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ABSTRACT

This work focuses on sparse adversarial perturbations bounded by l0 norm. We
propose a white-box PGD-like attack method named sparse-PGD to effectively
and efficiently generate such perturbations. Furthermore, we combine sparse-PGD
with a black-box attack to comprehensively and more reliably evaluate the mod-
els’ robustness against l0 bounded adversarial perturbations. Moreover, due to
the efficiency of sparse-PGD, we explore utilizing it to conduct adversarial train-
ing to build robust models against sparse perturbations. Extensive experiments
demonstrate that our proposed attack algorithm can achieve better performance
than baselines. Our adversarially trained model also shows the strongest robust-
ness against various sparse attacks.

1 INTRODUCTION

Deep learning has been developing tremendously fast in the last decade. However, it is shown
vulnerable to adversarial attacks: imperceivable adversarial perturbations (Szegedy et al., 2013;
Kurakin et al., 2016) could change the prediction of a classifier without altering the semantic content
of the input, which poses great challenges in safety-critical systems. Among different kinds of
adversarial perturbations, the ones bounded by l∞ or l2 norms are mostly well-studied (Goodfellow
et al., 2014; Madry et al., 2017; Zhang et al., 2019c) and benchmarked (Croce et al., 2020), because
the adversarial budgets, i.e., the sets of all allowable perturbations, are convex, which facilities
theoretical analyses and algorithm design. By contrast, we focus on perturbations bounded by l0
norm in this work. These perturbations are sparse and quite common in physical scenarios, including
broken pixels in LED screens to fool object detection models and adversarial stickers on road signs
to make an auto-driving system fail (Papernot et al., 2017; Akhtar & Mian, 2018; Xu et al., 2019).

However, constructing l0 bounded adversarial perturbations is challenging as the corresponding ad-
versarial budget is non-convex. Therefore, it is difficult to apply gradient-based methods, such as
projected gradient descent (PGD) (Madry et al., 2017) to obtain a strong adversarial perturbation
efficiently. Existing methods to generate sparse perturbations Modas et al. (2018); Croce & Hein
(2019c); Su et al. (2019); Dong et al. (2020); Croce et al. (2022) either cannot control the l0 norm
of perturbations or have prohibitively high computational complexity, which makes them inapplica-
ble for adversarial training to obtain robust models against sparse perturbations. The perturbations
bounded by l1 norm are the closest scenario to sparse perturbations among convex adversarial bud-
gets defined by an lp norm. Nevertheless, adversarial training in this case (Tramer & Boneh, 2019;
Croce & Hein, 2021) still suffers from issues such as slow convergence and instability. Jiang et al.
(2023) demonstrates that these issues arise from non-sparse perturbations bounded by l1 norm. In
other words, l1 adversarial budget still cannot guarantee the sparsity of the perturbations. Thus, it is
necessary to study the case of l0 bounded perturbations.

In this work, we propose a white-box attack named sparse-PGD (sPGD) to generate sparse pertur-
bations bounded by l0 norm. Specifically, we decompose the sparse perturbation δ as the product
of a magnitude tensor p and a binary sparse mask m: δ = p �m , where p and m determine the
magnitudes and the locations of perturbed features, respectively. We adopt PGD-like algorithms to
update p and m. However, it is challenging to directly optimize the binary mask m in the discrete
space. We thereby introduce an alternative continuous variable m̃ to approximate m and update
m̃ by gradient-based methods, m̃ is then transformed to m by projection to the discrete space.
Due to the sparsity of m by the projection operator, the gradient of p is sparse, which may lead
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to slow convergence by coordinate descent. Therefore, we remove the projection operator in the
backpropagation to obtain the unprojected gradient of p. We use both the original sparse gradient
and the unprojected gradient of p to boost the attack performance. Moreover, we design a random
reinitialization mechanism to enhance the exploration capability for the mask m. On top of sPGD,
we propose sparse-AutoAttack (sAA), which is the ensemble of the white-box sPGD and another
black-box sparse attack, for a more comprehensive and reliable evaluation against l0 bounded per-
turbations. Through extensive experiments, we show that our method achieves better performance
than other sparse attacks.

We also explore adversarial training against sparse attacks. In this context, the attack method will be
called in each mini-batch update, so it should be both effective and efficient. Compared with existing
sparse attack methods, our proposed sPGD performs much better when using a small number of
iterations, making it feasible for adversarial training. Empirically, models adversarially trained by
sPGD demonstrate the strongest robustness against various sparse attacks.

We summarize the contributions of this paper as follows:

1. We propose an effective and efficient attack algorithm called sparse-PGD (sPGD) to gen-
erate l0 bounded adversarial perturbation. sPGD achieves significantly better performance
than existing methods when using limited iterations, which makes it feasible for adversarial
training to obtain robust models against sparse perturbations.

2. We propose an ensemble of sparse attacks called sparse-AutoAttack (sAA) for reliable
robustness evaluation against l0 bounded perturbation.

3. We conduct extensive experiments to demonstrate that our attack methods achieve impres-
sive performance in terms of both effectiveness and efficiency. Based on sPGD, we conduct
adversarial training against l0 bounded perturbations. Models adversarially trained by our
attack method show the strongest robustness against various sparse attacks.

2 PRELIMINARIES

We use image classification as an example, although the methods proposed in this work are appli-
cable to any classification model. Under lp bounded perturbations, the robust learning aims to solve
the following min-max optimization problem.

min
θ

1

N

N∑
i=1

max
δi

L(θ,xi + δi), s.t. ||δi||p ≤ ε, 0 ≤ xi + δi ≤ 1. (1)

where θ denotes the parameters of the model and L is the loss objective function. xi ∈ Rh×w×c is
the input image where h, w and c represent the height, width, and number of channels, respectively.
δi has the same shape as xi and represents the perturbation. The perturbations are constrained by
its lp norm and the bounding box. In this regard, we use the term adversarial budget to represent
the set of all allowable perturbations. Adversarial attacks focus on the inner maximization problem
of (1) and aim to find the optimal adversarial perturbation, while adversarial training focuses on the
outer minimization problem of (1) and aims to find a robust model parameterized by θ. Due to the
high dimensionality and non-convexity of the loss function when training a deep neural network,
Weng et al. (2018) has proven that solving the problem (1) is at least NP-complete.

In this work, we study the l0 bounded perturbations. For image inputs, we consider the pixel sparsity,
which is more meaningful than feature sparsity and consistent with existing works (Croce & Hein,
2019c; Croce et al., 2022). That is, a pixel is considered perturbed if any of its channel is perturbed,
and sparse perturbation means few pixels are perturbed.

