilla Transformer is similar and homol- 489

ogous while encoder blocks in vision Transformer 490

have different hidden dimensions across different 491

stages, it is unknown whether we can directly apply 492

the modifications in (Yao et al., 2021) to NLP or 493

Speech encoder and whether those modifications 494

work well to the decoder. However, in this paper, 495

the experimental results in Section 3 show that our 496

method is suitable for Transformers with homol- 497

ogous structures, while it also generalizes well to 498

decoders. 499

5 Conclusion 500

In this paper, we perform a careful study on infer- 501

ence time cost of Conformer and find that remov- 502

ing Layer Normalization could be one of the most 503

valuable optimizations for Conformer. We propose 504

Layer Trend Plots to analyze our initial attempts 505

and find that the divergence issue is mainly caused 506

by the unstable layer output. We therefore propose 507

to remove LN layers and append BN to each lin- 508

ear/convolution layer. Besides, we also replace the 509

activation function used in Conformer with ReLU 510

to simplify hardware deployment and to further 511

inherent the advantages of fusing operations such 512

as BN and ReLU into previous layers. Our ex- 513

periments indicated that our method successfully 514

stabilizes the training process and is as effective 515

as the LN-based counterpart while achieving over 516

10% faster inference speed. 517

Limitations 518

As mentioned in (Shen et al., 2020), there are clear 519

differences in the batch statistics of NLP data ver- 520

sus CV data and we can draw the same conclusion 521

when we switch to the field of Speech. We claim 522

that our method works mostly for speech tasks, like 523

speech recognition and speech translation, but its 524

generalization in other tasks needs to be further 525

verified. 526
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(a) 1st Linear in Feed Forward 1 (b) 2nd Linear in Feed Forward 1 (c) Linear-Q in Self Attention

(d) Linear-K in Self Attention (e) Linear-V in Self Attention (f) Final Linear in Self Attention

(g) 1st Linear in Convolution (h) Conv1D in Convolution (i) 2nd Linear in Convolution

(j) 1st Linear in Feed Forward 2 (k) 2nd Linear in Feed Forward 2

Figure 4: The Mean of layer output in the first Conformer encoder block for three different variants: Conformer-
NoNorm (in blue), Conformer-BN (in cyan) and Conformer-LN (in purple). It is clear that both Conformer-NoNorm
and Conformer-BN suffer from large numerical changes, either at the beginning or at the end of training, which
result in unstable output while Conformer-LN keeps the output mean around zero throughout the whole training
process. We note that after around 18 epochs, the gradient of Confomer-NoNorm becomes NAN and hence the
optimizer stop to update parameters, the Mean remains unchanged thereafter.
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(a) 1st Linear in Feed Forward 1 (b) 2nd Linear in Feed Forward 1 (c) Linear-Q in Self Attention

(d) Linear-K in Self Attention (e) Linear-V in Self Attention (f) Final Linear in Self Attention

(g) 1st Linear in Convolution (h) Conv1D in Convolution (i) 2nd Linear in Convolution

(j) 1st Linear in Feed Forward 2 (k) 2nd Linear in Feed Forward 2

Figure 5: The Variance of layer output in the first Conformer encoder block for three different variants: Conformer-
NoNorm (in blue), Conformer-BN (in cyan) and Conformer-LN (in purple). We can get similar conclusion to
Figure 4 that Conformer-LN is much more stable than others.
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A.2 FusionFormer Decoder 734

Figure 6: Schematic representations outlining the difference between Conformer Decoder and FusionFormer
Decoder structures.

A.3 Training Setups 735

For learning rate scheduling, we modify the widely used Noam annealing (Vaswani et al., 2017) to 736

decouple the hidden size and peak lr. That is, 737

lr = lrpeak ∗ T0
0.5 ∗min(t−0.5, t ∗ T0

−1.5) (1) 738

where t is the step number, lrpeak is the peak learning rate, and T0 is the warmup steps. We use the best 739

setting for Conformer and FusionFormer where lrpeak is set to 0.001 and 0.002, respectively. For both 740

models, the output alphabet of target text consists of 4233 classes, including 4230 chinese characters and 741

three special tokens, such as < SOS >, < EOS > and < unk >. Finally, for data augmentation, the 742

same settings in (Wu et al., 2021) are adopted for all our experiments. 743

The training set of AISHELL-1 (Bu et al., 2017) contains about 150 hours of speech (120,098 utterances) 744

recorded by 340 speakers. The development set contains about 20 hours (14,326 utterances) recorded 745

by 40 speakers. And about 10 hours (7,176 utterances) of speech is used as test set. AISHELL-1 can be 746

downloaded from https://www.openslr.org/33/. 747
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