3 RELATED WORKS

Non-Sparse Attacks: The pioneering work Szegedy et al. (2013) finds the adversarial perturbations
to fool image classifiers and proposes a method to minimize the l2 norm of such perturbations. To
more efficiently generate adversarial perturbations, the fast gradient sign method (FGSM) Goodfel-
low et al. (2014) generates l∞ perturbation in one step, but its performance is significantly surpassed
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by the multi-step variants Kurakin et al. (2017). Projected Gradient Descent (PGD) (Madry et al.,
2017) further boosts the attack performance by using iterative updating and random initialization.
Specifically, each iteration of PGD updates the adversarial perturbation δ by:

δ ←− ΠS(δ + α · s(∇δL(θ,x+ δ))) (2)

where S is the adversarial budget, α is the step size, s : Rh×w×c → Rh×w×c selects the steepest
ascent direction based on the gradient of the loss L with respect to the perturbation. Inspired by the
first-order Taylor expansion, (Madry et al., 2017) derives the steepest ascent direction for l2 bounded
and l∞ bounded perturbations to efficiently find strong adversarial examples; SLIDE (Tramer &
Boneh, 2019) and l1-APGD (Croce & Hein, 2021) use k-coordinate ascent to construct l1 bounded
perturbations, which is shown to suffer from the slow convergence (Jiang et al., 2023).

Besides the attacks that have access to the gradient of the input (i.e., white-box attacks), there are
also black-box attacks that do not have access to model parameters, including the ones based on
gradient estimation through finite differences (Bhagoji et al., 2018; Ilyas et al., 2018a;b; Tu et al.,
2018; Uesato et al., 2018) and the ones based on evolutionary strategies or random search (Alzantot
et al., 2018; Guo et al., 2019). To improve the query efficiency of black-box attacks, Al-Dujaili &
OReilly (2019); Moon et al. (2019); Meunier et al. (2019); Andriushchenko et al. (2019) generate
adversarial perturbation at the corners of the adversarial budget.

To more reliably evaluate the robustness, (Croce & Hein, 2020) proposes AutoAttack (AA) which
consists of an ensemble of several attack methods, including both black-box and white-box at-
tacks. (Croce & Hein, 2021) extends AA to the case of l1 bounded perturbations and proposes
AutoAttack-l1 (AA-l1). Although the l1 bounded perturbations are usually sparse, Jiang et al. (2023)
demonstrates that AA-l1 is able to find non-sparse perturbations that cannot be found by SLIDE to
fool the models. That is to say, l1 bounded adversarial perturbations are not guaranteed to be sparse.
We should study perturbations bounded by l0 norm.

Sparse Attacks: For perturbations bounded by l0 norm, directly adopting vanilla PGD as in Equa-
tion (2) leads to suboptimal performance due to the non-convexity nature of the adversarial budget:
PGD0 (Croce & Hein, 2019c), which updates the perturbation by gradient ascent and project it
back to the adversarial budget, turns out very likely to trap in the local maxima. SparseFool (Modas
et al., 2018) and GreedyFool (Dong et al., 2020) also generate sparse perturbations, but they do
not strictly restrict the l0 norm of perturbations. If we project their generated perturbations to the
desired l0 ball, their performance will drastically drop. Sparse Adversarial and Interpretable Attack
Framework (SAIF) (Imtiaz et al., 2022) is similar to our method in that SAIF also decomposes the l0
perturbation into a magnitude tensor and sparsity mask, but it uses the Frank-Wolfe algorithm (Frank
et al., 1956) to separately update them. SAIF turns out to get trapped in local minima and shows
poor performance on adversarially trained models. Besides white-box attacks, there are black-box
attacks to generate sparse adversarial perturbations, including CornerSearch (Croce & Hein, 2019c)
and Sparse-RS (Croce et al., 2022). However, these black-box attacks usually require thousands of
queries to find an adversarial example, making it difficult to scale up to large datasets.

Adversarial Training: Despite the difficulty in obtaining robust deep neural network, adversarial
training (Madry et al., 2017; Croce & Hein, 2019b; Sehwag et al., 2021; Rebuffi et al., 2021; Gowal
et al., 2021; Rade & Moosavi-Dezfooli, 2021; Cui et al., 2023; Wang et al., 2023) stands out as a
reliable and popular approach to do so (Athalye et al., 2018; Croce & Hein, 2020). It generates
adversarial examples first and then uses them to optimize model parameters. Despite effective,
adversarial training is time-consuming due to multi-step attacks. (Shafahi et al., 2019; Zhang et al.,
2019a; Wong et al., 2020; Sriramanan et al., 2021) use weaker but faster one-step attacks to reduce
the overhead, but they may suffer from catastrophic overfitting (Kang & Moosavi-Dezfooli, 2021):
the model overfits to these weak attacks during training instead of achieving true robustness to
various attacks. Kim et al. (2020); Andriushchenko & Flammarion (2020); Golgooni et al. (2021);
de Jorge et al. (2022) try to overcome catastrophic overfitting while maintaining efficiency.

Compared with l∞ and l2 bounded perturbations, adversarial training against l1 bounded pertur-
bations is shown to be even more time-consuming to achieve the optimal performance (Croce &
Hein, 2021). In the case of sparse perturbations, there is currently no adversarial training method
due to the large computational overhead to generate sparse perturbations. In this work, we propose
an effective and efficient sparse attack that enables us to conduct adversarial training against sparse
perturbations. The obtained model demonstrates the best robustness against various sparse attacks.
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It should be noted that we only regard this as a baseline of adversarial training against l0 bounded
perturbations. Exploring methods to further boost performance will be the future work.

4 METHODS

In this section, we introduce sparse-PGD (sPGD): a white-box attack that generates sparse perturba-
tions. Based on sPGD, we propose sparse-AutoAttack (sAA), an ensemble of various sparse attacks,
for reliable robustness evaluation against l0 bounded adversarial perturbation. In the end, we incor-
porate sPGD into adversarial training to boost the model’s robustness against sparse perturbations.

4.1 SPARSE-PGD (SPGD)

Inspired by SAIF (Imtiaz et al., 2022), we decompose the sparse perturbation δ into a magnitude
tensor p ∈ Rh×w×c and a sparsity mask m ∈ {0, 1}h×w×1, i.e., δ = p �m. Therefore, the loss
objective function the attacker aims to maximize can be rewritten as

max
‖δ‖0≤k,0≤x+δ≤1

L(θ,x+ δ) = max
p∈Sp,m∈Sm

L(θ,x+ p�m). (3)

The feasible sets for p and m are Sp = {p ∈ Rh×w×c|0 ≤ x + p ≤ 1} and Sm = {m ∈
{0, 1}h×w×1|‖m‖0 ≤ k}, respectively. sPGD iteratively updates p and m until finding a successful
adversarial example or reaching the maximum iteration number. We elaborate on the details below.

Update Magnitude Tensor p: The magnitude tensor p is only constrained by the input domain.
In the case of RGB images, the input is bounded by 0 and 1. Note that the constraints on p are
elementwise and similar to those of l∞ bounded perturbations. Therefore, instead of greedy or
random search (Croce & Hein, 2019c; Croce et al., 2022), we utilize PGD in the l∞ case, i.e., use
the sign of the gradients, to optimize p as demonstrated by Eq. (4), with α being the step size.

p←− ΠSp (p+ α · sign(∇pL(θ,x+ p�m))) , (4)

Update Sparsity Mask m: The sparsity mask m is binary and constrained by its l0 norm. Directly
optimizing the discrete variable m is challenging, so we update its continuous alternative m̃ ∈
Rh×w×1 and project m̃ to the feasible set Sm before multiplying it with the magnitude tensor p to
calculate the sparse perturbation δ. Specifically, m̃ is updated by gradient ascent. Projecting m̃ to
the feasible set Sm is to set the k-largest elements in m̃ to 1 and the rest to 0. In addition, we adopt
the sigmoid function to normalize the elements of m̃ before projection. Mathematically, the update
rules for m̃ and m are demonstrated as follows:

m̃←− m̃+ β · ∇m̃L/(||∇m̃L||2 + γ), (5)
m←− ΠSm(σ(m̃)) (6)

where β is the step size for updating the sparsity mask’s continuous alternative m̃, σ(·) denotes the
sigmoid function and γ is a small constant to avoid the denominator becoming zero. The gradient
∇m̃L is calculated at the point δ = p�ΠSm(σ(m̃)), where the loss function is not always differen-
tiable. We demonstrate how to estimate the update direction in the next part. Furthermore, to prevent
the magnitude of m̃ from becoming explosively large, we do not update m̃ when ||∇m̃L||2 < 2 · γ,
which indicates that m̃ is located in the saturation zone of sigmoid function.

Backward Function: Based on Eq. (3), we can calculate the gradient of the magnitude tensor p:
∂L
∂p = ∇δL(θ,x+δ)�m and use gp to represent this gradient for notation simplicity. There are at
most k non-zero elements in the mask m, so gp is sparse and also has at most k non-zero elements.
That is to say, we update at most k elements of the magnitude tensor p based on the gradient gp.
Just like coordinate descent, this may result in suboptimal performance since most elements of p are
unchanged in each iterative update. To tackle this problem, we discard the projection to the binary
set Sm when calculating the gradient and use the unprojected gradient g̃p to update p. Based on
Eq. (6), we have g̃p = ∇δL(θ,x+ δ)� σ(m̃). The idea of the unprojected gradient is inspired by
training pruned neural networks and lottery ticket hypothesis (Frankle & Carbin, 2019; Ramanujan
et al., 2020; Fu et al., 2021; Liu et al., 2022). All these methods train importance scores to prune
the model parameters but update the importance scores based on the whole network instead of the
pruned sub-network to prevent the sparse update, which leads to suboptimal performance.
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In practice, the performance of using gp and g̃p to optimize p is complementary. The sparse gradient
gp is consistent with the forward propagation and is thus better at exploitation. By contrast, the
unprojected gradient g̃p updates the p by a dense matrix and is thus better at exploration. In view of
this, we set up an ensemble of attacks with both gradients to balance exploration and exploitation.

When calculating the gradient of the continuous alternative m̃, we have ∂L
∂m̃ = ∂L(θ,x+δ)

∂δ � p �
∂ΠSm (σ(m̃))

∂m̃ . Since the projection to the set Sm is not always differentiable, we discard the projec-
tion operator and use the approximation ∂ΠSm (σ(m̃))

∂m̃ ' σ′(m̃) to calculate the gradient.

Random Reinitialization: Due to the projection to the set Sm in Eq. (6), the sparsity mask m
changes only when the relative magnitude ordering of the continuous alternative m̃ changes. In
other words, slight changes in m̃ usually mean no change in m. As a result, it is quite easy for
m to get trapped in a local maximum. To solve this problem, we propose a random reinitialization
mechanism. Specifically, when the attack fails, i.e., the model still gives the correct prediction,
and the current sparsity mask m remains unchanged for three consecutive iterations, the continuous
alternative m̃ will be randomly reinitialized for better exploration.

To summarize, we provide the pseudo-code of the untargetted version of sparse PGD (sPGD) in
Algorithm 1. While the untargeted version aims to maximize the loss objective of the correct label,
targeted sPGD minimizes the loss objective of the targeted label. When evaluating the top C incor-
rect labels with the highest confidence scores in the targeted sPGD, its computational complexity
becomes C times that of the untargeted counterpart.

Algorithm 1 Untargeted sPGD
Input: Clean image: x ∈ [0, 1]h×w×c; Model parameters: θ; Max iteration number: T ; l0
budget: k; Step size: α, β; Small constant: γ

1: Random initialize p and m̃

2: for i = 0, 1, ..., T − 1 do
3: m = ΠSm(σ(m̃))

4: Calculate the loss L(θ,x+ p�m)

5: gp = ∇δL � σ(m̃) if unprojected else∇δL �m . δ = p�m

6: gm̃ = ∇δL � p� σ′(m̃)

7: p = ΠSp(p+ α · sign(gp))
8: d = gm̃/(||gm̃||2 + γ) if ||gm̃||2 ≥ 2 · γ else 0

9: mold, m̃ = m, m̃+ β · d
10: if attack succeeds:
11: break
12: if ||ΠSm(σ(m̃))−mold||0 ≤ 0 for 3 consecutive iterations:
13: Random initialize m̃

14: end for
Output: Perturbation: δ = p�m

4.2 SPARSE-AUTOATTACK (SAA)

AutoAttack (AA) (Croce & Hein, 2020) is an ensemble of four diverse attacks for a standardized
parameters-free and reliable evaluation of robustness against l∞ and l2 attacks. Croce & Hein (2021)
extends AutoAttack to l1 bounded perturbations. In this work, we further extend this framework to
the l0 case. Similar to AA, we include both untargeted and targeted attacks. However, we find
the adaptive step size, momentum and difference of logits ratio (DLR) loss function, which are all
included in the AutoPGD in AA, do not help to improve the performance in the l0 case. Instead,
we run both untargeted sPGD and targeted sPGD (top C = 9 incorrect labels) with cross-entropy
loss and constant step sizes. In addition, we run sPGD twice for each case: the first time with the
sparse gradient gp and the second with the unprojected gradient g̃p as described in Section 4.1.
we denote the untargeted sPGD as sPGDCE, the targeted one as sPGDCE−T and their ensemble
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as sPGDCE+T. To ensure our method has similar computational complexity as AA, we do not
include the white-box FAB attack (Croce & Hein, 2019a) in sAA. As for the black-box attack,
Square Attack (Andriushchenko et al., 2020) adopted in AA does not have a version for the l0 case.
Therefore, we adopt the strong black-box attack Sparse-RS (Croce et al., 2022), which can generate
l0 bounded perturbations. We use cascade evaluation to improve the efficiency. Concretely, if we
find an adversarial perturbation by one attack to change the model’s prediction for one instance,
we will consider the model non-robust on this instance and the same instance will not be further
evaluated by the other attacks. In this regard, the attacks in sAA are sorted from the ones with low
complexity to the ones with high complexity: untargeted sPGD, targeted sPGD and Sparse-RS.

4.3 ADVERSARIAL TRAINING

In addition to robustness evaluation, we also explore adversarial training to build robust models
against sparse perturbations. In the framework of adversarial training, the attack is used to generate
adversarial perturbation in each training iteration, so the attack algorithm should not be too compu-
tationally expensive. In this regard, we adopt the untargeted sPGD (Algorithm 1) to generate sparse
adversarial perturbations for training. We incorporate sPGD in the framework of vanilla adversarial
training (Madry et al., 2017) and TRADES (Zhang et al., 2019b). The corresponding methods are
called sAT and sTRADES, respectively. Since the sparse gradient and the unprojected gradient as
described in Section 4.1 induce different exploration-exploitation trade-offs, we randomly select one
backward function to generate adversarial perturbations for each mini-batch when using sPGD to
generate adversarial perturbations for training the model.

5 EXPERIMENTS

In this section, we conduct extensive experiments to compare our attack methods with baselines
in evaluating the robustness of various models against l0 bounded perturbations. In addition to
effectiveness with an abundant query budget, we also study the efficiency of our methods when
we use limited iterations to generate adversarial perturbations. Our proposed methods demonstrate
impressive performance in both aspects: sAA, consisting of sPGD and sparse-RS(Croce et al., 2022),
has the best attack success rate; sPGD has much better performance than all baselines when using
limited iterations, making sPGD feasible for adversarial training and able to obtain the state-of-the-
art robust models against l0 bounded perturbations crafted by sAA. In addition, we conduct ablation
studies for analysis. The adversarial examples generated by our methods are visually interpretable
and presented in Appendix C. Implementation details are deferred to Appendix B.

5.1 EVALUATION OF DIFFERENT ATTACK METHODS

First, we compare our proposed sPGD, including sPGDCE and sPGDCE+T as defined in Section 4.2,
and sparse-AutoAttack (sAA) with existing white-box and black-box attacks that generate sparse
perturbations. Unless specifically mentioned, we evaluate different attack methods based on the
models trained on CIFAR-10 (Krizhevsky et al., 2009) and report the robust accuracy with k = 20
on the whole test set (see in Table 1). In Appendix A.1, we report more results with k = 10,
k = 15, and the results of models trained on CIFAR-100 (Krizhevsky et al., 2009) in Table 6, 7 and
8, respectively to comprehensively demonstrate the effectiveness of our methods.

Models: We select various models to comprehensively evaluate their robustness against l0 bounded
perturbations. As a baseline, we train a ResNet-18 (RN-18) (He et al., 2016a) model on clean inputs.
For adversarially trained models, we select competitive models that are publicly available, including
those trained against l∞, l2 and l1 bounded perturbations. For the l∞ case, we include adversarial
training with the generated data (GD) (Gowal et al., 2021), the proxy distributions (PORT) (Se-
hwag et al., 2021), the decoupled KL divergence loss (DKL) (Cui et al., 2023) and strong diffusion
models (DM) (Wang et al., 2023). For the l2 case, we include adversarial training with the proxy dis-
tributions (PORT) (Sehwag et al., 2021), strong diffusion models (DM) (Wang et al., 2023), helper
examples (HAT) (Rade & Moosavi-Dezfooli, 2021) and strong data augmentations (FDA) (Rebuffi
et al., 2021). The l1 case is less explored, so we only include l1-APGD adversarial training (Croce
& Hein, 2021) and the efficient Fast-EG-l1 (Jiang et al., 2023) for comparison. The network archi-
tecture used in these baselines is either ResNet-18 (RN-18), PreActResNet-18 (PRN-18) (He et al.,

6



Under review as a conference paper at ICLR 2024

2016b) or WideResNet-28-10 (WRN-28) (Zagoruyko & Komodakis, 2016). Finally, we use PGD0

(Croce & Hein, 2019c) in vanilla adversarial training (PGD0-A) and TRADES (PGD0-T), and our
proposed sPGD in vanilla adversarial training (sAT) and TRADES (sTRADES) to obtain PRN-18
models to compare with these baselines. Note that the hyperparameters for PGD0-A and PGD0-T
are the same as those reported in (Croce & Hein, 2019c).

Attacks: We compare our methods with various existing black-box and white-box attacks that gen-
erate l0 bounded perturbations. The black-box attacks include CornerSearch (CS) (Croce & Hein,
2019c) and Sparse-RS (RS) (Croce et al., 2022). The white-box attacks include SparseFool (SF)
(Modas et al., 2018), PGD0 (Croce & Hein, 2019c) and Sparse Adversarial and Interpretable Attack
Framework (SAIF) (Imtiaz et al., 2022). To boost the strength of white-box attacks, we ensemble
their untargeted and targeted versions (CE+T) for evaluation, except SF due to its high complex-
ity. For a fair comparison, we keep the number of total iterations of all attacks approximately the
same, the details of which are deferred to Appendix B. Note that we report the robust accuracy un-
der CS attack based on only 1000 random test instances due to its prohibitively high computational
complexity.

Based on the results in Table 1, we can find that SF attack, PGD0 attack and SAIF attack, including
both the untargeted and targeted versions, perform significantly worse than our methods for all the
models studied. That is, our proposed sPGD always performs the best among white-box attacks.

Among black-box attacks, CS attack can achieve competitive performance, but it runs dozens of
times longer than our method does. Therefore, we focus on comparing our method with RS attack.
For l1 and l2 models, our proposed sPGDCE+T significantly outperforms RS attack. By contrast,
RS attack outperforms sPGDCE+T for l∞ models. This indicates gradient masking still exists in
this case. Nevertheless, sAA still achieves the best performance, with a considerable margin on top
of both RS attack and sPGDCE+T. The results indicate the necessity of combining both white-box
and black-box attacks for comprehensive robustness evaluation.

In the case of sAT and sTRADES, the models are adversarially trained against sPGD attack. The
model also suffers from gradient masking to some extent, which is indicated by the degraded robust
accuracy by the strong black-box RS attack. However, Figure 1 (a) illustrates that the performance of
RS attack drastically deteriorates with limited iterations (e.g. smaller than 300), so RS is not suitable
for adversarial training where the efficiency is required. Despite this, compared with other models
in Table 1, the models trained by sAT and sTRADES still show the strongest robustness, indicated
by the comprehensive sAA method and all other attack methods. Compared with sAT, sTRADES
achieves better performance both in robust accuracy and accuracy on the clean data. Since we have
not exhaustively investigated robust learning methods using sPGD, the preliminary results of sAT
and sTRADES indicate the potential for further performance improvement. We leave this as future
work. Besides models adversarially trained against sPGD, models trained against PGD0 show non-
robustness to our attack. Nevertheless, models trained by l1 bounded perturbations are the most
robust ones among existing training methods. It could be attributed to the fact that l1 norm is the
tightest convex relaxation of l0 norm (Bittar et al., 2021). From a qualitative perspective, l1 attacks
also generate relatively sparse perturbations (Jiang et al., 2023), which makes the corresponding
model robust to sparse perturbations to some degree.

The results in Table 1 indicate sPGD attack and RS attack can complement each other. There-
fore, sAA, an AutoAttack-style attack that ensembles both attacks achieves the state-of-the-art per-
formance on all models. In the implementations, sAA has a similar computational complexity to
AutoAttack in l∞, l2 and l1 cases. Hyper-parameter details are deferred to Appendix B.

5.2 COMPARISON UNDER DIFFERENT ITERATION NUMBERS AND SPARSITY LEVELS

In this subsection, we further compare our method sPGD, which is a white-box attack, with RS
attack, the strongest black-box attack in Table 1. Specifically, we compare these two attacks under
different iteration numbers and sparsity levels.

Robust Acc. v.s. Iteration Numbers: As illustrated in Figure 1 (a), although the performances
of both sPGDCE and RS attack get improved with more iterations, sPGDCE achieves significantly
better performance than RS attack when the iteration number is small, which makes it feasible for
adversarial training. Similar to other black-box attacks, the performance of RS attack drastically

7



Under review as a conference paper at ICLR 2024

Table 1: Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where
the sparsity level k = 20. The models are trained on CIFAR-10 (Krizhevsky et al., 2009). Note that Cor-
nerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Network Clean CS RS SF PGD0

(CE+T)
SAIF

(CE+T) sPGDCE sPGDCE+T sAA

Vanilla RN-18 93.9 1.2 0.0 17.5 0.4 3.2 0.0 0.0 0.0

l∞-adv. trained, ε = 8/255

GD PRN-18 87.4 26.7 11.0 52.6 25.2 40.4 19.7 15.7 9.2
PORT RN-18 84.6 27.8 14.6 54.5 21.4 42.7 20.9 16.1 10.8
DKL WRN-28 92.2 33.1 11.0 54.0 29.3 41.1 22.5 16.6 9.6
DM WRN-28 92.4 32.6 10.3 49.4 26.9 38.5 21.5 15.9 9.0

l2-adv. trained, ε = 0.5

HAT PRN-18 90.6 34.5 20.5 56.3 22.5 49.5 13.2 10.0 9.3
PORT RN-18 89.8 30.4 18.7 55.0 17.2 48.0 10.5 7.5 7.1
DM WRN-28 95.2 43.3 23.4 59.2 31.8 59.6 20.9 15.5 14.1
FDA WRN-28 91.8 43.8 25.8 64.2 25.5 57.3 26.4 21.3 18.4

l1-adv. trained, ε = 12

l1-APGD PRN-18 80.7 32.3 33.1 65.4 39.8 55.6 24.0 20.0 19.5
Fast-EG-l1 PRN-18 76.2 35.0 31.5 60.8 37.1 50.0 24.4 20.0 19.4

l0-adv. trained, k = 20

PGD0-A PRN-18 76.2 1.3 0.1 17.1 0.0 1.3 0.0 0.0 0.0
PGD0-T PRN-18 78.2 0.7 0.1 16.6 0.0 0.7 0.0 0.0 0.0
sAT PRN-18 85.8 48.1 45.1 85.2 79.7 77.1 78.2 76.8 44.6
sTRADES PRN-18 87.2 55.0 52.1 86.3 82.2 79.2 79.5 77.9 52.0
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Figure 1: Comparison between sPGD and RS attack under different iterations and sparsity levels. PORT (l∞
and l2) (Sehwag et al., 2021) and Fast-EG-l1 (Jiang et al., 2023) are evaluated. The results of sPGD and RS
attack are shown in solid lines and dotted lines, respectively. (a) Curves of robust accuracy v.s. iterations.
sPGDCE is evaluated here. The sparsity level k is set to 20. The total iteration number ranges from 20 and
10000. For better visualization, the x-axis is shown in the log scale. (b) Curves of robust accuracy v.s. sparsity
level k. sPGDCE+T is evaluated here. The number of total iterations is set to 3000. The results of sAA are
shown in dash-dot line.

deteriorates when the query budget is limited. Specifically, when the iteration number is smaller
than 2000, which is still considerably large, sPGDCE achieves better performance than RS attack on
all models studied in Figure 1 (a). In addition, their performance gaps also increase as the iteration
number decreases. Besides the untargeted version, the comparison between sPGDCE+T and RS is
presented in Figure 2 of Appendix A.2, where the observations are consistent with Figure 1 (a).

Robust Acc. v.s. Sparsity Level k: We can observe from Figure 1 (b) that RS attack shows slightly
better performance only on the l∞ model and when k is small. The search space for the perturbed
features is relatively small when k is small, which facilitates heuristic black-box search methods like

8
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RS attack. As k increases, sPGDCE+T outperforms RS attack in all cases until both attacks achieve
almost 100% attack success rate.

5.3 ABLATION STUDIES

We conduct ablation studies to validate the effectiveness of our methods. We focus on CIFAR10 and
the sparsity level k = 20. Unless specified, we use the same configurations as in Table 1.

Components of sPGDCE+T: We first validate the effectiveness of each component in sPGDCE+T.
The result is reported in Table 2. We observe that naively decomposing the perturbation δ by δ =
p�m and updating them separately can deteriorate the performance. By contrast, the performance
significantly improves when we update the mask m by its continuous alternative m̃ and l0 ball
projection. This indicates that introducing m̃ greatly mitigates the challenges in optimizing discrete
variables. Moreover, the results in Table 2 indicate the performance can be further improved by
the random reinitialization mechanism, which encourages exploration and avoids trapping in a local
optimum. In Appendix A.3, we compare the performance when we use different step sizes for the
magnitude tensor p and the sparsity mask m. The results in Table 10 and 11 of Appendix A.3
indicate that the performance of our proposed method is quite consistent under different choices of
step sizes, which facilities hyper-parameter selection for practitioners.

Table 2: Ablation study of each component in
sPGDCE+T in terms of robust accuracy. The model
is trained by Fast-EG-l1 (Jiang et al., 2023).

Ablations Robust Acc.

Baseline (PGD0 w/o restart) 49.5
+ Decomposition: δ = p�m 50.0 (+0.5)
+ Continuous mask m̃ 22.2 (-27.3)
+ Random reinitialization 20.0 (-29.5)

Table 3: Comparison between different backward
functions in sPGDCE+T on various models.

Model Projected Unprojected

Vanilla 0.1 0.2
l∞ (PORT) 16.1 16.5
l2 (PORT) 14.0 7.4

l1 (Fast-EG-l1) 28.4 20.0
l0 (sTRADES) 77.9 81.5

Different Backward Functions: We also validate the effectiveness of different backward functions,
i.e., the sparse gradient and the unprojected gradient, on various models. The results in Table 3
indicate the two backward functions are complementary: neither of them is better in all cases. As
a result, our proposed sPGD and sAA use both the sparse and the unprojected gradients to ensure
a more comprehensive evaluation of robustness. In adversarial training, we randomly select one
backward function to construct adversarial examples for training to ensure the model’s robustness
against attacks based on different backward functions.

Adversarial training: We conduct preliminary exploration on adversarial training against sparse
perturbations. Table 4 demonstrates the robust accuracy of models trained by sPGD with different
iteration numbers. The results indicate that the robust accuracy increases with the number of itera-
tions first and then saturates. To balance the performance and efficiency, we use 100-iteration sPGD
by default. Table 5 demonstrates the performance when we use different backward functions. The
policies include always using the sparse gradient (Sparse), always using the unprojected gradient
(Unproj.), alternatively using both backward functions every 5 epochs (Alter.) and randomly select-
ing backward functions (Rand.). The results indicate that randomly selecting backward functions
has the best performance, both for sAT and sTRADES. Comprehensively comparing different ad-
versarial training variants and designing the loss objective function in the context of sPGD to further
boost the model robustness against sparse perturbations are left as future work.

Table 4: Ablation study on iteration numbers of at-
tacks during adversarial training. The robust accu-
racy is obtained through sAA.

Method 10 50 100 150 200

sAT 43.1 40.7 44.8 45.7 44.4
sTRADES 38.7 48.5 52.0 53.2 53.1

Table 5: Different backward functions and losses
during adversarial training. The robust accuracy is
obtained through sAA.

Method Sparse Unproj. Alter. Rand.

sAT 41.5 27.2 38.9 44.8
sTRADES 47.6 42.5 49.8 52.0

9
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6 CONCLUSION

In this paper, we propose an effective and efficient white-box attack to generate sparse perturbations
bounded by the l0 norm. Based on that, we further propose an ensemble of both white-box and black-
box attacks for reliable l0 robustness evaluation. Our proposed white-box attack, due to its efficiency,
can also be used in adversarial training to obtain robust models against sparse perturbations. Our
attack methods outperform the state-of-the-art sparse attacks. The robust models obtained by our
training method demonstrate the best robust accuracy. Our future work will focus on constructing
more efficient adversarial training algorithms against sparse perturbations.
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A ADDITIONAL EXPERIMENTS

A.1 RESULTS OF DIFFERENT SPARSITY LEVELS AND DIFFERENT DATASETS

In this subsection, we present the robust accuracy on CIFAR-10 with the sparsity level k = 10 and
k = 15, those on CIFAR-100 with k = 10, those on ImageNet-100 (Deng et al., 2009) with k = 200
in Table 6, 7, 8 and 9, respectively. Since CIFAR-100 and ImageNet-100 have 100 categories, we
evaluate only the top 9 incorrect classes with the highest confidence scores in targeted attacks. Note
that PGD0-A and PGD0-T are evaluated in this section, due to their non-robustness to our attack.
The observations with different sparsity levels and on different datasets are consistent with those in
Table 1, which indicates the effectiveness of our method.

In addition, we evaluate our methods on MNIST (Deng, 2012) with the sparsity level k = 30. We
train a LeNet model (LeCun et al., 1998) under various settings, including the clean inputs, l∞
bounded perturbation with the magnitude ε = 0.3 and l0 bounded perturbations with the sparsity
level k = 30. The model trained by sTRADES has a competitive robust accuracy of 45.8% under
sAA. By contrast, the vanilla model and the l∞ models only have trivial performance (i.e., 0%).

Table 6: Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where
the sparsity level k = 10. The models are trained on CIFAR-10 (Krizhevsky et al., 2009). Note that Cor-
nerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Network Clean CS RS SF PGD0

(CE+T)
SAIF

(CE+T) sPGDCE sPGDCE+T sAA

Vanilla RN-18 93.9 3.2 1.5 40.6 11.5 31.8 4.1 2.5 1.1

l∞-adv. trained, ε = 8/255

GD PRN-18 87.4 36.8 31.0 69.9 50.3 63.0 44.3 38.9 28.6
PORT RN-18 84.6 36.7 33.5 70.7 46.1 62.6 45.4 38.8 30.3
DKL WRN-28 92.2 40.9 30.4 71.9 54.2 64.6 47.8 41.3 28.8
DM WRN-28 92.4 38.7 28.6 68.7 52.7 62.5 46.6 40.1 27.5

l2-adv. trained, ε = 0.5

HAT PRN-18 90.6 47.3 47.2 74.6 53.5 71.4 44.6 40.1 38.5
PORT RN-18 89.8 46.8 45.1 74.2 50.4 70.9 41.2 36.5 34.9
DM WRN-28 95.2 57.8 54.3 78.3 65.5 80.9 58.0 51.9 48.3
FDA WRN-28 91.8 55.0 54.3 79.6 58.6 77.5 58.2 52.6 48.7

l1-adv. trained, ε = 12

l1-APGD PRN-18 80.7 51.4 54.9 74.3 60.7 68.1 52.3 49.1 48.3
Fast-EG-l1 PRN-18 76.2 49.7 50.6 69.7 56.7 63.2 50.8 47.2 46.1

l0-adv. trained, k = 20

sAT PRN-18 85.8 62.5 65.7 85.3 82.4 81.5 81.7 80.7 65.7
sTRADES PRN-18 87.2 67.5 70.1 86.5 84.5 83.6 83.0 82.2 70.1

A.2 COMPARISON BETWEEN SPGDCE+T AND SPARSE-RS UNDER DIFFERENT ITERATIONS

In Figure 1 (a), we compare sPGDCE and sparse-RS (RS) under different iterations, which demon-
strates sPGDCE achieves significantly better performance than RS attack when the iteration number
is small, which makes it feasible for adversarial training. Here, we additionally compare sPGDCE+T

and RS under different iterations in Figure 2. The observed phenomenon is consistent with that in
Figure 1 (a).

A.3 STEP SIZE IN SPGD

As shown in Table 10 and 11, the robust accuracy does not vary significantly with different step
sizes. It indicates the robustness of our method to different hyper-parameter choices. In practice,
We set α and β to 0.25 and 0.25 ×

√
h× w, respectively. Note that h and w denote the height and

width of the image, respectively, which are both 32 in CIFAR-10.
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Table 7: Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where
the sparsity level k = 15. The models are trained on CIFAR-10 (Krizhevsky et al., 2009). Note that Cor-
nerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Network Clean CS RS SF PGD0

(CE+T)
SAIF

(CE+T) sPGDCE sPGDCE+T sAA

Vanilla RN-18 93.9 1.6 0.1 25.3 2.1 12.0 0.3 0.1 0.0

l∞-adv. trained, ε = 8/255

GD PRN-18 87.4 30.5 18.7 61.1 36.0 51.3 30.1 24.9 16.9
PORT RN-18 84.6 30.8 22.1 62.1 31.4 52.1 31.2 25.2 18.1
DKL WRN-28 92.2 35.3 18.3 62.5 41.2 52.3 33.2 26.7 16.9
DM WRN-28 92.4 34.8 17.0 57.9 38.5 49.4 31.9 25.5 15.8

l2-adv. trained, ε = 0.5

HAT PRN-18 90.6 38.9 31.4 65.3 35.4 60.2 25.4 21.0 20.0
PORT RN-18 89.8 36.8 29.4 64.3 30.6 59.7 21.9 18.0 17.1
DM WRN-28 95.2 48.5 35.6 68.2 47.5 70.9 36.9 26.7 27.1
FDA WRN-28 91.8 47.8 38.1 71.8 40.1 68.2 40.4 34.7 30.8

l1-adv. trained, ε = 12

l1-APGD PRN-18 80.7 41.3 43.5 70.3 50.5 62.3 36.9 33.0 32.1
Fast-EG-l1 PRN-18 76.2 40.7 40.3 64.9 46.7 56.9 36.5 32.2 31.2

l0-adv. trained, k = 20

sAT PRN-18 85.8 54.4 55.0 85.2 80.9 79.5 80.2 79.0 54.9
sTRADES PRN-18 87.2 61.2 60.9 86.4 83.2 81.3 81.3 80.2 60.9

Table 8: Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where
the sparsity level k = 10. The models are trained on CIFAR-100 (Krizhevsky et al., 2009). To accelerate
the evaluation, targeted attacks on the top-9 classes with the highest confidence scores are adopted. Note that
CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Network Clean CS RS SF PGD0

(CE+T)
SAIF

(CE+T) sPGDCE sPGDCE+T sAA

Vanilla RN-18 74.3 1.6 0.3 20.1 1.9 9.0 0.8 0.4 0.2

l∞-adv. trained, ε = 8/255

HAT PRN-18 61.5 12.6 11.3 39.1 19.1 26.8 18.9 15.4 10.4
FDA PRN-18 56.9 16.3 13.5 42.2 23.0 30.7 22.5 19.0 12.9
DKL WRN-28 73.8 12.4 7.7 44.9 20.9 26.5 17.2 13.9 7.3
DM WRN-28 72.6 14.0 9.6 46.2 23.4 29.8 20.9 16.7 9.0

l1-adv. trained, ε = 6

l1-APGD PRN-18 63.2 22.7 26.1 47.7 33.0 43.5 25.6 21.6 20.7
Fast-EG-l1 PRN-18 59.4 21.5 21.0 44.8 30.6 39.5 24.3 20.6 19.4

l0-adv. trained, k = 10

sAT PRN-18 56.2 33.6 36.0 55.3 51.7 51.9 51.0 49.8 35.7
sTRADES PRN-18 60.5 38.7 39.0 59.8 54.9 52.4 55.4 54.2 38.8

Table 10: Robust accuracy at different step sizes α
for magnitude p. The evaluated attack is sPGDCE+T.
The model is Fast-EG-l1 (Jiang et al., 2023) trained
on CIFAR-10 (Krizhevsky et al., 2009).

α 1
16

1
8

1
4

1
2

3
4

1

Acc. 20.1 20.1 20.0 20.2 20.2 20.2

Table 11: Robust accuracy at different step sizes β
for mask m. The evaluated attack is sPGDCE+T. The
model is Fast-EG-l1 (Jiang et al., 2023) trained on
CIFAR-10 (Krizhevsky et al., 2009).

β 2 4 8 16 24 32

Acc. 20.1 20.1 20.0 20.1 20.2 20.2

B IMPLEMENTATION DETAILS
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Table 9: Robust accuracy of various models on different attacks that generate l0 bounded perturbations, where
the sparsity level k = 200. The models are trained on ImageNet-100 (Deng et al., 2009), and ResNet34 (RN-
34) (He et al., 2016a) is used as the network architecture. Our sAT model is trained with the sparsity level
k = 200 and the iteration number of the attack t = 20. Note that all methods are evaluated on 500 samples,
and CornerSearch (CS) is not evaluated here due to the high computational complexity.

Model Network Clean CS RS SF PGD0

(CE+T)
SAIF

(CE+T) sPGD sPGDCE+T sAA

Vanilla RN-34 83.0 - 0.6 5.8 9.8 0.6 0.2 0.0 0.0

l1-adv. trained, ε = 72

Fast-EG-l1 RN-34 69.2 - 48.0 43.4 50.2 43.0 23.8 19.4 19.4

l0-adv. trained, k = 200

sAT RN-34 84.8 - 57.8 83.6 80.8 62.4 76.4 73.4 57.8
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Figure 2: Curves of robust accuracy v.s. iterations.
sPGDCE+T is evaluated here. The sparsity level k
is set to 20. The total iteration number ranges from
20 and 10000. PORT (l∞ and l2) (Sehwag et al.,
2021) and Fast-EG-l1 (Jiang et al., 2023) are evalu-
ated. The results of sPGD and RS attack are shown
in solid lines and dotted lines, respectively. For better
visualization, the x-axis is shown in log scale.

In experiments, we mainly focus on the cases
of the sparsity of perturbations k = 10, 15 and
20, where k = ||

∑c
i=1 δ

(i)||0 or ||m||0, δ(i) ∈
Rh×w is the i-th channel of perturbation δ ∈
Rh×w×c, and m ∈ Rh×w×1 is the sparsity mask
in the decomposition of δ = p�m, p ∈ Rh×w×c

denotes the magnitude of perturbations.

SparseFool (Modas et al., 2018): We apply
SparseFool following the official implementation
and use the default value of the sparsity parameter
λ = 3. The maximum iterations per sample is set
to 3000 to ensure fair comparison among attacks
in Table 1. Finally, the perturbation generated by
SparseFool is projected to the l0 ball to satisfy the
adversarial budget.

CornerSearch (Croce & Hein, 2019c): For Cor-
nerSearch, we set the hyperparameters as follow-
ing: N = 100, Niter = 3000, where N is the
sample size of the one-pixel perturbations, Niter

is the number of queries. For bot CIFAR-10 and
CIFAR-100 datasets, we evaluate the robust ac-
curacy on 1000 test instances due to its prohibitively high computational complexity.

Sparse-RS (Croce et al., 2022): For Sparse-RS, we set αinit = 0.3, which controls the set of pixels
changed in each iteration. We only report the results of untargeted attacks with the maximum queries
limited to 3000.

PGD0 (Croce & Hein, 2019c): For PGD0, we include both untargeted attack and targeted attacks
on the top-9 incorrect classes with the highest confidence scores. We set the step size to η =
120000/255. The iteration numbers of each attack are 300. Besides, 5 restarts are adopted to further
boost the performance.

SAIF (Imtiaz et al., 2022): Similar to PGD0, we apply both untargeted attack and targeted attacks
on the top-9 incorrect classes with 300 iterations per attack. We adopt the same l∞ norm constraint
for the magnitude tensor p as in sPGD.

sparse-PGD (sPGD): Cross-entropy loss is adopted as the loss function of both untargeted and
targeted versions of our method. The step size for magnitude p is set α = 1/4; the step size for
continuous mask m̃ is set β = 1/4×

√
h× w, where h and w are the height and width of the input

image x ∈ Rh×w×c, respectively. The small constant γ to avoid numerical error is set to 1× 10−10.
The number of iterations is 300 for all datasets to ensure fair comparison among attacks in Table 1.

sparse-AutoAttack (sAA): It is a cascade ensemble of five different attacks, i.e., a) untargeted
sPGD with sparse gradient, b) untargeted sPGD with unprojected gradient, c) targeted sPGD with
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sparse gradient,d) targeted sPGD with unprojected gradient and e) untargeted Sparse-RS. The hyper-
parameters of sPGD are the same as those listed in the last paragraph. We apply targeted attacks on
the top-9 incorrect classes with the highest confidence scores. The iteration number of untargeted
Sparse-RS is 3000 for all datasets.

Adversarial Training: sPGD and PGD0 are adopted as the attack during the training phase, the
number of iterations is 100, and the backward function is randomly selected from the two different
backward functions for each batch. The sparsity of perturbations are 20 and 10 for CIFAR-10 and
CIFAR-100, respectively. We use PreactResNet18 (He et al., 2016b) with softplus activation (Dugas
et al., 2000) for experiments in CIFAR-10 and CIFAR-100. We train the model for 40 epochs, the
training batch size is 128. The optimizer is SGD with a momentum factor of 0.9 and weight decay
factor of 5× 10−4. The learning rate is initialized to 0.05 and is divided by a factor of 10 at the 30th
epoch and the 35th epoch.

C VISUALIZATION OF SOME ADVERSARIAL EXAMPLES

We show some adversarial examples with different sparsity levels of perturbation in Figure 3, 4, 5.
The attack is sPGD, and the model is Fast-EG-l1 (Jiang et al., 2023) trained on CIFAR-10. We can
observe that most of the perturbed pixels are located in the foreground of images. It is consistent
with the intuition that the foreground of an image contains most of the semantic information.

(a) automobile (b) frog (c) horse (d) deer (e) cat

(f) truck (g) deer (h) automobile (i) bird (j) ship

Figure 3: Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples
(second row) by sPGD. The attack is sPGD with sparsity level k = 10. The model is Fast-EG-l1 trained on
CIFAR-10. The predictions given by the model are listed below the images.

(a) horse (b) frog (c) truck (d) airplane (e) bird

(f) cat (g) bird (h) horse (i) automobile (j) horse

Figure 4: Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples
(second row) by sPGD. The attack is sPGD with sparsity level k = 15. The model is Fast-EG-l1 trained on
CIFAR-10. The predictions given by the model are listed below the images.
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(a) dog (b) bird (c) cat (d) horse (e) ship

(f) cat (g) automobile (h) bird (i) dog (j) cat

Figure 5: Clean images (first row) from the test set of CFIFAR-10 and their corresponding adversarial samples
(second row) by sPGD. The attack is sPGD with sparsity level k = 20. The model is Fast-EG-l1 trained on
CIFAR-10. The predictions given by the model are listed below the images.
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